WO2016153182A1 - 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016153182A1
WO2016153182A1 PCT/KR2016/001865 KR2016001865W WO2016153182A1 WO 2016153182 A1 WO2016153182 A1 WO 2016153182A1 KR 2016001865 W KR2016001865 W KR 2016001865W WO 2016153182 A1 WO2016153182 A1 WO 2016153182A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
mmwave
cell
terminal
random access
Prior art date
Application number
PCT/KR2016/001865
Other languages
English (en)
French (fr)
Inventor
최국헌
고현수
노광석
김동규
이상림
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/550,349 priority Critical patent/US10548101B2/en
Publication of WO2016153182A1 publication Critical patent/WO2016153182A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for accessing a millimeter wave (mmWave) cell by a terminal connected to a legacy cell.
  • mmWave millimeter wave
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and apparatus for efficiently accessing a millimeter wave cell by a terminal connected to a legacy cell.
  • a method for accessing a millimeter wave cell by the terminal legacy (RCC) connected to the terminal radio resource control (legacy)
  • RRC legacy
  • legacy radio resource control
  • Receiving a millimeter wave connection establishment message from the cell Measuring discovery signals from millimeter wave cells located in the periphery of the terminal based on the millimeter wave connection establishment message; And transmitting a random access preamble of a first type to any one of the millimeter wave cells based on a measurement result of the discovery signals, wherein the measurement of the discovery signals is a signal specifically set for each millimeter wave cell.
  • the detection is performed based on a wave form.
  • a terminal supporting a millimeter wave (mmWave) for achieving the above-described technical problem, receiving a millimeter wave connection configuration message from a legacy cell connected to the radio resource control (RRC) terminal receiving set;
  • RRC radio resource control
  • a processor for measuring discovery signals from millimeter wave cells located in the periphery of the terminal based on the millimeter wave connection establishment message;
  • a transmitter for transmitting a random access preamble of a first type to any one of the millimeter wave cells based on a measurement result of the discovery signals, wherein the measurement of the discovery signals is a signal specifically set for each millimeter wave cell.
  • the detection is performed based on a wave form.
  • the millimeter wave connection setup message may include information on a signal detection waveform of each of the millimeter wave cells and a timing at which each signal detection waveform is to be used.
  • the terminal performs a total of NXM auto-correlation based on the signal detection waveform specific to each millimeter wave cell and performs the total NXM times of self-correlation. Detecting a beamforming direction and a millimeter wave cell corresponding to a self-correlation having a maximum peak in correlation, 'N' indicating the number of millimeter wave cells, and 'M' indicating a beam of the discovery signals It can indicate the forming resolution.
  • the frame of the detected millimeter wave cell begins at a second point offset from a first point at which the peak of the self-correlation is maximum, and the magnitude of the offset is in the millimeter wave connection establishment message. It may be an integer multiple of the included discovery signal length.
  • any one millimeter wave cell to which the first type of random access preamble is transmitted may be the millimeter wave cell corresponding to the self-correlation in which the peak is maximized.
  • the millimeter wave cells belong to a timing advance group (TAG) of the terminal, and the millimeter wave cells within the TAG may transmit the discovery signals through different waveforms and different frequency resources.
  • TAG timing advance group
  • the millimeter wave connection establishment message includes a millimeter wave discovery measurement timing configuration (DMTC) indicating a measurement period and a measurement length of the discovery signals, and the measurement period and the measurement length indicated by the millimeter wave DMTC are It can be set smaller than the measurement period and measurement length indicated by the legacy DMTC, respectively.
  • DMTC millimeter wave discovery measurement timing configuration
  • the terminal performs a first TA correction based on a response to the first type of random access preamble, and performs a second type of TA based on the first TA corrected uplink synchronization timing.
  • a random access preamble may be transmitted to any one millimeter wave cell.
  • the terminal since the information required to access the millimeter wave cell is signaled from the legacy cell, the terminal can efficiently access the millimeter wave cell, and also detects a signal specific to each of the millimeter wave cells belonging to the TAG of the terminal. By setting the waveform, the millimeter wave cell to be accessed by the terminal can be accurately detected.
  • 1A illustrates a random access procedure of an LTE system.
  • 1B illustrates the DMTC of an LTE system.
  • FIG 2 illustrates an initial stage of receive beam scanning for transmit beam scanning according to an embodiment of the present invention.
  • FIG 3 illustrates a method of performing beam scanning at a transmitting end after a receiving lobe index is fixed at a receiving side according to an embodiment of the present invention.
  • FIG. 4 illustrates a structure of a random access preamble repeated according to a beam direction according to an embodiment of the present invention.
  • 5 illustrates the use of a new type of PRACH preamble in accordance with an embodiment of the present invention.
  • FIG. 6 illustrates the use of a new type of PRACH preamble in accordance with another embodiment of the present invention.
  • FIG. 7 illustrates a distribution of mmWave cells in accordance with an embodiment of the present invention.
  • FIG. 8 illustrates an mmWave frame structure according to an embodiment of the present invention.
  • FIG 9 illustrates mmWave DMTC period and DMTC length settings according to an embodiment of the present invention.
  • FIG. 10 illustrates mmWave DMTC setup according to another embodiment of the present invention.
  • FIG. 11 illustrates an mmWave TAG and an Xn interface according to an embodiment of the present invention.
  • FIG. 12 illustrates setting of mmWave TAG and discovery discovery signal according to mmWave terminal position.
  • FIG. 13 illustrates a timing setting for transmitting an mmWave discovery signal in a cell of mmWave TAG according to an embodiment of the present invention.
  • FIG. 14 is a diagram for describing a method of determining a beam direction by performing autocorrelation according to an embodiment of the present invention.
  • 15 illustrates a method of determining a transmission time of mmWave downlink data according to an embodiment of the present invention.
  • FIG. 16 shows a flow of a non-competition based random access procedure of the mmWave system according to an embodiment of the present invention.
  • FIG. 17 illustrates an mmWave subframe index for mmWave RACH preamble transmission according to an embodiment of the present invention.
  • FIG. 18 illustrates a terminal and a base station according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems, and in particular, the present invention.
  • Embodiments of may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents.
  • all terms disclosed in the present document can be described by the above standard document.
  • a cellular system may mean an LTE or LTE-A system and an mmWave system may mean a system supporting mmWave in an LTE or LTE-A system. That is, the mmWave system refers to a wireless access system that supports the mmWave characteristics.
  • the term ray may refer to a unique signal or a cluster of unique signals generated in the mmWave link when beamforming is not performed.
  • 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system and the like.
  • 1A is a diagram for describing an operation process of a terminal and a base station in a contention-based random access process.
  • a UE randomly selects one random access preamble from a set of random access preambles indicated by system information or a handover command, and transmits the random access preamble.
  • a resource may be selected and transmitted (S501).
  • the terminal After transmitting the random access preamble as in step S501, the terminal attempts to receive its random access response within the random access response receiving window indicated by the system information or the handover command (S502).
  • the random access response information may be transmitted in the form of a MAC PDU, and the MAC PDU may be transmitted through a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the UE monitors a physical downlink control channel (PDCCH). That is, the PDCCH preferably includes information of a terminal that should receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transmission format of the PDSCH, and the like.
  • the UE Once the UE succeeds in receiving the PDCCH transmitted to the UE, it can properly receive the random access response transmitted to the PDSCH according to the information of the PDCCH.
  • the random access response includes a random access preamble identifier (ID; for example, RAPID (Random Access Preamble IDentifier)), an UL grant indicating an uplink radio resource, and a temporary C-RNTI. And Timing Advance Command (TAC).
  • ID random access preamble identifier
  • RAPID Random Access Preamble IDentifier
  • TAC Timing Advance Command
  • the reason why the random access (or random access) preamble discriminator is needed in the random access response is that the UL grant may be included because one random access response may include random access response information for one or more terminals. This is because it is necessary to inform which UE the temporary cell identifier and the TAC are valid. In this step, it is assumed that the UE selects a random access preamble identifier that matches the random access preamble selected by the UE in step S502. Through this, the UE may receive an UL grant, a temporary C-RNTI, a timing synchronization command (TAC), and the like.
  • TAC timing synchronization command
  • the terminal When the terminal receives a random access response valid to the terminal, it processes each of the information included in the random access response. That is, the terminal applies the TAC and stores the temporary cell identifier.
  • the data to be transmitted may be stored in the message 3 buffer in response to receiving a valid random access response.
  • the terminal transmits data (ie, a third message) to the base station by using the received UL grant (S503).
  • the third message should include the identifier of the terminal.
  • the base station cannot determine which terminals perform the random access process, because the terminal needs to be identified for future collision resolution.
  • Two methods have been discussed as a method of including the identifier of the terminal.
  • the first method if the UE already has a valid cell identifier assigned to the cell before the random access procedure, the UE transmits its cell identifier through an uplink transmission signal corresponding to the UL grant.
  • the terminal transmits its own unique identifier (eg, S-TMSI or random ID). In general, the unique identifier is longer than the cell identifier.
  • the UE transmits data corresponding to the UL grant it starts a timer for contention resolution (hereinafter referred to as "CR timer").
  • the terminal After the terminal transmits data including its identifier through the UL grant included in the random access response, the terminal waits for instructions from the base station to resolve the collision. That is, an attempt is made to receive a PDCCH in order to receive a specific message (S504). Two methods have been discussed in the method of receiving the PDCCH. As mentioned above, when the third message transmitted in response to the UL grant is transmitted using a cell identifier of its own, it attempts to receive the PDCCH using its cell identifier, and the identifier is a unique identifier. In this case, it may attempt to receive the PDCCH using the temporary cell identifier included in the random access response.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the terminal determines that the random access procedure has been normally performed, and terminates the random access procedure.
  • the non-competitive random access procedure ends the random access procedure only by transmitting the first message and transmitting the second message.
  • the terminal before the terminal transmits the random access preamble to the base station as the first message, the terminal is allocated a random access preamble from the base station, and transmits the allocated random access preamble to the base station as a first message and from the base station.
  • the random access procedure is terminated by receiving the random access response.
  • This discovery procedure is to support efficient power management for discovery of small cells and to discover as many small cells as possible at one time.
  • the discovery procedure is useful for efficiently detecting some target small cells among the compact small cells.
  • the discovery signal includes at least one of CRS, PSS, SSS or CSI-RS.
  • Discovery measurement timing configuration (DMTC), which is a measurement timing setting for the discovery signal, is provided to the terminal through RRC signaling.
  • 1B shows the structure of the DMTC. Referring to FIG. 1B, the DMTC may be set at 40, 80, 160 ms periods.
  • the DMTC has an offset of 0 or 1 in the PCell subframe or system frame index and its length is fixed (e.g., 6ms).
  • the terminal performs an RRM measurement (e.g., RSRP, RSRQ) for the discovery signal based on the DMTC, and reports the measurement result to the base station.
  • the discovery procedure is performed at the terminal in the RRC-connected state.
  • FIG. 2 is a diagram illustrating an example of an initial stage of reception beam scanning for transmission beam scanning according to an embodiment of the present invention
  • FIG. 3 is a method of performing beam scanning at a transmitting end after a reception lobe index is fixed at a receiving side. It is a figure which shows one of them.
  • the transmission beam is fixed and the receiving side, i.e., the terminal, rotates the reception beam scanning 360 degrees to derive a PDP (Power Delay Prifile) for each beam.
  • the terminal selects an index of a reception lobe having a ray having the largest power among the detected PDPs.
  • the lobe refers to each radiation group when the energy distribution of the radio waves radiated from the antenna is divided in various directions. That is, it means one type of beam during beam scanning.
  • Equation 1 is used to calculate the SNR of each lobe detected by the UE.
  • Equation 1 H i (k) denotes a radio channel of the i-th lobe for the transmission beam k, w i denotes a precoding matrix, p i denotes a reception power, and sigma ⁇ is noise. Sigma is the power of noise.
  • ⁇ k When a time at which reception beam scanning for a fixed transmission beam lobe is completed is defined as ⁇ k as shown in FIG. 3, ⁇ k may be determined as shown in Equation 2 below.
  • Equation 2 ⁇ exess _delay is an excess delay spread value representing the maximum delay time required for the beam scanning repeatedly at the receiving end, ⁇ prop_delay is a transmission delay value, and ⁇ process _delay is each received beam lobe.
  • PDP measurement time and the strong ray detection time for, N means the number of beam lobes on the receiving side.
  • the receiver repeats the above process, varying the entire transmission beam lobe of 360 to 360 degrees. Therefore, the beam scanning completion time of the receiving end is K ⁇ k .
