WO2019103517A1 - 무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치 Download PDF

Info

Publication number
WO2019103517A1
WO2019103517A1 PCT/KR2018/014504 KR2018014504W WO2019103517A1 WO 2019103517 A1 WO2019103517 A1 WO 2019103517A1 KR 2018014504 W KR2018014504 W KR 2018014504W WO 2019103517 A1 WO2019103517 A1 WO 2019103517A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
rach
base station
resource
information
Prior art date
Application number
PCT/KR2018/014504
Other languages
English (en)
French (fr)
Inventor
윤석현
고현수
김기준
김은선
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/766,669 priority Critical patent/US11343736B2/en
Publication of WO2019103517A1 publication Critical patent/WO2019103517A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for performing a handover.
  • eMBB enhanced mobile broadband
  • RAT legacy radio access technology
  • massive machine type communication for providing various services anytime and anywhere by connecting a plurality of devices and objects is one of the major issues to be considered in the next generation communication.
  • a method of performing handover more efficiently in a wireless communication system is required.
  • a method for performing handover by a user equipment (UE) in a wireless communication system includes receiving a handover command from a first base station, Transmitting a message related to the handover to the second base station using resources allocated for beam recovery, and performing communication with the second base station using the determined beam based on the message related to the handover .
  • UE user equipment
  • the message related to the handover may include at least one of a random access channel (RACH) signal for handover and beam update information.
  • RACH random access channel
  • the step of transmitting a message related to the handover may include transmitting a RACH signal for handover to a second base station, Receiving a response from the second base station, and transmitting the beam update information to the second base station using the resources allocated for beam recovery.
  • the RACH signal for handover may be transmitted using one of the resources allocated for handover and the resource allocated for beam recovery.
  • One or more resources allocated for handover may include at least one of a contention-based random access channel (RACH) resource and a contention-based random access channel (RACH) resource .
  • RACH contention-based random access channel
  • RACH contention-based random access channel
  • a handover response message may be transmitted using one or more resources allocated for performing handover and a resource having the lowest handover delay among resources allocated for beam recovery.
  • the beam update information may include information about the beam having better quality than the beam indicated by the RACH signal for handover.
  • the method of performing handover may further comprise performing communication with a second base station using a beam determined based on the beam update information.
  • the handover may be performed through a contention-free based RACH (RACH) procedure.
  • RACH contention-free based RACH
  • the resources allocated for beam recovery may include random access channel (RACH) resources for beam recovery.
  • RACH random access channel
  • resources allocated for beam recovery may be allocated as a UE dedicated resource via a handover command.
  • the method of performing a handover may further comprise receiving from the first base station information indicating whether resources allocated for beam recovery are available for transmitting a message related to handover .
  • an apparatus for performing handover in a wireless communication system includes a memory and a processor coupled to the memory, wherein the processor receives a handover command from the first base station In response to the handover command, transmits a handover-related message to the second base station using resources allocated for beam recovery, and transmits the handover-related message to the second base station using the beam determined based on the handover- Communication can be performed.
  • handover can be performed more efficiently in a wireless communication system.
  • resources for performing handover can be performed more efficiently.
  • handover can be performed more quickly.
  • 1 is a diagram for explaining a physical channel used in a 3GPP system and a general signal transmission method using the same.
  • Figure 2 illustrates a slot structure available in a new radio access technology (NR) system.
  • NR new radio access technology
  • FIG. 3 shows examples of the connection method of the TXRU and the antenna element.
  • FIG. 4 abstractly illustrates a hybrid beamforming structure in terms of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • FIG. 5 illustrates a beam sweeping operation performed in the process of transmitting a downlink signal in the NR system.
  • Figure 6 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • FIG. 7 is a view for explaining an operation performed by the base station in order to receive the RACH signal.
  • FIG. 8 is a view for explaining allocation of RACH resources connected to a synchronization signal block and a synchronization signal block.
  • FIG. 9 is a view showing an example of forming a reception beam for receiving the RACH preamble according to whether or not the BC (beam correspondence) is valid.
  • FIG. 10 shows a process of performing a handover through a contention-based RACH procedure.
  • 11 shows a process of performing a handover using a contention-based RACH.
  • FIG. 12 is a view for explaining a process of performing beam sweeping after beam scanning.
  • 13 is a view for explaining a process of performing beam scanning after beam sweeping.
  • FIG. 14 is a flowchart illustrating a method for transmitting an RACH for handover using a BR-RACH resource.
  • 15 is a flow diagram illustrating a method for transmitting serving beam verification or serving beam report / update information using BR-RACH resources.
  • 16 is a flowchart showing a method for a UE to perform a handover.
  • FIG. 17 is a flowchart illustrating an operation of a target cell in a handover process.
  • FIG. 18 is a diagram showing a configuration of the apparatuses according to the present invention.
  • each component or characteristic may be considered optional unless otherwise expressly stated.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some of the elements and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of certain embodiments may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • a user equipment may be fixed or mobile and various devices communicating with a base station (BS) to transmit and receive user data and / or various control information.
  • the UE may be a terminal equipment, a mobile station, a mobile terminal, a user terminal, a subscriber station, a wireless device, a personal digital assistant (PDA), a wireless modem ), A handheld device, and the like.
  • PDA personal digital assistant
  • a base station generally refers to a fixed station that communicates with a UE and / or another base station, and exchanges various data and control information by communicating with the UE and another base station.
  • the BS may be referred to by other terms such as Advanced Base Station (ABS), Node-B (NB), Evolved-NodeB (eNB), Base Transceiver System (BTS), Access Point, .
  • ABS Advanced Base Station
  • NB Node-B
  • eNB Evolved-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • the base station of the UTRAN may be referred to as a Node B
  • the base station of an E-UTRAN may be referred to as an eNB
  • the base station of a new radio access technology network may be referred to as a gNB.
  • the multiple access system may be a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access a carrier frequency division multiple access (CDMA) system, an MC-FDMA (multi carrier frequency division multiple access) system, and the like.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • CDMA carrier frequency division multiple access
  • MC-FDMA multi carrier frequency division multiple access
  • CDMA may be implemented in wireless technologies such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in wireless technologies such as Global System for Mobile communications (GSM), General Packet Radio Service (GPRS), Enhanced Data Rates for GSM Evolution (EDGE) (i.e., GERAN)
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as IEEE (Institute of Electrical and Electronics Engineers) 802.11 (WiFi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved-UTRA (E-UTRA).
  • UTRA is part of Universal Mobile Telecommunication System (UMTS), and 3GPP (Long Term Evolution) is part of E-UMTS using E-UTRA.
  • 3GPP LTE adopts OFDMA in the downlink (DL) and adopts SC-FDMA in the uplink (UL).
  • LTE-Advanced (LTE-A) is an evolutionary form of 3GPP LTE.
  • LTE-based communication system for example, LTE / LTE-A or NR (New Radio Access Technology) system.
  • LTE / LTE-A New Radio Access Technology
  • the technical features of the present invention are not limited to 3GPP based communication systems.
  • the following detailed description is based on a 3GPP-based communication system, it is applicable to any other mobile communication system except for those specific to 3GPP LTE / LTE-A / NR. Do.
  • the 3GPP-based communication standard includes a downlink physical channel corresponding to resource elements that transmit information originating from an upper layer and a downlink physical channel used by a physical layer but not corresponding to resource elements that do not transmit information originating from an upper layer Link physical signals.
  • a Physical Downlink Shared Channel (PDSCH), a Physical Broadcast Channel (PBCH), a Physical Multicast Channel (PMCH), a Physical Control Format Indicator Channel a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and a reference signal and a synchronization signal Are defined as downlink physical signals.
  • a reference signal refers to a signal of a particular predetermined waveform that is known to the gNB and the UE, and may be referred to as a pilot.
  • a cell specific RS, a UE-specific RS, a positioning RS (PRS), and a channel state information RS (CSI) -RS) is defined as a downlink reference signal.
  • the 3GPP LTE / LTE-A standard includes uplink physical channels corresponding to resource elements for transmitting information originating from an upper layer and resource elements for use by the physical layer but not transmitting information originating from an upper layer And defines corresponding uplink physical signals. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) And a demodulation reference signal (DMRS) for the uplink control / data signal and a sounding reference signal (SRS) used for the uplink channel measurement are defined.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • the Physical Downlink Control Channel (PDCCH), the Physical Control Format Indicator CHannel (PCFICH), the Physical Hybrid Automatic Repeat Request Indicator CHannel (PDICH), and the Physical Downlink Shared CHannel (PDSCH) (Physical Uplink Control CHannel) / PUSCH (Physical Uplink Control Channel), or a set of time-frequency resources or a set of resource elements for transmitting control format indicator / downlink ACK / NACK / downlink data.
  • Physical Uplink Shared CHannel (Physical Uplink Shared CHannel) / PRACH (Physical Random Access CHannel) refers to a set of time-frequency resources or a set of resource elements each carrying Uplink Control Information (UCI) / uplink data / random access signals.
  • UCI Uplink Control Information
  • the expression that a UE transmits a PUCCH / PUSCH / PRACH is the same as that for transmitting an uplink control information / uplink data / random access signal on a PUSCH / PUCCH / PRACH or on a PUSCH / PUCCH / Can be used as a meaning.
  • the expression that the gNB transmits the PDCCH / PCFICH / PHICH / PDSCH is equivalent to the case in which the downlink data / control information is transmitted on the PDCCH / PCFICH / PHICH / PDSCH or on the PDCCH / PCFICH / PHICH / Can be used.
  • 3GPP LTE / LTE-A standard documents such as 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 and the like and 3GPP NR standard documents such as 3GPP TS 38.211, 3GPP TS 38.212, 3GPP 38.213, 3GPP 38.214, 3GPP 38.215, 3GPP TS 38.321 and 3GPP TS 38.331.
  • 1 is a diagram for explaining a physical channel used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is turned on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S201). To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from a base station and synchronizes with the base station and acquires information such as a cell ID have. Then, the UE can receive the physical broadcast channel from the base station and obtain the in-cell broadcast information. Meanwhile, the UE can check the downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE receives a physical downlink control channel (PDSCH) according to information on a Physical Downlink Control Channel (PDCCH) and a PDCCH to obtain more specific system information (S202).
  • PDSCH physical downlink control channel
  • PDCCH Physical Downlink Control Channel
  • S202 specific system information
  • the UE may perform a random access procedure (RACH) on the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE may transmit a specific sequence through a physical random access channel (PRACH) (S203 and S205) and receive a response message for the preamble on the PDCCH and the corresponding PDSCH (S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure can be additionally performed.
  • the UE that has performed the above procedure transmits PDCCH / PDSCH reception (S207) and physical uplink shared channel (PUSCH) / physical uplink control channel Channel (PUCCH) transmission (S208).
  • the UE receives downlink control information (DCI) through the PDCCH.
  • the DCI includes control information such as resource allocation information for the UE, and the DCI format may be changed according to the purpose of use.
  • the control information transmitted by the UE to the base station through the uplink or received from the base station by the UE includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI) ), And the like.
  • the UE may transmit control information such as CQI / PMI / RI as described above through PUSCH and / or PUCCH.
  • next generation mobile communication system As more and more communication devices require greater communication capacity, there is a need for improved mobile broadband communication over existing radio access technology (RAT). Also, massive MTC, which provides various services by connecting many devices and objects, is one of the major issues to be considered in next generation communication. In addition, a communication system design considering a service / UE sensitive to reliability and latency is being discussed. The introduction of next-generation RAT, which takes into account advanced mobile broadband communications, massive MTC, URLLC (Ultra-Reliable and Low Latency Communication), is being discussed.
  • next-generation RAT which takes into account advanced mobile broadband communications, massive MTC, URLLC (Ultra-Reliable and Low Latency Communication), is being discussed.
  • 3GPP is conducting research on next generation mobile communication system after EPC, and next generation mobile communication system after EPC can be referred to as new RAT (new RAT, NR) system, 5G RAT system, or 5G system.
  • new RAT new RAT
  • 5G RAT system 5G RAT system
  • 5G system 5
  • NR systems are required to support better performance than existing fourth generation (4G) systems in terms of data rate, capacity, latency, energy consumption and cost.
  • 4G fourth generation
  • NR systems need to make considerable progress in the areas of bandwidth, spectral, energy, signaling efficiency, and cost per bit.
  • the NR system uses an OFDM transmission method or a similar transmission method, and for example, the numerology shown in the following Table 1 can be used.
  • one of a plurality of OFDM neural rollers shown in Table 2 below of the NR system can be selected and used.
  • an OFDM neuronlogy with a 30, 60, and 120 kHz subcarrier spacing that is a multiple of 15 kHz based on the 15 kHz subcarrier spacing used in the LTE system may be used.
  • the CP length, the system bandwidth (system BW), the number of available subcarriers, the subframe length, and the number of OFDM symbols per subframe shown in Table 2 represent embodiments, .
  • the system bandwidth may be set to 100 MHz, and the number of available subcarriers may be greater than 1500 and less than 1666.
  • the NR system may follow the OFDM parameters of the LTE system and other OFDM parameters.
  • the NR system may have a larger system bandwidth (eg, 100 MHz) than the existing LTE / LTE-A, while retaining the existing LTE / LTE-A memorylessness.
  • an NR system may support a plurality of neurons in a single cell. That is, in the NR system, the UEs operating according to different memorylogies can coexist within one cell.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • TTI transmission time interval
  • the time resource may be classified by a radio frame number (or a radio frame index), a subframe number, a slot number (or slot index), or the like.
  • TTI means the interval at which data can be scheduled. For example, in the current LTE / LTE-A system, the transmission opportunity of an UL grant or DL grant is present every 1 ms, and there is no opportunity for UL / DL grant several times in less than 1 ms. Therefore, the TTI in the existing LTE / LTE-A system is 1ms.
  • Figure 2 illustrates a slot structure available in a new radio access technology (NR) system.
  • NR new radio access technology
  • the slot structure shown in FIG. 2 may be used to minimize data transmission latency, and the slot structure shown in FIG. 2 may be referred to as a self-contained subframe structure have.
  • the hatched area indicates a DL control area
  • the black area indicates a UL control area.
  • the shaded area may indicate a transmission area of a PDCCH for conveying DCI (Downlink Control Information).
  • the DCI may include UL specific information such as DL configuration information such as DL scheduling and UL configuration information that the UE should know about the cell configuration to be transmitted to the UE. It is not limited.
  • the black area may indicate a transmission area of the PUCCH for transmitting UCI (Uplink Control Information).
  • the UCI may include ACK / NACK information on HARQ for downlink data, CSI information on downlink channel status, and scheduling request (SR) as control information transmitted by the UE to the base station, but is not limited thereto .
  • a symbol region from symbol index 1 to symbol index 12 can be used for transmission of a physical channel (for example, a PDSCH) for transmitting downlink data, Or may be used for transmission of a physical channel carrying data (e.g., PUSCH).
  • a physical channel for example, a PDSCH
  • PUSCH physical channel carrying data
  • FIG. 2 DL transmission and UL transmission are sequentially performed in one slot, so transmission / reception of DL data and reception / transmission of UL ACK / NACK for DL data can be performed in one slot . Accordingly, when an error occurs in the data transmission process, the time required until the data is retransmitted is reduced, so that the transmission delay of the final data can be minimized.
  • a time gap is required for the gNB and the UE to switch from the transmission mode to the reception mode or to switch from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the slot structure can be set as a guard period (GP).
  • the basic transmission unit is a slot.
  • the slot duration consists of 14 symbols with a normal cyclic prefix (CP) or 12 symbols with an extended CP. Also, the slot is scaled by time as a function of the used subcarrier spacing.
  • the NR system is considering using a high-frequency band (for example, a frequency band of 6 GHz or more) in order to transmit data to a large number of users while maintaining a high data rate using a wide frequency band.
  • a high-frequency band for example, a frequency band of 6 GHz or more
  • the signal attenuation due to the distance is very sharp. Therefore, an NR system using a frequency band of 6 GHz or more uses a narrow beam transmission method for collecting energy in a specific direction, rather than forward, in order to compensate for abrupt propagation attenuation characteristics.
  • the NR system solves the problem of reduced coverage due to abrupt propagation attenuation by using a narrow beam transmission method.
  • the base station can collect a plurality of narrow beams and provide services in a wide band.
  • the wavelength is shortened, so that a plurality of antenna elements can be provided in the same area.
  • a 30 GHz band with a wavelength of about 1 cm a total of 100 antenna elements are installed in a 5 cm x 5 cm panel in the form of a two dimensional array at 0.5 lambda intervals . Therefore, in the mmW band, a method of increasing the coverage or increasing the throughput by using a plurality of antenna elements is considered.
  • the beamforming scheme may include digital beamforming to generate a phase difference in a digital baseband signal, analog beamforming to create a phase difference using a time delay (i.e., cyclic shift) to the modulated analog signal, And hybrid beam forming using both of the beam forming and the like. If a transceiver unit (TXRU) is provided to enable transmission power and phase adjustment for each antenna element, it is possible to perform independent beamforming for each frequency resource.
  • TXRU transceiver unit
  • a TXRU in all 100 antenna elements may be ineffective in terms of cost. That is, in the mmW band, a large number of antennas are used to compensate for the sudden attenuation characteristics, and the digital beamforming is performed by using a radio frequency (RF) component (for example, a digital-analog converter (DAC), a mixer, A power amplifier, a linear amplifier, etc.). Therefore, in order to realize the digital beam forming in the mmW band, there is a problem that the price of the communication device increases. Accordingly, when a large number of antennas such as the mmW band are required, the use of an analog beamforming method or a hybrid beamforming method is considered.
  • RF radio frequency
  • the analog beamforming method In the analog beamforming scheme, a plurality of antenna elements are mapped to one TXRU, and an analog phase shifter adjusts the direction of a beam.
  • the analog beamforming method has a disadvantage in that frequency selective beamforming (BF) can not be provided because only one beam direction can be generated in the entire band.
  • the hybrid beamforming method is an intermediate form of the digital beamforming method and the analog beamforming method, and has a B number of TXRUs smaller than Q when the number of antenna elements is Q.
  • the hybrid beamforming method although there is a difference depending on a connection method of Q antenna elements and B TXRUs, the number of beams that can be simultaneously transmitted is limited to B or less.
  • FIG. 3 shows examples of the connection method of the TXRU and the antenna element.
  • FIG. 3 (a) shows how the TXRU is connected to a sub-array.
  • the antenna element is connected to only one TXRU.
  • 4 (b) shows the manner in which TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • W represents a phase vector multiplied by an analog phase shifter. That is, the direction of the analog beam forming is determined by W.
  • the mapping between the CSI-RS antenna port and the TXRUs may be a one-to-one mapping or a one-to-many mapping.
  • a base station communicates with a plurality of users at the same time using a broadband transmission or a multi-antenna characteristic.
  • a base station uses analog or hybrid beamforming and forms an analog beam in one beam direction, It can only communicate with users included in the same analog beam direction.
  • the RACH resource allocation and the resource utilization scheme of the base station according to the present invention to be described later are proposed in consideration of the constraint inconsistency caused by the analog beamforming or the hybrid beamforming characteristic.
  • FIG. 4 abstractly illustrates a hybrid beamforming structure in terms of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • the analog beamforming means an operation in which the RF unit performs precoding (or combining).
  • the baseband unit and the RF unit perform precoding (or combining), respectively, thereby reducing the number of RF chains and the number of D / A (or A / D) converters It is possible to obtain performance close to digital beamforming.
  • the hybrid beamforming structure may be represented by N TXRU and M physical antennas.
  • the number of digital beams is L and the number of analog beams is N.
  • FIG. In NR system, it is considered to design base station to change analog beamforming in symbol unit, and to support more efficient beamforming to UE located in specific area. Also, when defining N TXRU and M RF antennas as one antenna panel, it is considered to introduce a plurality of antenna panels to which independent hybrid beamforming is applicable in the NR system.
  • an analog beam advantageous for signal reception for each UE may be different. Therefore, at least for the synchronous signal, the system information, the paging, etc., the base station may change a plurality of analog beams to be applied in a specific slot or subframe (SF) by symbols so that all the UEs have a chance to receive a signal Beam sweeping operation is being considered.
  • SF subframe
  • FIG. 5 illustrates a beam sweeping operation performed in the process of transmitting a downlink signal in the NR system.
  • the xPBCH Physical Broadcast Channel
  • the xPBCH may refer to a physical resource (or a physical channel) through which system information of the NR system is transmitted in a broadcasting scheme.
  • a beam RS (Beam RS, BRS), which is a reference signal (RS) to which a single analog beam corresponding to a specific antenna panel is applied and transmitted, Is being discussed.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to one analog beam.
  • the synchronization signal or the xPBCH can be transmitted by applying all the analog beams in the analog beam group so that any UE can receive it well.
  • Figure 6 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • a method of forming a single cell by a plurality of TRPs is discussed, unlike the case where one base station forms one cell in a conventional wireless communication system such as LTE have.
  • TRPs Transmission Reception Points
  • seamless communication can be performed even if the TRP for serving the UE is changed, which is advantageous in that mobility management of the UE is easy.
  • the PSS / SSS is transmitted in an omni-direction.
  • a method in which a gNB employing mmWave beam-forms a signal such as a PSS / SSS / PBCH while transmitting the direction of the beam in a forward direction is considered.
  • transmitting and receiving a signal while rotating the beam direction is referred to as beam sweeping or beam scanning.
  • the gNB may be divided into N number of beam directions SSS / PBCH signals are transmitted to the beam direction, that is, the gNB sweeps the directions it can have, or supports, and outputs synchronization signals such as PSS / SSS / PBCH for each direction If the gNB can form N beams, the plurality of beams can be grouped into one beam group, and the PSS / SSS / PBCH can be transmitted / received for each beam group.
  • a signal of PSS / SSS / PBCH transmitted in the same direction may be defined as one SS block (Synchronization Signal Block), and a plurality of SS blocks may exist in one cell
  • a plurality of SS blocks SSS / PBCH in the same direction can be used, for example, in a case where PSS / SSS / PBCH is transmitted in ten beam directions in one system.
  • PBCH can constitute one SS block, and it can be understood that ten SS blocks exist in the corresponding system.
  • the serving cell may request RRM measurement information, which is a measurement value for performing the RRM operation, to the UE.
  • RRM measurement information which is a measurement value for performing the RRM operation
  • the UE may typically measure information such as cell search information, reference signal received power (RSRP), and reference signal received quality (RSRQ) for each cell and report it to the base station.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the UE receives 'measConfig' as an upper layer signal for RRM measurement from the serving cell.
  • the UE measures RSRP or RSRQ based on the information of the received 'measConfig'.
  • RSRP and RSRQ are defined in TS 36.214 document of LTE system.
  • the UE operating in the LTE system may transmit the measured bandwidth information (for example, AllowedMeasBandwidth IE (information element)) at 6, 15, 25, 50, 75 , And 100 RBs (resource blocks).
  • the permitted measurement bandwidth information may be transmitted in SIB3 (system information block type 3).
  • the UE may respond to one of the 6, 15, 25, 50, 75, 100 RBs transmitted via the allowed measurement bandwidth information (e.g., AllowedMeasBandwidth IE) RSRP can be measured in the bandwidth that At this time, the permitted measurement bandwidth information can be transmitted in the SIB 5.
  • the UE may measure the RSRP in the frequency band of the entire downlink system.
  • the UE When the UE receives the authorized measurement bandwidth information, the UE can determine the value of the authorized measurement bandwidth information as the maximum measurement bandwidth and can freely measure the RSRP within the maximum measurement bandwidth. However, if the serving cell transmits an IE defined as WB-RSRQ (Wide Band-RSRQ) and sets the allowed measurement bandwidth to be greater than 50 RB, the UE shall measure the RSRP for the entire permitted measurement bandwidth. On the other hand, the RSSI is measured in the frequency band of the receiver of the UE according to the definition of the RSSI bandwidth.
  • WB-RSRQ Wide Band-RSRQ
  • a measurement gap may be defined for the UE to perform measurements. During the measurement gap period, the UE can stop communication with the serving cell and perform inter-frequency or inter-RAT measurements.
  • the E-UTRAN may use a gap duration A gap pattern should be provided.
  • Table 3 shows the gap pattern settings supported by the UE in the LTE system.
  • the UE can monitor frequencies other than the serving cell frequency for 6 ms in a 40 ms cycle unit. If the Gap Pattern Id is 1, Other frequencies can be monitored for 6ms.
  • the base station does not allocate resources or transmit traffic to the UE, and the UE measures frequencies other than the frequency of the serving cell to search for a handoverable frequency signal. During the measurement gap period, the UE does not transmit any data.
  • the UE does not tune the UE's receiver to the E-UTRAN subcarriers of PCell (Primary Cell) and all SCell (Secondary Cell), E-UTRAN subcarriers of PCell and PSCell . Then, when the measurement gap of 6ms is terminated, the UE monitors the frequency of the serving cell again.
  • PCell Primary Cell
  • SCell Secondary Cell
  • the configuration of the RACH signal used for initial access in the LTE system and the NR system is as follows.
  • CP blocks incoming interference from previous symbols and binds received RACH preamble signals with various time delays in one same time period.
  • the length of the CP may be set to be equal to or greater than the maximum round trip delay time.
  • a sequence is defined for the base station to detect the transmission of the RACH signal, and the preamble is responsible for transmitting the sequence.
  • Guard Time A period defined in order that the signal transmitted from the farthest from the RACH coverage and delayed is not interfered with the signal received after the RACH symbol interval, the UE transmits a signal during the guard time interval It may not be defined as a signal.
  • FIG. 7 is a view for explaining an operation performed by the base station in order to receive the RACH signal.
  • the UE may receive a synchronization signal and may transmit the RACH signal through a designated RACH resource in accordance with the system timing of the base station obtained from the received synchronization signal.
  • the base station receives a signal from a plurality of users, and sets CP to a maximum round trip delay time for the RACH signal. Therefore, an arbitrary point between the maximum round trip delay time and the CP length is received As shown in FIG.
  • the base station can acquire the existence of the RACH signal and the time delay information by determining a set boundary point as a starting point for receiving the RACH signal and calculating a correlation with respect to the signal corresponding to the sequence length from the determined starting point have.
  • the base station When the communication environment operated by the base station uses multiple beams such as the millimeter band, the base station receives the RACH signal from a plurality of directions, and detects the RACH preamble while changing the beam direction for the RACH signal received from a plurality of directions do.
  • the base station can receive the RACH signal only in one direction at one time. Therefore, in order to appropriately perform the RACH preamble detection, a process of designing the RACH preamble and the RACH procedure is required. In the present invention, description will be made taking into consideration only a process in which beam correspondence (BC) information of a base station is valid and an invalid process.
  • BC beam correspondence
  • FIG. 8 is a view for explaining allocation of RACH resources connected to a synchronization signal block and a synchronization signal block.
  • each synchronization signal block (SS block) is connected to a specific RACH resource.
  • FIG. 9 is a diagram showing an example of forming a reception beam for receiving the RACH preamble according to whether the beam corresponding information is valid or not.
  • a RACH resource is linked to a synchronization signal block (SS block).
  • SS block synchronization signal block
  • the base station detects (beam scanning) the RACH preamble in a plurality of directions.
  • FIG. 10 shows a process of performing a handover through a contention-based RACH procedure.
  • the mobile communication system carries out a handover for moving a serving cell so that communication can be continuously provided without being disconnected.
  • the UE transmits a measurement report (MR) to a serving cell.
  • the UE may measure cell-to-cell RSRP / RSRQ and send a measurement report to the serving cell, including information on the measured cell-to-cell RSRP / RSRQ.
  • the serving cell may transmit a handover command including a target cell and target cell related information to the UE.
  • the UE can perform synchronization with the target cell (S1030) and perform the RACH procedure with the target cell by transmitting the RACH signal for handover to the target cell (S1040).
  • the target cell may transmit (S1050) a RACH response to the UE in response to the RACH signal received from the UE, and the UE may transmit a C-RNTI MAC-CE (contention resolution) -control element) to the target cell (S1060).
  • a C-RNTI MAC-CE contention resolution
  • the target cell may allocate (S1070) a resource for data transmission to the UE in response to the C-RNTI MAC CE received from the UE, and the UE may transmit a message indicating completion of the handover (for example, RRC Setting completion message) to the target cell (S1080).
  • a message indicating completion of the handover for example, RRC Setting completion message
  • 11 shows a process of performing a handover using a contention-based RACH.
  • the UE transmits a measurement report including RSRP / RSRQ per cell (S1100, S1110) to a serving cell, and the serving cell transmits a handover command including information on a target cell To the UE (S1120).
