WO2015083522A1 - Image display apparatus - Google Patents

Image display apparatus Download PDF

Info

Publication number
WO2015083522A1
WO2015083522A1 PCT/JP2014/080098 JP2014080098W WO2015083522A1 WO 2015083522 A1 WO2015083522 A1 WO 2015083522A1 JP 2014080098 W JP2014080098 W JP 2014080098W WO 2015083522 A1 WO2015083522 A1 WO 2015083522A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixels
pixel
image display
eye
Prior art date
Application number
PCT/JP2014/080098
Other languages
French (fr)
Japanese (ja)
Inventor
康昭 梅澤
憲治 松廣
英二 高沖
和浩 杉浦
Original Assignee
株式会社有沢製作所
株式会社アスナ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社有沢製作所, 株式会社アスナ filed Critical 株式会社有沢製作所
Publication of WO2015083522A1 publication Critical patent/WO2015083522A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Definitions

  • the present invention relates to an image display device.
  • an image display device that displays a three-dimensional image using an image display unit that displays an image for the right eye and an image for the left eye, and a polarization modulator that polarizes the respective images into different polarization states. Since the boundary between the color filter of the image display unit and the polarization modulation unit is separated by the substrate glass or the like of the image display device, crosstalk occurs such that the right-eye image is modulated to the left-eye polarization.
  • a method for reducing crosstalk there is a method in which one pixel is divided into a main pixel and a sub-pixel and the sub-pixel is made a black image when a three-dimensional image is displayed (for example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-204389
  • the image display unit has a problem that a special drive circuit is used to make the sub-pixel the same color as the main pixel when displaying a two-dimensional image.
  • an image display device wherein an image display unit in which a plurality of pixels that are repetitive units for forming an image are two-dimensionally arranged in the main surface direction, and an image display unit Polarization modulation in which a first modulation unit and a second modulation unit that are arranged on the output side and modulate the polarization state of an image to different states are alternately provided in at least one direction along the main surface direction of the image display unit
  • Each of the first modulation unit and the second modulation unit has a width larger than a pixel pitch in which a plurality of pixels are arranged in one direction.
  • an image display device in which an image display unit in which a plurality of pixels that are repetitive units for forming an image are two-dimensionally arranged in a main surface direction, and an image display unit Polarization modulation in which a first modulation unit and a second modulation unit that are arranged on the output side and modulate the polarization state of an image to different states are alternately provided in at least one direction along the main surface direction of the image display unit
  • Each of the plurality of pixels has a main pixel and a sub-pixel arranged in one direction, and the boundary between the first modulation unit and the second modulation unit is:
  • the driving unit displays the two-dimensional image by controlling the luminance with the main pixel and the corresponding sub-pixel as a set, and the driving unit displays the two-dimensional image.
  • the first modulation unit when displaying images
  • One of the right-eye image and the left-eye image is displayed using the main pixel
  • the other of the right-eye image and the left-eye image is displayed using the main pixel corresponding to the second modulation unit, and the sub-pixel is used.
  • An intermediate image between the adjacent right-eye image and left-eye image is displayed.
  • the disassembled perspective view of the image display apparatus 10 concerning this embodiment is shown.
  • 4 is a schematic cross-sectional view showing a stacking relationship between members of an image display unit 110 and a polarization modulation unit 150.
  • the pixel 120 of the image display part 110 is shown typically.
  • the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the polarization modulation unit 150 is shown. It is explanatory drawing in the case of displaying a three-dimensional image in the positional relationship of FIG.
  • the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the other polarization modulation unit 151 is shown.
  • the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 152 is shown.
  • the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 153 is shown.
  • the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 154 is shown. It is explanatory drawing explaining the method to measure crosstalk.
  • the measurement result of crosstalk is shown.
  • a model for approximately calculating crosstalk is shown. It is a figure explaining the other example of an intermediate image. An example of adjusting the brightness of the entire image is shown.
  • Another pixel 180 is shown.
  • the positional relationship between the image display unit 190 using the pixels 180 and the polarization modulation unit 192 is shown.
  • FIG. 1 is an exploded perspective view of an image display device 10 according to the present embodiment.
  • FIG. 1 also shows glasses 20 used by the user.
  • the image display device 10 includes a backlight 100, an image display unit 110, and a polarization modulation unit 150 in order from the user.
  • the backlight 100 emits unpolarized white light toward the image display unit 110.
  • the image display unit 110 includes a polarizing plate 112, a liquid crystal 116, a polarizing plate 142, and a driving unit 170.
  • the image display unit 110 forms and emits an image using the white light from the backlight 100.
  • the polarizing plate 112 transmits polarized light whose electric field vibrates in a direction parallel to the transmission axis, and blocks polarized light orthogonal thereto.
  • the polarizing plate 142 transmits polarized light whose electric field oscillates in a direction parallel to the transmission axis, and blocks polarized light orthogonal thereto.
  • the transmission axis of the polarizing plate 112 faces the horizontal direction
  • the polarizing plate 142 faces the vertical direction, and they are orthogonal to each other.
  • An example of the polarizing plates 112 and 142 is a polymer material plate stretched in a uniaxial direction, but is not limited thereto.
  • the liquid crystal 116 has a plurality of pixels 120 two-dimensionally arranged in the main surface direction.
  • Each pixel 120 is a repeating unit for forming an image in the image display unit 110.
  • the liquid crystal 116 is driven by the driving unit 170 for each pixel 120 so that the alignment direction is controlled, and the direction of the incident polarized light is emitted as it is or rotated and emitted. As a result, the light of the pixel that has exited the direction of the incident polarized light as it is is blocked by the polarizing plate 142.
  • a component parallel to the transmission axis of the polarizing plate 142 is transmitted through the light of the pixel 120 emitted by rotating the polarization direction. As a result, an image is formed.
  • the amount of rotation in the direction of polarization is controlled by the voltage of the driving unit 170, and multi-tone luminance is expressed.
  • the polarization modulation unit 150 has right eye regions 162 and left eye regions 164 that are alternately provided in the vertical direction in FIG. 1 along the main surface direction of the liquid crystal 116.
  • the right eye region 162 and the left eye region 164 modulate the polarization state of the image to different states.
  • An example of the right eye region 162 and the left eye region 164 is a ⁇ / 4 plate having slow axes that are orthogonal to each other.
  • the right eye region 162 has a slow axis of 45 degrees leftward as viewed from the user, and converts vertically polarized light emitted from the polarizing plate 142 into counterclockwise circularly polarized light.
  • the left eye region 164 has a slow axis of 45 degrees diagonally to the right when viewed from the user, and converts vertically polarized light emitted from the polarizing plate 142 into clockwise circularly polarized light.
  • a counterclockwise circularly polarized right eye image is output from the right eye region 162 and the left eye region 164 outputs a clock.
  • An image for the left eye of the circular polarization around is output.
  • the glasses 20 have a right-eye modulation element 22 and a left-eye modulation element 24.
  • the right-eye modulation element 22 is formed by laminating a ⁇ / 4 plate and a polarizer, and transmits counterclockwise circularly polarized light and blocks clockwise circularly polarized light.
  • the left-eye modulation element 24 is also a laminate of a ⁇ / 4 plate and a polarizer.
  • the slow axis is orthogonal to the right-eye modulation element 22 and transmits clockwise circularly polarized light. Blocks circularly polarized light around.
  • the user wearing the glasses 20 can view the three-dimensional image stereoscopically by viewing the right-eye image with the right eye and the left-eye image with the left eye.
  • FIG. 2 is a schematic cross-sectional view showing the stacking relationship of the members of the image display unit 110 and the polarization modulation unit 150.
  • the lower side of FIG. 2 is the backlight 100 side, and the upper side is the image emission side.
  • the image display unit 110 includes the polarizing plate 112, the substrate glass 114, the liquid crystal 116, the color filter 122, the substrate glass 140, and the polarizing plate 142 in this order from the side close to the backlight 100.
  • the polarization modulation unit 150 includes a retardation film 166 that forms the right eye region 162 and the left eye region 164 and a transparent base material 168 that supports the retardation film 166 from the side close to the image display unit 110.
  • the transparent substrate 168 is an optically isotropic glass substrate, a transparent plastic substrate, a transparent film, or the like.
  • the retardation film 166 includes liquid crystal molecules that are aligned by rubbing, photo-alignment, or the like.
  • the polarizing plate 142 and the polarization modulation unit 150 of the image display unit 110 are adhered to each other with a transparent adhesive 144.
  • the substrate glass 140 or the like is interposed between the color filter 122 and the retardation film 166 and is separated by a distance D. Since the color filter 122 and the retardation film 166 are separated from each other, the image is displayed at a position other than the set position, more specifically at a position above and below the set vertical position in the examples of FIGS.
  • the right-eye image emitted from the display unit 110 reaches the user through the left-eye region 164 of the polarization modulation unit 150, or vice versa, crosstalk occurs.
  • FIG. 3 schematically shows the pixel 120 of the image display unit 110.
  • the pixel 120 in response to the image display unit 110 forming a color image, the pixel 120 includes an R sub-pixel 130, a G sub-pixel 132 corresponding to the three primary colors red, green, and blue, and One B sub-pixel 134 is provided. Further, a light shielding region 136 that shields light around the R subpixel 130, the G subpixel 132, and the B subpixel 134 is provided.
  • the R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 are the smallest units having independent display areas.
  • the R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 have the same size, have a rectangular shape that is long in the vertical direction, and are arranged at equal intervals in the horizontal direction.
  • the R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 are provided with red, green, and blue color filters 122 and transparent individual electrodes at corresponding positions.
  • the rotation amount of the polarized light passing through the R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 is controlled by the driving unit 170 to form one color point on the image.
  • the R sub-pixels 130, the G sub-pixels 132, and the B sub-pixels 134 have the same configuration, but the R sub-pixel 130 and the G sub-pixel in each of the pixels 120. 132 and the B sub-pixel 134 may be different from each other.
  • FIG. 4 shows a positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the polarization modulation unit 150.
  • the image display unit 110 and the polarization modulation unit 150 overlap with each other in the image emission direction.
  • the light shielding regions 136 may be connected without a gap.
  • a plurality of pixels 120 having the same configuration are repeatedly arranged in p rows in the vertical direction and q columns in the horizontal direction.
  • FIG. 4 shows a portion corresponding to 7 rows and 3 columns.