  • K means the total number of transmission beams.
  • the terminal when the receiving terminal completes beam scanning, the terminal transmits a pilot signal to the mmWave base station again. Thereafter, the terminal performs 360-degree beam scanning to determine the transmitting side lobe index.
  • the time at which the transmission / reception beam scanning is completed is K ⁇ i + ⁇ tx _ scan .
  • Table 1 below defines the parameters for measuring the beam scanning completion time.
  • FIG. 4 illustrates a structure of a random access preamble repeated according to a beam direction according to an embodiment of the present invention.
  • N slot PRACH preambles are required according to N slot beam directions.
  • the length of each preamble may be reduced since the UE may have an opportunity to transmit a PRACH preamble for time synchronization per beam direction without considering RTT. .
  • 5 illustrates the use of a new type of PRACH preamble in accordance with an embodiment of the present invention.
  • FIG. 6 illustrates the use of a new type of PRACH preamble in accordance with another embodiment of the present invention.
  • NLoS non-line of sight
  • the synchronization of the strong NLoS link may be obtained to improve the performance of the mmWave uplink. Since the TA of the current UE is configured through the LoS link, a new type of PRACH preamble is required to correct the time asynchronousness that occurs as the UE transitions to the NLoS. For example, NLoS excess delay may appear to be approximately 1.4us in large cities.
  • the CP may exceed 0.5 us if the TA is not correct. Therefore, it is necessary to match the ⁇ TA synchronization to the changed NLoS link.
  • the NLoS cluster enters the CP and is transmitted based on the NLoS link (e.g., the Los link is blocked), a slight ⁇ TA correction can improve the link performance.
  • a new type of RACH preamble can be used for uplink synchronization by transmitting a short RACH.
  • the terminal may perform RACH transmission to the mmWave cell.
  • information about the mmWave link connection configuration is required.
  • the terminal may transmit the mmWave terminal specific contention free RACH preamble based on the information on the mmWave link connection configuration.
  • mmWave cell and mmWave terminal may use a strong NLoS link.
  • the mmWave cell is located with the legacy cell, and the legacy cell and the mmWave terminal are RRC-connected with legacy up / down links.
  • the legacy cell and the mmWave small cell may be located together, and the boundary of the NLoS small cell does not exceed the boundary of the mmWave small cell.
  • the mmWave link is wideband, has a short coherent time, and has a relatively small cell boundary. Therefore, mmWave links have a shorter symbol length than legacy links, more symbols are packed in one TTI, and spectral efficiency can be relaxed. In addition, the number of users in the mmWave cell is relatively small compared to the legacy link, so that user-specific reference signals and control channels can be formed.
  • mmWave system information may be transmitted over a legacy link.
  • System information may include, but is not limited to, for example, a frame structure index and mmWave system bandwidth.
  • the mmWave subframe may be set to a relatively small length compared to the legacy subframe.
  • the legacy cell to which the UE is RRC connected needs to provide UE-specific information related to beamforming in the mmWave initial access step. Since mmWave channel characteristics depend on the user's location, and various transmission schemes for beamforming are different for each user's situation, mmWave link initial connection can be performed more quickly by providing information necessary for initial mmWave connection. Can be.
  • a terminal RRC connected to a legacy system and supporting mmWave up / downlink transmission may receive a terminal-specific mmWave link connection establishment message through downlink of the legacy system.
  • mmWave link connection setup message When the mmWave link connection setup message is transmitted, for example (i) if a high data rate service is required that is not supported by the legacy link (eg ultra high definition movie, ultra high definition real time streaming, hologram data transmission), (ii) If mmWave RACH transmission is required (eg, when the terminal desires such as high definition video chat, hologram telephony, ultra high definition streaming uploading, etc.), (iii) cases where services with higher priority than existing services should be used urgently, etc. Can be, but not limited to,
  • the mmWave link connection setup message may include, for example, (i) mmWave preamble measurement timing settings (e.g., mmWave DMTC) and (ii) mmWave preamble information.
  • the mmWave DMTC setting may include DMTC period and length information.
  • the mmWave DMTC may be set in the same or shorter period than the legacy DMTC according to the mmWave link characteristic, and may be set in consideration of the resolution of the mmWave frame structure.
  • 9 illustrates mmWave DMTC period and DMTC length settings according to an embodiment of the present invention. 9, mmWave DMTC period and DMTC length are set according to the legacy DMTC period.
  • multiple mmWave cells transmit an mmWave preamble, for example, a discovery signal, to the mmWave terminal based on the legacy DMTC period and the DMTC length. Therefore, no separate setting is required for mmWave DMTC.
  • mmWave DMTC having a shorter period than the legacy DMTC period may be required.
  • the frequency of the discovery signal is orthogonal so that each mmWave cell can be distinguished from each other in the mmWave tracking area group (TAG) in transmitting each discovery signal.
  • mmWave DMTC setup according to another embodiment of the present invention.
  • mmWave DMTC is set to shorter period and shorter length than legacy DMTC.
  • mmWave DMTC period is set to j ms less than the legacy DMTC period.
  • a short mmWave DMTC length can be set.
  • the power used for cell discovery can be reduced.
  • Such mmWave DMTC period and DMTC length may be set through the RRC signaling of the legacy cell.
  • the mmWave discovery signal information may be, for example, for ray scanning (or beam scanning).
  • mmWave discovery signals can be transmitted over the entire mmWave system band over a wide band.
  • CRS and CSI-RS may be used to measure RSRP as a discovery signal
  • the overhead may not be significant even if the discovery signal is transmitted over the entire mmWave band due to a short symbol or TTI compared to the low frequency TTI.
  • the discovery signal may be used as the mmWave preamble, but is not limited thereto. In the following description, it is assumed that the discovery signal is used as the mmWave preamble for convenience of description.
  • a discovery signal is transmitted from the mmWave cell to the mmWave terminal according to the direction of each beam.
  • the mmWave terminal discovers the mmWave cell by measuring the discovery signal within the mmWave DMTC period.
  • the mmWave discovery signal information may include an mmWave cell index, a shape of the mmWave discovery signal, and frequency information of the discovery signal.
  • a mmWave cell index, mmWave discovery signal shape information, and a frequency resource location where a discovery signal is transmitted for each mmWave cell may be provided to the terminal according to the location of each mmWave terminal.
  • Transmission configuration of discovery signals determined based on a tracking area group (TAG) of each mmWave terminal and mmWave DMTC of the mmWave terminal need to be set in advance.
  • TAG tracking area group
  • the mmWave TAG of the mmWave terminal includes mmWave cells (a), (b), and (c). 12 illustrates setting of mmWave TAG and discovery discovery signal according to mmWave terminal position.
  • discovery signals may overlap due to a propagation delay from each mmWave cell to the mmWave terminal. have. Accordingly, in order to allow the UE to distinguish which mmWave cell is a discovery signal transmitted, the frequency domains in which each mmWave cell transmits the discovery signal may be orthogonal to each other.
  • the discovery signal of each mmWave cell may be set in a different shape within the mmWave TAG.
  • the index of the transmission timing of the mmWave discovery signal may be provided as mmWave discovery signal information.
  • FIG. 13 illustrates a timing setting for transmitting an mmWave discovery signal in a cell of mmWave TAG according to an embodiment of the present invention.
  • the timing of discovery signal transmission of mmWave cells in each mmWave TAG is set differently, so that mmWave discovery signals of mmWave cells do not overlap. Accordingly, when the mmWave terminal detects the discovery signal, an error due to overlapping of the discovery signals may be minimized.
  • the discovery signal pattern information and the beam resolution information may be provided as mmWave discovery signal information.
  • the pattern of the discovery signal can be used to reduce the ambiguity of the discovery signal estimation.
  • Different patterns may be set for the mmWave discovery signal for each mmWave cell. For example, when the mmWave terminal receives the mmWave discovery signal, it performs autocorrelation with the waveform set in each mmWave cell, and knows in which beam direction the maximum power appears when determining the peak of the autocorrelation. Can be.
  • FIG. 14 is a diagram for describing a method of determining a beam direction by performing autocorrelation according to an embodiment of the present invention.
  • the resolution of the coarse beam is set to 120 degrees on the 2D plane so that the discovery signal is transmitted by beamforming in three directions.
  • the mmWave terminal may determine the direction in which the reception power of the discovery signal is maximized by performing autocorrelation after receiving the discovery signal.
  • the reception power of the discovery signal is maximized at ⁇ b1 of the mmWave cell (b).
  • the direction of the beam for initial connection is determined at 120 degrees.
  • mmWave discovery signal length information may be provided as mmWave discovery signal information.
  • the reference of the mmWave frame index may be set based on the beam direction selected by the beam scanning.
  • the mmWave data transmission time may be implicitly indicated based on the mmWave discovery signal length information.
  • the UE may know that data is transmitted on the mmWave link after a time offset of (N-m) ⁇ .
  • the UE If detection of the first transmitted discovery signal fails, the UE cannot know when the discovery signal is transmitted, and thus, the UE cannot know when data is transmitted in mmWave downlink.
  • 15 illustrates a method of determining a transmission time of mmWave downlink data according to an embodiment of the present invention.
  • the terminal may determine the mmWave data transmission time and the mmWave frame index based on the previously received ⁇ value and how many times the discovery signal is transmitted after ⁇ b1 .
  • FIG. 16 shows a flow of a non-competition based random access procedure of the mmWave system according to an embodiment of the present invention.
  • a new type of RACH Preamble is used for time synchronization for fine beams.
  • a new type of RACH preamble can be used after adjusting the TA of mmWave uplink for the coarse beam.
  • the legacy cell transmits an mmWave link connection establishment message to the terminal and the mmWave cell (S1605 and S1606).
  • the RACH timing information may be included in the mmWave link connection configuration information transmitted to the mmWave cell.
  • the terminal performs downlink synchronization with the mmWave cell (S1610).
  • the UE repeatedly transmits a PRACH preamble (S1615). Repetitive transmission of the PRACH preamble is training for coarse beams formed in different directions, and is for searching for a coarse beam in which maximum gain appears. For the PRACH preamble transmitted for the coarse beam, the pattern of the RACH preamble defined in the current LTE / LTE-A may be used.
  • the terminal receives a PRACH response from the mmWave cell (S1620).
  • the PRACH response may be for the best coarse beam where the gain of beam forming is maximal.
  • the terminal performs primary TA correction on the optimal coarse beam based on the PRACH response.
  • the terminal may transmit the above-described new type of RACH preamble (S1625).
  • a new type of RACH preamble may be sent for secondary TA acquisition for fine beams.
  • the terminal receives a PRACH response from the mmWave cell (S1630).
  • the PRACH response is a response regarding an optimal microbeam, and the terminal performs secondary TA correction based on the response.
  • the RACH preamble for the coarse beam and the new type of RACH preamble for the fine beam are illustrated as a series of consecutive procedures, but the present invention is not limited thereto.
  • a new type of RACH preamble may be transmitted in a period faster than the existing RACH transmission period.
  • the new type of PRACH configuration for the fine beam may be transmitted in a mixed form with the PRACH configuration for the coarse beam or through an independent configuration.
  • FIG. 17 illustrates an mmWave subframe index for mmWave RACH preamble transmission according to an embodiment of the present invention.
  • the subframe index for transmission timing of the mmWave RACH may be transmitted in downlink of mmWave or may be provided to the terminal through an mmWave link connection establishment message. Meanwhile, since it is determined whether the mmWave cell and the uplink are connected to the terminal, the above-described RACH procedure may be performed according to the beam direction of the terminal for uplink.
  • FIG. 18 illustrates a terminal and a base station according to an embodiment of the present invention.
  • the terminal and the base station illustrated in FIG. 18 may perform the above-described embodiments.
  • a user equipment may operate as a transmitter in uplink and a receiver in downlink.
  • an e-Node B eNB
  • eNB e-Node B
  • the terminal and the base station may include a transmitting module (Tx module: 2140, 2150) and a receiving module (Rx module: 2150, 2170), respectively, to control the transmission and reception of information, data, and / or messages.
  • Tx module: 2140, 2150 a transmitting module
  • Rx module: 2150, 2170 a receiving module
  • Antennas 2100 and 2110 for transmitting and receiving data and / or messages.
  • the terminal and the base station may each include a processor 2120 and 2130 for performing the above-described embodiments of the present invention, and memories 2180 and 2190 capable of temporarily or continuously storing the processing of the processor. Can be.
  • Embodiments of the present invention can be performed using the components and functions of the above-described terminal and base station apparatus.
  • the transmission module and the reception module included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission.
  • Duplex may perform packet scheduling and / or channel multiplexing.
  • the terminal and the base station of FIG. 21 may further include a low power radio frequency (RF) / intermediate frequency (IF) module.
  • RF radio frequency
  • IF intermediate frequency
  • the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Multi Mode-Multi Band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • software code may be stored in the memory units 2180 and 2190 to be driven by the processors 2120 and 2130.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • various radio access systems include 3rd Generation Partnership Project (3GPP), 3GPP2 and / or IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) systems.
  • Embodiments of the present invention can be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied.