  • the UE in response to the handover command received from the serving cell, can perform the RACH procedure with the target cell by synchronizing with the target cell (S1130) and transmitting the RACH signal to the target cell (S1140).
  • the target cell may transmit a RACH response to the UE (S1150), and the UE informs the target cell of the completion of the handover by transmitting an RRC setup complete message to the target cell .
  • the non-contention-based RACH procedure uses a dedicated resource without using a common resource to transmit the RACH signal. Therefore, as shown in FIG. 11, the contention-based RACH procedure does not require a RACH signal retransmission process and a contention resolution process due to a resource collision with another user, so the handover process is completed Time can be reduced.
  • the UE obtains a TA (timing advance) value for uplink transmission through a RACH response and transmits the source cell (source cell) Or a serving cell) to the target cell by completing a handover complete message for the handover command.
  • the UE can acquire a beam for a target cell, in a multi-beam environment, via a RACH procedure.
  • a method of acquiring a beam in a handover procedure through a contention-based RACH procedure will be described.
  • a method of acquiring a beam by allocating a plurality of RACH resources and a method of acquiring a beam through measurement report will be described in detail.
  • the handover procedure through the contention-based RACH procedure is the same as the initial beam acquisition procedure through RACH signal transmission.
  • the UE when it receives the handover command from the base station, it can transmit the RACH signal to the target cell. Then, the UE can determine the SS block, that is, the beam having the best channel quality, by measuring the per-channel channel quality before transmitting the RACH signal.
  • beam-by-beam channel quality measurement may be referred to as channel quality measurement for the SS block.
  • the SS block can be used as a representative channel of a beam
  • a reference signal transmitted through a beam of CSI-RS or the like can be used as a representative channel of the beam.
  • the BS determines which RACH resource the RACH preamble is received, thereby determining a downlink beam index (downlink beam index).
  • the UE can acquire a beam through a plurality of UE-dedicated RACH resources.
  • a plurality of UE-dedicated RACH resources each have a connection relationship with an optimal beam (or SS block), and the base station can inform the UE of information on a connection relationship between an optimal RACH resource and an optimal RACH resource.
  • the base station selects a sub- It is necessary to additionally inform the UE of the connection information between the CSI-RS representative of the beam and the SS block having the connection relation with the RACH resource while representing the upper beam.
  • the UE may use the information received from the base station in the process of selecting the RACH resource.
  • the UE can transmit the RACH preamble using only the RACH resource related to the best beam, so that the UE can connect to the base station through the beam selected by the UE.
  • the optimal beam may be referred to as the best-quality beam, the optimal quality SS block, or the SS block associated with the optimal quality CSI.
  • the UE may transmit the RACH signal in a plurality of beam directions, and the base station may acquire the beam in the determined beam direction reflecting the beam-specific UE load information and the like.
  • the base station can inform the UE of a condition for selecting a beam. For example, the base station may select, based on the RSRP of the best beam, only those beams whose difference from the RSRP of the best beam is less than the threshold. The UE can be notified of the threshold value.
  • the base station allocates a plurality of RACH resources, and transmits connection information with the SS block for each of the plurality of RACH resources to the UE .
  • the UE may transmit the RACH signal through the RACH resource determined based on the measurement result of the channel quality of the SS block for the target cell or the channel quality measurement result of the previously measured SS block.
  • the UE may acquire a downlink beam by transmitting a RACH signal, and may transmit downlink best beam information to the base station.
  • the channel quality information through measurement report includes channel quality information for each cell (or for each transmission unit for handover).
  • the handover procedure through allocation of a plurality of RACH resources requires only a UE to transmit only the channel quality information for each cell to the base station, so that the signaling overhead is small.
  • the handover process through a plurality of RACH resource allocations can increase the stability of beam acquisition and beam tracking by selecting an optimal beam after the UE receives the handover command.
  • the base station allocates a plurality of RACH resources, the resources are wasted, and the beam for receiving the RACH preamble is formed, so that there is a problem that the degree of freedom in scheduling for frequency resources other than the RACH resources is reduced.
  • the UE can continuously measure channel quality for a neighbor cell.
  • RSRP or RSRQ may be used as measurement information for mobility.
  • all information used for mobility measurement is collectively referred to as RSRP.
  • the base station transmits a signal for measuring the channel quality using a plurality of beams per cell to the UE, and the UE can measure the beam quality per channel using the signal received from the base station.
  • a synchronous signal or PBCH or the like can be used for measuring the channel quality.
  • the signal is referred to as an SS block for convenience of explanation.
  • the UE can transmit not only the channel quality information for each cell but also the beam-specific information for each cell to the base station based on the measured channel-by-beam channel quality. Accordingly, the base station can determine the handover using the beam information of the target cell, and can use the beam information of the target cell to instruct the UE to perform handover to a specific beam of the target cell. Therefore, for handover, only one RACH resource (or fewer than the maximum number of beams of the target cell) can be allocated. There are a few additional things to consider for this.
  • MR information may include cell-specific RSRP, beam-specific RSRP, and beam index information.
  • Cell-by-cell RSRP In multi-beam environments, channel quality measurements are basically done on a beam-by-beam basis.
  • Cell-specific RSRP can be defined in various forms using beam-specific RSRP. For example, the RSRP of the best beam, the best-N beam RSRP of the best N beams, the RSRP average of N cells with the best channel quality, the RSRP average of all beams greater than the threshold And the like.
  • Beam-specific RSRP With cell-by-cell RSRP, the beam index and beam-specific RSRP included in the reporting cell may be included.
  • the RSRP information per beam can be defined as RSRP of all beams detected in the cell, RSRP of the best N-best beam among the beams detected in the cell, and the like.
  • the MR information does not include the beam-specific RSRP, but may include only the beam index.
  • the beam index includes a best beam index, a beam index used to calculate the RSRP per cell, a sorted index of the best N beams (best-N beam), and the like. can do.
  • Measurement report event The communication system can define an MR event that sends a measurement report.
  • the base station transmits a threshold for triggering the MR event to the UE, and the UE can transmit the measurement report to the base station when the defined MR event occurs.
  • events using beam-specific RSRP may be additionally defined, for example, the following events and parameters may be defined.
  • Beam-specific RSRP may be the result of L3 filtering, L1 / L2 filtering, or no filtering applied, and may be set by the base station similar to that described in the following filtering coefficients.
  • a new event may be defined as a combination of the events defined in a) to e), wherein the threshold may be defined separately for each case.
  • the threshold used to define the event may be set separately from the threshold used for the per-cell RSRP, and a separate threshold may be set for each event.
  • RSRP is a representative indicator of channel quality, and other quality indicators such as RSRQ, SNR, etc. may be used.
  • the UE can measure RSRP per cell and verify that it meets the conditions for event triggering. At this time, when the change of RSRP value per cell is large, event triggering occurs too often or handover occurs too frequently. Therefore, in order to prevent the above-described problem, generally, the UE performs filtering on the RSRP, and the base station transmits a coefficient to the UE for performing filtering for stable operation of the system. At this time, if the filtering is performed too long, the handover failure rate may increase due to the delay due to the filtering, and if too short filtering is performed, a handover ping-pong phenomenon may occur.
  • Independent filtering coefficients can be used for cell-specific RSRP and beam-specific RSRP for stable operation of the system.
  • long filtering is used for RSRP for each cell to prevent frequent handover
  • short filtering for beam-specific RSRP can be used for stable beam acquisition using latest information .
  • the base station can transmit a plurality of filtering coefficients to the mobile station.
  • the BS may transmit the filtering coefficient, and in case of beam-specific RSRP, the latest value may be used without performing filtering.
  • D. Power control Since the base station informs the UE of the beam index for acquiring the downlink beam, the base station must inform the UE of the reference channel information of the power control used by the UE to transmit the RACH signal do.
  • the UE may use a channel (e.g., SS block or CSI-RS) connected to a beam index of a target cell to be connected when a base station performs handover as a reference channel, May directly indicate resource information of a channel (e.g., SS block or CSI-RS).
  • a channel e.g., SS block or CSI-RS
  • the electric branch office informs the UE of the link information between the upper beam and the lower beam, and the index directly instructed by using the link information between the upper beam and the lower beam, May be used as a reference channel for power control.
  • an additional measuring process for the upper or lower beam may be required, or information already measured may be used.
  • the RACH resource for transmitting the RACH preamble when beam correspondence information is valid and the beam is acquired through the measurement report according to the method 2-2), one RACH resource is allocated at the appropriate time It is enough to do. However, if the beam corresponding information is not valid, RACH resources for beam sweeping of the UE or beam scanning of the base station must be configured. In this case, 1) beam sweeping is performed after beam scanning, or 2) beam scanning is performed after beam sweeping.
  • FIG. 12 is a view for explaining a process of performing beam sweeping after beam scanning.
  • the UE when beam scanning is performed first, the UE can concatenate a plurality of RACH preambles without a CP. At this time, the base station must receive a plurality of RACH preambles while changing the direction of the receive beam while the beam scanning is performed. In this case, when the base station uses the analog beam, it is difficult for the base station to perform slot-based scheduling in the slot to which the RACH resource allocated by the UE is allocated. Accordingly, the base station can configure a mini slot in the slot to which the RACH resource is allocated, and perform the scheduling in the minislot unit.
  • the base station allocates the UE-dedicated RACH resource in accordance with the common RACH resource time in which the reception beam is directed in the slot allocated with the common RACH resource , And may inform the UE of the allocated UE-dedicated RACH resource.
  • 13 is a view for explaining a process of performing beam scanning after beam sweeping.
  • the method of performing beam sweep after beam scanning has a problem of reducing the scheduling freedom of the base station.
  • beam sweeping can be performed first to solve the above problem, the problem is not completely solved by simply performing beam sweeping first. Therefore, if the RACH resource for beam scanning is allocated and the unit for setting the receiving beam direction of the base station is set in the slot unit, if the RACH resource for each slot is allocated even though it is not concatenated, RACH preamble can be transmitted.
  • the base station may inform the UE of how to configure the RACH resources within a single slot (or possibly a plurality of slots due to the configuration of the RACH signal).
  • a RACH resource may be configured to transmit a RACH signal composed of a CP and a preamble four times.
  • the base station can then inform the UE in which slot it should transmit the configured RACH resources.
  • the base station may inform a specific SFN as a start point by bitmap, or transmit the number of times of transmission to a specific SFN as a starting point, considering that the SFN is transmitted in consecutive slots.
  • the above methods can be equally applied to the beam acquisition method through the above-described plurality of RACH resource assignments.
  • the base station may allocate a CSI-RS configuration based on an optimal RSRP. For example, the base station may allocate resources to the UE based on the allocated SSB, and the UE may perform handover complete and beam recovery through the allocated resources for beam recovery.
  • the non-contention-based RACH procedure assumes that the beam acquisition is completed and one resource for the CF-RACH can be allocated.
  • CF-RACH resource is not a suitable beam (suitable beam), or the quality of the assigned receiving beam failure detection RS (beam failure detection RS) threshold time (for example, Q out) or less, UE Beam failure (beam failure) And transmit it to the beam recovery RS. Also, if there is no response from the base station to the RACH preamble, the UE may perform beam recovery through a new candidate beam RS.
  • the UE performs beam recovery using the beam recovery RS Can be performed.
  • the base station can allocate a plurality of beam operating RS sets and select the beam operating RS through the RACH response. Or, according to an embodiment, the base station can forward the beam operation RS to the UE via a RACH response, without allocating the beam operating RS set.
  • the beam operation RS can be allocated or the beam operation RS can be selected. Further, as described above, the beam restoration signal can be used to transmit the RACH signal for handover completion.
  • the beam restoration signal may proxy a contention-based RACH and transmit a response using the BR-RACH resource.
  • the UE receives the TA through the CF-RA, acquires the beam through the BR- BM-RS resources can be updated.
  • the UE can transmit a message indicating completion of the handover using the BR-RA. At this time, the UE can apply 0 as a TA value.
  • the contention free RACH procedure discussed above is basically a method of acquiring an initial beam for a target cell through a handover process.
  • the base station allocates a reference signal (e.g., BM-RS) for beam management / tracking based on the beam quality of the target cell previously reported through the measurement report can do.
  • BM-RS can be allocated through a handover command, and for example, the handover command can be transmitted through an RRC reconfiguration message.
  • the base station may include a new candidate beam identification RS (RS) resource for identifying or searching for a new beam candidate
  • RS beam identification RS
  • the RACH resource can be allocated to the UE for reporting a failure status and a new suitable beam to the base station.
  • the beam failure may mean the case where the channel quality of all the beams set as the serving beams does not satisfy the predetermined condition, and in accordance with the embodiment, Channel quality may not satisfy the predetermined condition.
  • the RACH resource may be referred to as a RACH for beam recovery resource, a beam recovery RACH (BR-RACH) resource for beam recovery, and is not limited to the above-described example.
  • BR-RACH beam recovery RACH
  • the RACH allocated for beam recovery is referred to as BR-RACH
  • the RS allocated for beam recovery is unified as BR-RS (beam recovery-RS).
  • the BS needs to minimize the time required for beam recovery by allocating a separate BR-RACH resource for each user.
  • the base station always monitors the BR-RACH signal and when the UE requests beam recovery, it can allocate uplink transmission resources and new downlink BM-RS resources to the UE to know the correct beam quality status have.
  • Assigning a UE dedicated resource means ensuring that the UE is able to always report the new beam status exclusively to the target cell via the handover command.
  • the resources allocated for beam recovery may be used to report the occurrence of a beam failure and a new suitable beam to the base station and adjust the new timing advance (TA) value.
  • resources allocated for handover can be used to transmit a handover response, report a new serving beam to the base station, and obtain a new TA value when a handover command is received from the base station. That is, the resources allocated for handover and the resources allocated for beam recovery may be similar to each other.
  • the BR- And can be used as the RACH resource for completing the handover.
  • the characteristics of the RACH resource may include a timing advance (TA) value of 0, and typically 0 is used to indicate that the TA value is 0. However, depending on the characteristics of the system, May be used.
  • TA timing advance
  • a BR-RACH resource is used as a contention-based / contention-based RACH resource for handover, or as a resource for beam update, report, or confirmation in the handover process
  • a method of using BR-RACH resources by using resources allocated for beam recovery to transmit a handover related message, it is possible not to allocate a dedicated UE dedicated resource for handover.
  • transmitting a handover response may be referred to as transmitting a handover response message.
  • the base station allocates a contention-free based RACH (CF-RACH) resource to the UE based on a measurement report and allocates a plurality of CF-RACH resources to the UE .
  • CF-RACH contention-free based RACH
  • the UE may configure RACH resources linked to the SS / PBCH block (SSB) when the base station configures the RACH resource to perform the initial beam acquisition and report the obtained beam .
  • the base station allocates a plurality of CF-RACH resources to the UE, and the UE can transmit the RACH signal using the CF-RACH resources connected to the SSB determined to be suitable for the serving cell for the target cell.
  • the UE If there is no CF-RACH resource connected to the SSB determined to be suitable for the serving beam, the UE transmits a RACH signal for handover to the base station using a contention based RACH (CB-RACH) And performs initial beam acquisition for the first beam.
  • CB-RACH contention based RACH
  • the base station allocates the BR-RACH resources to the UE via the handover command and the separate CF-RACH and / Or may not allocate the CB-RACH resource.
  • the BR-RACH resource is used by the UE to detect a new serving beam and report a new serving beam to the base station, and the CF-RACH and CB-RACH resources inform the completion of the handover and the new beam capable of communicating Lt; / RTI > Therefore, if the BR-RACH resource can use the CF-RACH and / or the CB-RACH resource because the use of the BR-RACH resource is similar to the use of the CF-RACH and / or the CB-RACH resource, It may not be necessary to use the -RACH and / or CB-RACH resources.
  • BR-RS which is a resource for measuring beam quality, in order to detect and report a new serving beam. Therefore, a BR-RS other than the SSB of the target cell can be used as a beam quality measurement resource as a resource for finding an appropriate serving beam and a transmission power setting of the BR-RACH.
  • the BR-RS may include the SSB of the target cell.
  • the base station can transmit resource setting information for the BR-RS to the UE through the handover command.
  • the BS may be configured to transmit a BR-RACH signal by applying a TA value set before the occurrence of a beam failure.
  • the BR-RACH resource since the BR-RACH resource is different from the RACH resource for handover, the BR RACH resource can not be used as the RACH resource for handover. Therefore, when allocating the BR-RACH resource, the base station can inform the UE whether the BR RACH resource can be used as a RACH resource for handover.
  • it may be preset that the BR-RACH resource can be used as the CF-RACH resource if the CF-RACH resource is not separately allocated.
  • BR-RACH resources may be used for only some of the beams because the application of the TA value may vary depending on the BR-RACH resources according to the embodiment.
  • CF RACH, CB RACH, and BR RACH resources are all allocated to one beam, and CF RACH, CB RACH, and BR-RACH resources can be used as RACH resources for handover according to the set priority .
  • the priority order can be set in the order of CF-RACH, BR RACH, and CB RACH.
  • the priority of the CF-RACH resource and the BR-RACH resource may be set to be the same, It is possible to inform the base station of the completion of the handover together with the optimal beam information by using the resource which is determined to be low.
  • FIG. 14 is a flowchart illustrating a method for transmitting an RACH for handover using a BR-RACH resource according to an embodiment.
  • the UE may transmit a measurement report including information on a cell-specific RSRP / RSRQ to a serving cell.
  • the serving cell may send a handover command to the UE (S1410) based on the measurement report received from the UE.
  • the handover command may include information about a target cell to which the UE will move through handover.
  • the UE may transmit (S1420) a RACH signal for handover to the target cell, at which time the RACH signal may be transmitted via the RACH resource allocated for beam recovery.
  • the target cell may transmit the RACH response to the UE in response to the RACH signal received from the UE (S1430). Accordingly, a handover process can be performed using a RACH resource (e.g., BR-RACH) for beam recovery without needing to allocate a separate RACH resource for handover.
  • a RACH resource e.g., BR-RACH
  • the UE may report to the base station information about what beam the serving beam is using, using the CF-RACH resource (or CB-RACH resource as needed).
  • assigning a plurality of CF-RACH resources means that the base station has only uncertain information as to which beam is suitable as a serving beam.
  • the base station transmits a handover command to a UE, it may be inefficient to assign a BM-RS set to the UE.
  • the base station after receiving the RACH signal (for example, the RACH preamble) from the UE, the base station must perform RRC signaling for setting the BM-RS to the UE.
  • the UE may desirably transmit the RACH signal using RACH resources with the best RSRP for proper beam operation.
  • RACH resources with the best RSRP for proper beam operation.
  • the RACH resource having the best RSRP although the handover can be completed faster through other RACH resources capable of reducing the handover delay, the RACH resource having the best RSRP And the RACH signal must be transmitted.
  • the handover RACH procedure can not be performed using the BR-RACH resource
  • information for the serving beam verification or serving beam report / update is transmitted to the base station using the BR-RACH resource Method.
  • 15 is a flow diagram illustrating a method for transmitting serving beam verification or serving beam report / update information using BR-RACH resources in accordance with an embodiment.
  • the UE may transmit a measurement report including information on cell-by-cell RSRP / RSRQ to a serving cell.
  • the serving cell may send a handover command to the UE (S1510) based on the measurement report received from the UE.
  • the handover command may include information about a target cell to which the UE moves through handover.
  • the UE may transmit the RACH signal for handover to the target cell (S1520).
  • the RACH signal for handover may be transmitted via the CF-RACH resource or the CB-RACH resource allocated for the handover, or may be transmitted via the BR-RACH resource.
  • the RACH signal for handover can be transmitted through the optimal RACH resource in terms of handover delay, not the RACH resource having the optimal RSRP, thereby minimizing the delay due to the handover process .
  • the target cell may transmit the RACH response in response to the RACH signal received from the UE (S1530).
  • the UE may then transmit serving beam verification information or serving beam report / update information to inform the target cell of the optimal beam.
  • the serving beam acknowledgment information or the serving beam report / update information may be transmitted through the BR-RACH resource.
  • beam failure is declared by the UE in situations where communication over the serving beams is impossible, and if a beam failure occurs, the UE may update the serving beam set via a beam recovery procedure.
  • the UE can transmit a response to the handover command using the optimal RACH resource in terms of delay, not the RACH resource having the best RSRP.
  • the response to the handover command may be transmitted through the CF-RACH resource or the CB-RACH resource, and may be transmitted through the BR-RACH resource as suggested in 1).
  • the UE may use a suboptimum beam until a beam failure occurs and the optimal serving beam is set again There is a problem of communicating with the base station.
  • the UE when transmitting the response to the handover command, transmits a response message for the handover command to the base station using the RACH resource that minimizes the handover delay.
  • the RACH resource that minimizes the handover delay may mean a resource whose quality of the SSB or BR-RS satisfies the quality desired by the UE.
  • the UE can acquire the best-quality beam or the BR-RACH resource corresponding to the best quality beam found through the beam measurement process after receiving the handover command To transmit the beam update information to the base station.
  • the base station may receive the beam update information from the UE and know that the serving beam has been confirmed if the beam indicated by the beam update information is the same as the beam reported through the handover response.
  • the UE may correspond to a case in which the UE transmits a handover response through one CF-RACH resource.
  • the base station may transmit the BM-RS to the UE through a handover command have.
  • the base station recognizes that it has received new serving beam report / update information via the BR-RACH resource, BM-RS resources to the UE.
  • the base station pre-allocates a handover command to all UEs by BM-RS resources, and transmits a BM-RS resource corresponding to the serving beam reported through the BR-RACH resource to a BM-RS .
  • the above-described method may be a method suitable for a service requiring a very short handover delay or requiring a service disconnection time close to zero.
  • a beam restoration process can be defined for a case where the beam is not in a failure state (for example, when a quality beam of a better quality is found even if the quality of the serving beam is not a problem in performing communication). Or, even if a new beam restoration process is not defined, in the handover process, defining the above-described beam restoration process for a predetermined time that is predetermined or set by the base station after the UE receives the handover command from the base station, It can be advantageous from the side.
  • the UE can set the TA value through the RACH response. Then, the UE can transmit the serving beam update information to the BS using the BR-RACH resource. For example, the UE may transmit a RACH signal (e.g., a RACH preamble), perform monitoring for a new beam, wait for a RACH response, and receive a TA value as a RACH response. The UE may then transmit the serving beam update information using the BR-RACH resource corresponding to the optimal beam. However, in the case of the CB-RACH procedure, even if the TA value is received, since the contention resolution is not completed, the UE transmits a contention resolution message (for example, RACH message 4) It may be desirable to transmit the serving beam update information.
  • a contention resolution message for example, RACH message 4
  • 16 is a flowchart showing the operation of the UE in the handover process.
  • a UE receives a handover command from a first base station (S1600).
  • the UE may transmit a message related to the handover to the second base station (S1610) using resources for beam recovery.
  • the first base station may mean the serving cell
  • the second base station may mean the target cell.
  • the message related to the handover may include at least one of a RACH signal for handover and beam update information.
  • the resources for beam recovery may include RACH resources allocated for beam recovery.
  • the beam update information may be transmitted separately from the RACH signal for handover.
  • the UE may transmit a RACH signal for handover to the second base station using the CF-RACH, CB-RACH, or BR-RACH resources allocated for handover, Lt; / RTI >
  • the resource used for transmitting the RACH signal may be the resource with the lowest handover delay even if it is not the optimum beam having the highest quality. Accordingly, the UE can minimize the delay occurring in the handover process.
  • the UE can further transmit information on the optimal beam to the second base station.
  • the UE can transmit the beam update information to the second base station using the resources allocated for beam recovery.
  • the beam update information may mean serving beam confirmation information.
  • the beam update information may refer to serving beam report / update information.
  • the UE and the second base station can perform communication using the beam indicated by the beam update information. Accordingly, the UE and the second base station can more quickly perform communication using the optimal beam while reducing the delay occurring in the handover process.
  • the UE may not allocate resources for handover by utilizing resources allocated for beam recovery in the handover process.
  • the first base station can previously transmit to the UE information indicating whether or not the resource allocated for beam recovery is usable for transmitting a message related to the handover.
  • FIG. 17 is a flowchart illustrating an operation of a target cell in a handover process.
  • the first base station transmits a handover command to the UE, and the UE may transmit a RACH signal for handover to the second base station.
  • resources allocated for handover e.g., CB-RACH or CF-RACH resources
  • the second base station may transmit the RACH response to the UE (S1710) in response to the RACH signal received from the UE.
  • the second base station and the UE can temporarily perform communication using the sub-optimal beam.
  • the second base station may receive beam update information from the UE (S1720), and the beam update information may be transmitted via a resource (e.g., a BR-RACH resource) allocated for beam recovery.
  • the beam update information may include information about the optimal beam, and as the beam update information is transmitted, the second base station and the UE may perform communication using the optimal beam represented by the beam update information.
  • Fig. 18 is a diagram showing a configuration of the apparatuses according to the present invention.
  • the apparatus 100 may include a processor 110 and a memory 120.
  • the apparatus 100 may include, but is not limited to, the above-described user equipment (UE) or a system on chip (SoC).
  • UE user equipment
  • SoC system on chip
  • the device 100 may further include a transceiver (not shown).
  • the processor 110 may control the operation of the entire apparatus 100 and may be configured to perform a function of computing and processing information and the like that the apparatus 100 transmits and receives to and from the external apparatus.
  • the processor 120 may be configured to perform the operations of the UE 100 proposed by the present invention. If the device 100 comprises a transceiver, the processor 120 may control the transceiver to transmit data or messages in accordance with the suggestions of the present invention.
  • the memory 120 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
  • the transceiver may be referred to as a radio frequency (RF) unit or a transceiver module.
  • the transceiver may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information from an external device.
  • the transceiver may be implemented separately as a transmitting unit and a receiving unit.
  • the device 100 may be wired and / or wirelessly connected to an external device.
  • a first base station 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the first base station 200 may perform the operations of the serving cell or the source cell described above.
  • the transceiver 210 may be referred to as a transmit / receive module or a radio frequency (RF) unit.
  • the transceiver 210 can be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information from an external device.
  • the first base station 200 may be wired and / or wirelessly connected to an external device.
  • the transceiver 210 may be implemented separately as a transmitting unit and a receiving unit.
  • the processor 220 may control the operation of the first base station 200 and may be configured to perform a function of computing and processing information to be transmitted and received with the first base station 200. [ In addition, the processor 220 may be configured to perform the operations of the first base station 200 proposed by the present invention. The processor 220 may control the transceiver 210 to transmit data or messages to the device 100 or other base stations in accordance with the suggestions of the present invention.
  • the memory 230 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
  • the first base station 200 may be an eNB or a gNB.
  • the second base station 300 may include a transceiver 310, a processor 320, and a memory 330.
  • the second base station 300 may perform the operations of the target cell described above.
  • the specific configurations of the apparatus 100, the first base station 200, and the second base station 300 are not limited to those described in the various embodiments of the present invention described above, And the overlapping contents will be omitted for the sake of clarity.
  • embodiments of the present invention can be implemented by various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs) , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to embodiments of the present invention may be implemented in the form of an apparatus, a procedure, or a function for performing the functions or operations described above.
  • the software code can be stored in a memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various well-known means.
  • the communication method as described above can be applied not only to the 3GPP system but also to various wireless communication systems including IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to a mmWave communication system using a very high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치가 개시된다.