  • Each of the right eye region 162 and the left eye region 164 of the polarization modulator 150 has a stripe shape that is long in the horizontal direction, and is arranged to cover all the pixels 120 in the horizontal direction, for example.
  • the vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120. More specifically, the width B is 1.9 to 2.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
  • each of the right eye region 162 and the left eye region 164 is arranged across the pixels 120 in a plurality of rows.
  • the boundary between the right eye region 162 and the left eye region 164 is located on the R subpixel 130, the G subpixel 132, and the B subpixel 134 of the pixel 120.
  • the pixels 120 in the first row and the fifth row are arranged in the right eye region 162
  • the pixels 120 in the third row and the seventh row are arranged in the left eye region 164.
  • the pixels 120 in the second row, the fourth row, and the sixth row are located at the boundary between the right eye region 162 and the left eye region 164.
  • the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first row to the seventh row, thereby the image display unit 110.
  • the two-dimensional image composed of a set having each of the plurality of pixels 120 as a point is displayed. That is, not only the entire pixel 120 is included in the right eye region 162 or the left eye region 164 like the pixel 120 in the first row, but also the right eye region 162 and the left eye region 164 like the pixel 120 in the second row. Those on the boundary are also points constituting a two-dimensional image. Thereby, a two-dimensional image with high spatial resolution can be displayed.
  • the two-dimensional image emitted from the image display unit 110 is uniformly linearly polarized in the vertical direction, and is modulated into circularly polarized light in opposite directions in the right eye region 162 and the left eye region 164 by the polarization modulator 150.
  • the image is a normal two-dimensional image in which the difference in the direction of circular polarization does not appear visually. Recognized as
  • FIG. 5 is an explanatory diagram when a three-dimensional image is displayed in the positional relationship of FIG.
  • the driving unit 170 displays the right-eye image using the pixels 120 in the first and fifth rows arranged at positions corresponding to the right-eye region 162. Furthermore, the driving unit 170 displays the image for the left eye using the pixels 120 in the third row and the seventh row arranged at positions corresponding to the left eye region 164.
  • the driving unit 170 displays a black image on the pixels 120 in the second, fourth, and sixth rows, which are other rows.
  • the driving unit 170 does not change the direction of polarized light that passes through the liquid crystal 116 by not applying a voltage to the pixels 120 in the second row, the fourth row, and the sixth row. Shut off. An image that appears visually black may be displayed by other methods.
  • each pixel 120 has one R sub-pixel 130, one G sub-pixel 132, and one B sub-pixel 134, the viewing angle that does not cause crosstalk is widened when a three-dimensional image is displayed with a simple structure. be able to. This is particularly useful when it is desired to display a simple three-dimensional figure with a wide field of view, such as the amblyopia / strabismus child training proposed in the medical field.
  • the vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120, the tolerance of misalignment with respect to the pixels 120 is increased.
  • FIG. 6 shows the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the other polarization modulation unit 151.
  • the same components as those in FIG. 6 are identical to those in FIG. 6 and the same components as those in FIG.
  • Each of the right eye region 162 and the left eye region 164 of the polarization modulator 151 has a stripe shape that is long in the horizontal direction, and is arranged to cover all the pixels 120 in the horizontal direction, for example.
  • the vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120. More specifically, the width B is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
  • each of the right eye region 162 and the left eye region 164 is arranged across a plurality of rows of pixels 120 in the vertical direction.
  • the boundary between the right eye region 162 and the left eye region 164 is located on the R subpixel 130, the G subpixel 132, and the B subpixel 134 of the pixel 120.
  • the pixels 120 in the fifth and sixth rows adjacent to each other are arranged in the right eye region 162, and the pixels 120 in the second and third rows adjacent to each other are arranged in the left eye region 164. Is done.
  • the pixels 120 in the first row, the fourth row, and the seventh row are located at the boundary between the right eye region 162 and the left eye region 164.
  • the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first to seventh rows as in the case of FIG. . Thereby, a two-dimensional image with high spatial resolution can be displayed.
  • the driving unit 170 displays the right-eye image using the pixels 120 in the second and third rows arranged at positions corresponding to the right-eye region 162. Furthermore, the driving unit 170 displays a left-eye image using the pixels 120 in the fifth row and the sixth row arranged at positions corresponding to the left eye region 164.
  • the driving unit 170 displays a black image on the pixels 120 in the first row, the fourth row, and the seventh row, which are other rows.
  • the black image display method is the same as in FIG.
  • the same effects as in FIGS. 4 and 5 are obtained. Furthermore, since the ratio of the pixels 120 that display the black image in the three-dimensional image is about 1/3, a brighter right-eye image and left-eye image can be displayed.
  • FIG. 7 shows the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the other polarization modulation unit 152.
  • the same components as those in FIG. 7 are identical to those in FIG. 7 and the same components as those in FIG. 7;
  • Each of the right eye region 162 and the left eye region 164 of the polarization modulator 152 has a stripe shape that is long in the horizontal direction, and is arranged to cover all the pixels 120 in the horizontal direction, for example.
  • the vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120. More specifically, the width B is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
  • each of the right eye region 162 and the left eye region 164 is arranged across a plurality of rows of pixels 120 in the vertical direction.
  • the boundary between the right eye region 162 and the left eye region 164 is located on the light shielding region 136 of the pixel 120.
  • the pixels 120 in the first and second rows and the sixth and seventh rows adjacent to each other are arranged in the right eye region 162, and the third to fifth rows adjacent to each other.
  • the pixels 120 are arranged in the left eye region 164.
  • the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first to seventh rows as in the case of FIG. . Thereby, a two-dimensional image with high spatial resolution can be displayed.
  • the driving unit 170 When displaying a three-dimensional image, the driving unit 170 is arranged at a position corresponding to the right eye region 162, and is located on the far side from the boundary among the second and third rows, and the sixth and seventh rows.
  • the right-eye image is displayed using the pixels 120 in the first and seventh rows.
  • the driving unit 170 displays the left-eye image using the pixels 120 in the fourth row in the middle of the third to fifth rows arranged at positions corresponding to the left-eye region 164.
  • the driving unit 170 displays a black image on the pixels 120 in the second, third, fifth, and sixth rows.
  • the black image display method is the same as in FIG.
  • FIG. 8 shows the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 153.
  • the same components as those of FIG. 8 are identical components as those of FIG.
  • Each of the right eye region 162 and the left eye region 164 of the polarization modulator 152 has a stripe shape that is long in the vertical direction, and is arranged to cover all the pixels 120 in the vertical direction, for example.
  • the right eye area 162 and the left eye area 164 are alternately provided in the horizontal direction.
  • the horizontal width C of each of the right eye region 162 and the left eye region 164 is larger than the horizontal pitch A of the pixels 120. More specifically, the width C is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
  • each of the right eye region 162 and the left eye region 164 is arranged across a plurality of columns of pixels 120 in the horizontal direction.
  • the boundary between the right eye region 162 and the left eye region 164 is located on the light shielding region 136 of the pixel 120.
  • the pixels 120 in the first and second columns, and the sixth and seventh columns adjacent to each other are arranged in the right eye region 162, and the third and fifth columns adjacent to each other.
  • the pixels 120 are arranged in the left eye region 164.
  • the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first to seventh columns as in the case of FIG. . Thereby, a two-dimensional image with high spatial resolution can be displayed.
  • the driving unit 170 When displaying a three-dimensional image, the driving unit 170 is arranged at a position corresponding to the right eye region 162, and is on the far side from the boundary among the first and second columns, and the sixth and seventh columns. The right-eye image is displayed using the pixels 120 in the first and seventh columns. Furthermore, the driving unit 170 displays the left-eye image using the pixels 120 in the center of the fourth column from the third column to the fifth column, which are arranged at positions corresponding to the left eye region 164.
  • the driving unit 170 displays a black image on the pixels 120 in the second, third, fifth, and sixth columns.
  • the black image display method is the same as in FIG.
  • the same effects as in FIG. In particular, the same effects as in FIG. In particular, the viewing angle at which crosstalk does not occur can be made wider in the horizontal direction.
  • FIG. 8 corresponds to the relationship in which the horizontal direction and the vertical direction in the example of FIG. 7 are interchanged. Instead of this, the horizontal direction and the vertical direction in the examples of FIGS. 4 to 6 may be interchanged.
  • FIG. 9 shows a positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 154.
  • the same components as those in FIG. 9 are identical to those in FIG. 9 and the same components as those in FIG.
  • Each of the right eye region 162 and the left eye region 164 of the polarization modulator 152 has a rectangular shape that is long in the horizontal direction.
  • the right eye area 162 and the left eye area 164 are alternately provided in the horizontal direction and the vertical direction.
  • the vertical width B of each of the right eye area 162 and the left eye area 164 is larger than the horizontal pitch A of the pixels 120. More specifically, the width B is 1.9 to 2.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
  • the horizontal width C of each of the right eye region 162 and the left eye region 164 is larger than the horizontal pitch A of the pixels 120. More specifically, the width C is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
  • each of the right eye region 162 and the left eye region 164 is arranged across a plurality of rows and columns of pixels 120 in the horizontal direction and the vertical direction.
  • the boundary running in the horizontal direction is located on the R subpixel 130, the G subpixel 132, and the B subpixel 134 of the pixels 120 in the second row, the fourth row, and the sixth row.
  • the boundary running in the vertical direction is located on the light shielding region 136 between the second and third rows and between the fifth and sixth rows.
  • the driving unit 170 applies to each of the plurality of pixels 120 including the first to sixth rows and the first to eighth columns as in the case of FIG. Control the brightness independently. Thereby, a two-dimensional image with high spatial resolution can be displayed.
  • the driving unit 170 When displaying a three-dimensional image, the driving unit 170 is arranged at a position corresponding to the right eye region 162, the first row, the first column, the first row, the seventh column, the third row, the fourth column, the fifth row, the first column.
  • the right-eye image is displayed using the pixel 120 in the fifth row and the seventh column.
  • the driving unit 170 uses the pixels 120 in the first row, fourth column, third row, first column, third row, seventh column, and fifth row, fourth column, which are arranged at positions corresponding to the left eye region 164. Display the image.
  • the driving unit 170 displays a black image on the pixels 120 in the second row, the fourth row, the sixth row, the second column, the third column, the fifth column, the sixth column, or the eighth column.
  • the black image display method is the same as in FIG.
  • the same effects as in FIGS. 4 and 5 are obtained.