Abstract

본 발명의 일 실시예에 따른 밀리미터 웨이브(mmWave)를 지원하는 무선 통신 시스템에서 단말이 밀리미터 웨이브 셀에 엑세스하는 방법은, 상기 단말과 RRC(radio resource control) 연결된 레거시(legacy) 셀로부터 밀리미터 웨이브 연결 설정 메시지를 수신하는 단계; 상기 밀리미터 웨이브 연결 설정 메시지에 기초하여 상기 단말의 주변에 위치한 밀리미터 웨이브 셀들로부터의 디스커버리 신호들을 측정하는 단계; 및 상기 디스커버리 신호들의 측정 결과에 기초하여 제1 타입의 랜덤 엑세스 프리엠블을 상기 밀리미터 웨이브 셀들 중 어느 하나에 전송하는 단계를 포함하되, 상기 디스커버리 신호들의 측정은, 각 밀리미터 웨이브 셀 마다 특정하게 설정된 신호 검출 파형(wave form)을 기초로 수행된다.

Description

무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 레거시 셀에 연결된 단말이 밀리미터 웨이브(mmWave: millimeter Wave) 셀에 엑세스 하는 방법 및 이를 위한 장치에 관한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
최근 기존의 셀룰러 시스템보다 고주파 특성을 갖는 mmWave 기반의 무선 통신 시스템이 연구되고 있다. mmWave 기반의 무선 통신 시스템에서는 mmWave의 전파 특성을 고려하여 동기화를 수행할 수 있는 방안이 요구된다.
본 발명이 이루고자 하는 기술적 과제는, 레거시 셀에 연결된 단말이 밀리미터 웨이브 셀에 효율적으로 엑세스하는 방법 및 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 밀리미터 웨이브(mmWave)를 지원하는 무선 통신 시스템에서 단말이 밀리미터 웨이브 셀에 엑세스하는 방법은, 상기 단말과 RRC(radio resource control) 연결된 레거시(legacy) 셀로부터 밀리미터 웨이브 연결 설정 메시지를 수신하는 단계; 상기 밀리미터 웨이브 연결 설정 메시지에 기초하여 상기 단말의 주변에 위치한 밀리미터 웨이브 셀들로부터의 디스커버리 신호들을 측정하는 단계; 및 상기 디스커버리 신호들의 측정 결과에 기초하여 제1 타입의 랜덤 엑세스 프리엠블을 상기 밀리미터 웨이브 셀들 중 어느 하나에 전송하는 단계를 포함하되, 상기 디스커버리 신호들의 측정은, 각 밀리미터 웨이브 셀 마다 특정하게 설정된 신호 검출 파형(wave form)을 기초로 수행된다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 밀리미터 웨이브(mmWave)를 지원하는 단말은, 상기 단말과 RRC(radio resource control) 연결된 레거시(legacy) 셀로부터 밀리미터 웨이브 연결 설정 메시지를 수신하는 수신기; 상기 밀리미터 웨이브 연결 설정 메시지에 기초하여 상기 단말의 주변에 위치한 밀리미터 웨이브 셀들로부터의 디스커버리 신호들을 측정하는 프로세서; 및 상기 디스커버리 신호들의 측정 결과에 기초하여 제1 타입의 랜덤 엑세스 프리엠블을 상기 밀리미터 웨이브 셀들 중 어느 하나에 전송하는 송신기를 포함하되, 상기 디스커버리 신호들의 측정은, 각 밀리미터 웨이브 셀 마다 특정하게 설정된 신호 검출 파형(wave form)을 기초로 수행된다.
바람직하게는, 상기 밀리미터 웨이브 연결 설정 메시지는, 상기 밀리미터 웨이브 셀들 각각의 신호 검출 파형 및 상기 각각의 신호 검출 파형이 사용될 타이밍에 대한 정보를 포함할 수 있다.
바람직하게는, 상기 디스커버리 신호들을 측정하데 있어서, 상기 단말은, 상기 각 밀리미터 웨이브 셀에 특정한 상기 신호 검출 파형을 기초로 총 N X M 번의 자기-상관(auto-correlation)을 수행하고, 상기 총 N X M 번의 자기-상관에서 피크(peak)가 최대로 나타나는 자기-상관에 대응되는 빔포밍 방향 및 밀리미터 웨이브 셀을 검출하고, 'N'은 상기 밀리미터 웨이브 셀들의 개수를 나타내고, 'M'은 상기 디스커버리 신호들의 빔포밍 해상도를 나타낼 수 있다.
보다 바람직하게는, 상기 검출된 밀리미터 웨이브 셀의 프레임은, 상기 자기-상관의 피크가 최대인 제1 지점으로부터 오프셋 된 제2 지점에서 시작되고, 상기 오프셋의 크기는, 상기 밀리미터 웨이브 연결 설정 메시지에 포함된 디스커버리 신호 길이의 정수배일 수 있다.
보다 바람직하게는, 상기 제1 타입의 랜덤 엑세스 프리엠블이 전송되는 상기 어느 하나의 밀리미터 웨이브 셀은, 상기 피크(peak)가 최대로 나타나는 자기-상관에 대응되는 상기 밀리미터 웨이브 셀일 수 있다.
바람직하게는, 상기 밀리미터 웨이브 셀들은 상기 단말의 TAG(timing advance group)에 속하고, 상기 TAG내에서 상기 밀리미터 웨이브 셀들은 서로 다른 파형들 및 서로 다른 주파수 자원들을 통해 상기 디스커버리 신호들을 전송할 수 있다.
바람직하게는, 상기 밀리미터 웨이브 연결 설정 메시지는 상기 디스커버리 신호들의 측정 주기 및 측정 길이를 지시하는 밀리미터 웨이브 DMTC(discovery measurement timing configuration)를 포함하고, 상기 밀리미터 웨이브 DMTC에 의해 지시되는 측정 주기 및 측정 길이는 레거시 DMTC 에 의해 지시되는 측정 주기 및 측정 길이 보다 각각 작게 설정될 수 있다.
바람직하게는, 상기 단말은, 상기 제1 타입의 랜덤 엑세스 프리엠블에 대한 응답에 기초하여 제1차 TA 보정을 수행하고, 상기 제1 차 TA 보정된 상향링크 동기 타이밍에 기초하여 제2 타입의 랜덤 엑세스 프리엠블을 상기 어느 하나의 밀리미터 웨이브 셀에 전송할 수 있다.
본 발명의 일 실시예에 따르면, 밀리미터 웨이브 셀에 엑세스하는데 필요한 정보들이 레거시 셀로부터 시그널됨으로써 단말이 효율적으로 밀리미터 웨이브 셀에 엑세스할 수 있으며, 또한 단말의 TAG 에 속하는 밀리미터 웨이브 셀들 각각에 특정한 신호 검출 파형이 설정됨으로써 단말이 엑세스할 밀리미터 웨이브 셀이 정확하게 검출될 수 있다.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되고, 첨부된 도면들은 본 발명에 대한 다양한 실시예들을 제공한다. 또한, 첨부된 도면들은 상세한 설명과 함께 본 발명의 실시 형태들을 설명하기 위해 사용된다.
도 1a는 LTE 시스템의 랜덤 엑세스 과정을 도시한다.
도 1b는 LTE 시스템의 DMTC 를 도시한다.
도 2는 본 발명의 일 실시예에 따른 송신 빔 스캐닝에 대한 수신 빔 스캐닝의 초기 단계를 도시한다.
도 3은 본 발명의 일 실시예에 따라 수신 로브 인덱스가 수신측에서 고정된 후 송신단에서 빔 스캐닝을 수행하는 방법을 도시한다.
도 4는 본 발명의 일 실시예에 따라서 빔 방향에 따라 반복되는 랜덤 엑세스 프리엠블의 구조를 도시한다.
도 5는 본 발명의 일 실시예에 따른 새로운 타입의 PRACH 프리엠블 사용을 예시한다.
도 6는 본 발명의 다른 일 실시예에 따른 새로운 타입의 PRACH 프리엠블 사용을 예시한다.
도 7은 본 발명의 일 실시예에 따른 mmWave 셀들의 분포를 예시한다.
도 8은 본 발명의 일 실시예에 따른 mmWave 프레임 구조를 도시한다.
도 9는 본 발명의 일 실시예에 따른 mmWave DMTC 주기 및 DMTC 길이 설정을 예시한다.
도 10은 본 발명의 다른 일 실시예에 따른 mmWave DMTC 설정을 예시한다.
도 11은 본 발명의 일 실시예에 따른 mmWave TAG 와 Xn 인터페이스를 예시한다.
도 12는 mmWave 단말 위치에 따른 mmWave TAG과 디스커버리 디스커버리 신호 설정을 예시한다.
도 13은 본 발명의 일 실시예에 따른 mmWave TAG의 셀에서 mmWave 디스커버리 신호를 전송하는 타이밍 설정을 예시한다.
도 14는 본 발명의 일 실시예에 따라서 자기 상관을 수행하여 빔 방향을 판단하는 방법을 설명하는 도면이다.
도 15는 본 발명의 일 실시예에 따라서 mmWave 하향링크 데이터의 전송 시점을 판단하는 방법을 설명한다.
도 16은 본 발명의 일 실시예에 따른 mmWave 시스템의 비-경쟁 기반의 랜덤 엑세스 절차의 흐름을 도시한다.
도 17은 본 발명의 일 실시예에 따른 mmWave RACH 프리엠블 전송을 위한 mmWave 서브프레임 인덱스를 예시한다.
도 18은 본 발명의 일 실시예에 따른 단말 및 기지국을 도시한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
예를 들어, 셀룰러 시스템은 LTE 또는 LTE-A 시스템을 의미하며, mmWave 시스템은 LTE 또는 LTE-A 시스템에서 mmWave를 지원하는 시스템을 의미할 수 있다. 즉, mmWave 시스템은 mmWave 특성을 지원하는 무선 접속 시스템을 의미한다. 또한, 본 발명의 실시예들에서 레이(ray)라는 용어는 빔포밍을 수행하지 않는 경우 mmWave 링크에서 발생하는 고유 신호 또는 고유 신호들의 클러스터(cluster)를 의미할 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
● RANDOM ACCESS IN LTE / LTE -A SYSTEM
먼저 LTE 시스템에서 경쟁 기반 랜덤 엑세스 과정을 설명한다.
도 1a은 경쟁 기반 랜덤 엑세스 과정에서 단말과 기지국의 동작 과정을 설명하기 위한 도면이다.
(1) 제 1 메시지 전송
먼저, 단말은 시스템 정보 또는 핸드오버 명령(Handover Command)을 통해 지시된 임의접속 프리앰블의 집합에서 임의로(randomly) 하나의 임의접속 프리앰블을 선택하고, 상기 임의접속 프리앰블을 전송할 수 있는 PRACH(Physical Random Access Channel) 자원을 선택하여 전송할 수 있다(S501).
(2) 제 2 메시지 수신