Description

무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 핸드오버를 수행하는 방법 및 장치에 관한 것이다.
더 많은 통신 장치가 더 큰 통신 용량을 요구함에 따라, 레거시(legacy) 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 광대역(enhanced mobile broadband, eMBB) 통신에 대한 필요성이 대두되고 있다. 또한, 복수의 장치 및 객체(object)를 서로 연결하여 언제 어디서나 다양한 서비스를 제공하기 위한 대규모 기계 타입 통신(massive machine type communication, mMTC)는 차세대 통신에서 고려해야 할 주요 쟁점 중 하나이다.
또한, 신뢰도 및 대기 시간에 민감한 서비스/UE를 고려하여 설계될 통신 시스템에 대한 논의가 진행 중이다. 차세대(next generation) 무선 액세스 기술의 도입은 eMBB(Enhanced Mobile BroadBand) 통신, mMTC(Massive Machine-Type Communications), 초 신뢰성 및 저 대기 시간 통신(ultra-reliable and low latency communication, URLLC) 등을 고려하여 논의되고 있다.
무선 통신 시스템에서 핸드오버를 보다 효율적으로 수행하는 방법이 요구된다.
무선 통신 시스템에서 핸드오버를 수행하기 위한 자원을 보다 효율적으로 사용하는 방법이 요구된다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 사용자 기기(user equipment, UE)가 핸드오버를 수행하는 방법은, 핸드오버 커맨드(handover command)를 제1 기지국으로부터 수신하는 단계, 핸드오버 커맨드에 응답하여 빔 복구를 위해 할당된 자원을 이용하여 핸드오버에 관련된 메시지를 제2 기지국으로 전송하는 단계, 및 핸드오버에 관련된 메시지에 기초하여 결정된 빔을 이용하여 제2 기지국과 통신을 수행하는 단계를 포함할 수 있다.
일 실시예에 따른 핸드오버에 관련된 메시지는, 핸드오버를 위한 RACH(random access channel) 신호 및 빔 업데이트 정보 중 적어도 하나를 포함할 수 있다.
일 실시예에 따라 핸드오버에 관련된 메시지가 빔 업데이트 정보를 포함할 때, 핸드오버에 관련된 메시지를 전송하는 단계는, 핸드오버를 위한 RACH 신호를 제2 기지국으로 전송하는 단계, 핸드오버를 위한 RACH 응답을 제2 기지국으로부터 수신하는 단계, 및 빔 복구를 위해 할당된 자원을 이용하여 빔 업데이트 정보를 제2 기지국으로 전송하는 단계를 포함할 수 있다.
일 실시예에 따른 핸드오버를 위한 RACH 신호는, 핸드오버를 위해 할당된 하나 이상의 자원 및 빔 복구를 위해 할당된 자원 중 하나를 이용하여 전송될 수 있다.
일 실시예에 따른 핸드오버를 위해 할당된 하나 이상의 자원은, 비경쟁 기반 RACH(contention-free based random access channel) 자원 및 경쟁 기반 RACH(contention-based random access channel) 자원 중 적어도 하나를 포함할 수 있다.
일 실시예에 따른 핸드오버 응답 메시지는, 핸드오버를 수행하기 위해 할당된 하나 이상의 자원 및 빔 복구를 위해 할당된 자원 중에서 핸드오버 지연(handover delay)이 가장 낮은 자원을 이용하여 전송될 수 있다.
일 실시예에 따른 빔 업데이트 정보는, 핸드오버를 위한 RACH 신호에 의해 지시되는 빔보다 좋은 품질을 갖는 빔에 관한 정보를 포함할 수 있다.
일 실시예에 따라 핸드오버를 수행하는 방법은, 빔 업데이트 정보에 기초하여 결정된 빔을 이용하여 제2 기지국과 통신을 수행하는 단계를 더 포함할 수 있다.
일 실시예에 따른 핸드오버는, 비경쟁 기반 RACH(contention-free based RACH) 절차를 통해 수행될 수 있다.
일 실시예에 따라 빔 복구를 위해 할당된 자원은, 빔 복구를 위한 RACH(random access channel) 자원을 포함할 수 있다.
일 실시예에 따라 빔 복구를 위해 할당된 자원은, 핸드오버 커맨드를 통해 UE 전용 자원(UE dedicated resource)으로 할당될 수 있다.
일 실시예에 따라 핸드오버를 수행하는 방법은, 빔 복구를 위해 할당된 자원이 핸드오버에 관련된 메시지를 전송하기 위해 사용 가능한지 여부를 나타내는 정보를 제1 기지국으로부터 수신하는 단계를 더 포함할 수 있다.
본 발명의 다른 양상으로, 무선 통신 시스템에서 핸드오버를 수행하는 장치는, 메모리(memory) 및 메모리에 연결된 프로세서(processor)를 포함하고, 프로세서는, 핸드오버 커맨드(handover command)를 제1 기지국으로부터 수신하고, 핸드오버 커맨드에 응답하여, 빔 복구를 위해 할당된 자원을 이용하여 핸드오버에 관련된 메시지를 제2 기지국으로 전송하고, 핸드오버에 관련된 메시지에 기초하여 결정된 빔을 이용하여 제2 기지국과 통신을 수행할 수 있다.
본 발명에 따르면, 무선 통신 시스템에서 핸드오버를 보다 효율적으로 수행할 수 있다.
또한, 본 발명에 따르면, 핸드오버를 수행하기 위한 자원을 보다 효율적으로 수행할 수 있다.
또한, 본 발명에 따르면, 핸드오버를 보다 빠르게 수행할 수 있다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
도 2는 새로운 무선 접속 기술(new radio access technology, NR) 시스템에서 이용 가능한 슬롯 구조를 예시한 것이다.
도 3은 TXRU와 안테나 엘리먼트의 연결 방식의 예시들을 나타낸다.
도 4는 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.
도 5는 NR 시스템에서 하향링크 신호의 전송 과정에서 수행되는 빔 스위핑 동작을 도시한 것이다.
도 6은 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.
도 7은 기지국이 RACH 신호를 수신하기 위해 수행하는 동작을 설명하기 위한 도면이다.
도 8은 동기 신호 블록 및 동기 신호 블록에 연결된 RACH 자원의 할당을 설명하기 위한 도면이다.
도 9는 BC(beam correspondence)의 유효 여부에 따라 RACH 프리앰블을 수신하기 위한 수신 빔을 형성하는 예를 나타내는 도면이다.
도 10은 경쟁 기반의 RACH 절차를 통해 핸드오버를 수행하는 과정을 도시한다.
도 11은 비경쟁 기반 RACH를 이용하여 핸드오버를 수행하는 과정을 도시한다.
도 12는 빔 스캐닝 이후에 빔 스위핑을 수행하는 과정을 설명하기 위한 도면이다.
도 13은 빔 스위핑 이후에 빔 스캐닝을 수행하는 과정을 설명하기 위한 도면이다.
도 14는 BR-RACH 자원을 이용하여 핸드오버를 위한 RACH를 전송하기 방법을 나타내는 흐름도이다.
도 15는 BR-RACH 자원을 사용하여 서빙 빔 확인 또는 서빙 빔 보고/업데이트 정보를 전송하는 방법을 나타내는 흐름도이다.
도 16은 UE가 핸드오버를 수행하는 방법을 나타내는 흐름도이다.
도 17은 핸드오버 과정에서 타겟 셀의 동작을 나타내는 흐름도이다.
도 18은 본 발명에 따른 장치들의 구성을 도시하는 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
먼저, 본 명세서에서 사용되는 용어들은 다음과 같이 정의된다.
본 발명에 있어서, 사용자 기기(User Equipment, UE)는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)과 통신하여 사용자 데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 (Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선 기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대 기기(handheld device) 등으로 불릴 수 있다.
또한, 본 발명에 있어서, 기지국은 일반적으로 UE 및/또는 다른 기지국과 통신하는 고정국(fixed station)을 의미하며, UE 및 타 기지국과 통신하여 각종 데이터 및 제어 정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 접속 포인트(Access Point), PS(Processing Server) 등 다른 용어로 지칭될 수 있다. 특히, UTRAN의 기지국은 Node-B, E-UTRAN의 기지국은 eNB, 새로운 무선 접속 기술 네트워크(new radio access technology network)의 기지국은 gNB로 지칭될 수 있다.
이하에서 설명되는 기법(technique), 장치, 및 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 예를 들어, 다중 접속 시스템은 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등을 포함할 수 있다.
CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service), EDGE(Enhanced Data Rates for GSM Evolution) (i.e., GERAN) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(WiFi), IEEE 802.16(WiMAX), IEEE802-20, E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크(downlink, DL)에서는 OFDMA를 채택하고, 상향링크(uplink, UL)에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는, 본 발명이 3GPP 기반 통신 시스템, 예를 들어, LTE/LTE-A, NR(New Radio Access Technology) 시스템에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 3GPP 기반 통신 시스템에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP 기반 통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A/NR에 특유한 사항을 제외하고는 다른 임의의(any) 이동 통신 시스템에도 적용 가능하다.
3GPP 기반 통신 표준은, 상위 계층으로부터 기원한 정보를 전달하는 자원 요소들에 대응하는 하향링크 물리 채널들과 물리 계층에 의해 사용되지만 상위 계층으로부터 기원하는 정보를 전송하지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의한다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다.
참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하며, 파일럿(pilot)으로 지칭될 수도 있다. 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다.
3GPP LTE/LTE-A 표준은, 상위 계층으로부터 기원한 정보를 전달하는 자원 요소들에 대응하는 상향링크 물리 채널들 및 물리 계층에 의해 사용되지만 상위 계층으로부터 기원하는 정보를 전달하지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의한다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)는, 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 전달하는 시간-주파수 자원의 집합 또는 자원 요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는, 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 액세스 신호를 전달하는 시간-주파수 자원의 집합 또는 자원 요소의 집합을 의미한다.
본 발명에서, UE가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각 PUSCH/PUCCH/PRACH 상에서 또는 PUSCH/PUCCH/PRACH를 통해서, 상향링크 제어정보/상향링크 데이터/랜덤 액세스 신호를 전송한다는 것과 동일한 의미로 사용될 수 있다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각 PDCCH/PCFICH/PHICH/PDSCH 상에서 또는 PDCCH/PCFICH/PHICH/PDSCH를 통해서, 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용될 수 있다.
본 발명에서 사용되는 용어 및 기술 중 구체적으로 설명되지 않은 용어 및 기술에 대해서는 3GPP LTE/LTE-A 표준 문서, 예를 들어, 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 등과, 3GPP NR 표준 문서, 예를 들어, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP 38.213, 3GPP 38.214, 3GPP 38.215, 3GPP TS 38.321 및 3GPP TS 38.331 등을 참조할 수 있다.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
UE는 전원이 켜지거나 새로운 셀에 진입한 경우, 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, UE는 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여, 셀 내 방송 정보를 획득할 수 있다. 한편, UE는, 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 UE는, 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써, 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, UE는 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는, 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
전술한 절차를 수행한 UE는, 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히, UE는, PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 이때, DCI는 UE에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 DCI의 포맷이 달라질 수 있다.
한편, UE가 상향링크를 통해 기지국에 송신하거나 또는 UE가 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 3GPP LTE 시스템의 경우, UE는 PUSCH 및/또는 PUCCH를 통해 전술한 CQI/PMI/RI 등의 제어 정보를 전송할 수 있다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰성(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 진보된 모바일 브로드밴드 통신, 매시브 MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다. 현재 3GPP에서는 EPC 이후의 차세대 이동 통신 시스템에 대한 스터디를 진행하고 있으며, EPC 이후의 차세대 이동통신 시스템은 새로운 RAT(new RAT, NR) 시스템, 5G RAT 시스템, 또는 5G 시스템 등으로 지칭될 수 있다. 이하에서는, 설명의 편의상, NR 시스템으로 지칭하기로 한다.
NR 시스템은, 데이터 레이트, 용량(capacity), 지연(latency), 에너지 소비 및 비용 면에서, 기존 4세대(4G) 시스템보다 좋은 성능을 지원할 것이 요구된다. 따라서, NR 시스템은 대역폭, 스펙트럴, 에너지, 시그널링 효율, 및 비트당 비용(cost)의 영역에서 상당한 진보를 이룰 필요가 있다.
NR 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용하며, 예를 들어, 다음의 표 1에 표시된 뉴머롤로지(numerology)를 사용할 수 있다.
[표 1]
Figure PCTKR2018014504-appb-img-000001
다른 예로서, NR 시스템의 다음의 표 2에 표시된 복수의 OFDM 뉴머롤로지 중에서 하나를 선택하여 사용할 수 있다.
[표 2]
Figure PCTKR2018014504-appb-img-000002
표 2를 참조하면, LTE 시스템에서 사용되는 15kHz 부반송파 간격을 기준으로 15kHz의 배수 관계에 있는 30, 60, 120kHz 부반송파 간격을 가지는 OFDM 뉴머롤로지가 사용될 수 있다. 표 2에 표시된 CP 길이(CP length), 시스템 대역폭(system BW), 이용 가능한 부반송파(available subcarriers) 개수, 서브프레임 길이, 및 서브프레임 당 OFDM 심볼 개수는 실시예들을 나타내며, 표 2에 표시된 실시예에 한정되지 않는다. 예를 들어, 60kHz 부반송파 간격의 경우, 시스템 대역폭은 100MHz로 설정될 수 있으며, 이용 가능한 부반송파 개수는 1500보다 크고 1666보다 작은 값을 가질 수 있다.
NR 시스템은 LTE 시스템의 OFDM 파라미터들과 다른 OFDM 파라미터들을 따를 수 있다. 또는, NR 시스템은 기존의 LTE/LTE-A의 뉴머롤로지를 그대로 따르면서, 기존의 LTE/LTE-A보다 큰 시스템 대역폭(예, 100MHz)를 가질 수 있다. 또한, NR 시스템은 하나의 셀이 복수의 뉴머롤로지들을 지원할 수도 있다. 즉, NR 시스템에서는, 서로 다른 뉴머롤로지에 따라 동작하는 하는 UE들이 하나의 셀 안에서 공존할 수 있다.
3GPP LTE/LTE-A 시스템에서 사용되는 무선 프레임(radio frame)은 10ms(307200 T s)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 하나의 무선프레임 내의 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 이때, T s는 샘플링 시간을 나타내고, T s=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며, 2개의 슬롯으로 구성된다. 하나의 무선프레임 내에 존재하는 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있으며, 각각의 슬롯은 0.5ms의 길이를 가진다. 하나의 서브프레임을 전송하기 위한 시간은 전송 시간 간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선 프레임 번호(또는 무선 프레임 인덱스)와 서브프레임 번호, 슬롯 번호(또는 슬롯 인덱스) 등에 의해 구분될 수 있다. TTI는, 데이터가 스케줄링될 수 있는 간격을 의미한다. 예를 들어, 현재 LTE/LTE-A 시스템에서 UL 그랜트(grant) 또는 DL 그랜트의 전송 기회는 1ms마다 존재하고, 1ms보다 짧은 시간 내에 UL/DL 그랜트 기회가 여러 번 존재하지 않는다. 따라서, 기존 LTE/LTE-A 시스템에서 TTI는 1ms이다.
도 2는 새로운 무선 접속 기술(new radio access technology, NR) 시스템에서 이용 가능한 슬롯 구조를 예시한 것이다.
NR 시스템에서는, 데이터 전송 지연(latency)을 최소화하기 위하여, 도 2에 도시된 슬롯 구조가 사용될 수 있으며, 도 2에 도시된 슬롯 구조는 자기-완비(self-contained) 서브프레임 구조로 지칭될 수도 있다.
도 2를 참조하면, 빗금 영역은 DL 제어 영역을 나타내고, 검정색 영역은 UL 제어 영역을 나타낸다. 예를 들어, 빗금 영역은, DCI(Downlink Control Information)을 전달하기 위한 PDCCH의 전송 영역을 나타낼 수 있다. DCI는, 기지국이 UE에게 전송하는 제어 정보로서, UE가 알아야 하는 셀 설정(cell configuration)에 관한 정보, DL 스케줄링 등의 DL 특정 정보, 및 UL 그랜트와 같이 UL 특정 정보를 포함할 수 있으나, 이에 한정되지 않는다. 또한, 검정색 영역은 UCI(Uplink Control Information)를 전달하기 위한 PUCCH의 전송 영역을 나타낼 수 있다. UCI는, UE가 기지국에게 전송하는 제어 정보로서, 하향링크 데이터에 대한 HARQ의 ACK/NACK 정보, 하향링크 채널 상태에 관한 CSI 정보, 및 SR(Scheduling Request)을 포함할 수 있으나, 이에 한정되지 않는다.
도 2에서 표시되지 않은 영역(예를 들어, 심볼 인덱스 1부터 심볼 인덱스 12까지의 심볼 영역)은, 하향링크 데이터를 전달하는 물리 채널(예를 들어, PDSCH)의 전송에 사용될 수 있으며, 상향링크 데이터를 나르는 물리 채널(예를 들어, PUSCH)의 전송에 사용될 수도 있다. 도 2를 참조하면, 1개의 슬롯 내에서 DL 전송과 UL 전송이 순차적으로 진행되므로, DL 데이터의 전송/수신과 DL 데이터에 대한 UL ACK/NACK의 수신/전송이 1개의 슬롯 내에서 이루어질 수 있다. 따라서, 데이터 전송 과정에서 에러가 발생한 경우, 데이터를 재전송하기까지 소요되는 시간이 감소하게 되고, 이에 따라 최종 데이터의 전달 지연이 최소화될 수 있다.
도 2에 도시된 슬롯 구조에서는, gNB와 UE가 전송 모드에서 수신 모드로 전환하거나 또는 수신 모드에서 전송 모드로 전환하기 위한 시간 갭(time gap)이 필요하다. 전송 모드와 수신 모드 간 전환을 위하여, 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 가드 기간(guard period, GP)으로 설정될 수 있다.
NR 시스템에서 기본 전송 단위(basic transmission unit)는 슬롯이다. 슬롯 구간(duration)은 정규(normal) 순환 프리픽스(cyclic prefix, CP)를 갖는 14개 심볼들로 구성되거나, 확장 CP를 갖는 12개의 심볼들로 구성된다. 또한, 슬롯은 사용된 부반송파 간격의 함수로서 시간으로 스케일링된다.
최근 논의되고 있는 NR 시스템은, 넓은 주파수 대역을 이용하여 높은 전송율을 유지하면서 다수의 사용자에게 데이터를 전송하기 위하여, 높은 초고주파 대역(예를 들어, 6GHz 이상의 주파수 대역)을 이용하는 방안을 고려하고 있다. 하지만, 초고주파 대역은 너무 높은 주파수 대역을 이용하기 때문에, 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 특성을 갖는다. 따라서, 6GHz 이상의 주파수 대역을 사용하는 NR 시스템은, 급격한 전파 감쇄 특성을 보상하기 위하여, 전방향이 아니라 특정 방향으로 에너지를 모아서 신호를 전송하는 좁은 빔(narrow beam) 전송 방법을 사용한다. NR 시스템은 좁은 빔 전송 방법을 사용함으로써, 급격한 전파 감쇄로 인한 커버리지(coverage)의 감소 문제를 해결한다. 그러나, 하나의 좁은 빔만 사용하여 서비스를 제공하는 경우, 하나의 기지국이 서비스를 제공할 수 있는 범위가 좁아진다. 따라서, 기지국은 다수의 좁은 빔을 모아서, 광대역으로 서비스를 제공할 수 있다.