  • the viewing angle at which no crosstalk occurs can be made wider in the vertical and horizontal directions.
  • the crosstalk was measured for the image display device 10 shown in FIG.
  • the dimensions related to crosstalk are as follows.
  • the thickness of the substrate glass 140 is 0.26 mm
  • the thickness of the polarizing plate 142 is 0.195 mm
  • the thickness of the adhesive 144 is 0.03 mm. Therefore, the distance D between the color filter 122 and the retardation film 166 is 0.485 mm.
  • the pixel 120 is a square having a side of 0.096 mm.
  • the width of the light shielding area is 0.003 mm for each of the left and right sides and 0.020 mm for each of the top and bottom. Therefore, the effective black width when a black image is displayed is 0.096 mm + 0.020 mm ⁇ 2, which is 0.136 mm.
  • FIG. 10 is an explanatory diagram for explaining a method of measuring crosstalk.
  • a luminance meter 30 is disposed on the image output side of the image display device 10 of the first embodiment via the left eye modulation element 24 that is the same as the glasses 20.
  • the crosstalk [%] defined by the following equation 1 was measured while changing the vertical viewing angle ⁇ with respect to the image display device 10.
  • I (left black right white) is the luminance measured by the luminance meter when black is displayed as the left eye image and white is displayed as the right eye image.
  • I (left white right black) is the luminance measured by the luminance meter when white is displayed as the left eye image and black is displayed as the right eye image.
  • I (left black right black) is the luminance measured by the luminance meter when black is displayed as the left-eye image and the right-eye image.
  • FIG. 11 shows the measurement result of crosstalk in the arrangement relationship of FIG. About 23 degrees was obtained as the viewing angle in the vertical direction where almost no crosstalk occurs.
  • FIG. 12 shows a model for approximately calculating crosstalk. As shown in FIG. 12, when there is a region for the right eye image and the left eye image, the viewing angle ⁇ that theoretically does not cause crosstalk is calculated by the following equation (2).
  • the width P is the sum of the width of the black display pixel 120 and the width of the light shielding region in the pixel 120 displaying the right eye image or the like.
  • n1 is a refractive index between the color filter 122 and the polarization modulator 150, and approximates 1.5.
  • n0 is the refractive index around the user and is set to 1.
  • the distance D was set to 0.485 as in the first embodiment. The results are shown in Table 1 below.
  • the calculated value corresponding to FIG. 4 is 23.9 degrees, which is approximately the same as about 23 degrees actually measured in Example 1, and it can be seen that the approximate calculation is appropriate. Furthermore, it can be seen that when a black image column or row is included, the viewing angle at which crosstalk does not occur is wider than when the black image is not included. Furthermore, it can be seen that the larger the number of columns or rows of the black image, the wider the viewing angle at which no crosstalk occurs.
  • the black image when displaying a three-dimensional image is an example of a third image different from the image for the right eye and the image for the left eye.
  • an intermediate image between the right-eye image and the left-eye image may be displayed as the third image.
  • An example of the intermediate image is an image obtained by averaging adjacent right-eye images and left-eye images for each color. This makes it difficult to see the roughness of the visual image while reducing crosstalk.
  • FIG. 13 is a diagram for explaining another example of an intermediate image.
  • FIG. 13 illustrates the positional relationship between the pixel 120 and the polarization modulator 152 of FIG.
  • the intermediate image is an image having a luminance that does not exceed the smaller luminance for each color of the adjacent right-eye image and left-eye image.
  • the luminances of sub-pixels of the respective colors of a pair of pixels R of the right-eye image and left-eye image L that are adjacent in the vertical direction are represented as R (i) and L (i).
  • i is an R sub-pixel 130, a G sub-pixel 132, and a B sub-pixel 134.
  • the number of intermediate pixels sandwiched between a pair of right-eye image pixels R and left-eye image pixels L that are adjacent in the vertical direction is N, and each luminance is Mn (i).
  • n 1, 2,... N.
  • the luminance of the R sub-pixel 130 of the pixel L is smaller. Therefore, the luminance obtained by dividing this by the number of intermediate pixels 2 is assigned to the R sub-pixels 130 of the intermediate pixels M1 and M2. The same applies to (b) and (c).
  • the intermediate image in FIG. 13 it is possible to make it difficult to see the roughness of the visual image while reducing crosstalk.
  • the image since the image has a luminance that does not exceed the luminance of the smaller of the adjacent right-eye image and left-eye image for each color, a false color is unlikely to occur.
  • the intermediate image may be incident on both the right eye and the left eye of the user, but the luminance is low, and it has the color components originally included in both the right eye image and the left eye image. Therefore, the discomfort of parallax due to crosstalk is less likely to occur.
  • FIG. 14 shows an example of adjusting the brightness of the entire image.
  • the brightness of the entire image may be adjusted as shown in FIG.
  • an intermediate image is determined by the method of FIG. Next, the right-eye image and the left-eye image are adjusted.
  • p 2N
  • Ra (i) R (i) ⁇ (M1 (i) + M2 (i) +... + Mp (i)) / 2
  • FIG. 15 shows another pixel 180.
  • the pixel 180 includes an R main pixel 181 and an R subpixel 182 for red.
  • the pixel 180 has a G main pixel 183 and a G subpixel 184 for green, and a B main pixel 185 and a B subpixel 186 for blue.
  • the G main pixel 183 and the G subpixel 184 are arranged in the vertical direction.
  • the G main pixel 183 and the G subpixel 184 have the same width in the horizontal direction, but the length in the vertical direction is longer in the G main pixel 183 than in the G subpixel 184.
  • the G main pixel 183 has a wider display area than the G subpixel 184.
  • FIG. 16 shows the positional relationship between the image display unit 190 using the pixels 180 and the polarization modulation unit 192.
  • a plurality of pixels 180 in FIG. 15 are two-dimensionally arranged in the main surface direction.
  • FIG. 16 shows a portion corresponding to 3 rows and 2 columns.
  • Each of the right eye region 162 and the left eye region 164 of the polarization modulator 192 has a stripe shape that is long in the horizontal direction, and is arranged so as to cover all the pixels 180 in the horizontal direction, for example.
  • the vertical width E of each of the right eye region 162 and the left eye region 164 is substantially equal to the vertical pitch E of the pixels 180.
  • the boundary between the right eye region 162 and the left eye region 164 is such that the R main pixel 181 (and the G main pixel 183 and the B main pixel 185) displaying the right eye image adjacent to each other in the vertical direction and the R main image displaying the left eye image. It is located between the pixel 181 (and the G main pixel 183 and the B main pixel 185).
  • R sub-pixel 182 between an R main pixel 181 that displays a right-eye image adjacent to each other in the vertical direction and an R main pixel 181 that displays a left-eye image, and the boundary is R Located on the sub-pixel 182.
  • the driving unit 170 controls the luminance with the R main pixel 181 and the corresponding R subpixel 182 as a set. Similarly, the driving unit 170 controls the luminance with the G main pixel 183 and the corresponding G subpixel 184 as a set, and controls the luminance with the B main pixel 185 and the corresponding B subpixel 186 as a set. As a result, a two-dimensional image composed of a set having one pixel 180 as a whole is displayed. That is, in one pixel 180, the entire main pixel and the entire subpixel display the same color.
  • the driving unit 170 uses the R main pixel 181, the G main pixel 183, and the B main pixel 185 of the pixels 180 in the first and third columns corresponding to the right eye region 162. Display an image. Furthermore, the driving unit 170 displays the left-eye image using the R main pixel 181, the G main pixel 183, and the B main pixel 185 of the pixels 180 in the second column corresponding to the left eye region 164.
  • the driving unit 170 for each pixel 180 is intermediate between the right-eye image and the left-eye image with respect to the R subpixel 182, the G subpixel 184, and the B subpixel 186.
  • the image of is displayed.
  • the intermediate image any of the intermediate images described above may be used.
  • the adjustment of FIG. 14 may be further performed on the right-eye image and the left-eye image.
  • the direction of polarization is an example, and other polarization directions may be used.
  • one of the right eye region 162 and the left eye region 164 is a ⁇ / 2 plate and rotates the direction of incident polarized light, and the other is optically isotropic and does not change the direction of incident polarized light.
  • Both the 162 and the left eye region 164 may be ⁇ / 2 plates, and the right eye image and the left eye image may be output from the image display device 10 as linearly polarized light orthogonal to each other.
  • FIGS. 1 to 16 the example using the red, green, and blue sub-pixels has been described. However, sub-pixels of other colors may be used, and four or more sub-pixels including yellow or the like may be used. Pixels may be used. Further, it may be monochrome without color sub-pixels.
  • the boundary between the right eye region 162 and the left eye region 164 coincides.
  • the right eye region 162 and the left eye region 164 may partially overlap or may be separated from each other.
  • the degree of overlap or separation is preferably within the range of the display area or the light-shielding area on which the boundary in FIGS.
  • the right eye region 162 and the left eye region 164 may be non-integer multiples of the pixel pitch, for example, 1.5 times, and the number of pixels straddling is not limited to the example of FIGS. You may straddle.
  • the function that the driving unit 170 generates an intermediate image may be incorporated in the ASIC as a part of the driver of the image display device 10, or may be installed in the image display device 10 as a software program.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The objective of the invention is to reduce crosstalk without using any special pixel structure of image display section or any special driver circuit. An image display apparatus comprises: an image display section in which multiple pixels each of which is a recurrent unit of forming an image are two-dimensionally arranged in the main-surface directions; and a polarization modulation section which is located on the image presenting side of the image display section and in which first and second modulation sections for modulating the polarization state of the image into mutually different states are alternately placed in at least one direction along the main-surface directions of the image display section. Each of the first and second modulation sections has a width that is greater than the pixel pitch with which a plurality of pixels are arranged in one direction.

Description

画像表示装置Image display device
 本発明は、画像表示装置に関する。 The present invention relates to an image display device.