단말은 상기 단계 S501에서와 같이 임의접속 프리앰블을 전송 후에, 기지국이 시스템 정보 또는 핸드오버 명령을 통해 지시된 임의접속 응답 수신 윈도우 내에서 자신의 임의접속 응답의 수신을 시도한다(S502). 좀더 자세하게, 임의접속 응답 정보는 MAC PDU의 형식으로 전송될 수 있으며, 상기 MAC PDU는 PDSCH(Physical Downlink Shared CHannel)을 통해 전달될 수 있다. 또한 상기 PDSCH로 전달되는 정보를 단말이 적절하게 수신하기 위해 단말은 PDCCH(Physical Downlink Control CHannel)를 모니터링하는 것이 바람직하다. 즉, PDCCH에는 상기 PDSCH를 수신해야 하는 단말의 정보와, 상기 PDSCH의 무선자원의 주파수 그리고 시간 정보, 그리고 상기 PDSCH의 전송 형식 등이 포함되어 있는 것이 바람직하다. 일단 단말이 자신에게 전송되는 PDCCH의 수신에 성공하면, 상기 PDCCH의 정보들에 따라 PDSCH로 전송되는 임의접속 응답을 적절히 수신할 수 있다. 그리고 상기 임의접속 응답에는 랜덤 액세스 프리앰블 구별자(ID; 예를 들어, RAPID (Random Access Preamble IDentifier)), 상향링크 무선자원을 알려주는 상향링크 승인 (UL Grant), 임시 셀 식별자 (Temporary C-RNTI) 그리고 시간 동기 보정 값 (Timing Advance Command: TAC)들이 포함될 수 있다.
상술한 바와 같이 임의접속 응답에서 랜덤 액세스(또는 임의접속) 프리앰블 구별자가 필요한 이유는, 하나의 임의접속 응답에는 하나 이상의 단말들을 위한 임의접속 응답 정보가 포함될 수 있기 때문에, 상기 상향링크 승인(UL Grant), 임시 셀 식별자 그리고 TAC가 어느 단말에게 유효한지를 알려주기 위는 것이 필요하기 때문이다. 본 단계에서 단말은 단계 S502에서 자신이 선택한 임의접속 프리앰블과 일치하는 임의접속 프리앰블 식별자는 것을 선택하는 것을 가정한다. 이를 통해 단말은 상향링크 승인 (UL Grant), 임시 셀 식별자(Temporary C-RNTI) 및 시간 동기 보정 값 (Timing Advance Command: TAC) 등을 수신할 수 있다.
(3) 제 3 메시지 전송
단말이 자신에게 유효한 임의접속 응답을 수신한 경우에는, 상기 임의접속 응답에 포함된 정보들을 각각 처리한다. 즉, 단말은 TAC을 적용시키고, 임시 셀 식별자를 저장한다. 또한 유효한 임의접속 응답 수신에 대응하여 전송할 데이터를 메시지3 버퍼에 저장할 수 있다.
한편, 단말은 수신된 UL 승인을 이용하여, 데이터(즉, 제 3 메시지)를 기지국으로 전송한다(S503). 제 3 메시지는 단말의 식별자가 포함되어야 한다. 경쟁 기반 랜덤 액세스 과정에서는 기지국에서 어떠한 단말들이 상기 임의접속 과정을 수행하는지 판단할 수 없는데, 차후에 충돌해결을 하기 위해서는 단말을 식별해야 하기 때문이다.
단말의 식별자를 포함시키는 방법으로는 두 가지 방법이 논의되었다. 첫 번째 방법은 단말이 상기 임의접속 과정 이전에 이미 해당 셀에서 할당 받은 유효한 셀 식별자를 가지고 있었다면, 단말은 상기 UL 승인에 대응하는 상향링크 전송 신호를 통해 자신의 셀 식별자를 전송한다. 반면에, 만약 임의접속 과정 이전에 유효한 셀 식별자를 할당 받지 못하였다면, 단말은 자신의 고유 식별자(예를 들면, S-TMSI 또는 임의 ID(Random Id))를 포함하여 전송한다. 일반적으로 상기의 고유 식별자는 셀 식별자보다 길다. 단말은 상기 UL 승인에 대응하는 데이터를 전송하였다면, 충돌 해결을 위한 타이머 (contention resolution timer; 이하 "CR 타이머")를 개시한다.
(4) 제 4 메시지 수신
단말이 임의접속 응답에 포함된 UL 승인을 통해 자신의 식별자를 포함한 데이터를 전송 한 이후, 충돌 해결을 위해 기지국의 지시를 기다린다. 즉, 특정 메시지를 수신하기 위해 PDCCH의 수신을 시도한다(S504). 상기 PDCCH를 수신하는 방법에 있어서도 두 가지 방법이 논의되었다. 앞에서 언급한 바와 같이 상기 UL 승인에 대응하여 전송된 제 3 메시지가 자신의 식별자가 셀 식별자를 이용하여 전송된 경우, 자신의 셀 식별자를 이용하여 PDCCH의 수신을 시도하고, 상기 식별자가 고유 식별자인 경우에는, 임의접속 응답에 포함된 임시 셀 식별자를 이용하여 PDCCH의 수신을 시도할 수 있다. 그 후, 전자의 경우, 만약 상기 충돌 해결 타이머가 만료되기 전에 자신의 셀 식별자를 통해 PDCCH를 수신한 경우에, 단말은 정상적으로 임의접속 과정이 수행되었다고 판단하고, 임의접속 과정을 종료한다. 후자의 경우에는 상기 충돌 해결 타이머가 만료되기 전에 임시 셀 식별자를 통해 PDCCH를 수신하였다면, 상기 PDCCH가 지시하는 PDSCH이 전달하는 데이터를 확인한다. 만약 상기 데이터의 내용에 자신의 고유 식별자가 포함되어 있다면, 단말은 정상적으로 임의접속 과정이 수행되었다고 판단하고, 임의접속 과정을 종료한다.
한편, 비경쟁 기잔 임의접속 과정에서의 동작은 도 1에 도시된 경쟁 기반 임의접속 과정과 달리 제 1 메시지 전송 및 제 2 메시지 전송만으로 임의접속 절차가 종료되게 된다. 다만, 제 1 메시지로서 단말이 기지국에 임의접속 프리엠블을 전송하기 전에 단말은 기지국으로부터 임의접속 프리엠블을 할당받게 되며, 이 할당받은 임의접속 프리엠블을 기지국에 제 1 메시지로서 전송하고, 기지국으로부터 임의접속 응답을 수신함으로써 임의접속 절차가 종료되게 된다.
● Discovery measurement timing configuration in LTE / LTE -A
최근 스몰 셀의 디스커버리를 위한 디스커버리 신호가 LTE 시스템에 도입되었다. 이와 같은 디스커버리 절차는, 스몰 셀의 디스커버리에 대한 효율적 전력 관리를 지원하고, 한번에 가능한 많은 스몰 셀들을 디스커버리 하기 위한 것이다. 또한, 디스커버리 절차는 밀집된 스몰 셀들 중 일부 타겟 스몰 셀을 효율적으로 검출하는데 유용하다.
디스커버리 신호는 CRS, PSS, SSS 또는 CSI-RS 중 적어도 하나를 포함한다. 디스커버리 신호에 대한 측정 타이밍 설정인 DMTC (Discovery measurement timing configuration)는 RRC 시그널링을 통해서 단말에 제공된다. 도 1b는 DMTC의 구조를 도시한다. 도 1b를 참조하면, DMTC는 40,80,160ms 주기로 설정될 수 있다. DMTC는 PCell 서브프레임 또는 시스템 프레임 인덱스에서 0 또는 1의 오프셋을 갖고 그 길이가 고정된다(e.g., 6ms). 단말은 DMTC 에 기초하여 디스커버리 신호에 대한 RRM 측정(e.g., RSRP, RSRQ)을 수행하고, 측정 결과를 기지국에 보고한다. 디스커버리 절차는 RRC-연결 상태인 단말에서 수행된다.
mmWave Beam Scanning
이하에서는 mmWave 빔 스캐닝 방법들에 대해서 간단히 설명한다.
도 2는 본 발명의 일 실시예에 따른 송신 빔 스캐닝에 대한 수신 빔 스캐닝의 초기 단계의 일례를 나타내는 도면이고, 도 3은 수신 로브 인덱스가 수신측에서 고정된 후 송신단에서 빔 스캐닝을 수행하는 방법 중 하나를 나타내는 도면이다.
빔 스캐닝의 초기 단계에서 기지국의 송신 빔 코드북이 결정되면, 해당 송신 빔은 고정한 상태로 수신측 즉, 단말이 수신 빔 스캐닝을 360도로 돌아가면서 각 빔에 따른 PDP (Power Delay Prifile)을 도출한다. 이때, 단말은 검출한 PDP 중 가장 전력이 큰 레이(Ray)를 가지고 있는 수신 로브(lobe)의 인덱스를 선택한다. 이때, 로브란 안테나에서 방사되는 전파의 에너지 분포가 여러 방향으로 나뉘어져 있는 경우 각각의 방사군을 의미한다. 즉, 빔 스캐닝시 빔의 일 형태를 의미한다.
다음 수학식 1은 단말이 검출하는 각 로브의 SNR을 계산하기 위해 사용된다.
[수학식 1]
Figure PCTKR2016001865-appb-I000001
수학식 1에서 Hi (k)는 송신빔 k에 대한 i 번째 로브의 무선 채널을 의미하고, wi는 프리코딩 행렬을 의미하며, pi는 수신 전력을 의미하며, 시그마(σ)는 노이즈의 크기를 의미하며, 시그마의 제곱은 노이즈의 전력을 의미한다.
고정된 송신 빔 로브에 대한 수신 빔 스캐닝이 완료되는 시간을 도 3과 같이 τk라고 정의 할 때, τk값은 다음 수학식 2와 같이 결정될 수 있다.
[수학식 2]
Figure PCTKR2016001865-appb-I000002
수학식 2에서 τexess _delay는 수신단에서 반복하여 빔 스캐닝을 하는데 필요한 최대 지연 시간을 의미하는 초과 지연 확산(excess delay spread) 값이며, τprop_delay는 전송 지연 값이고, τprocess _delay 는 각 수신 빔 로브에 대한 PDP 측정 시간 및 강한 레이 검출 시간을 의미하며, N는 수신 측 빔 로브의 개수를 의미한다.
수신단은 전체 1~K까지의 송신 빔 로브를 360도 변화 시키면서, 위의 과정을 반복한다. 따라서, 수신단의 빔 스캐닝 완료 시간은 Kτk이다. 여기서 K는 전체 송신 빔의 개수를 의미한다.
도 3을 참조하면, 수신단인 단말이 빔 스캐닝을 완료하면 다시 mmWave 기지국으로 파일롯 신호를 전송한다. 이후, 단말은 송신측 로브 인덱스를 결정하기 위해 360도 빔 스캐닝을 수행한다. 송수신 빔 스캐닝이 완료되는 시간은 Kτitx _scan이 된다.
다음 표 1은 빔 스캐닝 완료 시간 측정을 위한 파라미터를 정의한다.
[표 1]
Figure PCTKR2016001865-appb-I000003
만약, 빔 스캐닝을 수행하기 위한 파라미터들이 표 1과 같이 정의 된다면, 전체 송수신 빔 스캐닝 시간은 시간은 100*100*(1+5+670)+100*670 = 6.827 초(sec) 정도가 된다. 즉, 상당히 긴 시간의 오버헤드가 발생 함을 알 수 있다.
그러나, mmWave 특성상 좁은 셀 커버리지 내에서 사용자의 순간적인 움직임에 따라 채널 특성이 가변한다. 그런데 빔 스캐닝을 위해 거의 7초 가량이 소모되면 변화된 채널 특성에 맞는 mmWave 서비스를 제공할 수 없는 문제점이 있다. 따라서, 일반적인 빔 스캐닝을 통한 mmWave 링크 연결을 위해서는 보다 간결한 처리 방법이 요구된다.
● New Type RACH Preamble
도 4는 본 발명의 일 실시예에 따라서 빔 방향에 따라 반복되는 랜덤 엑세스 프리엠블의 구조를 도시한다.
빔스캐닝시 NSlot개의 PRACH 프리엠블이 NSlot개의 빔 방향에 따라 필요하다. 하지만, TA(time advance)가 맞춰진 경우, 단말은 RTT를 고려하지 않고 각 빔 방향당 시간 동기를 위한 PRACH 프리엠블을 전송 할 수 있는 기회를 얻을 수 있기 때문에 각 프리엠블의 길이는 줄어 들 수 있다.