초고주파 주파수 대역, 즉, 밀리미터 파장(millimeter wave, mmW) 대역에서는 파장이 짧아지기 때문에, 동일 면적에 복수의 안테나 요소(element)를 설치할 수 있다. 예를 들어, 1cm의 정도의 파장을 갖는 30GHz 대역의 경우, 5cm x 5cm의 패널(panel)에 0.5 람다(lamda) 간격으로 2-차원 배열(dimensional array)의 형태로 총 100개의 안테나 요소가 설치될 수 있다. 따라서, mmW 대역에서는, 복수의 안테나 요소를 사용하여 커버리지를 증가시키거나, 처리량(throughput)을 높이는 방법이 고려된다.
mmW 대역에서 좁은 빔을 형성하기 위한 방법으로, 기지국 또는 UE가 복수의 안테나에 적절한 위상 차이를 이용하여 동일한 신호를 전송함으로써, 특정 방향에서만 에너지가 증가하는 빔포밍 방식이 주로 고려되고 있다. 빔포밍 방식은, 디지털 기저대역(baseband) 신호에 위상차를 생성하는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등을 포함할 수 있다. 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(transceiver unit, TXRU)을 가지면, 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나, 100여 개의 안테나 요소에 모두 TXRU를 설치하는 것은 가격 측면에서 실효성이 떨어질 수 있다. 즉, mmW 대역은 급격한 전파 감쇄 특성을 보상하기 위하여 많은 개수의 안테나가 사용되고, 디지털 빔포밍은 각각의 안테나 별로 RF(Radio Frequency) 컴포넌트(예를 들어, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 한다. 따라서, mmW 대역에서 디지털 빔포밍을 구현하기 위해서는, 통신 기기의 가격이 증가하는 문제가 있다. 이에 따라, mmW 대역과 같이 많은 안테나가 필요한 경우에, 아날로그 빔포밍 또는 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은, 하나의 TXRU에 복수의 안테나 요소를 매핑하고, 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 다만, 아날로그 빔포밍 방식은, 전체 대역에서 하나의 빔 방향만 생성할 수 있기 때문에, 주파수 선택적 빔포밍(beamforming, BF)을 제공할 수 없는 단점이 있다. 하이브리드 빔포밍 방식은 디지털 빔포밍 방식과 아날로그 빔포밍 방식의 중간 형태로서, 안테나 요소가 Q개일 때, Q개보다 적은 B개의 TXRU를 갖는 방식이다. 하이브리드 빔포밍 방식의 경우, Q개의 안테나 요소와 B개의 TXRU의 연결 방식에 따라 차이가 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
도 3은 TXRU와 안테나 엘리먼트의 연결 방식의 예시들을 나타낸다.
도 3의 (a)은 TXRU가 서브-어레이(sub-array)에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 하나의 TXRU에만 연결된다. 이와 달리 도 4의 (b)는 TXRU가 모든 안테나 엘리먼트에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 모든 TXRU에 연결된다. 도 3에서 W는 아날로그 위상 천이기에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 일대일(1-to-1) 매핑 또는 일대다(1-to-many) 매핑일 수 있다.
전술한 바와 같이 디지털 빔포밍은 전송할 혹은 수신된 디지털 기저대역 신호에 대해 신호 처리를 하므로 다중의 빔을 이용하여 동시에 여러 방향으로 신호를 전송 혹은 수신할 수 있는 반면에, 아날로그 빔포밍은 전송할 혹은 수신된 아날로그 신호를 변조된 상태에서 빔포밍을 수행하므로 하나의 빔이 커버하는 범위를 넘어가는 다수의 방향으로 신호를 동시에 전송 혹은 수신할 수 없다. 통상 기지국은 광대역 전송 혹은 다중 안테나 특성을 이용하여 동시에 다수의 사용자와 통신을 수행하게 되는데, 기지국이 아날로그 혹은 하이브리드 빔포밍을 사용하고 하나의 빔 방향으로 아날로그 빔을 형성하는 경우에는 아날로그 빔포밍의 특성상 동일한 아날로그 빔 방향 안에 포함되는 사용자들과만 통신할 수 밖에 없다. 후술될 본 발명에 따른 RACH 자원 할당 및 기지국의 자원 활용 방안은 아날로그 빔포밍 혹은 하이브리드 빔포밍 특성으로 인해서 생기는 제약 사향을 반영하여 제안된다.
도 4는 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.
다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법이 대두되고 있다. 이때, 아날로그 빔포밍(또는 RF 빔포밍)은 RF 유닛이 프리코딩(또는 컴바이닝)을 수행하는 동작을 의미한다. 하이브리드 빔포밍에서 기저대역(baseband) 유닛과 RF 유닛은 각각 프리코딩 (또는 컴바이닝)을 수행하며, 이로 인해 RF 체인(chain) 수와 D/A(또는 A/D) 컨버터의 개수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 얻을 수 있다는 장점이 있다. 편의상, 하이브리드 빔포밍 구조는 N개의 TXRU와 M개의 물리적 안테나로 표현될 수 있다. 전송 단에서 전송할 L개의 데이터 레이어에 대한 디지털 빔포밍은 N-by-L 행렬로 표현될 수 있으며, 이후 변환된 N개의 디지털 신호는 TXRU를 통해 아날로그 신호로 변환된 다음, M-by-N 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 4에서 디지털 빔의 개수는 L이며, 아날로그 빔의 개수는 N이다. NR 시스템에서는 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 기지국을 설계하여, 특정 지역에 위치한 UE에게 보다 효율적인 빔포밍을 지원하는 방향이 고려되고 있다. 또한, N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안이 고려되고 있다.
기지국이 복수의 아날로그 빔을 사용하는 경우, UE 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 따라서, 적어도 동기 신호, 시스템 정보, 페이징 등에 대해서는, 기지국이 특정 슬롯 또는 서브프레임(subframe, SF)에서 적용할 복수의 아날로그 빔들을 심볼 별로 바꾸어, 모든 UE들이 신호를 수신할 기회를 가질 수 있도록 하는 빔 스위핑(beam sweeping) 동작이 고려되고 있다.
도 5는 NR 시스템에서 하향링크 신호의 전송 과정에서 수행되는 빔 스위핑 동작을 도시한 것이다.
도 5를 참조하면, 하향링크 신호 전송의 일 예로서, 동기 신호 및 시스템 정보를 전송하는 과정이 도시되어 있다. 또한, 도 5에서, xPBCH(Physical Broadcast Channel)는, NR 시스템의 시스템 정보가 브로드캐스팅(broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리적 채널)을 의미할 수 있다.
하나의 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다. 이때, 아날로그 빔 별 채널을 측정하기 위하여, 도 5에 도시된 것과 같이, 특정 안테나 패널에 대응하는 단일 아날로그 빔이 적용되어 전송되는 참조 신호(Reference signal, RS)인 빔 RS (Beam RS, BRS)를 도입하는 방안이 논의되고 있다. BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 하나의 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 UE가 잘 수신할 수 있도록 아날로그 빔 그룹 내의 모든 아날로그 빔이 적용되어 전송될 수 있다.
도 6은 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.
도 6을 참조하면, NR 시스템에서는, 기존 LTE 등의 무선 통신 시스템에서 하나의 기지국이 하나의 셀을 형성하는 것과 달리, 복수의 TRP(Transmission Reception Point)가 하나의 셀을 형성하는 방안이 논의되고 있다. 복수의 TRP가 하나의 셀을 형성하면, UE를 서비스하는 TRP가 변경되더라도, 끊김 없는 통신이 가능하기 때문에, UE의 이동성 관리가 용이하다는 장점이 있다.
LTE/LTE-A 시스템에서, PSS/SSS는 전-방위적(omni-direction)으로 전송된다. 이와 달리, NR 시스템에서는, mmWave를 적용하는 gNB가 빔의 방향을 전-방위적으로 돌려가면서 PSS/SSS/PBCH 등의 신호를 빔포밍하여 전송하는 방법이 고려되고 있다. 이때, 빔 방향을 돌려가면서 신호를 송수신하는 것을 빔 스위핑(beam sweeping) 또는 빔 스캐닝이라 한다. 본 발명에서, "빔 스위핑”은 전송기 측의 동작을 나타내고, "빔 스캐닝"은 수신기 측의 동작을 나타낸다. 예를 들어, gNB가 최대 N개의 빔 방향을 가질 수 있다고 가정하면, gNB는 N개의 빔 방향에 대해서 각각 PSS/SSS/PBCH 등의 신호를 전송한다. 즉, gNB는 자신이 가질 수 있거나 또는 지원하고자 하는 방향들을 스위핑하면서, 각각의 방향에 대해서 PSS/SSS/PBCH 등의 동기 신호들을 전송한다. 또는, gNB가 N개의 빔을 형성할 수 있는 경우, 복수의 빔을 묶어서 하나의 빔 그룹으로 구성할 수 있으며, 빔 그룹 별로 PSS/SSS/PBCH를 송수신할 수 있다. 이 때, 하나의 빔 그룹은 하나 이상의 빔을 포함한다. 동일 방향으로 전송되는 PSS/SSS/PBCH 등의 신호가 하나의 SS 블록(Synchronization Signal Block)으로 정의될 수 있으며, 한 셀 내에 복수의 SS 블록들이 존재할 수 있다. 복수의 SS 블록들이 존재하는 경우, 각 SS 블록의 구분을 위해서 SS 블록 인덱스가 사용될 수 있다. 예를 들여, 한 시스템에서 10개의 빔 방향으로 PSS/SSS/PBCH가 전송되는 경우, 동일 방향으로의 PSS/SSS/PBCH이 하나의 SS 블록을 구성할 수 있으며, 해당 시스템에서는 10개의 SS 블록들이 존재하는 것으로 이해될 수 있다.
LTE 시스템의 RRM(Radio Resource Management) 동작
한편, LTE 시스템에서는, 전력 제어(Power control), 스케줄링(Scheduling), 셀 검색(Cell search), 셀 재선택(Cell reselection), 핸드오버(Handover), 무선 링크 또는 연결 모니터링(Radio link or Connection monitoring), 연결 수립/재수립(Connection establish/re-establish) 등을 포함하는 RRM(Radio Resource Management) 동작을 지원한다. 이때, 서빙 셀은 RRM 동작을 수행하기 위한 측정 값인 RRM 측정(measurement) 정보를 UE에게 요청할 수 있다. 예를 들어, LTE 시스템에서는, 대표적으로 UE가 각 Cell에 대한 셀 검색 정보, RSRP(reference signal received power), RSRQ(reference signal received quality) 등의 정보를 측정하여 기지국에게 보고할 수 있다. 이때, LTE 시스템에서, UE는, 서빙 셀로부터 RRM 측정을 위한 상위 계층 신호로서 'measConfig'를 수신한다. 그리고, UE는, 수신된 'measConfig'의 정보에 기초하여, RSRP 또는 RSRQ를 측정한다. 이때, RSRP 및 RSRQ는 LTE 시스템의 TS 36.214 문서에 정의되어 있다.
주파수 내 측정(intra-frequency measurement)인 경우, LTE 시스템에서 동작하는 UE는, 허가된 측정 대역폭 정보(예를 들어, AllowedMeasBandwidth IE(information element))를 통해 전송되는 6, 15, 25, 50, 75, 100 RB (resource block) 중에서 하나에 대응하는 대역폭에서 RSRP를 측정할 수 있다. 이때, 허가된 측정 대역폭 정보는, SIB3(system information block type 3)에 포함되어 전송될 수 있다.
또한, 주파수 간 측정(inter-frequency measurement)인 경우, UE는, 허가된 측정 대역폭 정보(예를 들어, AllowedMeasBandwidth IE)를 통해 전송되는 6, 15, 25, 50, 75, 100 RB 중 하나에 대응하는 대역폭에서 RSRP를 측정할 수 있다. 이때, 허가된 측정 대역폭 정보는, SIB5에 포함되어 전송될 수 있다. 또는, 허가된 측정 대역폭 정보가 없는 경우, UE는 전체 하향링크 시스템의 주파수 대역에서 RSRP를 측정할 수 있다.
UE가 허가된 측정 대역폭 정보를 수신하는 경우, UE는 허가된 측정 대역폭 정보의 값을 최대 측정 대역폭(maximum measurement bandwidth)으로 판단하고, 최대 측정 대역폭 이내에서 자유롭게 RSRP를 측정할 수 있다. 다만, 서빙 셀이 WB-RSRQ(Wide Band-RSRQ)로 정의되는 IE을 전송하고, 허가된 측정 대역폭을 50 RB 이상으로 설정하면, UE는 전체 허가된 측정 대역폭에 대한 RSRP를 측정해야 한다. 한편, RSSI에 대해서는 RSSI 대역폭의 정의에 따라 UE의 수신기가 갖는 주파수 대역에서 측정한다.
주파수 간(inter-frequency) 또는 RAT 간(inter-RAT) 측정 의 경우, LTE 시스템에서는, UE가 측정을 수행하기 위한 측정 갭(measurement gap)이 정의될 수 있다. 측정 갭 구간 동안, UE는 서빙 셀과의 통신을 중단하고, 주파수 간 또는 RAT 간 측정을 수행할 수 있다.
36.133 표준을 참조하면, UE가 주파수 간 및/또는 RAT 간 셀들을 식별하고 측정하기 위해 측정 갭을 필요로 하는 경우, E-UTRAN은 모든 주파수 레이어 및 RAT을 동시에 모니터링하기 위해 일정한 갭 기간(gap duration)을 갖는 하나의 측정 갭 패턴(gap pattern)을 제공해야 한다. 다음의 표 3은, LTE 시스템에서 UE에 의해 지원되는 갭 패턴 설정을 나타낸다.
[표 3]
Figure PCTKR2018014504-appb-img-000003
표 3을 참조하면, Gap Pattern Id가 0인 경우, UE는 40ms 주기 단위로 6ms 동안 서빙 셀의 주파수가 아닌 다른 주파수를 모니터링 할 수 있으며, Gap Pattern Id가 1인 경우, UE는 80ms 주기 단위로 6ms 동안 다른 주파수를 모니터링 할 수 있다. 미리 설정된 6ms 동안, 기지국은 UE에게 자원을 할당하거나 트래픽을 전송하지 않으며, UE는 서빙 셀의 주파수 이외의 다른 주파수를 측정하여 핸드오버 가능한 주파수 신호가 있는지 검색한다. 측정 갭 구간 동안, UE는 어떠한 데이터도 전송하지 않는다. 또한, 측정 갭 구간 동안, UE는 PCell(Primary Cell)과 모든 SCell(Secondary Cell)의 E-UTRAN 부반송파들, PCell과 PSCell(Primary Secondary Cell)의 E-UTRAN 부반송파들에 UE의 수신기를 튜닝하지 않는다. 그리고, 6ms의 측정 갭이 종료되면, UE는 다시 서빙 셀의 주파수를 모니터링 한다.
RACH 프리앰블 검출
LTE 시스템 및 NR 시스템에서 초기 액세스(initial access)를 위해 사용되는 RACH 신호의 구성은 다음과 같다.
- CP (Cyclic Prefix): CP는 이전 심볼로부터 들어오는 간섭을 막아주고, 다양한 시간 지연을 갖고 수신되는 RACH 프리앰블 신호를 하나의 동일한 시간대에 묶어주는 역할을 수행한다. 일반적으로, CP의 길이는 최대 왕복 지연 시간(maximum round trip delay time)보다 같거나 크게 설정될 수 있다.
- 프리앰블(preamble): 기지국이 RACH 신호의 전송을 검출하기 위한 시퀀스가 정의되며, 프리앰블은 상기 시퀀스를 전송하는 역할을 수행한다.
- 가드 타임(Guard Time): RACH 커버리지 상에서 가장 먼 곳으로부터 전송되어 지연되어 들어오는 신호가 RACH 심볼 구간 이후에 수신되는 신호에 간섭을 주지 않기 위하여 정의되는 구간으로서, UE는 가드 타임 구간 동안 신호를 전송하지 않기 때문에 신호로서 정의되지 않을 수도 있다.
도 7은 기지국이 RACH 신호를 수신하기 위해 수행하는 동작을 설명하기 위한 도면이다.
UE는 동기 신호(synchronization signal)를 수신하고, 수신된 동기 신호로부터 획득한 기지국의 시스템 타이밍에 맞춰서 지정된 RACH 자원을 통해 RACH 신호를 전송할 수 있다.
도 7을 참조하면, 기지국은 복수의 사용자로부터 신호를 수신하는데, RACH 신호에 대해서 CP를 최대 왕복 지연 시간 이상으로 설정하기 때문에, 최대 왕복 지연 시간과 CP 길이 사이의 임의의 지점을 RACH 신호를 수신하기 위한 경계(boundary)로 설정할 수 있다. 기지국은, 설정된 경계 지점을 RACH 신호를 수신하기 위한 시작점으로 결정하고, 결정된 시작점으로부터 시퀀스 길이에 대응하는 신호에 대해서 상관(correlation)을 계산함으로써, RACH 신호의 존재 여부 및 시간 지연 정보를 획득할 수 있다.
기지국이 운용하는 통신 환경이 밀리미터 대역과 같이 다중 빔을 사용하는 경우, 기지국은 복수의 방향으로부터 RACH 신호를 수신하고, 복수의 방향으로부터 수신되는 RACH 신호를 위해, 빔 방향을 변경하면서 RACH 프리앰블을 검출한다. 아날로그 빔을 사용하는 경우, 기지국은 하나의 시점에 한 방향에 대해서만 RACH 신호를 수신할 수 있다. 따라서, RACH 프리앰블 검출을 적절하게 수행하기 위하여, RACH 프리앰블 및 RACH 절차를 설계하는 과정이 필요하다. 본 발명에서는, 기지국의 빔 대응(beam correspondence, BC) 정보가 유효한 과정과 유효하지 않은 과정만 고려해서 설명한다.
도 8은 동기 신호 블록 및 동기 신호 블록에 연결된 RACH 자원의 할당을 설명하기 위한 도면이다.
도 8을 참조하면, 각각의 동기 신호 블록(synchronization signal block, SS block)은 특정 RACH 자원과 연결되어 있다.
도 9는 빔 대응 정보의 유효 여부에 따라 RACH 프리앰블을 수신하기 위한 수신 빔을 형성하는 예를 나타내는 도면이다.
도 9를 참조하면, 전술한 바와 같이, 동기 신호 블록(Synchronization signal block, SS block)에 대해서 RACH 자원이 링크되어 있다. 빔 대응 정보가 유효한 경우, 기지국은, 하나의 RACH 자원에 대하여 SS 블록을 전송하기 위해 사용한 빔 방향으로 수신 빔을 형성하고, 수신 빔이 형성된 방향에 대해서만 RACH 프리앰블을 검출한다.
반면, 빔 대응 정보가 유효하지 않은 경우, SS 블록에 대해서 RACH 자원이 링크되어 있고, 기지국은 SS 블록의 전송에 사용된 빔 방향으로 수신 빔을 형성한다 하더라도, 빔 방향이 어긋날 수 있다. 따라서, 기지국은, 복수의 방향에 대해서 RACH 프리앰블을 검출(빔 스캐닝(Beam scanning))한다.
경쟁 기반의 RACH 절차를 통한 핸드오버
도 10은 경쟁 기반의 RACH 절차를 통해 핸드오버를 수행하는 과정을 도시한다.
UE가 이동함에 따라 통신이 단절되지 않고 지속적으로 서비스를 제공받을 수 있도록, 이동통신 시스템은 서빙 셀(serving cell)을 옮겨주는 핸드오버를 수행한다.
도 10을 참조하면, S1000 및 S1010에서, UE는 측정 보고(measurement report, MR)를 서빙 셀에게 전송한다. UE는, 셀 별 RSRP/RSRQ를 측정하고, 측정된 셀 별 RSRP/RSRQ에 관한 정보를 포함하는 측정 보고를 서빙 셀로 전송할 수 있다.
S1020에서, 서빙 셀은 타겟 셀(target cell)과 타겟 셀 관련 정보를 포함하는 핸드오버 커맨드(handover command)를 UE에게 전송할 수 있다.
서빙 셀로부터 수신된 핸드오버 커맨드에 응답하여, UE는 타겟 셀에 동기를 맞추고(S1030), 핸드오버를 위한 RACH 신호를 타겟 셀로 전송(S1040)함으로써 타겟 셀과 RACH 절차를 수행할 수 있다.
타겟 셀은, UE로부터 수신된 RACH 신호에 응답하여 RACH 응답을 UE에게 전송(S1050)할 수 있으며, UE는 경쟁 해결(contention resolution)을 위한 C-RNTI MAC-CE(Cell-radio network temporary identifier MAC-control element)를 타겟 셀로 전송(S1060)할 수 있다.
또한, 타겟 셀은, UE로부터 수신된 C-RNTI MAC CE에 응답하여, 데이터 전송을 위한 자원을 UE에게 할당(S1070)할 수 있으며, UE는 핸드오버가 완료되었음을 나타내는 메시지(예를 들어, RRC 설정 완료 메시지)를 타겟 셀로 전송(S1080)할 수 있다.
비경쟁 기반의 RACH를 통한 핸드오버
1) 싱글 빔 시나리오(Single beam scenario): 기지국은 경쟁 기반의 RACH 절차를 통한 핸드오버 과정에서 생기는 처리 지연(processing delay)를 줄이기 위하여, 비경쟁 기반 RACH(contention-free RACH) 절차를 통한 핸드오버를 수행할 수 있다.
도 11은 비경쟁 기반 RACH를 이용하여 핸드오버를 수행하는 과정을 도시한다.
도 11을 참조하면, UE는 셀 별 RSRP/RSRQ를 포함하는 측정 보고를 서빙 셀로 전송(S1100, S1110)하고, 서빙 셀은 UE가 핸드오버를 통해 이동할 타겟 셀에 관한 정보를 포함하는 핸드오버 커맨드를 UE에게 전송(S1120)할 수 있다.
이에 따라, UE는 서빙 셀로부터 수신된 핸드오버 커맨드에 응답하여, 타겟 셀과 동기를 맞추고(S1130), RACH 신호를 타겟 셀로 전송(S1140)함으로써 타겟 셀과 RACH 절차를 수행할 수 있다.
타겟 셀은, UE로부터 수신된 RACH 신호에 응답하여, RACH 응답을 UE에게 전송(S1150)할 수 있으며, UE는 RRC 설정 완료 메시지를 타겟 셀로 전송(S1160)함으로써 핸드오버가 완료되었음을 타겟 셀에게 알려줄 수 있다.
비경쟁 기반 RACH 절차는 RACH 신호를 전송하기 위해 공용 자원(common resource)을 사용하지 않고 전용 자원(dedicated resource)를 사용한다. 따라서, 도 11에 도시된 바와 같이, 비경쟁 기반 RACH 절차는, 다른 사용자와의 자원 충돌에 의한 RACH 신호 재전송 과정 및 경쟁 해결(contention resolution) 과정을 필요로 하지 않기 때문에, 핸드 오버 과정이 완료되는데 소요되는 시간을 줄일 수 있다.