 右目用画像と左目用画像を表示する画像表示部と、それぞれの画像を異なる偏光状態に偏光する偏光変調部とを用いて3次元画像を表示する画像表示装置がある。画像表示部のカラーフィルタと偏光変調部の境界とは画像表示装置の基板ガラス等により隔てられているので、右目用画像が左目用の偏光に変調される等のクロストークが発生する。クロストークを低減する方法として、一つの画素を主画素と副画素に分けて、3次元画像を表示する場合に副画素を黒画像にする方法がある(例えば、特許文献1参照)。
 特許文献1 特開2010-204389号公報
There is an image display device that displays a three-dimensional image using an image display unit that displays an image for the right eye and an image for the left eye, and a polarization modulator that polarizes the respective images into different polarization states. Since the boundary between the color filter of the image display unit and the polarization modulation unit is separated by the substrate glass or the like of the image display device, crosstalk occurs such that the right-eye image is modulated to the left-eye polarization. As a method for reducing crosstalk, there is a method in which one pixel is divided into a main pixel and a sub-pixel and the sub-pixel is made a black image when a three-dimensional image is displayed (for example, see Patent Document 1).
Patent Document 1 Japanese Patent Application Laid-Open No. 2010-204389
 しかしながら、副画素を黒画像にする方法にあっては、主画素と副画素とを一画素とする特殊な画像表示部の画素構成を用いることになってしまう。特に、当該画像表示部では、2次元画像を表示する場合に副画素を主画素と同じ色にするために特殊な駆動回路を用いることになるという不具合があった。 However, in the method of making a subpixel a black image, a pixel configuration of a special image display unit in which the main pixel and the subpixel are one pixel is used. In particular, the image display unit has a problem that a special drive circuit is used to make the sub-pixel the same color as the main pixel when displaying a two-dimensional image.
 本発明の第1の態様においては、画像表示装置であって、画像を形成する繰り返し単位となる画素が主面方向に二次元的に複数配列された画像表示部と、画像表示部における画像の出射側に配され、画像の偏光状態を互いに異なる状態に変調する第1変調部および第2変調部が、画像表示部の主面方向に沿った少なくとも一の方向について交互に設けられた偏光変調部とを備え、第1変調部および第2変調部のそれぞれは、一の方向について複数の画素が配されている画素ピッチよりも大きい幅を有する。 According to a first aspect of the present invention, there is provided an image display device, wherein an image display unit in which a plurality of pixels that are repetitive units for forming an image are two-dimensionally arranged in the main surface direction, and an image display unit Polarization modulation in which a first modulation unit and a second modulation unit that are arranged on the output side and modulate the polarization state of an image to different states are alternately provided in at least one direction along the main surface direction of the image display unit Each of the first modulation unit and the second modulation unit has a width larger than a pixel pitch in which a plurality of pixels are arranged in one direction.
 本発明の第2の態様においては、画像表示装置であって、画像を形成する繰り返し単位となる画素が主面方向に二次元的に複数配列された画像表示部と、画像表示部における画像の出射側に配され、画像の偏光状態を互いに異なる状態に変調する第1変調部および第2変調部が、画像表示部の主面方向に沿った少なくとも一の方向について交互に設けられた偏光変調部と、複数の画素を駆動する駆動部とを備え、複数の画素のそれぞれは、一の方向に並んだ主画素および副画素を有し、第1変調部および第2変調部の境界は、副画素上に配され、駆動部は、2次元画像を表示する場合に、主画素および対応する副画素を一組として輝度を制御することにより2次元画像を表示し、駆動部は、3次元画像を表示する場合に、第1変調部に対応する主画素を用いて右目用画像および左目用画像の一方を表示し、第2変調部に対応する主画素を用いて右目用画像および左目用画像の他方を表示し、副画素を用いて、隣接する右目用画像と左目用画像との中間の画像を表示する。 According to a second aspect of the present invention, there is provided an image display device, in which an image display unit in which a plurality of pixels that are repetitive units for forming an image are two-dimensionally arranged in a main surface direction, and an image display unit Polarization modulation in which a first modulation unit and a second modulation unit that are arranged on the output side and modulate the polarization state of an image to different states are alternately provided in at least one direction along the main surface direction of the image display unit Each of the plurality of pixels has a main pixel and a sub-pixel arranged in one direction, and the boundary between the first modulation unit and the second modulation unit is: When displaying the two-dimensional image, the driving unit displays the two-dimensional image by controlling the luminance with the main pixel and the corresponding sub-pixel as a set, and the driving unit displays the two-dimensional image. Corresponds to the first modulation unit when displaying images One of the right-eye image and the left-eye image is displayed using the main pixel, the other of the right-eye image and the left-eye image is displayed using the main pixel corresponding to the second modulation unit, and the sub-pixel is used. An intermediate image between the adjacent right-eye image and left-eye image is displayed.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態にかかる画像表示装置10の分解斜視図を示す。The disassembled perspective view of the image display apparatus 10 concerning this embodiment is shown. 画像表示部110および偏光変調部150の各部材の積層関係を示す概略断面図である。4 is a schematic cross-sectional view showing a stacking relationship between members of an image display unit 110 and a polarization modulation unit 150. 画像表示部110の画素120を模式的に示す。The pixel 120 of the image display part 110 is shown typically. 画像表示部110の画素120と偏光変調部150の右目領域162および左目領域164との位置関係を示す。The positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the polarization modulation unit 150 is shown. 図4の位置関係において3次元画像を表示する場合の説明図である。It is explanatory drawing in the case of displaying a three-dimensional image in the positional relationship of FIG. 画像表示部110の画素120と、他の偏光変調部151の右目領域162および左目領域164との位置関係を示す。The positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the other polarization modulation unit 151 is shown. 画像表示部110の画素120と、さらに他の偏光変調部152の右目領域162および左目領域164との位置関係を示す。The positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 152 is shown. 画像表示部110の画素120と、さらに他の偏光変調部153の右目領域162および左目領域164との位置関係を示す。The positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 153 is shown. 画像表示部110の画素120と、さらに他の偏光変調部154の右目領域162および左目領域164との位置関係を示す。The positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 154 is shown. クロストークを測定する方法を説明する説明図である。It is explanatory drawing explaining the method to measure crosstalk. クロストークの測定結果を示す。The measurement result of crosstalk is shown. クロストークを近似的に計算するモデルを示す。A model for approximately calculating crosstalk is shown. 中間の画像の他の例を説明する図である。It is a figure explaining the other example of an intermediate image. 画像全体の輝度を調整する例を示す。An example of adjusting the brightness of the entire image is shown. 他の画素180を示す。Another pixel 180 is shown. 画素180を用いた画像表示部190と、偏光変調部192との位置関係を示す。The positional relationship between the image display unit 190 using the pixels 180 and the polarization modulation unit 192 is shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態にかかる画像表示装置10の分解斜視図を示す。図1には使用者が用いる眼鏡20も示されている。 FIG. 1 is an exploded perspective view of an image display device 10 according to the present embodiment. FIG. 1 also shows glasses 20 used by the user.
 画像表示装置10は、使用者から遠い順にバックライト100、画像表示部110および偏光変調部150を有する。バックライト100は画像表示部110へ向けて無偏光の白色光を照射する。 The image display device 10 includes a backlight 100, an image display unit 110, and a polarization modulation unit 150 in order from the user. The backlight 100 emits unpolarized white light toward the image display unit 110.
 画像表示部110は、偏光板112、液晶116、偏光板142および駆動部170を有する。画像表示部110は、バックライト100からの白色光を用いて、画像を形成して出射する。 The image display unit 110 includes a polarizing plate 112, a liquid crystal 116, a polarizing plate 142, and a driving unit 170. The image display unit 110 forms and emits an image using the white light from the backlight 100.
 偏光板112は、透過軸に平行な方向に電場が振動する偏光を透過し、これに直交する偏光を遮断する。同様に、偏光板142は、透過軸に平行な方向に電場が振動する偏光を透過し、これに直交する偏光を遮断する。図1の例において偏光板112の透過軸は水平方向を向いており、偏光板142は垂直方向を向いており、互いは直交している。偏光板112、142の一例は一軸方向に延伸された高分子材料の板であるが、これに限られない。 The polarizing plate 112 transmits polarized light whose electric field vibrates in a direction parallel to the transmission axis, and blocks polarized light orthogonal thereto. Similarly, the polarizing plate 142 transmits polarized light whose electric field oscillates in a direction parallel to the transmission axis, and blocks polarized light orthogonal thereto. In the example of FIG. 1, the transmission axis of the polarizing plate 112 faces the horizontal direction, the polarizing plate 142 faces the vertical direction, and they are orthogonal to each other. An example of the polarizing plates 112 and 142 is a polymer material plate stretched in a uniaxial direction, but is not limited thereto.
 液晶116は、主面方向に二次元的に複数配列された複数の画素120を有する。各々の画素120は、画像表示部110における画像を形成する繰り返し単位となる。液晶116は画素120ごとに駆動部170に駆動されることにより、その配向方向が制御されて、入射した偏光の方向をそのまま出射したり、回転して出射したりする。これにより、入射した偏光の方向をそのまま出射した画素の光は偏光板142で遮断される。一方、偏光の方向を回転して出射した画素120の光のうち、偏光板142の透過軸と平行な成分が透過する。これにより画像が形成される。偏光の方向の回転量は駆動部170の電圧により制御され、多階調の輝度が表現される。 The liquid crystal 116 has a plurality of pixels 120 two-dimensionally arranged in the main surface direction. Each pixel 120 is a repeating unit for forming an image in the image display unit 110. The liquid crystal 116 is driven by the driving unit 170 for each pixel 120 so that the alignment direction is controlled, and the direction of the incident polarized light is emitted as it is or rotated and emitted. As a result, the light of the pixel that has exited the direction of the incident polarized light as it is is blocked by the polarizing plate 142. On the other hand, a component parallel to the transmission axis of the polarizing plate 142 is transmitted through the light of the pixel 120 emitted by rotating the polarization direction. As a result, an image is formed. The amount of rotation in the direction of polarization is controlled by the voltage of the driving unit 170, and multi-tone luminance is expressed.
 偏光変調部150は、液晶116の主面方向に沿って、図1における垂直方向に交互に設けられた右目領域162および左目領域164を有する。右目領域162および左目領域164は、画像の偏光状態を互いに異なる状態に変調する。 The polarization modulation unit 150 has right eye regions 162 and left eye regions 164 that are alternately provided in the vertical direction in FIG. 1 along the main surface direction of the liquid crystal 116. The right eye region 162 and the left eye region 164 modulate the polarization state of the image to different states.