도 5는 본 발명의 일 실시예에 따른 새로운 타입의 PRACH 프리엠블 사용을 예시한다.
도 5와 같이 같이 mmWave 송수신 빔 페어(beam pair)에서 코어스 빔(coarse beam)으로 미리 TA가 맞추어진 경우에, 이와 대응 되는 RACH 프리엠블들 전송에서는 RTT가 고려 될 필요가 없다. 따라서, 전체 RACH 오버헤드가 줄어 들 수 있다. 심볼 길이 정도의 프리엠블 길이로, 두 번째 TA를 위한 프리엠블을 전송함으로써 오버헤드가 저감될 수 있다.
도 6는 본 발명의 다른 일 실시예에 따른 새로운 타입의 PRACH 프리엠블 사용을 예시한다.
mmWave 상향링크가 연결된 상태에서 갑작스런 장애물의 등장으로 LoS(line of sight) 링크가 갑자기 끊길 때, 단말과 기지국 간에 Los 링크보다 강한 NLoS(non-line of sight) 링크가 사용 가능하다면 해당 NLoS 링크를 통해 연결이 지속될 수 있다.
이때, 강한 NLoS 링크의 동기가 획득되어야 mmWave 상향링크의 성능이 향상 될 수 있다. 현재 단말의 TA는 LoS 링크를 통해 설정되었기 때문에, NLoS로 천이함에 따라서 발생되는 시간 비동기를 보정하기 위해서는 새로운 타입의 PRACH 프리엠블이 요구된다. 예를 들어, NLoS excess delay는 대도시에서 대략 1.4us 정도로 나타날 수도 있다.
만약에 1.3 us의 delay 를 갖는 NLoS 링크가 사용되고 10.9 us 의 심볼(symbol) 길이를 갖는 mmWave frame 구조에서, TA가 맞지 않으면 CP가 0.5 us를 초과할 수도 있다. 따라서, 변화된 NLoS 링크에 ΔTA동기를 맞추는 것이 필요하다. 또한 CP 안에 NLoS 클러스터가 들어와도 NLoS 링크를 기준으로 전송된다면 (e.g., Los 링크가 block 된 상태), 약간의 ΔTA 보정만 한다면 링크 성능을 향상 시킬 수 있다. 또한 짧은 RMS delay spread 특성으로 인해 CP가 없거나 또는 거의 없는 New Waveform을 mmWave 시스템에서 고려 할 때, 짧은 RACH를 전송 하여 상향 동기를 맞추는데 새로운 타입의 RACH 프리엠블이 사용될 수 있다.
mmWave link connection configuration for initial access
이하에서는 레거시 시스템에 RRC-연결된 단말이, mmWave 시스템에 초기 접속을 수행하는 과정을 살펴본다. 예컨대, 다중의 mmWave 셀들이 단말 주변에 위치하고, 단말은 mmWave 셀로 RACH 전송을 수행할 수 있다. 단말이mmWave 시스템에 초기 접속을 하기 위해서는 mmWave 링크 연결 설정(link connection configuration)에 대한 정보가 필요하다. 단말은 mmWave 링크 연결 설정에 대한 정보에 기초하여 mmWave 단말 특정한 비-경쟁(contention free) RACH 프리엠블을 전송할 수 있다.
설명의 편의상 다음과 같은 사항들이 가정될 수 있다. (i) mmWave 셀과 mmWave 단말은 강한 NLoS 링크를 이용할 수 있다. (ii) mmWave 셀은 레거시 셀과 함께 위치하고, 레거시 셀과 mmWave 단말은 레거시 상/하향 링크로 RRC- 연결 상태 이다.
도 7은 본 발명의 일 실시예에 따른 mmWave 셀들의 분포를 예시한다. 도 7을 참조하면, 레거시 셀과 mmWave 스몰 셀이 함께 위치할 수 있으며, NLoS 스몰 셀의 바운더리는 mmWave 스몰 셀의 바운더리를 초과하지 않는다.
mmWave 링크는 광대역이고, 짧은 코히어런트 시간(coherent time)을 갖고, 상대적으로 작은 셀 바운더리를 갖는다. 따라서 mmWave 링크는 레거시 링크에 비하여 심볼 길이가 짧고, 한 TTI에 더 많은 심볼이 밀집되며, 스펙트럴(spectral) 효율성이 완화(relaxation) 될 수 있다. 또한, mmWave 셀 안에 사용자 수는 레거시 링크 대비 상대적으로 작아서, 사용자 특정한 참조 신호 및 제어 채널이 형성 될 수 있다.
mmWave 시스템 정보는 레거시 링크를 통해 전송될 수 있다. 시스템 정보는 예컨대, 프레임 구조 인덱스 및 mmWave 시스템 대역폭을 포함할 수 있으며 이에 한정되지 않는다.
도 8은 본 발명의 일 실시예에 따른 mmWave 프레임 구조를 도시한다. mmWave 서브프레임은 레거시 서브프레임에 비하여 상대적으로 작은 길이로 설정될 수 있다.
mmWave 링크가 빔 포밍 기반의 전송을 기본으로 하는 경우, 단말이 RRC 연결된 레거시 셀은 mmWave 초기 접속 단계에서 빔 포밍에 관련된 정보를 단말 특정하게 제공할 필요가 있다. mmWave 채널 특성이 사용자의 위치에 따라 다르고, 빔포밍을 수행하는데 있어서 다양한 전송 방식이 각 사용자의 상황에 따라 달라지므로, mmWave 초기 접속에 필요한 정보를 미리 제공함으로써 mmWave 링크 초기 접속이 보다 신속하게 수행될 수 있다.
본 발명의 일 실시예에 따르면 레거시 시스템에 RRC 연결되고 mmWave 상/하향링크 전송을 지원하는 단말은 레거시 시스템의 하향링크를 통해서 단말-특정한 mmWave 링크 연결 설정 메시지를 수신할 수 있다.
mmWave 링크 연결 설정 메시지가 전송되는 경우는 예컨대, (i) 레거시 링크에서는 지원되지 않는 높은 데이터 레이트의 서비스가 요구 되는 경우(e.g., 초고화질 영화, 초고화질 실시간 스트리밍, 홀로그램 데이터 전송), (ii) mmWave RACH 전송이 필요한 경우 (e.g., 초고화질 화상 채팅, 홀로그램 전화, 초고화질 스트리밍 업로딩등 단말이 원할 때), (iii) 기존 서비스보다 우선 순위가 높은 서비스들이 긴급하게 사용되어야 하는 경우 등을 예시할 수 있으며 이에 한정되지 않는다,
mmWave 링크 연결 설정 메시지는, 예컨대, (i) mmWave 프리엠블 측정 타이밍 설정(e.g., mmWave DMTC) 및 (ii) mmWave 프리엠블 정보를 포함할 수 있다. mmWave DMTC 설정은 DMTC 주기 및 길이 정보를 포함할 수 있다. mmWave DMTC는 mmWave 링크 특성에 따라, 레거시 DMTC와 동일하거나 또는 더 짧은 주기로 설정될 수 있으며, mmWave 프레임 구조의 해상도(resolution)를 고려하여 설정될 수 있다.
1. mmWave DMTC
먼저, mmWave DMTC 설정에 대하여 살펴본다.
도 9는 본 발명의 일 실시예에 따른 mmWave DMTC 주기 및 DMTC 길이 설정을 예시한다. 도 9에 따르면 mmWave DMTC 주기 및 DMTC 길이는 레거시 DMTC 주기에 맞추어 설정된다.
예컨대, 레거시 DMTC 주기와 DMTC 길이가 결정되면, 다중 mmWave 셀들이 레거시 DMTC 주기와 DMTC 길이에 기초하여mmWave 단말로 mmWave프리엠블, 예컨대, 디스커버리 신호를 전송한다. 따라서, mmWave DMTC를 위하여 별도의 설정이 요구되지 않는다.
다만, 짧은 코히어런트 채널 특성을 가지거나 또는 채널 변화가 심한 환경에서는 레거시 DMTC 주기 보다 짧은 주기의 mmWave DMTC가 요구될 수 있다.
또한, 각 mmWave 셀이 디스커버리 신호를 전송하는데 있어서 mmWave TAG(tracking area group) 안에 각 mmWave 셀이 서로 구별될 수 있도록, 디스커버리 신호의 주파수를 직교하도록 설정할 필요가 있다.
도 10은 본 발명의 다른 일 실시예에 따른 mmWave DMTC 설정을 예시한다. 본 실시예에 따르면 mmWave DMTC는 레거시 DMTC 보다 더 짧은 주기와 더 짧은 길이로 설정된다.
예컨대, mmWave DMTC 주기는 j ms 으로 레거시 DMTC 보다 작은 주기로 설정 된다. 또한 mmWave의 짧은 TTI를 고려하여, 짧은 mmWave DMTC 길이가 설정 될 수 있다. mmWave의 DMTC 길이를 작게 설정함으로써 셀 디스커버리에 사용되는 전력이 저감될 수 있다. 이와 같은 mmWave DMTC 주기 및 DMTC 길이는 레거시 셀의 RRC 시그널링을 통해서 설정될 수 있다.
2. mmWave 디스커버리 신호 정보
mmWave 디스커버리 신호 정보는 예컨대, 레이 스캐닝 (또는 빔 스캐닝)을 위한 것일 수 있다.
mmWave 디스커버리 신호들은 광대역으로 전 mmWave 시스템 대역으로 전송될 수 있다. CRS 와 CSI-RS가 디스커버리 신호로써 RSRP를 측정하는데 사용 될 수도 있지만, 저주파 TTI에 비해 짧은 심볼 또는 TTI로 인해 mmWave 전대역에 디스커버리 신호를 전송하더라도 오버헤드가 크지 않을 수 있다. 따라서 주파수 도메인 상의 스펙트럴 효율성(spectral efficiency)이 레거시 시스템과 비교하여 상대적으로 중요한 이슈가 되지 않을 수 있다. 따라서, mmWave 프리엠블로서 디스커버리 신호가 사용될 수도 있으며, 이에 한정되지 않는다. 이하에서는 설명의 편의상 디스커버리 신호가 mmWave 프리엠블로서 사용된다고 가정한다.
이와 같은 가정하에서 mmWave 빔 스캐닝 기법이 mmWave 링크의 바운더리 확장을 위해 사용될 때, 각 빔의 방향에 따라 디스커버리 신호가 mmWave 셀에서 mmWave 단말로 전송 된다. mmWave 단말은 mmWave DMTC 주기 안에서 디스커버리 신호를 측정하여 mmWave 셀을 디스커버리 한다.
2-(1) mmWave 셀 인덱스, mmWave 디스커버리 신호 형태(shape) 및 디스커버리 신호의 주파수 정보
본 발명의 일 실시예에 따르면 mmWave 디스커버리 신호 정보가 mmWave 셀 인덱스, mmWave 디스커버리 신호의 형태(shape) 및 디스커버리 신호의 주파수 정보를 포함할 수 있다. 예컨대, 각 mmWave 단말의 위치에 따라서 연결 가능한 mmWave 셀 인덱스, mmWave 디스커버리 신호 형태(shape) 정보, 각 mmWave 셀 마다 디스커버리 신호가 전송되는 주파수 자원 위치가 단말에 제공될 수 있다.
각 mmWave 단말의 TAG(tracking area group)를 기초로 결정된 디스커버리 신호들의 전송 설정(configuration)과 mmWave 단말의 mmWave DMTC가 사전에 설정될 필요가 있다.