2) 다중 빔 시나리오(Multi-beam scenario): 핸드오버 과정에서, UE는, RACH 응답(RACH response)를 통해 상향링크 전송을 위한 TA(timing advance) 값을 획득하고, 소스 셀(source cell)(또는 서빙 셀)로부터 수신한 핸드오버 커맨드에 대한 핸드오버 완료 메시지(handover complete message)를 타겟 셀로 전송함으로써 핸드오버 과정을 종료한다. 또한, UE는, 다중 빔 환경에서, RACH 절차를 통해, 타겟 셀에 대한 빔을 획득할 수 있다. 본 발명에서는, 비경쟁 기반 RACH 절차를 통한 핸드오버 과정에서 빔을 획득하는 방법을 설명한다. 이하에서는, 복수의 RACH 자원을 할당하여 빔을 획득하는 방법과 측정 보고를 통해 빔을 획득하는 방법을 나누어 구체적으로 설명한다.
2-1) 복수의 RACH 자원 할당을 통한 빔 획득: 이하에서는, 다중 빔 환경의 핸드오버 과정에서 빔을 획득하는 과정을 설명한다. 경쟁 기반 RACH 절차를 통한 핸드오버 과정은, RACH 신호 전송을 통한 초기 빔 획득 과정과 동일하다. 예를 들어, 핸드오버 과정에서, UE는 기지국으로부터 핸드오버 커맨드를 수신하면, RACH 신호를 타겟 셀로 전송할 수 있다. 그리고, UE는, RACH 신호를 전송하기 전에 빔 별 채널 품질 측정을 통해 가장 좋은 채널 품질을 갖는 SS 블록, 즉 빔을 결정할 수 있다. 본 발명에서는, 빔 별 채널 품질 측정을 SS 블록에 대한 채널 품질 측정으로 지칭할 수 있다. 예를 들어, SS 블록이 빔을 대표하는 채널로 사용될 수 있으며, CSI-RS 등의 빔을 통해 전송되는 참조 신호(reference signal)도 빔을 대표하는 채널로 사용될 수 있다.
도 8에 도시된 바와 같이 SS 블록별로 RACH 자원이 구성된 상태에서, 최적의 품질을 갖는 SS 블록이 결정되면, 기지국은 RACH 프리앰블이 수신된 RACH 자원이 무엇인지 확인함으로써, UE가 결정한 하향링크 빔 인덱스(downlink beam index)를 알 수 있다.
비경쟁 기반 RACH 절차를 통한 핸드오버 과정에서도, UE는 복수의 UE 전용 RACH 자원(UE-dedicated RACH resource)을 통해 빔을 획득할 수 있다. 이때, 복수의 UE 전용 RACH 자원은 각각 최적의 빔(또는 SS 블록)과 연결 관계를 갖고 있으며, 기지국은 각 UE 전용 RACH 자원과 최적의 빔의 연결 관계에 관한 정보를 UE에게 알려줄 수 있다.
계층 구조상 CSI-RS와 같이 하위 계층에 위치하는 빔을 대표하는 참조 신호의 채널 품질 정보를 빔 별 채널 품질 정보로 이용하여 핸드오버를 수행하는 경우, 기지국은 RACH 자원을 선택하기 위해, 계층 구조상 하위 빔을 대표하는 CSI-RS 및 상위 빔을 대표하면서 RACH 자원과 연결 관계를 갖는 SS 블록 간의 연결 정보를 추가적으로 UE에게 알려주어야 한다. UE는, 기지국으로부터 수신된 정보를 RACH 자원을 선택하는 과정에서 이용할 수 있다. 이때, UE는 최적의 빔(best beam)과 관련된 RACH 자원만 이용하여 RACH 프리앰블을 전송함으로써, UE가 선택한 빔을 통해 기지국에 연결할 수 있다. 실시예에 따라, 최적의 빔은, 품질이 가장 좋은 빔, 최적 품질의 SS 블록, 또는 최적 품질의 CSI와 연결된 SS 블록으로 지칭될 수도 있다.
하지만, UE는 복수의 빔 방향으로 RACH 신호를 전송하고, 기지국은 빔별 UE 로드 정보 등을 반영하여 결정된 빔 방향으로 빔을 획득할 수 있다. 이때, UE에게 통신이 불가능한 빔이 할당되는 경우, 통신이 끊어질 수 있으므로, 기지국은 UE에게 빔을 선택할 수 있는 조건을 알려줄 수 있다. 예를 들어, 기지국은, 최적의 빔의 RSRP를 기준으로, UE가 최적의 빔의 RSRP와의 차이가 임계치보다 작은 빔만 선택하도록. UE에게 임계치를 알려줄 수 있다.
기지국은, 핸드오버 커맨드를 통해, UE가 타겟 셀로 RACH 신호를 전송하기 위한 RACH 자원을 할당할 때, 복수의 RACH 자원을 할당하고, 복수의 RACH 자원 각각에 대한 SS 블록과의 연결 정보를 UE에게 전달할 수 있다. 이때, UE는, 타겟 셀에 대한 SS 블록별 채널 품질을 측정한 결과 또는 이전에 측정한 SS 블록의 채널 품질 측정 결과에 기초하여 결정된 RACH 자원을 통해 RACH 신호를 전송할 수 있다. UE는, RACH 신호를 전송함으로써, 하향링크 빔을 획득하고(downlink beam acquisition), 하향링크 최적의 빔(downlink best beam) 정보를 기지국에게 전송할 수 있다. 이때, 측정 보고를 통한 채널 품질 정보는 셀별(또는 핸드오버를 위한 전송 단위별) 채널 품질 정보를 포함하는 것으로 충분하다.
복수의 RACH 자원 할당을 통한 핸드오버 과정은, UE가 셀별 채널 품질 정보만 기지국으로 전송하면 되기 때문에, 시그널링 오버헤드가 작다. 또한, 복수의 RACH 자원 할당을 통한 핸드오버 과정은, UE가 핸드오버 커맨드를 수신한 후, 최적의 빔을 선택하므로 빔 획득 및 빔 트래킹의 안정성을 높일 수 있다. 하지만, 기지국이 복수의 RACH 자원을 할당함으로써 자원의 낭비가 크고, RACH 프리앰블을 수신하기 위한 빔을 형성하기 때문에, RACH 자원 이외의 주파수 자원에 대한 스케줄링의 자유도가 떨어지는 문제점이 있다.
2-2) 측정 보고를 통한 빔 획득: 이하에서는, 2-1) 방법과 같이 복수의 RACH 자원 할당에 따른 자원 낭비를 방지하기 위한 방법을 설명한다. 복수의 UE 전용 RACH 자원을 할당하지 않기 위해서는, 핸드오버를 결정하는 단계에서 UE와 기지국간 가장 좋은 품질을 갖는 빔에 관한 정보가 유효해야 한다.
UE는 이웃 셀(neighbor cell)에 대한 채널 품질을 지속적으로 측정할 수 있다. 일반적으로, 이동성(mobility)을 위한 측정 정보로서 RSRP 또는 RSRQ가 사용될 수 있으며, 이하에서는, 설명의 편의상, 이동성 측정을 위해 사용되는 모든 정보를 RSRP로 통칭한다.
다중 빔 환경에서, 기지국은, 셀 당 복수의 빔을 이용하여 채널 품질을 측정하기 위한 신호를 UE에게 전송하고, UE는 기지국으로부터 수신된 신호를 이용하여 빔 별로 채널 품질을 측정할 수 있다. NR 시스템에서는, 채널 품질을 측정하기 위하여, 동기 신호 또는 PBCH 등이 사용될 수 있으며, 이하에서는, 설명의 편의상 SS 블록으로 통일하여 지칭한다.
UE는, 측정된 빔 별 채널 품질에 기초하여, 셀별 채널 품질 정보뿐만 아니라 셀별 빔별 정보를 함께 기지국으로 전송할 수 있다. 이에 따라, 기지국은, 타겟 셀의 빔 정보를 이용하여 핸드오버를 판단할 수 있으며, 타겟 셀의 빔 정보를 이용하여, 타겟 셀의 특정 빔으로의 핸드오버를 UE에게 지시할 수 있다. 따라서, 핸드오버를 위해, 복수가 아닌 하나(또는 타겟 셀의 최대 빔 개수보다 작은 수)의 RACH 자원만 할당될 수 있다. 이를 위해서는 추가로 고려해야 할 몇 가지 사항이 있다.
A. 측정 보고 정보(measurement report information, MR information): MR 정보는 셀 별 RSRP, 빔 별 RSRP, 및 빔 인덱스 정보를 포함할 수 있다.
a) 셀 별 RSRP: 다중 빔 환경에서 채널 품질 측정은 기본적으로 빔 별로 이루어진다. 셀 별 RSRP는 빔 별 RSRP를 이용하여 다양한 형태로 정의될 수 있다. 예를 들어, 최적의 빔(best beam)의 RSRP, 최적의 N개 빔의 RSRP(best-N beam RSRP, 가장 좋은 채널 품질을 갖는 N개 셀의 RSRP 평균), 임계치보다 큰 모든 빔의 RSRP 평균 등으로 정의될 수 있다.
b) 빔 별 RSRP: 셀 별 RSRP와 함께, 보고하는 셀에 포함된 빔 인덱스 및 빔 별 RSRP를 포함할 수 있다. 이 때, 빔 별 RSRP 정보는, 셀에서 검출된 모든 빔의 RSRP, 셀에서 검출된 빔 중 가장 좋은 N개(best-N) 빔의 RSRP 등으로 정의될 수 있다.
c) 빔 인덱스(Beam index): 빔 별 RSRP 정보의 경우, 시그널링 오버헤드가 클 수 있다. 따라서, MR 정보는 빔 별 RSRP를 포함하지 않고, 빔 인덱스만 포함할 수 있다. 이때, 빔 인덱스는 최적의 빔의 인덱스(best beam index), 셀 별 RSRP를 계산하기 위해 사용된 빔 인덱스, 최적의 N개의 빔(best-N beam)의 정렬된 인덱스(sorted index) 등을 포함할 수 있다.
B. 측정 보고 이벤트(measurement report event, MR 이벤트): 통신 시스템은 측정 보고를 전송하는 MR 이벤트를 정의할 수 있다. 기지국은 MR 이벤트를 트리거링(triggering)하기 위한 임계치를 UE에게 전달하고, UE는 정의된 MR 이벤트가 발생하면 측정 보고를 기지국으로 전송할 수 있다. 본 발명에서는, 빔 별 RSRP를 이용한 이벤트가 추가적으로 정의될 수 있고, 예를 들어, 다음과 같은 이벤트 및 파라미터들이 정의될 수 있다.
a) 이벤트 - 서빙 셀의 서빙 빔 RSRP가 특정 임계치보다 작은 경우
b) 이벤트 - 서빙 셀의 최적의 빔 RSRP가 특정 임계치보다 작은 경우
c) 이벤트 - 이웃 셀의 최적의 빔 RSRP가 특정 임계치보다 큰 경우
d) 이벤트 - 이웃 셀의 최적의 빔 RSRP가 서빙 셀의 서빙 빔 RSRP보다 특정 임계치 이상 큰 경우
e) 이벤트 - 이웃 셀의 최적의 빔 RSRP가 서빙 셀의 최적의 빔 RSRP보다 특정 임계치 이상 큰 경우
빔 별 RSRP는 L3 필터링(filtering), L1/L2 필터링, 또는 필터링을 적용하지 않은 결과일 수 있으며, 다음의 필터링 계수에서 설명하는 것과 유사하게 기지국이 설정할 수 있다.
또한, a) 내지 e)에서 정의된 이벤트들의 조합으로 새로운 이벤트가 정의될 수 있으며, 이때, 임계치는 각 경우마다 별도로 정의될 수 있다. 이벤트를 정의하기 위해 사용된 임계치는 셀 별 RSRP에 사용되는 임계치와 별도로 설정될 수 있으며, 이벤트 별로 별도의 임계치가 설정될 수 있다. 또한, RSRP는 채널 품질을 나타내는 대표적인 지표로서, RSRQ, SNR 등과 같은 다른 품질 지표가 사용될 수도 있다. 이벤트 트리거링을 위한 조건을 비교할 때, 서빙 셀과 이웃 셀 간의 채널 품질 측정을 위한 채널이 다른 경우 (예를 들어, 이웃 셀의 SS 블록에 대한 RSRP, 서빙 셀의 CSI-RS에 대한 RSRP), 이를 보정하기 위한 전력 오프셋(power offset)은, 기지국이 UE에게 알려주거나 사전에 정의될 수 있다.
C. 필터링 계수: UE는, 셀별 RSRP를 측정하고 이벤트 트리거링을 위한 조건을 만족하는지 확인할 수 있다. 이때, 셀별 RSRP 값의 변화가 큰 경우, 이벤트 트리거링이 너무 자주 발생하거나, 또는 핸드오버가 너무 자주 발생하는 문제점이 있다. 따라서, 전술한 문제를 방지하기 위하여, 일반적으로, UE는 RSRP에 대한 필터링을 수행하고, 기지국은 시스템의 안정적인 동작을 위하여 필터링을 수행하기 위한 계수를 단말기에게 전달한다. 이때, 너무 긴 필터링을 수행할 경우, 필터링에 따른 지연에 의해 핸드오버 실패율이 증가할 수 있으며, 너무 짧은 필터링을 수행할 경우, 핸드오버 핑퐁(ping-pong) 현상이 발생할 수 있다.
시스템의 안정적인 동작을 위하여, 셀별 RSRP와 빔별 RSRP에 대해서 독립적인 필터링 계수가 사용될 수 있다. 예를 들어, 본 발명에서 제안하는 다중 RSRP 사용 방법의 경우, 잦은 핸드오버를 방지하기 위하여 셀별 RSRP는 긴 필터링을 사용하고, 최신 정보를 이용한 안정적인 빔 획득을 위하여 빔별 RSRP는 짧은 필터링을 사용할 수 있다. 셀별 RSRP와 빔별 RSRP에 대해서 독립적인 필터링 계수를 사용하기 위하여, 기지국은 복수의 필터링 계수를 단말기에게 전달할 수 있다. 또는, 셀별 RSRP의 경우, 기지국이 필터링 계수를 전달하고, 빔별 RSRP의 경우, 필터링을 수행하지 않고 최신 값을 사용할 수도 있다.
D. 전력 제어(power control): 기지국이 UE에게 하향링크 빔을 획득하기 위한 빔 인덱스를 알려주기 때문에, 기지국은 UE가 RACH 신호를 전송하기 위해 사용하는 전력 제어의 기준 채널 정보를 UE에게 알려주어야 한다. 이를 위한 과정으로, UE는, 기지국이 핸드오버 할 때 접속해야 하는 타겟 셀의 빔 인덱스와 연결된 채널(예를 들어, SS 블록 또는 CSI-RS 등)을 기준 채널로 사용하거나, 또는 기지국이 특정한 기준 채널(예를 들어, SS 블록 또는 CSI-RS 등)의 자원 정보를 직접 지시할 수도 있다. 이때, 빔이 계층 구조(hierarchical structure)로 구성된 경우, 전기지국이 상위 빔과 하위 빔 간의 링크 정보를 UE에게 알려주고, 상위 빔과 하위 빔 간의 링크 정보를 이용해서 직접적으로 지시한 인덱스와 상위 또는 하위에 연결된 채널을 력 제어를 위한 기준 채널로 이용할 수도 있다. 이때, 상위 또는 하위 빔에 관한 추가 측정 과정이 필요하거나, 또는 이미 측정된 정보가 이용될 수도 있다.
RACH 자원의 구성 방안
RACH 프리앰블을 전송하기 위한 RACH 자원을 구성할 때, 빔 대응(beam correspondence) 정보가 유효하고, 2-2) 방법에 따라 측정 보고를 통해 빔을 획득하는 경우, 적절한 시간에 하나의 RACH 자원을 할당하는 것만으로도 충분하다. 하지만, 빔 대응 정보가 유효하지 않은 경우, UE의 빔 스위핑 또는 기지국의 빔 스캐닝을 위한 RACH 자원이 구성되어야 한다. 이때, 1) 빔 스캐닝 이후에 빔 스위핑을 수행하는 경우, 또는 2) 빔 스위핑 이후에 빔 스캐닝을 수행하는 경우를 고려할 수 있다.
도 12는 빔 스캐닝 이후에 빔 스위핑을 수행하는 과정을 설명하기 위한 도면이다.
도 12를 참조하면, 빔 스캐닝을 먼저 수행하는 경우, UE는 복수의 RACH 프리앰블을 CP 없이 연접하여 전송할 수 있다. 이때, 기지국은, 빔 스캐닝이 수행되는 동안, 수신 빔의 방향을 변경하면서 복수의 RACH 프리앰블을 수신해야 한다. 이때, 기지국이 아날로그 빔을 사용하는 경우, UE가 할당받은 RACH 자원이 할당된 슬롯에서는, 기지국이 슬롯 단위의 스케줄링을 수행하기 힘들다. 따라서, 기지국은, RACH 자원을 할당한 슬롯에서 미니 슬롯(mini slot)을 구성하고, 미니 슬롯 단위의 스케줄링을 수행할 수 있다.
또는, 기지국의 빔 대응 정보가 유효하지 않기 때문에, 빔 스캐닝을 수행하는 것이므로, 기지국은 공용 RACH 자원이 할당된 슬롯에서 수신 빔의 방향이 맞는 공용 RACH 자원 시간과 일치시켜서 UE 전용 RACH 자원을 할당하고, 할당된 UE 전용 RACH 자원을 UE에게 알려줄 수 있다.
도 13은 빔 스위핑 이후에 빔 스캐닝을 수행하는 과정을 설명하기 위한 도면이다.
전술한 바와 같이, 빔 스캐닝 이후에 빔 스위핑을 수행하는 방법은 기지국의 스케줄링 자유도를 감소시키는 문제가 있다. 전술한 문제를 해결하기 위하여 빔 스위핑을 먼저 수행할 수 있지만, 빔 스위핑을 먼저 수행하는 것만으로 문제가 완전히 해결되지는 않는다. 따라서, 빔 스캐닝을 위한 RACH 자원을 할당하되, 기지국의 수신 빔 방향을 설정하기 위한 단위를 슬롯 단위로 설정하기 위해서, 연접하지 않더라도 슬롯 단위의 RACH 자원을 할당하면, 기지국의 스케줄링 자유도를 유지하면서, RACH 프리앰블을 전송할 수 있다. 이를 위해서, 기지국은, 하나의 슬롯 (또는 RACH 신호의 구성상 복수의 슬롯으로 구성될 수도 있음) 내에서 RACH 자원을 구성하는 방법을 UE에게 알려줄 수 있다.
예를 들어, 도 13을 참조하면, UE의 빔 스위핑을 위해, RACH 자원은 CP와 프리앰블로 구성된 RACH 신호를 4번 전송하도록 구성될 수 있다. 그리고, 기지국은, 구성된 RACH 자원을 어느 슬롯에서 전송해야 하는지 UE에게 알려줄 수 있다. 예를 들어, 기지국은, 시작점인 특정 SFN를 비트맵으로 알려주거나, 또는 연속된 슬롯에서 전송한다고 생각하고 특정 SFN을 시작점으로 전송 횟수를 알려줄 수 있다. 상기 방법들은, 전술한 복수의 RACH 자원 할당을 통한 빔 획득 방법에 동일하게 적용될 수 있다.
한편, 일 실시예에 따른 기지국은, 최적의 RSRP를 기준으로 CSI-RS 설정(configuration)을 할당할 수 있다. 예를 들어, 기지국은, 할당된 SSB에 기초하여 UE에게 자원을 할당하고, UE는 빔 복구를 위해 할당된 자원을 통해 핸드오버 완료(handover complete) 및 빔 복구를 수행할 수 있다.
핸드오버 과정에서, 빔 운영(beam management) CSI-RS가 전달되는 경우, 비경쟁 기반 RACH 절차는 빔 획득이 완료되었다고 가정하고, CF-RACH를 위한 하나의 자원이 할당될 수 있다. CF-RACH 자원이 적합한 빔(suitable beam)이 아니거나, 할당받은 빔 실패 검출 RS(beam failure detection RS)의 품질이 임계치(예를 들어, Q out) 이하일 때, UE는 빔 실패(beam failure)를 선언하고, 빔 복구 RS로 전송할 수 있다. 또한, 기지국으로부터 RACH 프리앰블에 대한 응답이 없으면, UE는 새로운 후보 빔 RS(new candidate beam RS)를 통해 빔 복구를 수행할 수 있다. 예를 들어, UE가 CF-RACH 자원을 할당받고, RACH 프리앰블을 기지국으로 전송한 후, 설정된 또는 기정의된 시간 내에 RACH 프리앰블에 대한 응답이 없는 경우, UE는 빔 복구 RS를 이용하여 빔 복구를 수행할 수 있다.
핸드오버를 위해 복수의 CF-RACH 자원이 할당된 경우, 기지국은 복수의 빔 운영 RS 셋을 할당하고, RACH 응답을 통해 빔 운영 RS를 선택할 수 있다. 또는, 실시예에 따라, 기지국이 빔 운영 RS 셋을 할당하지 않고, RACH 응답을 통해 빔 운영 RS를 UE에게 전달할 수 있다.
CF-RACH 자원을 이용하거나 및/또는 빔 복구 신호를 전송함으로써, 빔 운영 RS를 할당받거나 빔 운영 RS를 선택할 수 있다. 또한, 전술한 바와 같이, 빔 복구 신호는, 핸드오버 완료를 위한 RACH 신호를 전송하기 위해 사용될 수 있다. 예를 들어, 빔 복구 신호는 비경쟁 기반 RACH를 대행할 수 있으며, BR-RACH 자원을 이용하여 응답을 전송할 수 있다.
또한, CF-RA(contention-free random access) 및 BR-RA(beam recovery random access)가 모두 설정된 경우, UE는 CF-RA를 통해 TA를 수신하고, BR-RA를 통해 빔을 획득한 후, BM-RS 자원을 업데이트할 수 있다. 또는, CF-RA 설정 없이, BR-RA가 설정된 경우, UE는 BR-RA를 이용하여 핸드오버 완료를 나타내는 메시지를 전송할 수 있다. 이때, UE는 TA 값으로 0을 적용할 수 있다.
핸드오버 과정에서 빔 복구를 위한 자원을 활용하는 방안
위에서 논의한 비경쟁 기반의 RACH 절차(contention free RACH procedure)는, 기본적으로 핸드오버 과정을 통해 타겟 셀(target cell)에 대한 초기 빔을 획득하는 방법을 나타낸다. 핸드오버 과정에서, 기지국은, 측정 보고를 통해 사전에 보고된 타겟 셀의 빔 품질에 기초하여, 빔 운영/트래킹(beam management/tracking)을 위한 참조 신호(예를 들어, BM-RS)를 할당할 수 있다. 이때, BM-RS는, 핸드오버 커맨드를 통해 할당될 수 있으며, 예를 들어, 핸드오버 커맨드는, RRC 재설정 메시지(RRC reconfiguration message)를 통해 전송될 수 있다.
또한, 빔 운영 과정에서 빔 실패(beam failure)가 발생하는 경우, 빔 복구(beam recovery)를 수행하기 위하여, 기지국은 새로운 빔 후보를 식별 또는 검색하기 위한 RS(new candidate beam identification RS) 자원, 빔 실패 상태(beam failure status)와 새로운 적절한 빔(new suitable beam)을 기지국에게 보고하기 위한 RACH 자원을 UE에게 할당할 수 있다. 이때, 빔 실패는, 서빙 빔(serving beam)들로 설정된 모든 빔들의 채널 품질이 기설정된 조건을 만족하지 못하는 경우를 의미할 수 있으며, 실시예에 따라, 빔을 대표하는 참조 신호에 기초하여 측정된 채널 품질이 기설정된 조건을 만족하지 못하는 경우를 의미할 수도 있다. 또한, RACH 자원은, 빔 복구를 위한 RACH(RACH for beam recovery) 자원, 빔 복구 RACH(beam recovery RACH, BR-RACH) 자원으로 지칭될 수 있으며, 전술한 예에 한정되지 않는다. 이하에서는, 설명의 편의상, 빔 복구를 위해 할당되는 RACH를 BR-RACH, 빔 복구를 위해 할당되는 RS를 BR-RS(beam recovery-RS)로 통일하여 지칭한다.
일반적으로, BR-RACH 신호의 경우, 기지국은 사용자 별로 별도의 BR-RACH 자원을 할당함으로써 빔 복구에 필요한 시간을 최소화할 필요가 있다. 기지국은 BR-RACH 신호를 항상 모니터링하고, UE가 빔 복구를 요청하면, 정확한 빔 품질 상태(beam quality status)를 알기 위하여, 상향링크 전송 자원 및 새로운 하향링크 BM-RS 자원을 UE에게 할당할 수 있다.
UE 전용 자원(UE dedicated resource)를 할당하는 것은, UE가 핸드오버 커맨드를 통해 타겟 셀에 항상 독점적으로 새로운 빔 상태를 보고할 수 있는 자원을 확보하는 것을 의미한다. 빔 복구를 위해 할당되는 자원은, 빔 실패의 발생 및 새로운 적합한 빔을 기지국에 보고하고, 새로운 TA(timing advance) 값을 조정하기 위해 사용될 수 있다. 또한, 핸드오버를 위해 할당되는 자원은, 기지국으로부터 핸드오버 커맨드가 수신된 경우, UE가 핸드오버 응답을 전송하고, 새로운 서빙 빔을 기지국에 보고하고, 새로운 TA 값을 획득하기 위해 사용될 수 있다. 즉, 핸드오버를 위해 할당되는 자원과 빔 복구를 위해 할당되는 자원의 용도가 서로 유사할 수 있다. 이에 따라, UE에게 할당된 BR-RACH 자원의 특성이 비경쟁 기반 RACH(contention free RACH) 또는 경쟁 기반 RACH(contention based RACH) 절차를 위한 자원의 특성과 유사한 경우, BR-RACH 자원은 핸드오버 과정에서 핸드오버를 완료하기 위한 RACH 자원으로 사용될 수 있다. 예를 들어, RACH 자원의 특성은, TA(timing advance) 값이 0인 것을 포함할 수 있으며, TA 값이 0임을 나타내기 위해, 일반적으로 0이 사용되지만, 시스템의 특성에 따라 다른 고정된 값이 사용될 수도 있다.