 右目領域162および左目領域164の一例は、互いに直交する遅相軸を有するλ/4板である。図1の例において、右目領域162は使用者からみて左斜め45度の遅相軸を有し、偏光板142から出射される垂直方向の偏光を反時計回りの円偏光に変換する。一方、図1の例において、左目領域164は使用者からみて右斜め45度の遅相軸を有し、偏光板142から出射される垂直方向の偏光を時計回りの円偏光に変換する。液晶116の画素120と右目領域162および左目領域164との間の位置関係は後述するが、これにより、右目領域162から反時計回りの円偏光の右目用画像が出力され、左目領域164から時計回りの円偏光の左目用画像が出力される。 An example of the right eye region 162 and the left eye region 164 is a λ / 4 plate having slow axes that are orthogonal to each other. In the example of FIG. 1, the right eye region 162 has a slow axis of 45 degrees leftward as viewed from the user, and converts vertically polarized light emitted from the polarizing plate 142 into counterclockwise circularly polarized light. On the other hand, in the example of FIG. 1, the left eye region 164 has a slow axis of 45 degrees diagonally to the right when viewed from the user, and converts vertically polarized light emitted from the polarizing plate 142 into clockwise circularly polarized light. Although the positional relationship between the pixel 120 of the liquid crystal 116 and the right eye region 162 and the left eye region 164 will be described later, a counterclockwise circularly polarized right eye image is output from the right eye region 162 and the left eye region 164 outputs a clock. An image for the left eye of the circular polarization around is output.
 眼鏡20は、右目用変調素子22および左目用変調素子24を有する。右目用変調素子22はλ/4板と偏光子とを積層したものであり、反時計回りの円偏光を透過して、時計回りの円偏光を遮断する。一方、左目用変調素子24もλ/4板と偏光子とを積層したものであるが遅相軸が右目用変調素子22と直交しており、時計回りの円偏光を透過して、反時計回りの円偏光を遮断する。これにより、眼鏡20をかけた使用者は、右目用画像を右目でみて、左目用画像を左目でみることにより、3次元画像を立体視することができる。 The glasses 20 have a right-eye modulation element 22 and a left-eye modulation element 24. The right-eye modulation element 22 is formed by laminating a λ / 4 plate and a polarizer, and transmits counterclockwise circularly polarized light and blocks clockwise circularly polarized light. On the other hand, the left-eye modulation element 24 is also a laminate of a λ / 4 plate and a polarizer. However, the slow axis is orthogonal to the right-eye modulation element 22 and transmits clockwise circularly polarized light. Blocks circularly polarized light around. Thereby, the user wearing the glasses 20 can view the three-dimensional image stereoscopically by viewing the right-eye image with the right eye and the left-eye image with the left eye.
 図2は、画像表示部110および偏光変調部150の各部材の積層関係を示す概略断面図である。図2の下方がバックライト100側であり、上方が画像の出射側である。 FIG. 2 is a schematic cross-sectional view showing the stacking relationship of the members of the image display unit 110 and the polarization modulation unit 150. The lower side of FIG. 2 is the backlight 100 side, and the upper side is the image emission side.
 画像表示部110は、バックライト100に近い側から順に、上記偏光板112、基板ガラス114、上記液晶116、カラーフィルタ122、基板ガラス140および上記偏光板142を有する。偏光変調部150は、画像表示部110に近い側から、右目領域162および左目領域164を形成する位相差膜166と、当該位相差膜166を支持する透明基材168とを有する。透明基材168は光学的に等方なガラス基板、透明プラスチック基板、透明フィルム等である。位相差膜166は、ラビング、光配向等により配向された液晶分子を含む。 The image display unit 110 includes the polarizing plate 112, the substrate glass 114, the liquid crystal 116, the color filter 122, the substrate glass 140, and the polarizing plate 142 in this order from the side close to the backlight 100. The polarization modulation unit 150 includes a retardation film 166 that forms the right eye region 162 and the left eye region 164 and a transparent base material 168 that supports the retardation film 166 from the side close to the image display unit 110. The transparent substrate 168 is an optically isotropic glass substrate, a transparent plastic substrate, a transparent film, or the like. The retardation film 166 includes liquid crystal molecules that are aligned by rubbing, photo-alignment, or the like.
 画像表示部110の偏光板142と偏光変調部150とが透明な粘着剤144で粘着されている。これにより、カラーフィルタ122と位相差膜166の間には、基板ガラス140等が介在しており、距離Dだけ離れている。カラーフィルタ122と位相差膜166とが離れているので、設定された位置以外の位置、より詳しくは図1および図2の例では設定された垂直方向の位置よりも上下した位置においては、画像表示部110から出射した右目用画像が偏光変調部150の左目領域164を通って使用者に到達する、またはその逆の、クロストークが発生する。 The polarizing plate 142 and the polarization modulation unit 150 of the image display unit 110 are adhered to each other with a transparent adhesive 144. As a result, the substrate glass 140 or the like is interposed between the color filter 122 and the retardation film 166 and is separated by a distance D. Since the color filter 122 and the retardation film 166 are separated from each other, the image is displayed at a position other than the set position, more specifically at a position above and below the set vertical position in the examples of FIGS. The right-eye image emitted from the display unit 110 reaches the user through the left-eye region 164 of the polarization modulation unit 150, or vice versa, crosstalk occurs.
 図3は、画像表示部110の画素120を模式的に示す。図3に示す例において、画像表示部110がカラー画像を形成することに対応して、画素120は、カラーの三原色である赤、緑および青に対応するRサブ画素130、Gサブ画素132およびBサブ画素134を1つずつ有する。さらにRサブ画素130、Gサブ画素132およびBサブ画素134の周囲を遮光する遮光領域136を有する。これにより、Rサブ画素130、Gサブ画素132およびBサブ画素134は独立した表示領域を有する最小の単位となっている。 FIG. 3 schematically shows the pixel 120 of the image display unit 110. In the example shown in FIG. 3, in response to the image display unit 110 forming a color image, the pixel 120 includes an R sub-pixel 130, a G sub-pixel 132 corresponding to the three primary colors red, green, and blue, and One B sub-pixel 134 is provided. Further, a light shielding region 136 that shields light around the R subpixel 130, the G subpixel 132, and the B subpixel 134 is provided. Thus, the R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 are the smallest units having independent display areas.
 画素120の各々において、Rサブ画素130、Gサブ画素132およびBサブ画素134はそれぞれ同じ大きさであって垂直方向に長い矩形を有し、水平方向に等間隔に並べられている。Rサブ画素130、Gサブ画素132およびBサブ画素134はそれぞれ対応する位置に、赤、緑および青のカラーフィルタ122が配されるとともに、透明な個別電極が配される。これにより、Rサブ画素130、Gサブ画素132およびBサブ画素134を通る偏光の回転量が駆動部170によりそれぞれ制御されて、画像上のカラーの1点をなす。なお、複数の画素120においてRサブ画素130同士、Gサブ画素132同士、Bサブ画素134同士はそれぞれ同一の構成であることが好ましいが、画素120のそれぞれにおける、Rサブ画素130、Gサブ画素132、Bサブ画素134は互いに異なっていてもよい。 In each of the pixels 120, the R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 have the same size, have a rectangular shape that is long in the vertical direction, and are arranged at equal intervals in the horizontal direction. The R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 are provided with red, green, and blue color filters 122 and transparent individual electrodes at corresponding positions. As a result, the rotation amount of the polarized light passing through the R sub-pixel 130, the G sub-pixel 132, and the B sub-pixel 134 is controlled by the driving unit 170 to form one color point on the image. Note that, in the plurality of pixels 120, it is preferable that the R sub-pixels 130, the G sub-pixels 132, and the B sub-pixels 134 have the same configuration, but the R sub-pixel 130 and the G sub-pixel in each of the pixels 120. 132 and the B sub-pixel 134 may be different from each other.
 図4は、画像表示部110の画素120と、偏光変調部150の右目領域162および左目領域164との位置関係を示す。画像表示部110と偏光変調部150とは図1および図2に示すように画像の出射方向について重なっているが、図4では説明のために水平方向にずらして描いた。また、説明のために画素120間が離れているが、遮光領域136で隙間なくつながっていてもよい。 FIG. 4 shows a positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the polarization modulation unit 150. As shown in FIGS. 1 and 2, the image display unit 110 and the polarization modulation unit 150 overlap with each other in the image emission direction. However, in FIG. Further, although the pixels 120 are separated for the sake of explanation, the light shielding regions 136 may be connected without a gap.
 画像表示部110において、同一の構成を有する複数の画素120が、垂直方向にp行、水平方向にq列、繰り返し配されている。図4ではその一部である、7行3列分が示されている。 In the image display unit 110, a plurality of pixels 120 having the same configuration are repeatedly arranged in p rows in the vertical direction and q columns in the horizontal direction. FIG. 4 shows a portion corresponding to 7 rows and 3 columns.
 偏光変調部150の右目領域162および左目領域164の各々は水平方向に長いストライプ状であり、例えば、水平方向のすべての画素120を覆うように配される。右目領域162および左目領域164の各々の垂直方向の幅Bは、画素120の垂直方向のピッチAよりも大きい。より詳しくは幅BはピッチAの1.9倍から2.1倍であり、各画素120の画像表示部110上の位置に基づいて設定されてもよい。 Each of the right eye region 162 and the left eye region 164 of the polarization modulator 150 has a stripe shape that is long in the horizontal direction, and is arranged to cover all the pixels 120 in the horizontal direction, for example. The vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120. More specifically, the width B is 1.9 to 2.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
 これにより、右目領域162および左目領域164の各々は、複数行の画素120を跨いで配される。右目領域162と左目領域164との境界は、画素120のRサブ画素130、Gサブ画素132およびBサブ画素134上に位置する。図4の例において、1行目および5行目の画素120は右目領域162内に配されるともに、3行目および7行目の画素120は左目領域164内に配される。一方、2行目、4行目および6行目の画素120が右目領域162と左目領域164との境界に位置している。 Thereby, each of the right eye region 162 and the left eye region 164 is arranged across the pixels 120 in a plurality of rows. The boundary between the right eye region 162 and the left eye region 164 is located on the R subpixel 130, the G subpixel 132, and the B subpixel 134 of the pixel 120. In the example of FIG. 4, the pixels 120 in the first row and the fifth row are arranged in the right eye region 162, and the pixels 120 in the third row and the seventh row are arranged in the left eye region 164. On the other hand, the pixels 120 in the second row, the fourth row, and the sixth row are located at the boundary between the right eye region 162 and the left eye region 164.