도 11은 본 발명의 일 실시예에 따른 mmWave TAG 와 Xn 인터페이스를 예시한다. 도 11을 참조하면 mmWave 단말의 mmWave TAG는 mmWave 셀 (a), (b), (c)를 포함한다. 도 12는 mmWave 단말 위치에 따른 mmWave TAG과 디스커버리 디스커버리 신호 설정을 예시한다.
도 11과 같이 mmWave 단말의 mmWave TAG 가 mmWave 셀 (a), (b), (c) 를 포함할 때, 각 mmWave 셀 부터 mmWave 단말까지의 전파 지연(propagation delay)로 인해 디스커버리 신호가 중첩될 수 있다. 따라서, 어떤 mmWave 셀에서 전송된 디스커버리 신호인지를 단말이 구별할 수 있도록, 각 mmWave 셀이 디스커버리 신호를 전송하는 주파수 영역을 서로 직교하게(orthogonal) 설정할 수 있다.
또한 시간 영역에서, 각 mmWave 셀이 전송한 디스커버리 신호를 구별하기 위해서, mmWave TAG 내에서 각 mmWave 셀의 디스커버리 신호를 다른 모양으로 설정할 수 있다.
2-(2). mmWave 디스커버리 신호 전송 타이밍 인덱스
본 발명의 일 실시예에 따르면 mmWave 디스커버리 신호의 전송 타이밍의 인덱스가 mmWave 디스커버리 신호 정보로서 제공될 수 있다.
도 13은 본 발명의 일 실시예에 따른 mmWave TAG의 셀에서 mmWave 디스커버리 신호를 전송하는 타이밍 설정을 예시한다.
도 13를 참조하면 각 mmWave TAG 안의 mmWave셀들의 디스커버리 신호 전송 타이밍을 서로 다르게 설정됨으로써, mmWave셀들의 mmWave 디스커버리 신호들이 중첩되지 않도록 할 수 있다. 따라서, mmWave 단말이 디스커버리 신호를 검출함에 있어서, 디스커버리 신호의 중첩에 따른 오류가 최소화될 수 있다.
2-(3). 디스커버리 신호 패턴 정보와 빔 해상도 정보
본 발명의 일 실시예에 따르면 디스커버리 신호 패턴 정보와 빔 해상도 정보 가 mmWave 디스커버리 신호 정보로서 제공될 수 있다.
디스커버리 신호 추정의 모호성을 저감하기 위하여 디스커버리 신호의 패턴이 사용될 수 있다. 각 mmWave 셀마다 mmWave 디스커버리 신호에 다른 패턴을 설정될 수 있다. 예컨대, mmWave 단말이 mmWave 디스커버리 신호 수신하면 각 mmWave 셀에서 설정한 형태의 파형으로 자기 상관(autocorrelation)을 수행하고, 자기 상관의 피크가 되는 곳을 판단할 때 어떤 빔 방향에서 최대 전력이 나타나는지를 알 수 있다.
도 14는 본 발명의 일 실시예에 따라서 자기 상관을 수행하여 빔 방향을 판단하는 방법을 설명하는 도면이다.
보다 구체적으로 mmWave셀 (a),(b),(c)로부터 각각 디스커버리 신호가 전송 될 때, mmWave 셀 (b)의 어느 빔 방향에서 디스커버리 신호의 수신 전력이 최대가 되는지를 확인하는 과정이 확인하는 과정이 도시된다.
코어스(coarse) 빔의 해상도(resolution)가 2D평면상에 120도(degree)로 설정되어, 3개의 방향으로 빔포밍하여 디스커버리 신호가 전송된다고 가정한다.
mmWave 단말은 디스커버리 신호를 수신 후 자기 상관(autocorrelation)을 수행함으로써 디스커버리 신호의 수신 전력이 최대가 되는 방향을 판단 할 수 있다.
도 14에서는 mmWave 셀 (b) 의 θb1에서 디스커버리 신호의 수신 전력이 최대가 된다. 따라서, 초기 접속을 위한 빔의 방향은 120도로 결정된다.
2-(4). mmWave 디스커버리 신호 길이 τ
본 발명의 일 실시예에 따르면 mmWave 디스커버리 신호 길이 정보가 mmWave 디스커버리 신호 정보로서 제공될 수 있다.
예컨대, mmWave 디스커버리 신호 길이 정보가 제공됨으로써 빔 스캐닝에 의해 선택된 빔 방향을 기준으로 mmWave 프레임 인덱스의 기준이 설정될 수 있다. 또한, mmWave 디스커버리 신호 길이 정보에 기초하여 mmWave 데이터 전송 시점이 암묵적으로 지시될 수 있다.
총 N번의 디스커버리 신호 전송들에서 m 번째 전송된 디스커버리 신호의 자기 상관이 가장 큰 피크를 나타낸다면, 단말은 (N-m)τ 만큼의 시간 오프셋 뒤에서 mmWave 링크 상에서 데이터가 전송되는 것을 알 수 있다.
만약 첫번째 전송된 디스커버리 신호의 검출이 실패하면 디스커버리 신호의 전송 시점을 알 수 없기 때문에, 단말은 언제 mmWave 하향링크로 데이터가 전송 되는지를 알 수 없게 된다.
도 15는 본 발명의 일 실시예에 따라서 mmWave 하향링크 데이터의 전송 시점을 판단하는 방법을 설명한다.
mmWave 셀 (b)의 θb1방향에서 자기 상관의 피크의 최대치가 검출 되었다고 가정한다. 단말은 사전에 수신한 τ 값 및 θb1이후 디스커버리 신호가 몇 번 전송 되는지에 기초하여 mmWave 데이터 전송 시점 및 mmWave 프레임 인덱스를 파악할 수 있다.
mmWave RACH 절차
도 16은 본 발명의 일 실시예에 따른 mmWave 시스템의 비-경쟁 기반의 랜덤 엑세스 절차의 흐름을 도시한다.
본 실시예에 따를 때, 새로운 타입의 RACH Preamble은 미세 빔에 대한 시간 동기를 위하여 사용된다. 따라서, 새로운 타입의 RACH 프리엠블은 코어스 빔에 대한 mmWave 상향링크의 TA를 맞춘 후에 사용 될 수 있다.
먼저, 레거시 셀은 단말 및 mmWave 셀에 mmWave 링크 연결 설정 메시지를 전송한다(S1605, S1606). mmWave 셀에 전송 되는 mmWave 링크 연결 설정 정보에 RACH 타이밍 정보가 포함될 수 있다.
단말은 mmWave 셀과 하향링크 동기화를 수행한다(S1610).
단말은 반복적으로 PRACH 프리엠블을 전송한다(S1615). PRACH 프리엠블의 반복전송은 서로 다른 방향으로 형성되는 코어스 빔들에 대한 트레이닝으로서, 최대의 이득이 나타나는 코어스 빔을 탐색하기 위한 것이다. 코어스 빔에 대하여 전송되는 PRACH 프리엠블을 위하여 현재의 LTE/LTE-A에서 정의된 RACH 프리엠블의 패턴이 사용될 수 있다.
단말은 mmWave 셀로부터 PRACH 응답을 수신한다(S1620). PRACH 응답은 빔 포밍의 이득이 최대가 되는 최선 코어스 빔에 대한 것일 수 있다. 단말은 PRACH 응답에 기초하여 최적의 코어스 빔에 대하여 1차적인 TA 보정을 수행한다.
이와 같이 단말이 최적의 코어스 빔에 대한 1차적으로 맞추어 진 경우 단말은 상술된 새로운 타입의 RACH Preamble을 전송할 수 있다(S1625). 새로운 타입의 RACH 프리엠블은 미세 빔(fine beam)에 대한 2차적인 TA 획득을 위하여 전송될 수 있다.
단말은 mmWave 셀로부터 PRACH 응답을 수신한다(S1630). PRACH 응답은 최적의 미세빔에 관한 응답으로서, 단말은 이에 기초하여 2차적인 TA 보정을 수행한다.
한편, 도 16에서는 코어스 빔에 대한 RACH 프리엠블과 미세빔에 대한 새로운 타입의 RACH 프리엠블이 연속되는 일련의 절차로 도시되었지만, 본 발명은 이에 한정되지 않는다. 미세빔에 대한 새로운 타입의 RACH 프리엠블이 전송되는 다른 실시예들로서, 예컨대, 미리 TA 가 맞추어진 상황에서 LoS로부터NLoS로 링크가 변하거나, 반대로 NLoS로부터 LoS로 변할 때, 어긋난 타이밍 동기를 맞추기 위해 기존 RACH 전송 주기 보다 빠른 주기로 새로운 타입의 RACH 프리엠블이 전송될 수 있다.
미세 빔에 대한 새로운 타입의 PRACH 설정은 코어스 빔에 대한 PRACH 설정과 과 혼합된 형태로, 또는 독립적인 설정을 통해서 전송될 수 있다.
도 17은 본 발명의 일 실시예에 따른 mmWave RACH 프리엠블 전송을 위한 mmWave 서브프레임 인덱스를 예시한다.
도 17의 실시예에 따르면 mmWave RACH의 전송 타이밍을 위한 서브프레임 인덱스는 mmWave의 하향링크로 전송되거나, 또는 mmWave 링크 연결 설정 메시지를 통해 단말에 제공될 수 있다. 한편, 단말과 어느 mmWave 셀과 상향 링크가 연결 될 것인지 결정된 상태이므로 상향링크를 위한 단말의 빔 방향에 따라서 상술된 RACH 절차가 수행될 수 있다.
도 18은 본 발명의 일 실시예에 따른 단말 및 기지국을 도시한다. 도 18에 도시된 단말 및 기지국은 상술된 실시예들을 수행할 수 있다.
단말(UE: User Equipment)은 상향링크에서는 송신기로 동작하고, 하향링크에서는 수신기로 동작할 수 있다. 또한, 기지국(eNB: e-Node B)은 상향링크에서는 수신기로 동작하고, 하향링크에서는 송신기로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신모듈(Tx module: 2140, 2150) 및 수신모듈(Rx module: 2150, 2170)을 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(2100, 2110) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하기 위한 프로세서(Processor: 2120, 2130)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(2180, 2190)를 각각 포함할 수 있다.
상술한 단말 및 기지국 장치의 구성성분 및 기능들을 이용하여 본원 발명의 실시예들이 수행될 수 있다.
단말 및 기지국에 포함된 송신모듈 및 수신모듈은 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 21의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 모듈을 더 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(2180, 2190)에 저장되어 프로세서(2120, 2130)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project), 3GPP2 및/또는 IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) 시스템 등이 있다. 본 발명의 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다.