본 발명에서는, 핸드오버를 위한 비경쟁 기반/경쟁 기반 RACH 자원으로서 BR-RACH 자원을 사용하거나, 또는 핸드오버 과정에서 빔 업데이트(beam update), 보고(report), 또는 확인(confirmation)를 위한 자원으로서 BR-RACH 자원을 사용하는 방법을 제안한다. 이에 따라, 본 발명에 따르면, 빔 복구를 위해 할당된 자원을 핸드오버 관련 메시지를 전송하는데 사용함으로써, 핸드오버를 위해 별도의 UE 전용 자원을 할당하지 않을 수 있다. 이하에서는, BR-RACH 자원을 핸드오버 응답을 전송하기 위해 사용하는 방법과 최적의 빔(best beam)을 기지국에 보고하기 위해 사용하는 방법에 대하여 구체적으로 설명한다. 실시예에 따라, 핸드오버 응답을 전송하는 것은, 핸드오버 응답 메시지(handover response message)를 전송하는 것으로 지칭될 수도 있다.
1) BR-RACH 자원을 핸드오버 응답(handover response)을 위한 RACH 자원으로 사용
비경쟁 기반 RACH 절차의 경우, 기지국은 측정 보고(measurement report)에 기초하여 비경쟁 기반 RACH(contention-free based RACH, CF-RACH) 자원을 UE에게 할당하되, 복수의 CF-RACH 자원을 UE에게 할당할 수 있다. 현재 3GPP NR 시스템에서는, UE가 초기 빔 획득을 수행하고 획득된 빔을 보고하기 위하여, 기지국이 RACH 자원을 구성할 때, SS/PBCH 블록(SSB)에 연결된(linked) RACH 자원을 구성할 수 있다. 이에 따라, 기지국은 복수의 CF-RACH 자원을 UE에게 할당하고, UE는 타겟 셀에 대하여 서빙 빔으로 적합하다고 판단되는 SSB에 연결된 CF-RACH 자원을 이용하여, RACH 신호를 전송할 수 있다.
서빙 빔으로 적합하다고 판단되는 SSB에 연결된 CF-RACH 자원이 없는 경우, UE는 경쟁 기반 RACH (contention based RACH, CB-RACH)를 이용하여 핸드오버를 위한 RACH 신호를 기지국에게 전송함으로써, 타겟 셀에 대한 초기 빔 획득을 수행한다.
UE가 CF-RACH 및/또는 CB-RACH 자원으로 BR-RACH 자원을 사용할 수 있다면, 기지국은 핸드오버 커맨드를 통해 BR-RACH 자원을 UE에게 할당하고, 핸드오버를 위한 별도의 CF-RACH 및/또는 CB-RACH 자원을 할당하지 않을 수 있다. 일반적으로, BR-RACH 자원은, UE가 새로운 서빙 빔을 검출하고, 새로운 서빙 빔을 기지국에 보고하기 위해 사용되고, CF-RACH와 CB-RACH 자원은 핸드오버의 완료 및 통신 가능한 새로운 빔을 알려주기 위해 사용될 수 있다. 따라서, BR-RACH 자원과 CF-RACH 및/또는 CB-RACH 자원의 용도가 유사하므로, BR-RACH 자원을 CF-RACH 및/또는 CB-RACH 자원으로 사용할 수 있다면, 핸드오버 과정에서 별도의 CF-RACH 및/또는 CB-RACH 자원을 사용할 필요가 없을 수 있다.
또한, BR-RACH의 경우, 새로운 서빙 빔을 검출 및 보고하기 위하여, 빔 품질을 측정하기 위한 자원인 BR-RS와 연동될 수 있다. 따라서, 적절한 서빙 빔을 찾기 위한 자원 및 BR-RACH의 송신 전력(transmission power) 설정을 위한 자원으로서, 타겟 셀의 SSB가 아닌 BR-RS가 빔 품질 측정 자원으로 사용될 수 있다. 이때, 실시예에 따라, BR-RS가 타겟 셀의 SSB를 포함할 수도 있다. 이때, 기지국은, 핸드오버 커맨드를 통해 BR-RS에 대한 자원 설정 정보를 UE에게 전송할 수 있다.
하지만, 기지국이 운용하는 환경에 따라, BR-RACH 자원의 수를 많이 확보하기 위하여, 빔 실패(beam failure) 발생 전에 설정된 TA 값을 적용하여 BR-RACH 신호를 전송하도록 설정될 수도 있다. 이때, BR-RACH 자원은 핸드오버를 위한 RACH 자원과 특성이 다르기 때문에, 핸드오버를 위한 RACH 자원으로 BR RACH 자원이 사용될 수 없다. 따라서, 기지국은, BR-RACH 자원을 할당할 때, BR RACH 자원이 핸드오버를 위한 RACH 자원으로 사용될 수 있는지 여부를 UE에게 알려줄 수 있다. 또한, CF-RACH 자원이 별도로 할당되지 않은 경우, BR-RACH 자원이 CF-RACH 자원으로 사용될 수 있다는 것을 사전에 설정될 수도 있다.
또한, 실시예에 따라, BR-RACH 자원 별로 TA 값의 적용 여부가 다를 수 있기 때문에, 일부 빔에 대해서만 BR-RACH 자원이 사용될 수도 있다. 이때, 하나의 빔에 대하여 CF RACH, CB RACH, 및 BR RACH 자원이 모두 할당될 있으며, CF RACH, CB RACH, 및 BR-RACH 자원은 설정된 우선순위에 따라 핸드오버를 위한 RACH 자원으로 사용될 수 있다. 예를 들어, BR-RACH 자원이 핸드오버를 위한 RACH 자원으로 사용 가능한 경우, 우선 순위는 CF-RACH, BR RACH, CB RACH 순으로 설정될 수 있다. 또는, 하나의 빔에 대하여 CF-RACH 자원과 BR- RACH 자원이 모두 할당된 경우, CF-RACH 자원과 BR-RACH 자원의 우선 순위가 동일하게 설정될 수 있으며, UE는 지연(latency)이 가장 낮다고 판단되는 자원을 이용하여, 최적의 빔 정보와 함께 핸드오버의 완료를 기지국에게 알려줄 수 있다.
도 14는 일 실시예에 따라 BR-RACH 자원을 이용하여 핸드오버를 위한 RACH를 전송하기 방법을 나타내는 흐름도이다.
도 14를 참조하면, S1400에서, UE는 셀별 RSRP/RSRQ에 관한 정보를 포함하는 측정 보고(measurement report)를 서빙 셀로 전송할 수 있다. 서빙 셀은, UE로부터 수신된 측정 보고에 기초하여, 핸드오버 커맨드를 UE에게 전송(S1410)할 수 있다. 핸드오버 커맨드는, UE가 핸드오버를 통해 이동할 타겟 셀에 관한 정보를 포함할 수 있다. UE는, 수신된 핸드오버 커맨드에 응답하여, 핸드오버를 위한 RACH 신호를 타겟 셀로 전송(S1420)할 수 있으며, 이때 RACH 신호는 빔 복구를 위해 할당된 RACH 자원을 통해 전송될 수 있다. 타겟 셀은, UE로부터 수신된 RACH 신호에 응답하여, RACH 응답을 UE에게 전송(S1430)할 수 있다. 이에 따라, 핸드오버를 위한 별도의 RACH 자원을 할당받을 필요 없이, 빔 복구를 위한 RACH 자원(예를 들어, BR-RACH)을 이용하여 핸드오버 과정이 수행될 수 있다.
2) 핸드오버를 위한 RACH 신호 전송 이후, BR-RACH 자원을 사용하여 서빙 빔 확인(serving beam confirmation) 또는 서빙 빔 보고/업데이트(serving beam report/update) 정보를 전송하는 방법
CF-RACH 절차에서, UE는 CF-RACH 자원(또는, 필요에 따라, CB-RACH 자원)을 이용하여 서빙 빔이 어떤 빔인지에 관한 정보를 기지국으로 보고할 수 있다. 하지만, 복수의 CF-RACH 자원을 할당한다는 것은, 기지국이 어떤 빔이 서빙 빔으로 적합한지에 대하여 불확실한 정보만 갖고 있다는 것을 의미한다. 따라서, 기지국이 핸드오버 커맨드를 UE에게 전송할 때, BM-RS 셋을 UE에게 할당하는 것은 비효율적일 수 있다. 이때, 기지국은, UE로부터 RACH 신호(예를 들어, RACH 프리앰블)를 수신한 후, UE에게 BM-RS를 설정해주기 위한 RRC 시그널링을 해야 한다. UE는, 적절한 빔 운영을 위하여, 가장 좋은 RSRP를 갖는 RACH 자원을 이용하여 RACH 신호를 전송하는 것이 바람직할 수 있다. 그러나, 가장 좋은 RSRP를 갖는 RACH 자원을 이용하여 RACH 신호를 전송하는 경우, 핸드오버 지연을 줄일 수 있는 다른 RACH 자원을 통해 핸드오버를 보다 빨리 완료할 수 있음에도 불구하고, 가장 좋은 RSRP를 갖는 RACH 자원을 기다려서 RACH 신호를 전송해야 하는 단점이 있다.
이에 따라, 본 발명에서는, BR-RACH 자원을 이용하여 핸드오버 RACH 절차를 수행할 수 없는 환경에서, BR-RACH 자원을 이용하여 서빙 빔 확인 또는 서빙 빔 보고/업데이트를 위한 정보를 기지국으로 전송하는 방법을 제안한다.
도 15는 일 실시예에 따라 BR-RACH 자원을 사용하여 서빙 빔 확인 또는 서빙 빔 보고/업데이트 정보를 전송하는 방법을 나타내는 흐름도이다.
도 15를 참조하면, S1500에서, UE는 셀 별 RSRP/RSRQ에 관한 정보를 포함하는 측정 보고를 서빙 셀로 전송할 수 있다. 서빙 셀은, UE로부터 수신된 측정 보고에 기초하여, 핸드오버 커맨드를 UE에게 전송(S1510)할 수 있다. 이때, 핸드오버 커맨드는, UE가 핸드오버를 통해 이동할 타겟 셀에 관한 정보를 포함하 수 있다. UE는, 서빙 셀로부터 수신된 핸드오버 커맨드에 응답하여, 핸드오버를 위한 RACH 신호를 타겟 셀로 전송(S1520)할 수 있다. 핸드오버를 위한 RACH 신호는, 핸드오버를 위해 할당된 CF-RACH 자원 또는 CB-RACH 자원을 통해 전송될 수 있으며, BR-RACH 자원을 통해 전송될 수도 있다. 이때, 핸드오버를 위한 RACH 신호는, 최적의 RSRP를 가지는 RACH 자원이 아니라, 핸드오버 지연 측면에서 최적의 RACH 자원을 통해 전송될 수 있으며, 이에 따라, 핸드오버 과정에 의한 지연을 최소화할 수 있다. 타겟 셀은, UE로부터 수신된 RACH 신호에 응답하여, RACH 응답을 전송(S1530)할 수 있다. 그리고, UE는, 타겟 셀에게 최적의 빔을 알리기 위한 서빙 빔 확인 정보 또는 서빙 빔 보고/업데이트 정보를 전송할 수 있다. 이때, 서빙 빔 확인 정보, 또는 서빙 빔 보고/업데이트 정보는, BR-RACH 자원을 통해 전송될 수 있다. 이에 따라, 핸드오버 지연 측면에서 최적의 빔을 이용하여 핸드오버 응답을 전송함으로써, 핸드오버 과정에 의한 지연을 최소화하고, 핸드오버 응답이 전송된 이후에 BR-RACH 자원을 이용하여 최적의 빔 정보를 알려줌으로써, 보다 좋은 품질의 빔을 통해 통신할 수 있도록 한다.
일반적으로, 빔 실패(beam failure)는 서빙 빔들을 통한 통신이 불가능한 상황에서 UE에 의해 선언되고, 빔 실패가 발생한 경우, UE는 빔 복구 절차를 통해 서빙 빔 셋을 업데이트할 수 있다. 그리고, UE는, 핸드오버 지연을 줄이기 위하여, 가장 좋은 RSRP를 가지는 RACH 자원이 아니라, 지연 측면에서 최적의 RACH 자원을 이용하여, 핸드오버 커맨드에 대한 응답을 전송할 수 있다. 이때, 핸드오버 커맨드에 대한 응답은, CF-RACH 자원 또는 CB-RACH 자원을 통해 전송될 수 있으며, 1)에서 제안한 바와 같이 BR-RACH 자원을 통해 전송될 수도 있다. 그러나, 지연 측면에서 최적의 RACH 자원을 이용하여, 핸드오버 커맨드에 대한 응답을 전송하는 경우, UE는, 빔 실패가 발생하여 최적의 서빙 빔을 다시 설정받을 때까지, 준최적의 빔을 이용하여 기지국과 통신해야 하는 문제가 있다.
전술한 문제를 해결하기 위하여, 핸드오버 커맨드에 대한 응답을 전송할 때, UE는 핸드오버 지연을 최소로 하는 RACH 자원을 이용하여, 핸드오버 커맨드에 대한 응답 메시지를 기지국으로 전송한다. 다만, 이때, 핸드오버 지연을 최소로 하는 RACH 자원은, SSB 또는 BR-RS의 품질이 UE의 서비스가 원하는 품질을 만족하는 자원을 의미할 수 있다. 또한, UE는 빔 실패가 발생하지 않은 상태라 하더라도, 사전에 찾은 가장 좋은 품질의 빔, 또는 핸드오버 커맨드를 수신한 이후에 빔 측정 과정을 통해 찾은 가장 좋은 품질의 빔에 대응하는 BR-RACH 자원을 이용하여, 빔 업데이트 정보를 기지국으로 전송할 수 있다.
기지국은, UE로부터 빔 업데이트 정보를 수신하고, 빔 업데이트 정보가 지시하는 빔이 핸드오버 응답을 통해 보고받은 빔과 동일하면, 서빙 빔이 확인(confirm)된 것을 알 수 있다. 이때, 전술한 2-2) 방법과 같이, UE가 하나의 CF-RACH 자원을 통해 핸드오버 응답을 전송한 경우에 해당할 수 있으며, 기지국은 핸드오버 커맨드를 통해 BM-RS를 UE에게 전송할 수도 있다.
이와 달리, 빔 업데이트 정보가 지시하는 빔이 핸드오버 응답을 통해 보고받은 빔과 상이한 경우, 기지국은 BR-RACH 자원을 통해 새로운 서빙 빔 보고/업데이트 정보를 수신한 것으로 인지하고, 새로운 서빙 빔에 대한 BM-RS 자원을 UE에게 할당할 수 된다. 실시예에 따라, 기지국은, 핸드오버 커맨드를 모든 빔 별 BM-RS 자원을 UE에게 미리 할당하고, BR-RACH 자원을 통해 보고받은 서빙 빔에 해당하는 BM-RS 자원을 이후에 사용할 BM-RS으로 결정할 수도 있다. 이때, UE는, UE가 핸드오버를 위한 RACH 신호를 전송한 시간과 기지국이 BR-RACH 자원을 통해 새로운 서빙 빔 보고/업데이트 정보를 수신하여 BM-RS 설정을 완료한 시간 사이에, 핸드오버를 위한 RACH를 통해 지시한 빔을 이용하여 기지국과 통신할 수 있다. 이에 따라, 서비스 단절 시간(service interruption time)을 최소화할 수 있다. 전술한 방법은, 매우 짧은 핸드오버 지연을 요구하거나, 0에 가까운 서비스 단절 시간을 요구하는 서비스에 적합한 방법일 수 있다.
이와 같이, 빔 실패 상태가 아닌 경우(예를 들어, 서빙 빔의 품질이 통신을 수행하는데 문제가 없더라도 보다 좋은 품질을 갖는 빔을 찾은 경우)에 대한 빔 복구 과정이 정의될 수 있다. 또는, 새로운 빔 복구 과정이 정의되지 않더라도, 핸드오버 과정에서는, UE가 기지국으로부터 핸드오버 커맨드를 수신한 후 사전에 정의되거나 기지국에 의해 설정된 일정 시간 동안, 전술한 빔 복구 과정을 정의하는 것이 서비스 품질 측면에서 유리할 수 있다.
추가적으로, 1)에서 언급한 바와 같이, 설정된 BR-RACH 자원이 TA를 요구하는 경우, UE는 RACH 응답을 통해 TA 값을 설정받을 수 있다. 그리고, UE는, BR-RACH 자원을 이용하여 서빙 빔 업데이트 정보를 기지국으로 전송할 수 있다. 예를 들어, UE가 RACH 신호(예를 들어, RACH 프리앰블)을 전송하고, 새로운 빔에 대한 모니터링을 수행하면서 RACH 응답을 기다리고, RACH 응답으로서 TA 값을 수신한 수 있다. 그리고, UE는, 최적의 빔에 대응하는 BR-RACH 자원을 이용하여 서빙 빔 업데이트 정보를 전송할 수 있다. 하지만, CB-RACH 절차의 경우, TA 값을 수신한 경우라 하더라도, 경쟁 해결(contention resolution)이 완료되지 않은 상황이므로, UE는 경쟁 해결 메시지(contention resolution message)(예를 들어, RACH 메시지4)를 전송한 이후에 서빙 빔 업데이트 정보를 전송하는 것이 바람직할 수도 있다.
도 16은, 핸드오버 과정에서 UE의 동작을 나타내는 흐름도이다.
도 16을 참조하면, 일 실시예에 따른 UE는, 제1 기지국으로부터 핸드오버 커맨드를 수신(S1600)한다. 그리고, UE는, 수신된 핸드오버 커맨드에 응답하여, 빔 복구를 위한 자원을 이용하여 핸드오버에 관련된 메시지를 제2 기지국으로 전송(S1610)할 수 있다. 이때, 제1 기지국은, 전술한 서빙 셀, 제2 기지국은 타겟 셀을 의미할 수 있다. 핸드오버에 관련된 메시지는, 핸드오버를 위한 RACH 신호 및 빔 업데이트 정보 중 적어도 하나를 포함할 수 있다. 또한, 빔 복구를 위한 자원은, 빔 복구(beam recovery)를 위해 할당된 RACH 자원을 포함할 수 있다.
UE가 빔 복구를 위해 할당된 자원을 이용하여 빔 업데이트 정보를 전송하는 경우, 빔 업데이트 정보는 핸드오버를 위한 RACH 신호와 별도로 전송될 수 있다. 예를 들어, UE는, 핸드오버를 위해 할당된 CF-RACH, CB-RACH, 또는 BR-RACH 자원을 이용하여 핸드오버를 위한 RACH 신호를 제2 기지국으로 전송할 수 있으며, 제2 기지국으로부터 RACH 응답을 수신할 수 있다. 이때, RACH 신호를 전송하기 위해 사용되는 자원은, 품질이 가장 좋은 최적의 빔이 아니더라도, 핸드오버 지연이 가장 낮은 자원일 수 있다. 이에 따라, UE는 핸드오버 과정에서 발생하는 지연을 최소화할 수 있다.
그리고, UE는, 최적의 빔에 관한 정보를 제2 기지국에게 추가로 전송할 수 있다. 이때, UE는, 빔 복구를 위해 할당된 자원을 이용하여, 빔 업데이트 정보를 제2 기지국으로 전송할 수 있다. 예를 들어, 빔 업데이트 정보가 나타내는 최적의 빔이 RACH 신호에 의해 지시되는 빔과 동일한 경우, 빔 업데이트 정보는, 서빙 빔 확인(serving beam confirmation) 정보를 의미할 수 있다. 그러나, 빔 업데이트 정보가 나타내는 최적의 빔이 RACH 신호에 의해 지시된 빔과 상이한 경우, 빔 업데이트 정보는, 서빙 빔 보고/업데이트(serving beam report/update) 정보를 의미할 수 있다. 빔 업데이트 정보가 제2 기지국으로 전달됨에 따라, UE와 제2 기지국은 빔 업데이트 정보가 나타내는 빔을 이용하여 통신을 수행할 수 있다. 이에 따라, 핸드오버 과정에서 발생하는 지연을 줄이면서도, UE와 제2 기지국이 보다 빠르게 최적의 빔을 이용하여 통신을 수행할 수 있다.
이에 따라, UE는 빔 복구를 위해 할당되는 자원을 핸드오버 과정에 활용함으로써, 핸드오버를 위한 별도의 자원을 할당받지 않을 수 있다.
빔 복구를 위해 할당된 자원의 특성이 핸드오버를 위해 할당된 자원(예를 들어, CF-RACH 자원 및 CB-RACH 자원)의 특성과 상이한 경우, 빔 복구를 위해 할당된 자원을 핸드오버에 활용하기 어려울 수 있다. 이에 따라, 제1 기지국은, 빔 복구를 위해 할당된 자원을 핸드오버에 관련된 메시지를 전송하기 위해 사용가능한지 여부를 나타내는 정보를 UE에게 미리 전송할 수 있다.
도 17은 핸드오버 과정에서 타겟 셀의 동작을 나타내는 흐름도이다.
UE가 제1 기지국으로부터 제2 기지국으로 핸드오버를 수행하기 위하여, 제1 기지국은 UE로 핸드오버 커맨드를 전송하고, UE는 제2 기지국으로 핸드오버를 위한 RACH 신호를 전송할 수 있다. 제2 기지국은, UE로부터 전송된 RACH 신호를 수신(S1700)할 수 있으며, RACH 신호는, 핸드오버를 위해 할당된 자원(예를 들어, CB-RACH 또는 CF-RACH 자원), 또는 빔 복구를 위해 할당된 자원을 통해 전송될 수 있다. 이때, RACH 신호는, 품질이 가장 좋은 최적의 빔이 아니라, 핸드오버 지연이 가장 낮은 자원을 통해 전송될 수 있으며, 이에 따라, 핸드오버가 보다 빨리 완료될 수 있다.
제2 기지국은, UE로부터 수신된 RACH 신호에 응답하여, RACH 응답을 UE에게 전송(S1710)할 수 있다. 이때, 핸드오버 지연이 가장 낮은 자원을 통해 RACH 자원이 전송된 경우, 제2 기지국과 UE는 일시적으로 준최적의 빔을 이용하여 통신을 수행할 수 있다. 따라서, 제2 기지국은, UE로부터 빔 업데이트 정보를 수신(S1720)할 수 있으며, 빔 업데이트 정보는 빔 복구를 위해 할당된 자원(예를 들어, BR-RACH 자원)을 통해 전송될 수 있다. 빔 업데이트 정보는, 최적의 빔에 관한 정보를 포함할 수 있으며, 빔 업데이트 정보가 전송됨에 따라, 제2 기지국과 UE는 빔 업데이트 정보가 나타내는 최적의 빔을 이용하여 통신을 수행할 수 있다.
또는, RACH 신호가 빔 복구를 위해 할당된 자원을 통해 전송되고, 빔 복구를 위해 할당된 자원에 대응하는 빔이 최적의 빔인 경우, 제2 기지국은 UE로부터 빔 업데이트 정보를 별도로 수신할 필요가 없다.도 18은 본 발명에 따른 장치들의 구성을 도시하는 도면이다.
제안하는 실시예에 따른 장치(100)는, 프로세서(110) 및 메모리(120)를 포함할 수 있다. 이때, 장치(100)는, 전술한 UE(user equipment), 또는 SoC(System on Chip)을 포함할 수 있으나, 이에 한정되지 않는다. 예를 들어, 장치(100)가 UE를 포함하는 경우, 장치(100)는 트랜시버(transceiver)(미도시)를 더 포함할 수 있다. 프로세서(110)는 장치(100) 전반의 동작을 제어할 수 있으며, 장치(100)가 외부 장치와 송수신하는 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 UE(100)의 동작을 수행하도록 구성될 수 있다. 장치(100)가 트랜시버를 포함하는 경우, 프로세서(120)는 본 발명의 제안에 따라 데이터 혹은 메시지를 전송하도록 트랜시버를 제어할 수 있다.
메모리(120)는 연산 처리된 정보 등을 소정의 시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
트랜시버는 무선 주파수(radio frequency, RF) 유닛 또는 송수신 모듈로 지칭될 수도 있다. 트랜시버는 각종 신호, 데이터 및 정보를 외부 장치로 전송하고, 각종 신호, 데이터 및 정보를 외부 장치로부터 수신하도록 구성될 수 있다. 또는, 트랜시버는 전송부와 수신부로 분리되어 구현될 수도 있다. 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다.
도 18을 참조하면, 일 실시예에 따른 제1 기지국(200)은, 트랜시버(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 예를 들어, 제1 기지국(200)은 전술한 서빙 셀 또는 소스 셀의 동작을 수행할 수 있다. 장치(100)와 통신하는 경우, 트랜시버(210)는 송수신 모듈 또는 무선 주파수(radio frequency, RF) 유닛으로 지칭될 수도 있다. 트랜시버(210)는 각종 신호, 데이터 및 정보를 외부 장치로 전송하고, 각종 신호, 데이터 및 정보를 외부 장치로부터 수신하도록 구성될 수 있다. 제1 기지국(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 트랜시버(210)는 전송부와 수신부로 분리되어 구현될 수도 있다. 프로세서(220)는 제1 기지국(200) 전반의 동작을 제어할 수 있으며, 제1 기지국(200)이 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 제1 기지국(200)의 동작을 수행하도록 구성될 수 있다. 프로세서(220)는 본 발명의 제안에 따라 데이터 또는 메시지를 장치(100) 또는 다른 기지국에게 전송하도록 트랜시버(210)를 제어할 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정의 시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 접속 네트워크에서 제1 기지국(200)은 eNB 또는 gNB일 수 있다.
또한, 일 실시예에 따른 제2 기지국(300)은, 트랜시버(310), 프로세서(320) 및 메모리(330)를 포함할 수 있다. 예를 들어, 제2 기지국(300)은 전술한 타겟 셀의 동작을 수행할 수 있다.
또한, 위와 같은 장치(100), 제1 기지국(200), 및 제2 기지국(300)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 둘 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 통신 방법은 3GPP 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 가능하다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (13)