 上記構成において、駆動部170は、2次元画像を表示する場合に、1行目から7行目を含む複数の画素120のそれぞれに対して独立して輝度を制御することにより、画像表示部110全体で、複数の画素120のそれぞれを点とする集合からなる、当該2次元画像を表示する。すなわち、1行目の画素120のように、画素120の全体が右目領域162または左目領域164に含まれるもののみならず、2行目の画素120のように、右目領域162と左目領域164との境界上にあるものも2次元画像を構成する点となる。これにより、空間解像度の高い2次元画像を表示することができる。 In the above configuration, when the two-dimensional image is displayed, the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first row to the seventh row, thereby the image display unit 110. As a whole, the two-dimensional image composed of a set having each of the plurality of pixels 120 as a point is displayed. That is, not only the entire pixel 120 is included in the right eye region 162 or the left eye region 164 like the pixel 120 in the first row, but also the right eye region 162 and the left eye region 164 like the pixel 120 in the second row. Those on the boundary are also points constituting a two-dimensional image. Thereby, a two-dimensional image with high spatial resolution can be displayed.
 なお、画像表示部110から出射した2次元画像は垂直方向に一様に直線偏光しており、偏光変調部150で右目領域162および左目領域164で互いに逆向きの円偏光に変調される。しかしながら、使用者が眼鏡20等の偏光変調素子を用いずに偏光変調部150から出射される画像を観ることにより、当該画像は、円偏光の向きの違いが視覚上現れない通常の2次元画像として認識される。 Note that the two-dimensional image emitted from the image display unit 110 is uniformly linearly polarized in the vertical direction, and is modulated into circularly polarized light in opposite directions in the right eye region 162 and the left eye region 164 by the polarization modulator 150. However, when the user views the image emitted from the polarization modulation unit 150 without using the polarization modulation element such as the glasses 20, the image is a normal two-dimensional image in which the difference in the direction of circular polarization does not appear visually. Recognized as
 図5は、図4の位置関係において3次元画像を表示する場合の説明図である。3次元画像を表示する場合に、駆動部170は、右目領域162に対応した位置に配されている、1行目および5行目の画素120を用いて右目用画像を表示する。さらに、駆動部170は、左目領域164に対応した位置に配されている、3行目および7行目の画素120を用いて左目用画像を表示する。 FIG. 5 is an explanatory diagram when a three-dimensional image is displayed in the positional relationship of FIG. When displaying a three-dimensional image, the driving unit 170 displays the right-eye image using the pixels 120 in the first and fifth rows arranged at positions corresponding to the right-eye region 162. Furthermore, the driving unit 170 displays the image for the left eye using the pixels 120 in the third row and the seventh row arranged at positions corresponding to the left eye region 164.
 一方、駆動部170は、他の行である2行目、4行目および6行目の画素120には黒画像を表示する。この場合に駆動部170は例えば、2行目、4行目および6行目の画素120に電圧を印加しないことで液晶116を透過する偏光の方向を変化させないことにより、バックライト100からの光を遮断する。その他の方法で視覚的に黒に見える画像を表示してもよい。 On the other hand, the driving unit 170 displays a black image on the pixels 120 in the second, fourth, and sixth rows, which are other rows. In this case, for example, the driving unit 170 does not change the direction of polarized light that passes through the liquid crystal 116 by not applying a voltage to the pixels 120 in the second row, the fourth row, and the sixth row. Shut off. An image that appears visually black may be displayed by other methods.
 以上、本実施形態によれば、3次元画像を表示した場合のクロストークを低減しつつ、2次元画像を表示した場合の空間解像度を高く維持することができる。特に、各画素120がRサブ画素130、Gサブ画素132およびBサブ画素134を1つずつ有するので、簡便な構造で、3次元画像を表示した場合にクロストークを生じない視野角を広くすることができる。これは、医療分野で提案されている弱視・斜視児童訓練のように、単純な3次元図形を広い視野で表示したい場合に特に有用である。また、右目領域162および左目領域164の各々の垂直方向の幅Bは、画素120の垂直方向のピッチAよりも大きいので、画素120に対する位置合わせのずれの許容度が大きくなる。 As described above, according to the present embodiment, it is possible to maintain high spatial resolution when displaying a two-dimensional image while reducing crosstalk when displaying a three-dimensional image. In particular, since each pixel 120 has one R sub-pixel 130, one G sub-pixel 132, and one B sub-pixel 134, the viewing angle that does not cause crosstalk is widened when a three-dimensional image is displayed with a simple structure. be able to. This is particularly useful when it is desired to display a simple three-dimensional figure with a wide field of view, such as the amblyopia / strabismus child training proposed in the medical field. Further, since the vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120, the tolerance of misalignment with respect to the pixels 120 is increased.
 図6は、画像表示部110の画素120と他の偏光変調部151の右目領域162および左目領域164との位置関係を示す。図6において図5と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 6 shows the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the other polarization modulation unit 151. In FIG. 6, the same components as those in FIG.
 偏光変調部151の右目領域162および左目領域164の各々は水平方向に長いストライプ状であり、例えば、水平方向のすべての画素120を覆うように配される。右目領域162および左目領域164の各々の垂直方向の幅Bは、画素120の垂直方向のピッチAより大きい。より詳しくは幅BはピッチAの2.9倍から3.1倍であり、各画素120の画像表示部110上の位置に基づいて設定されてもよい。 Each of the right eye region 162 and the left eye region 164 of the polarization modulator 151 has a stripe shape that is long in the horizontal direction, and is arranged to cover all the pixels 120 in the horizontal direction, for example. The vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120. More specifically, the width B is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
 これにより、右目領域162および左目領域164の各々は、垂直方向について複数行の画素120を跨いで配される。右目領域162と左目領域164との境界は、画素120のRサブ画素130、Gサブ画素132およびBサブ画素134上に位置する。図6の例において、互いに隣接する5行目および6行目の画素120は右目領域162内に配されるともに、互いに隣接する2行目および3行目の画素120は左目領域164内に配される。一方、1行目、4行目および7行目の画素120が右目領域162と左目領域164との境界に位置している。 Thereby, each of the right eye region 162 and the left eye region 164 is arranged across a plurality of rows of pixels 120 in the vertical direction. The boundary between the right eye region 162 and the left eye region 164 is located on the R subpixel 130, the G subpixel 132, and the B subpixel 134 of the pixel 120. In the example of FIG. 6, the pixels 120 in the fifth and sixth rows adjacent to each other are arranged in the right eye region 162, and the pixels 120 in the second and third rows adjacent to each other are arranged in the left eye region 164. Is done. On the other hand, the pixels 120 in the first row, the fourth row, and the seventh row are located at the boundary between the right eye region 162 and the left eye region 164.
 上記構成において、駆動部170は、2次元画像を表示する場合に、図4の場合と同様に1行目から7行目を含む複数の画素120のそれぞれに対して独立して輝度を制御する。これにより、空間解像度の高い2次元画像を表示することができる。 In the above configuration, when the two-dimensional image is displayed, the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first to seventh rows as in the case of FIG. . Thereby, a two-dimensional image with high spatial resolution can be displayed.
 3次元画像を表示する場合に、駆動部170は、右目領域162に対応した位置に配されている、2行目および3行目の画素120を用いて右目用画像を表示する。さらに、駆動部170は、左目領域164に対応した位置に配されている、5行目および6行目の画素120を用いて左目用画像を表示する。 When displaying a three-dimensional image, the driving unit 170 displays the right-eye image using the pixels 120 in the second and third rows arranged at positions corresponding to the right-eye region 162. Furthermore, the driving unit 170 displays a left-eye image using the pixels 120 in the fifth row and the sixth row arranged at positions corresponding to the left eye region 164.
 一方、駆動部170は、他の行である1行目、4行目および7行目の画素120には黒画像を表示する。黒画像の表示方法は図5の場合と同様である。 On the other hand, the driving unit 170 displays a black image on the pixels 120 in the first row, the fourth row, and the seventh row, which are other rows. The black image display method is the same as in FIG.
 以上、本実施形態においても、図4および図5と同様の効果を奏する。さらに、3次元画像における黒画像を表示する画素120の割合が約1/3なので、より明るい右目用画像及び左目用画像を表示することができる。 As described above, also in the present embodiment, the same effects as in FIGS. 4 and 5 are obtained. Furthermore, since the ratio of the pixels 120 that display the black image in the three-dimensional image is about 1/3, a brighter right-eye image and left-eye image can be displayed.
 図7は、画像表示部110の画素120とさらに他の偏光変調部152の右目領域162および左目領域164との位置関係を示す。図7において図5と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 7 shows the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of the other polarization modulation unit 152. In FIG. 7, the same components as those in FIG.
 偏光変調部152の右目領域162および左目領域164の各々は水平方向に長いストライプ状であり、例えば、水平方向のすべての画素120を覆うように配される。右目領域162および左目領域164の各々の垂直方向の幅Bは、画素120の垂直方向のピッチAより大きい。より詳しくは幅BはピッチAの2.9倍から3.1倍であり、各画素120の画像表示部110上の位置に基づいて設定されてもよい。 Each of the right eye region 162 and the left eye region 164 of the polarization modulator 152 has a stripe shape that is long in the horizontal direction, and is arranged to cover all the pixels 120 in the horizontal direction, for example. The vertical width B of each of the right eye region 162 and the left eye region 164 is larger than the vertical pitch A of the pixels 120. More specifically, the width B is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
 これにより、右目領域162および左目領域164の各々は、垂直方向について複数行の画素120を跨いで配される。右目領域162と左目領域164との境界は、画素120の遮光領域136上に位置する。図7の例において、互いに隣接する1行目および2行目、並びに、6行目および7行目の画素120は右目領域162内に配されるともに、互いに隣接する3行目から5行目の画素120は左目領域164内に配される。 Thereby, each of the right eye region 162 and the left eye region 164 is arranged across a plurality of rows of pixels 120 in the vertical direction. The boundary between the right eye region 162 and the left eye region 164 is located on the light shielding region 136 of the pixel 120. In the example of FIG. 7, the pixels 120 in the first and second rows and the sixth and seventh rows adjacent to each other are arranged in the right eye region 162, and the third to fifth rows adjacent to each other. The pixels 120 are arranged in the left eye region 164.
 上記構成において、駆動部170は、2次元画像を表示する場合に、図4の場合と同様に1行目から7行目を含む複数の画素120のそれぞれに対して独立して輝度を制御する。これにより、空間解像度の高い2次元画像を表示することができる。 In the above configuration, when the two-dimensional image is displayed, the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first to seventh rows as in the case of FIG. . Thereby, a two-dimensional image with high spatial resolution can be displayed.