Claims (16)

  1. 밀리미터 웨이브(mmWave)를 지원하는 무선 통신 시스템에서 단말이 밀리미터 웨이브 셀에 엑세스하는 방법에 있어서,
    상기 단말과 RRC(radio resource control) 연결된 레거시(legacy) 셀로부터 밀리미터 웨이브 연결 설정 메시지를 수신하는 단계;
    상기 밀리미터 웨이브 연결 설정 메시지에 기초하여 상기 단말의 주변에 위치한 밀리미터 웨이브 셀들로부터의 디스커버리 신호들을 측정하는 단계; 및
    상기 디스커버리 신호들의 측정 결과에 기초하여 제1 타입의 랜덤 엑세스 프리엠블을 상기 밀리미터 웨이브 셀들 중 어느 하나에 전송하는 단계를 포함하되,
    상기 디스커버리 신호들의 측정은, 각 밀리미터 웨이브 셀 마다 특정하게 설정된 신호 검출 파형(wave form)을 기초로 수행되는, 엑세스 방법.
  2. 제 1 항에 있어서, 상기 밀리미터 웨이브 연결 설정 메시지는,
    상기 밀리미터 웨이브 셀들 각각의 신호 검출 파형 및 상기 각각의 신호 검출 파형이 사용될 타이밍에 대한 정보를 포함하는, 엑세스 방법.
  3. 제 1 항에 있어서, 상기 디스커버리 신호들을 측정하는 단계는,
    상기 각 밀리미터 웨이브 셀에 특정한 상기 신호 검출 파형을 기초로 총 N X M 번의 자기-상관(auto-correlation)을 수행하는 단계; 및
    상기 총 N X M 번의 자기-상관에서 피크(peak)가 최대로 나타나는 자기-상관에 대응되는 빔포밍 방향 및 밀리미터 웨이브 셀을 검출하는 단계를 포함하고,
    'N'은 상기 밀리미터 웨이브 셀들의 개수를 나타내고, 'M'은 상기 디스커버리 신호들의 빔포밍 해상도를 나타내는, 엑세스 방법.
  4. 제 3 항에 있어서,
    상기 검출된 밀리미터 웨이브 셀의 프레임은, 상기 자기-상관의 피크가 최대인 제1 지점으로부터 오프셋 된 제2 지점에서 시작되고,
    상기 오프셋의 크기는, 상기 밀리미터 웨이브 연결 설정 메시지에 포함된 디스커버리 신호 길이의 정수배인, 엑세스 방법.
  5. 제 3 항에 있어서, 상기 제1 타입의 랜덤 엑세스 프리엠블이 전송되는 상기 어느 하나의 밀리미터 웨이브 셀은,
    상기 피크(peak)가 최대로 나타나는 자기-상관에 대응되는 상기 밀리미터 웨이브 셀인, 엑세스 방법.
  6. 제 1 항에 있어서,
    상기 밀리미터 웨이브 셀들은 상기 단말의 TAG(timing advance group)에 속하고, 상기 TAG내에서 상기 밀리미터 웨이브 셀들은 서로 다른 파형들 및 서로 다른 주파수 자원들을 통해 상기 디스커버리 신호들을 전송하는, 엑세스 방법.
  7. 제 1 항에 있어서,
    상기 밀리미터 웨이브 연결 설정 메시지는 상기 디스커버리 신호들의 측정 주기 및 측정 길이를 지시하는 밀리미터 웨이브 DMTC(discovery measurement timing configuration)를 포함하고,
    상기 밀리미터 웨이브 DMTC에 의해 지시되는 측정 주기 및 측정 길이는 레거시 DMTC 에 의해 지시되는 측정 주기 및 측정 길이 보다 각각 작게 설정되는, 엑세스 방법.
  8. 제 1 항에 있어서,
    상기 제1 타입의 랜덤 엑세스 프리엠블에 대한 응답에 기초하여 제1차 TA 보정을 수행하는 단계; 및
    상기 제1 차 TA 보정된 상향링크 동기 타이밍에 기초하여 제2 타입의 랜덤 엑세스 프리엠블을 상기 어느 하나의 밀리미터 웨이브 셀에 전송하는 단계를 더 포함하는, 엑세스 방법.
  9. 밀리미터 웨이브(mmWave)를 지원하는 단말에 있어서,
    상기 단말과 RRC(radio resource control) 연결된 레거시(legacy) 셀로부터 밀리미터 웨이브 연결 설정 메시지를 수신하는 수신기;
    상기 밀리미터 웨이브 연결 설정 메시지에 기초하여 상기 단말의 주변에 위치한 밀리미터 웨이브 셀들로부터의 디스커버리 신호들을 측정하는 프로세서; 및
    상기 디스커버리 신호들의 측정 결과에 기초하여 제1 타입의 랜덤 엑세스 프리엠블을 상기 밀리미터 웨이브 셀들 중 어느 하나에 전송하는 송신기를 포함하되,
    상기 디스커버리 신호들의 측정은, 각 밀리미터 웨이브 셀 마다 특정하게 설정된 신호 검출 파형(wave form)을 기초로 수행되는, 단말.
  10. 제 9 항에 있어서, 상기 밀리미터 웨이브 연결 설정 메시지는,
    상기 밀리미터 웨이브 셀들 각각의 신호 검출 파형 및 상기 각각의 신호 검출 파형이 사용될 타이밍에 대한 정보를 포함하는, 단말.
  11. 제 9 항에 있어서, 상기 디스커버리 신호들을 측정하는 상기 프로세서는,
    상기 각 밀리미터 웨이브 셀에 특정한 상기 신호 검출 파형을 기초로 총 N X M 번의 자기-상관(auto-correlation)을 수행하고,
    상기 총 N X M 번의 자기-상관에서 피크(peak)가 최대로 나타나는 자기-상관에 대응되는 빔포밍 방향 및 밀리미터 웨이브 셀을 검출하되,
    'N'은 상기 밀리미터 웨이브 셀들의 개수를 나타내고, 'M'은 상기 디스커버리 신호들의 빔포밍 해상도를 나타내는, 단말.
  12. 제 11 항에 있어서,
    상기 검출된 밀리미터 웨이브 셀의 프레임은, 상기 자기-상관의 피크가 최대인 제1 지점으로부터 오프셋 된 제2 지점에서 시작되고,
    상기 오프셋의 크기는, 상기 밀리미터 웨이브 연결 설정 메시지에 포함된 디스커버리 신호 길이의 정수배인, 단말.
  13. 제 11 항에 있어서, 상기 제1 타입의 랜덤 엑세스 프리엠블이 전송되는 상기 어느 하나의 밀리미터 웨이브 셀은,
    상기 피크(peak)가 최대로 나타나는 자기-상관에 대응되는 상기 밀리미터 웨이브 셀인, 단말.
  14. 제 9 항에 있어서,
    상기 밀리미터 웨이브 셀들은 상기 단말의 TAG(timing advance group)에 속하고, 상기 TAG내에서 상기 밀리미터 웨이브 셀들은 서로 다른 파형들 및 서로 다른 주파수 자원들을 통해 상기 디스커버리 신호들을 전송하는, 단말.
  15. 제 9 항에 있어서,
    상기 밀리미터 웨이브 연결 설정 메시지는 상기 디스커버리 신호들의 측정 주기 및 측정 길이를 지시하는 밀리미터 웨이브 DMTC(discovery measurement timing configuration)를 포함하고,
    상기 밀리미터 웨이브 DMTC에 의해 지시되는 측정 주기 및 측정 길이는 레거시 DMTC 에 의해 지시되는 측정 주기 및 측정 길이 보다 각각 작게 설정되는, 단말.
  16. 제 9 항에 있어서,
    상기 프로세서는 상기 제1 타입의 랜덤 엑세스 프리엠블에 대한 응답에 기초하여 제1차 TA 보정을 수행하고,
    상기 송신기는, 상기 제1 차 TA 보정된 상향링크 동기 타이밍에 기초하여 제2 타입의 랜덤 엑세스 프리엠블을 상기 어느 하나의 밀리미터 웨이브 셀에 전송하는, 단말.
PCT/KR2016/001865 2015-03-20 2016-02-25 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치 WO2016153182A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/550,349 US10548101B2 (en) 2015-03-20 2016-02-25 Method for accessing millimeter wave cell in wireless communication system and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562135726P 2015-03-20 2015-03-20
US62/135,726 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016153182A1 true WO2016153182A1 (ko) 2016-09-29