  1. 무선 통신 시스템에서 사용자 기기(user equipment, UE)가 핸드오버를 수행하는 방법에 있어서,
    핸드오버 커맨드(handover command)를 제1 기지국으로부터 수신하는 단계;
    상기 핸드오버 커맨드에 응답하여, 빔 복구를 위해 할당된 자원을 이용하여 상기 핸드오버에 관련된 메시지를 제2 기지국으로 전송하는 단계; 및
    상기 핸드오버에 관련된 메시지에 기초하여 결정된 빔을 이용하여, 상기 제2 기지국과 통신을 수행하는 단계;
    를 포함하는, 방법.
  2. 제 1항에 있어서, 상기 핸드오버에 관련된 메시지는, 상기 핸드오버를 위한 RACH(random access channel) 신호 및 빔 업데이트 정보 중 적어도 하나를 포함하는, 방법.
  3. 제 2항에 있어서,
    상기 핸드오버에 관련된 메시지가 상기 빔 업데이트 정보를 포함할 때, 상기 핸드오버에 관련된 메시지를 전송하는 단계는,
    상기 핸드오버를 위한 RACH 신호를 상기 제2 기지국으로 전송하는 단계;
    상기 핸드오버를 위한 RACH 응답을 상기 제2 기지국으로부터 수신하는 단계; 및
    상기 빔 복구를 위해 할당된 자원을 이용하여 상기 빔 업데이트 정보를 상기 제2 기지국으로 전송하는 단계;
    를 포함하는, 방법.
  4. 제 3항에 있어서,
    상기 핸드오버를 위한 RACH 신호는, 상기 핸드오버를 위해 할당된 하나 이상의 자원 및 상기 빔 복구를 위해 할당된 자원 중 하나를 이용하여 전송되는, 방법.
  5. 제 4항에 있어서,
    상기 핸드오버를 위해 할당된 하나 이상의 자원은, 비경쟁 기반 RACH(contention-free based random access channel) 자원 및 경쟁 기반 RACH(contention-based random access channel) 자원 중 적어도 하나를 포함하는, 방법.
  6. 제 4항에 있어서,
    상기 핸드오버를 위한 RACH 신호는, 상기 핸드오버를 수행하기 위해 할당된 하나 이상의 자원 및 상기 빔 복구를 위해 할당된 자원 중에서 핸드오버 지연(handover delay)이 가장 낮은 자원을 이용하여 전송되는, 방법.
  7. 제 3항에 있어서,
    상기 빔 업데이트 정보는, 상기 핸드오버를 위한 RACH 신호에 의해 지시되는 빔보다 좋은 품질을 갖는 빔에 관한 정보를 포함하는, 방법.
  8. 제 3항에 있어서, 상기 방법은,
    상기 빔 업데이트 정보에 기초하여 결정된 빔을 이용하여 상기 제2 기지국과 통신을 수행하는 단계를 더 포함하는, 방법.
  9. 제 1항에 있어서,
    상기 핸드오버는, 비경쟁 기반 RACH(contention-free based RACH) 절차를 통해 수행되는, 방법.
  10. 제 1항에 있어서,
    상기 빔 복구를 위해 할당된 자원은, 빔 복구를 위한 RACH(random access channel) 자원을 포함하는, 방법.
  11. 제 1항에 있어서,
    상기 빔 복구를 위해 할당된 자원은, 상기 핸드오버 커맨드를 통해 UE 전용 자원(UE dedicated resource)으로 할당되는, 방법.
  12. 제 1항에 있어서, 상기 방법은,
    상기 빔 복구를 위해 할당된 자원이 상기 핸드오버에 관련된 메시지를 전송하기 위해 사용 가능한지 여부를 나타내는 정보를 상기 제1 기지국으로부터 수신하는 단계를 더 포함하는, 방법.
  13. 무선 통신 시스템에서 핸드오버를 수행하는 장치에 있어서,
    메모리(memory); 및
    상기 메모리에 연결된 프로세서(processor)를 포함하고,
    상기 프로세서는,
    핸드오버 커맨드(handover command)를 상기 제1 기지국으로부터 수신하고,
    상기 핸드오버 커맨드에 응답하여, 빔 복구를 위해 할당된 자원을 이용하여 상기 핸드오버에 관련된 메시지를 제2 기지국으로 전송하고,
    상기 핸드오버에 관련된 메시지에 기초하여 결정된 빔을 이용하여 상기 제2 기지국과 통신을 수행하는, 장치.
PCT/KR2018/014504 2017-11-23 2018-11-23 무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치 WO2019103517A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/766,669 US11343736B2 (en) 2017-11-23 2018-11-23 Method and device for performing handover in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762590350P 2017-11-23 2017-11-23
US62/590,350 2017-11-23