 3次元画像を表示する場合に、駆動部170は、右目領域162に対応した位置に配されている、2行目および3行目、並びに、6行目および7行目のうち境界から遠い側の1行目および7行目の画素120を用いて右目用画像を表示する。さらに、駆動部170は、左目領域164に対応した位置に配されている、3行目から5行目のうち中央の4行目の画素120を用いて左目用画像を表示する。 When displaying a three-dimensional image, the driving unit 170 is arranged at a position corresponding to the right eye region 162, and is located on the far side from the boundary among the second and third rows, and the sixth and seventh rows. The right-eye image is displayed using the pixels 120 in the first and seventh rows. Furthermore, the driving unit 170 displays the left-eye image using the pixels 120 in the fourth row in the middle of the third to fifth rows arranged at positions corresponding to the left-eye region 164.
 一方、駆動部170は、他の行である2行目、3行目、5行目および6行目の画素120には黒画像を表示する。黒画像の表示方法は図5の場合と同様である。 On the other hand, the driving unit 170 displays a black image on the pixels 120 in the second, third, fifth, and sixth rows. The black image display method is the same as in FIG.
 以上、本実施形態においても、図4および図5と同様の効果を奏する。さらに、垂直方向に隣接する2つの行の画素120で黒画像を表示するので、クロストークの生じない視野角を垂直方向により広くすることができる。 As described above, also in the present embodiment, the same effects as in FIGS. 4 and 5 are obtained. Furthermore, since a black image is displayed by the pixels 120 in two rows adjacent in the vertical direction, the viewing angle at which crosstalk does not occur can be made wider in the vertical direction.
 図8は、画像表示部110の画素120とさらに他の偏光変調部153の右目領域162および左目領域164との位置関係を示す。図8において図5と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 8 shows the positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 153. In FIG. 8, the same components as those of FIG.
 偏光変調部152の右目領域162および左目領域164の各々は垂直方向に長いストライプ状であり、例えば、垂直方向のすべての画素120を覆うように配される。右目領域162および左目領域164は水平方向に交互に設けられている。右目領域162および左目領域164の各々の水平方向の幅Cは、画素120の水平方向のピッチAより大きい。より詳しくは幅CはピッチAの2.9倍から3.1倍であり、各画素120の画像表示部110上の位置に基づいて設定されてもよい。 Each of the right eye region 162 and the left eye region 164 of the polarization modulator 152 has a stripe shape that is long in the vertical direction, and is arranged to cover all the pixels 120 in the vertical direction, for example. The right eye area 162 and the left eye area 164 are alternately provided in the horizontal direction. The horizontal width C of each of the right eye region 162 and the left eye region 164 is larger than the horizontal pitch A of the pixels 120. More specifically, the width C is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
 これにより、右目領域162および左目領域164の各々は、水平方向について複数列の画素120を跨いで配される。右目領域162と左目領域164との境界は、画素120の遮光領域136上に位置する。図8の例において、互いに隣接する1列目および2列目、並びに、6列目および7列目の画素120は右目領域162内に配されるともに、互いに隣接する3列目および5列目の画素120は左目領域164内に配される。 Thereby, each of the right eye region 162 and the left eye region 164 is arranged across a plurality of columns of pixels 120 in the horizontal direction. The boundary between the right eye region 162 and the left eye region 164 is located on the light shielding region 136 of the pixel 120. In the example of FIG. 8, the pixels 120 in the first and second columns, and the sixth and seventh columns adjacent to each other are arranged in the right eye region 162, and the third and fifth columns adjacent to each other. The pixels 120 are arranged in the left eye region 164.
 上記構成において、駆動部170は、2次元画像を表示する場合に、図4の場合と同様に1列目から7列目を含む複数の画素120のそれぞれに対して独立して輝度を制御する。これにより、空間解像度の高い2次元画像を表示することができる。 In the above configuration, when the two-dimensional image is displayed, the driving unit 170 controls the luminance independently for each of the plurality of pixels 120 including the first to seventh columns as in the case of FIG. . Thereby, a two-dimensional image with high spatial resolution can be displayed.
 3次元画像を表示する場合に、駆動部170は、右目領域162に対応した位置に配されている、1列目および2列目、並びに、6列目および7列目のうち境界から遠い側の1列目および7列目の画素120を用いて右目用画像を表示する。さらに、駆動部170は、左目領域164に対応した位置に配されている、3列目から5列目のうち中央の4列目の画素120を用いて左目用画像を表示する。 When displaying a three-dimensional image, the driving unit 170 is arranged at a position corresponding to the right eye region 162, and is on the far side from the boundary among the first and second columns, and the sixth and seventh columns. The right-eye image is displayed using the pixels 120 in the first and seventh columns. Furthermore, the driving unit 170 displays the left-eye image using the pixels 120 in the center of the fourth column from the third column to the fifth column, which are arranged at positions corresponding to the left eye region 164.
 一方、駆動部170は、他の列である2列目、3列目、5列目および6列目の画素120には黒画像を表示する。黒画像の表示方法は図5の場合と同様である。 On the other hand, the driving unit 170 displays a black image on the pixels 120 in the second, third, fifth, and sixth columns. The black image display method is the same as in FIG.
 以上、本実施形態においても、図7と同様の効果を奏する。特に、クロストークの生じない視野角を水平方向により広くすることができる。 As described above, the same effects as in FIG. In particular, the viewing angle at which crosstalk does not occur can be made wider in the horizontal direction.
 図8の例は、図7の例の水平方向と垂直方向とを入れ替えた関係に相当する。これに代えて、図4から図6の例の水平方向と垂直方向とを入れ替えた関係にしてもよい。 8 corresponds to the relationship in which the horizontal direction and the vertical direction in the example of FIG. 7 are interchanged. Instead of this, the horizontal direction and the vertical direction in the examples of FIGS. 4 to 6 may be interchanged.
 図9は、画像表示部110の画素120とさらに他の偏光変調部154の右目領域162および左目領域164との位置関係を示す。図9において図5と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 9 shows a positional relationship between the pixel 120 of the image display unit 110 and the right eye region 162 and the left eye region 164 of another polarization modulation unit 154. In FIG. 9, the same components as those in FIG.
 偏光変調部152の右目領域162および左目領域164の各々は水平方向に長い矩形を有している。右目領域162および左目領域164は水平方向および垂直方向に交互に設けられている。右目領域162および左目領域164の各々の垂直方向の幅Bは、画素120の水平方向のピッチAより大きい。より詳しくは幅BはピッチAの1.9倍から2.1倍であり、各画素120の画像表示部110上の位置に基づいて設定されてもよい。さらに、右目領域162および左目領域164の各々の水平方向の幅Cは、画素120の水平方向のピッチAより大きい。より詳しくは幅CはピッチAの2.9倍から3.1倍であり、各画素120の画像表示部110上の位置に基づいて設定されてもよい。 Each of the right eye region 162 and the left eye region 164 of the polarization modulator 152 has a rectangular shape that is long in the horizontal direction. The right eye area 162 and the left eye area 164 are alternately provided in the horizontal direction and the vertical direction. The vertical width B of each of the right eye area 162 and the left eye area 164 is larger than the horizontal pitch A of the pixels 120. More specifically, the width B is 1.9 to 2.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110. Further, the horizontal width C of each of the right eye region 162 and the left eye region 164 is larger than the horizontal pitch A of the pixels 120. More specifically, the width C is 2.9 to 3.1 times the pitch A, and may be set based on the position of each pixel 120 on the image display unit 110.
 これにより、右目領域162および左目領域164の各々は、水平方向および垂直方向について、複数の行および列の画素120を跨いで配される。図9の例において、水平方向に走る境界は、2行目、4行目および6行目の画素120のRサブ画素130、Gサブ画素132およびBサブ画素134上に位置する。一方、垂直方向に走る境界は、2列目と3列目の間、および、5列目と6列目の間の遮光領域136上に位置する。 Thereby, each of the right eye region 162 and the left eye region 164 is arranged across a plurality of rows and columns of pixels 120 in the horizontal direction and the vertical direction. In the example of FIG. 9, the boundary running in the horizontal direction is located on the R subpixel 130, the G subpixel 132, and the B subpixel 134 of the pixels 120 in the second row, the fourth row, and the sixth row. On the other hand, the boundary running in the vertical direction is located on the light shielding region 136 between the second and third rows and between the fifth and sixth rows.
 上記構成において、駆動部170は、2次元画像を表示する場合に、図4の場合と同様に1行目から6行目かつ1列目から8列目を含む複数の画素120のそれぞれに対して独立して輝度を制御する。これにより、空間解像度の高い2次元画像を表示することができる。 In the above configuration, when the two-dimensional image is displayed, the driving unit 170 applies to each of the plurality of pixels 120 including the first to sixth rows and the first to eighth columns as in the case of FIG. Control the brightness independently. Thereby, a two-dimensional image with high spatial resolution can be displayed.
 3次元画像を表示する場合に、駆動部170は、右目領域162に対応した位置に配されている、1行1列目、1行7列目、3行4列目、5行1列目および5行7列目の画素120を用いて右目用画像を表示する。さらに、駆動部170は、左目領域164に対応した位置に配されている、1行4列目、3行1列目、3行7列目および5行4列目の画素120を用いて左目用画像を表示する。 When displaying a three-dimensional image, the driving unit 170 is arranged at a position corresponding to the right eye region 162, the first row, the first column, the first row, the seventh column, the third row, the fourth column, the fifth row, the first column. The right-eye image is displayed using the pixel 120 in the fifth row and the seventh column. Furthermore, the driving unit 170 uses the pixels 120 in the first row, fourth column, third row, first column, third row, seventh column, and fifth row, fourth column, which are arranged at positions corresponding to the left eye region 164. Display the image.
 一方、駆動部170は、2行目、4行目、6行目、2列目、3列目、5列目、6列目または8列目の画素120には黒画像を表示する。黒画像の表示方法は図5の場合と同様である。 On the other hand, the driving unit 170 displays a black image on the pixels 120 in the second row, the fourth row, the sixth row, the second column, the third column, the fifth column, the sixth column, or the eighth column. The black image display method is the same as in FIG.