Family

ID=56977548

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/001735 WO2016153176A1 (ko) 2015-03-20 2016-02-23 무선 통신 시스템에서 상향링크 동기화를 수행하는 방법 및 이를 위한 장치
PCT/KR2016/001865 WO2016153182A1 (ko) 2015-03-20 2016-02-25 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001735 WO2016153176A1 (ko) 2015-03-20 2016-02-23 무선 통신 시스템에서 상향링크 동기화를 수행하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (2) US10104627B2 (ko)
WO (2) WO2016153176A1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106550480B (zh) * 2015-09-21 2021-09-17 中兴通讯股份有限公司 一种随机接入方法、装置及系统
US10784942B2 (en) 2015-11-09 2020-09-22 Apple Inc. System and method for beamed reference signal with hybrid beam
US10425835B2 (en) * 2015-12-04 2019-09-24 Industrial Technology Research Institute Post network entry connection method in millimeter wave communication system and related apparatuses using the same
WO2017197166A1 (en) 2016-05-11 2017-11-16 Dinan Esmael Hejazi Random access process in a wireless device and wireeless network
TWI674017B (zh) * 2016-05-20 2019-10-01 國立臺灣大學 巨型輔助系統中的行動性管理方法以及使用者設備
US10425970B2 (en) * 2016-09-30 2019-09-24 Qualcomm Incorporated Precoding management for random access procedures
US10973055B2 (en) * 2016-10-20 2021-04-06 Alcatel Lucent System and method for preamble sequence transmission and reception to control network traffic
CN111511011B (zh) 2016-11-03 2024-04-23 华为技术有限公司 无线通信方法和装置
CN108271274A (zh) * 2017-01-04 2018-07-10 中兴通讯股份有限公司 一种信息同步方法和装置
US10863484B2 (en) * 2017-01-09 2020-12-08 Qualcomm Incorporated Indication of random-access channel MSG3 resource duration via random-access channel MSG2
WO2018169278A1 (ko) * 2017-03-14 2018-09-20 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 임의 접속 절차 수행 방법 및 이를 지원하는 장치
US10652775B2 (en) * 2017-03-14 2020-05-12 Qualcomm Incorporated Techniques for mitigating interference for transmissions of a periodic multi-beam discovery reference signal
US10257835B2 (en) 2017-03-24 2019-04-09 At&T Intellectual Property I, L.P. Facilitating enhanced beam management in a wireless communication system
US10931514B2 (en) 2017-03-31 2021-02-23 Futurewei Technologies, Inc. System and method for communications beam recovery
CN110574408B (zh) * 2017-04-28 2024-01-23 日本电气株式会社 用于随机接入过程的方法、终端设备、网络元件和装置
US9949298B1 (en) 2017-05-04 2018-04-17 At&T Intellectual Property I, L.P. Facilitating signaling and transmission protocols for enhanced beam management for initial access
EP3621375A4 (en) * 2017-05-05 2020-11-04 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, USER EQUIPMENT UNIT AND BASE STATION FOR RANDOM ACCESS CONTROL TO A NETWORK
EP3625988A4 (en) * 2017-05-14 2021-01-27 Fg Innovation Company Limited METHODS, DEVICES AND SYSTEMS FOR BEAM REFINING DURING A HANDOVER
US10841862B2 (en) 2017-05-26 2020-11-17 Qualcomm Incorporated Millimeter wave directional discovery signal design
US11723063B2 (en) * 2017-08-11 2023-08-08 Qualcomm Incorporated Different configurations for message content and transmission in a random access procedure
WO2019047766A1 (zh) * 2017-09-11 2019-03-14 电信科学技术研究院有限公司 时间提前量指示方法、基站、终端及装置
CN109495961B (zh) 2017-09-11 2020-11-10 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
DE102018218864A1 (de) * 2018-11-06 2020-05-07 Robert Bosch Gmbh Teilnehmerstation für ein mobiles Kommunikationssystem und Betriebsverfahren hierfür
US11678284B2 (en) * 2020-04-17 2023-06-13 Electronics And Telecommunications Research Institute Radio communication method for time-sensitive network, and apparatus therefor
CN114666885A (zh) * 2020-12-23 2022-06-24 北京三星通信技术研究有限公司 同步方法、装置、设备及计算机可读存储介质
WO2024055297A1 (zh) * 2022-09-16 2024-03-21 华为技术有限公司 一种随机接入方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048461A (ja) * 2008-09-25 2013-03-07 Intel Corp マルチバンド無線通信装置及び無線通信方法
KR20130105706A (ko) * 2010-12-16 2013-09-25 인텔 코오퍼레이션 밀리미터파 기본 서비스 세트에서 스테이션 및 정보 찾기를 위한 밀리미터파 통신 스테이션 및 방법
KR20140041765A (ko) * 2011-06-17 2014-04-04 삼성전자주식회사 밀리미터파 이동 광대역 통신 시스템에서 네트워크 진입을 위한 장치 및 방법
JP2014126972A (ja) * 2012-12-26 2014-07-07 Sony Corp 無線通信装置、通信システム、無線通信装置の制御方法およびプログラム
WO2014113103A1 (en) * 2013-01-17 2014-07-24 Intel IP Corporation Apparatus, system and method of communicating non-cellular access network information over a cellular network

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828837B1 (ko) 2011-09-29 2018-03-30 삼성전자주식회사 빔 포밍을 이용하는 무선 통신 시스템에서 짧은 핸드오버 지연을 위한 방법 및 장치
EP3557914B1 (en) 2011-12-08 2024-03-27 InterDigital Patent Holdings, Inc. Method and apparatus for a millimeter wave communication system
KR102039065B1 (ko) * 2012-05-08 2019-10-31 한국전자통신연구원 큰 셀 반경을 가지는 이동 통신 시스템에서의 랜덤 액세스 방법 및 랜덤 액세스 채널 구조
US9661612B2 (en) 2012-06-29 2017-05-23 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control channel multiplexing in beamformed cellular systems
KR20140056561A (ko) * 2012-10-29 2014-05-12 한국전자통신연구원 다중 빔을 운영하는 이동통신시스템에서 기지국 및 단말의 동작 방법
KR101748066B1 (ko) * 2013-04-15 2017-06-15 아이디에이씨 홀딩스, 인크. 밀리미터 파장(mmw) 이중 접속을 위한 불연속적인 수신(drx) 기법들
US9497047B2 (en) 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems
CN105519167B (zh) * 2013-07-04 2020-01-14 韩国电子通信研究院 移动通信系统中用于支持多连接的控制方法和用于支持多连接的设备
JP2015164281A (ja) * 2014-01-31 2015-09-10 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法
CN106233646B (zh) * 2014-04-24 2019-03-08 Lg电子株式会社 用于执行测量的方法和用户设备
US10097321B2 (en) * 2014-05-08 2018-10-09 Qualcomm Incorporated Cooperative techniques between lower-frequency carriers and millimeter-wave channels for discovery and synchronization and beamforming
CN114640380A (zh) * 2014-10-21 2022-06-17 苹果公司 形成自组织的多跳毫米波回程链路的方法和装置
US9872296B2 (en) * 2015-01-06 2018-01-16 Qualcomm Incorporated Techniques for beam shaping at a millimeter wave base station and a wireless device and fast antenna subarray selection at a wireless device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048461A (ja) * 2008-09-25 2013-03-07 Intel Corp マルチバンド無線通信装置及び無線通信方法
KR20130105706A (ko) * 2010-12-16 2013-09-25 인텔 코오퍼레이션 밀리미터파 기본 서비스 세트에서 스테이션 및 정보 찾기를 위한 밀리미터파 통신 스테이션 및 방법
KR20140041765A (ko) * 2011-06-17 2014-04-04 삼성전자주식회사 밀리미터파 이동 광대역 통신 시스템에서 네트워크 진입을 위한 장치 및 방법
JP2014126972A (ja) * 2012-12-26 2014-07-07 Sony Corp 無線通信装置、通信システム、無線通信装置の制御方法およびプログラム
WO2014113103A1 (en) * 2013-01-17 2014-07-24 Intel IP Corporation Apparatus, system and method of communicating non-cellular access network information over a cellular network

Also Published As

Publication number Publication date
US20170303224A1 (en) 2017-10-19
US20180019901A1 (en) 2018-01-18
WO2016153176A1 (ko) 2016-09-29
US10104627B2 (en) 2018-10-16
US10548101B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
WO2016153182A1 (ko) 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치
WO2021157998A1 (en) Method and apparatus for performing communication in wireless communication system
WO2019098770A1 (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203674A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018084663A1 (en) Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
WO2018030756A1 (ko) 채널 상태 정보 전송 방법 및 사용자기기와, 채널 상태 정보 수신 방법 및 기지국
WO2018147700A1 (ko) 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치
WO2019203526A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018030809A1 (ko) Nb-iot에서 페이징 신호를 수신하는 방법 및 랜덤 액세스 절차를 수행하는 방법
WO2018030841A1 (ko) 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
WO2018203696A1 (ko) 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2016060502A2 (ko) 밀리미터웨이브(mmwave)를 지원하는 무선접속 시스템에서 빠른 폴백을 수행하는 방법 및 장치
WO2019031864A1 (ko) 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2018203698A1 (ko) 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2012153960A2 (en) Methods and apparatus for random access procedures with carrier aggregation for lte-advanced systems
WO2017023066A1 (ko) 랜덤 액세스 수행 방법 및 mtc 기기
WO2018236197A1 (ko) 무선 통신 시스템에서 상향링크 신호를 송수신하는 방법 및 장치
WO2017043876A1 (ko) 협대역을 이용한 통신 방법 및 mtc 기기
WO2021162398A1 (en) Method and apparatus for random access procedure in wireless communication system
WO2016159713A1 (ko) 무선 통신 시스템에서 rstd 측정 관련 동작 수행 방법
WO2017150813A1 (ko) 무선 통신 시스템에서 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2021125725A1 (en) Method and apparatus for handling system information request in wireless communication system
WO2017052026A1 (ko) 무선 통신 시스템에서 밀리미터 웨이브 셀에 엑세스하는 방법 및 이를 위한 장치
WO2019103517A1 (ko) 무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치
WO2022211388A1 (en) Method and apparatus of communication for reduced-capability user equipment in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550349

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16769001

Country of ref document: EP

Kind code of ref document: A1