Publications (1)

Publication Number Publication Date
WO2019103517A1 true WO2019103517A1 (ko) 2019-05-31

Family

ID=66631128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014504 WO2019103517A1 (ko) 2017-11-23 2018-11-23 무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치

Country Status (2)

Country Link
US (1) US11343736B2 (ko)
WO (1) WO2019103517A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472292B1 (ko) * 2018-01-10 2022-11-30 삼성전자 주식회사 무선 통신 시스템에서 경쟁 및 비경쟁 기반 빔 실패 복구를 수행하는 방법 및 장치
EP3759965A1 (en) * 2018-02-27 2021-01-06 Telefonaktiebolaget LM Ericsson (publ) Handover control
CN113543253A (zh) 2018-05-14 2021-10-22 中兴通讯股份有限公司 切换方法及装置
US11553500B2 (en) * 2019-09-30 2023-01-10 Qualcomm Incorporated UE assisted TCI state signaling for interference coordination

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140355569A1 (en) * 2008-02-04 2014-12-04 Lg Electronics Inc. Mobile communication system and method for processing handover procedure thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11943677B2 (en) * 2017-01-19 2024-03-26 Qualcomm Incorporated Beam selection and radio link failure during beam recovery
US10813097B2 (en) * 2017-06-14 2020-10-20 Qualcomm Incorporated System and method for transmitting beam failure recovery request
US10893540B2 (en) * 2017-07-28 2021-01-12 Qualcomm Incorporated Random access channel procedures with multiple carriers
US10855359B2 (en) * 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140355569A1 (en) * 2008-02-04 2014-12-04 Lg Electronics Inc. Mobile communication system and method for processing handover procedure thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"NR Random Access Procedure", RL-1712532, 3GPP TSG-RAN WG1 MEETING #90BIS, 12 August 2017 (2017-08-12), Prague, Czech Republic, pages 1 - 3, XP051315348, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_90/Docs> *
"PRACH Procedure Considerations", RL-1718532, 3GPP TSG-RAN WG1 MEETING #90BIS, 3 October 2017 (2017-10-03), Prague, Czech Republic, pages 7 - 8, XP051353100, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WGl_RLl/TSGRl_90b/Docs> *
HUAWEI: "Allocation of appropriate RACH resources for handover", R2-1710273, 3GPP TSG-RAN WG2 #99BIS, 29 September 2017 (2017-09-29), Prague, Czech, XP051354823, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG2_RL2/TSGR2_99bis/Docs> *
HUAWEI: "Beam selection during handover", R2-1710263, 3GPP TSG-RAN WG2 #99BIS, 29 September 2017 (2017-09-29), Prague, Czech Republic, pages 1 - 2.2, XP051354813, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG2_RL2/TSGR2_99bis/Docs> *

Also Published As

Publication number Publication date
US20200367125A1 (en) 2020-11-19
US11343736B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2018182283A1 (ko) 임의 접속 채널을 전송하는 방법과 사용자기기, 및 임의 접속 채널을 수신하는 방법 및 기지국
WO2018174586A1 (ko) 빔 회복 과정 수행 방법과 사용자기기, 및 빔 회복 과정 지원 방법 및 기지국
WO2018230984A1 (ko) 동기 신호 블록을 측정하는 방법 및 이를 위한 장치
WO2018143760A1 (ko) 측정 수행 방법 및 사용자기기
WO2018164478A1 (ko) 임의 접속 프리앰블을 전송하는 방법과 사용자기기
WO2018230879A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2018128426A1 (en) Method and apparatus for sharing spectrum between 3gpp lte and nr in wireless communication system
WO2018147700A1 (ko) 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치
WO2018159967A1 (ko) 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치
WO2018021865A1 (ko) 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
WO2018203674A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018084663A1 (en) Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2019182341A1 (ko) 사이드링크를 지원하는 무선 통신 시스템에서 송신 빔을 결정하는 방법 및 이를 위한 단말
WO2018174494A1 (ko) 임의 접속 프리앰블을 전송하는 방법과 사용자기기, 및 임의 접속 프리앰블을 수신하는 방법 및 기지국
WO2018084669A1 (en) Method and user equipment for provisioning minimum system information in wireless communication system
WO2017155238A1 (ko) 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국
WO2018030854A1 (ko) 무선 통신 시스템에서 단말이 다른 단말에게 데이터를 전송하는 방법
WO2018030841A1 (ko) 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
WO2019031917A1 (ko) 무선 통신 시스템에서, 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018128218A1 (ko) 임의 접속 과정 수행 방법 및 사용자기기
WO2019107969A1 (ko) 무선 통신 시스템에서 신호 품질을 측정하는 방법 및 장치
WO2018147527A1 (ko) 차세대 이동통신 시스템에서 측정 수행 방법 및 단말
WO2018030809A1 (ko) Nb-iot에서 페이징 신호를 수신하는 방법 및 랜덤 액세스 절차를 수행하는 방법
WO2019066624A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881114

Country of ref document: EP

Kind code of ref document: A1