 以上、本実施形態においても、図4および図5と同様の効果を奏する。特に、クロストークの生じない視野角を垂直方向および水平方向により広くすることができる。 As described above, also in the present embodiment, the same effects as in FIGS. 4 and 5 are obtained. In particular, the viewing angle at which no crosstalk occurs can be made wider in the vertical and horizontal directions.
 図1に示す画像表示装置10についてクロストークを測定した。画像表示装置10において、クロストークに関連する各寸法は下記の通りである。基板ガラス140の厚み0.26mm、偏光板142の厚み0.195mm、粘着剤144の厚み0.03mm。よって、カラーフィルタ122と位相差膜166との距離Dは0.485mmである。 The crosstalk was measured for the image display device 10 shown in FIG. In the image display device 10, the dimensions related to crosstalk are as follows. The thickness of the substrate glass 140 is 0.26 mm, the thickness of the polarizing plate 142 is 0.195 mm, and the thickness of the adhesive 144 is 0.03 mm. Therefore, the distance D between the color filter 122 and the retardation film 166 is 0.485 mm.
 また、画素120は一辺が0.096mmの正方形である。遮光領域の幅は左右のそれぞれ0.003mmずつ、上下で0.020mmずつである。よって、黒画像を表示した場合の実効的な黒の幅は、0.096mm+0.020mm×2で、0.136mmとなる。 The pixel 120 is a square having a side of 0.096 mm. The width of the light shielding area is 0.003 mm for each of the left and right sides and 0.020 mm for each of the top and bottom. Therefore, the effective black width when a black image is displayed is 0.096 mm + 0.020 mm × 2, which is 0.136 mm.
 図10は、クロストークを測定する方法を説明する説明図である。実施例1の画像表示装置10の画像出射側に、眼鏡20と同じ左目用変調素子24を介して輝度計30を配する。画像表示装置10に対する上下視野角θを変えながら、下記数1式で定義されるクロストーク[%]を測定した。
Figure JPOXMLDOC01-appb-M000001
FIG. 10 is an explanatory diagram for explaining a method of measuring crosstalk. A luminance meter 30 is disposed on the image output side of the image display device 10 of the first embodiment via the left eye modulation element 24 that is the same as the glasses 20. The crosstalk [%] defined by the following equation 1 was measured while changing the vertical viewing angle θ with respect to the image display device 10.
Figure JPOXMLDOC01-appb-M000001
 ここで、I(左黒右白)は、左目用画像として黒、右目用画像として白を表示した場合に輝度計で計測される輝度である。I(左白右黒)は、左目用画像として白、右目用画像として黒を表示した場合に輝度計で計測される輝度である。I(左黒右黒)は、左目用画像および右目用画像として黒を表示した場合に輝度計で計測される輝度である。 Here, I (left black right white) is the luminance measured by the luminance meter when black is displayed as the left eye image and white is displayed as the right eye image. I (left white right black) is the luminance measured by the luminance meter when white is displayed as the left eye image and black is displayed as the right eye image. I (left black right black) is the luminance measured by the luminance meter when black is displayed as the left-eye image and the right-eye image.
 図11は、図4の配置関係におけるクロストークの測定結果を示す。クロストークがほとんど生じない垂直方向の視野角として約23度が得られた。 FIG. 11 shows the measurement result of crosstalk in the arrangement relationship of FIG. About 23 degrees was obtained as the viewing angle in the vertical direction where almost no crosstalk occurs.
 上記数1式で定義されるクロストークを、計算により近似的に求めた。図12は、クロストークを近似的に計算するモデルを示す。図12に示すように、右目用画像および左目用画像の領域がある場合に、理論的にクロストークが発生しない視野角θは、下記数2式で算出される。
Figure JPOXMLDOC01-appb-M000002
The crosstalk defined by the above equation 1 was approximately obtained by calculation. FIG. 12 shows a model for approximately calculating crosstalk. As shown in FIG. 12, when there is a region for the right eye image and the left eye image, the viewing angle θ that theoretically does not cause crosstalk is calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 ここで、幅Pは黒表示の画素120の幅と右目用画像等を表示している画素120における遮光領域の幅の合計である。n1はカラーフィルタ122と偏光変調部150との間の屈折率であり、1.5と近似した。n0は使用者の周囲の屈折率であり、1とおいた。また、距離Dは実施例1と同様に0.485とした。結果を下記表1に示す。 Here, the width P is the sum of the width of the black display pixel 120 and the width of the light shielding region in the pixel 120 displaying the right eye image or the like. n1 is a refractive index between the color filter 122 and the polarization modulator 150, and approximates 1.5. n0 is the refractive index around the user and is set to 1. The distance D was set to 0.485 as in the first embodiment. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図4に対応する計算値が23.9度であり、実施例1で実際に測定した約23度と一致しており、近似的な計算が妥当であることがわかる。さらに、黒画像の列または行を入れると、入れない場合に比べてクロストークを生じない視野角が広くなることが分かる。さらに、黒画像の列または行の数が多くなるほど、クロストークを生じない視野角が広くなることが分かる。 The calculated value corresponding to FIG. 4 is 23.9 degrees, which is approximately the same as about 23 degrees actually measured in Example 1, and it can be seen that the approximate calculation is appropriate. Furthermore, it can be seen that when a black image column or row is included, the viewing angle at which crosstalk does not occur is wider than when the black image is not included. Furthermore, it can be seen that the larger the number of columns or rows of the black image, the wider the viewing angle at which no crosstalk occurs.
 図1から図9の実施形態において、3次元画像を表示する場合における黒画像は、右目用画像および左目用画像とは異なる第3の画像の一例である。黒画像に代えて、第3の画像として、右目用画像と左目用画像との中間の画像を表示してもよい。中間の画像の一例は、隣接する右目用画像と左目用画像とを色毎に平均した画像である。これにより、クロストークを低減しつつ、視覚上の画像の粗さを見難くすることができる。 In the embodiment of FIGS. 1 to 9, the black image when displaying a three-dimensional image is an example of a third image different from the image for the right eye and the image for the left eye. Instead of the black image, an intermediate image between the right-eye image and the left-eye image may be displayed as the third image. An example of the intermediate image is an image obtained by averaging adjacent right-eye images and left-eye images for each color. This makes it difficult to see the roughness of the visual image while reducing crosstalk.
 図13は、中間の画像の他の例を説明する図である。図13は、画素120と図7の偏光変調部152との位置関係を例示している。 FIG. 13 is a diagram for explaining another example of an intermediate image. FIG. 13 illustrates the positional relationship between the pixel 120 and the polarization modulator 152 of FIG.
 図13の例で、中間の画像は、隣接する右目用画像および左目用画像のうち色毎に小さい方の輝度を超えない輝度を有する画像となる。例えば、垂直方向で隣接する一対の右目用画像の画素Rと左目用画像の画素Lのそれぞれの色のサブ画素の輝度をR(i)およびL(i)と表す。ここで、iはRサブ画素130、Gサブ画素132、Bサブ画素134である。垂直方向で隣接する一対の右目用画像の画素Rと左目用画像の画素Lに挟まれた中間画素の個数をNとし、それぞれの輝度をMn(i)とする。ここでn=1、2、・・・Nである。 In the example of FIG. 13, the intermediate image is an image having a luminance that does not exceed the smaller luminance for each color of the adjacent right-eye image and left-eye image. For example, the luminances of sub-pixels of the respective colors of a pair of pixels R of the right-eye image and left-eye image L that are adjacent in the vertical direction are represented as R (i) and L (i). Here, i is an R sub-pixel 130, a G sub-pixel 132, and a B sub-pixel 134. The number of intermediate pixels sandwiched between a pair of right-eye image pixels R and left-eye image pixels L that are adjacent in the vertical direction is N, and each luminance is Mn (i). Here, n = 1, 2,... N.
 中間画素Mnの輝度Mn(i)を下記数3式で決める。
[数3]
R(i)≦L(i)のとき、Mn(i)=R(i)/N
R(i)>L(i)のとき、Mn(i)=L(i)/N
The luminance Mn (i) of the intermediate pixel Mn is determined by the following equation (3).
[Equation 3]
When R (i) ≦ L (i), Mn (i) = R (i) / N
When R (i)> L (i), Mn (i) = L (i) / N
 例えば、図13の(a)の例におけるRサブ画素130に注目する。画素RのRサブ画素130と画素LのRサブ画素130とを比較すると、画素LのRサブ画素130の輝度の方が小さい。よって、これを中間画素の個数2で割った輝度が中間画素M1、M2のRサブ画素130に割り当てられている。(b)および(c)についても同様である。 For example, attention is paid to the R sub-pixel 130 in the example of FIG. When the R sub-pixel 130 of the pixel R and the R sub-pixel 130 of the pixel L are compared, the luminance of the R sub-pixel 130 of the pixel L is smaller. Therefore, the luminance obtained by dividing this by the number of intermediate pixels 2 is assigned to the R sub-pixels 130 of the intermediate pixels M1 and M2. The same applies to (b) and (c).
 以上、図13の中間の画像によれば、クロストークを低減しつつ、視覚上の画像の粗さを見難くすることができる。特に、隣接する右目用画像および左目用画像のうち色毎に小さい方の輝度を超えない輝度を有する画像となるので、偽色が発生しにくい。なお、中間の画像は使用者の右目と左目の両方に入射する場合があるが、輝度が小さく、また、もともと右目用画像と左目用画像の両方に含まれていた色の成分を有しているので、クロストークによる視差の違和感は生じにくい。 As described above, according to the intermediate image in FIG. 13, it is possible to make it difficult to see the roughness of the visual image while reducing crosstalk. In particular, since the image has a luminance that does not exceed the luminance of the smaller of the adjacent right-eye image and left-eye image for each color, a false color is unlikely to occur. The intermediate image may be incident on both the right eye and the left eye of the user, but the luminance is low, and it has the color components originally included in both the right eye image and the left eye image. Therefore, the discomfort of parallax due to crosstalk is less likely to occur.
 図14は、画像全体の輝度を調整する例を示す。図13の中間の画素を生成することに加えて、さらに、図14に示すように画像全体の輝度を調整してもよい。 FIG. 14 shows an example of adjusting the brightness of the entire image. In addition to generating the intermediate pixel in FIG. 13, the brightness of the entire image may be adjusted as shown in FIG.
 図14の例において、まず、図13の方法で中間の画像を決定する。次に、右目用画像および左目用画像を調整する。以下、右目用画像を調整する例を説明する。注目している右目用画像の画素120の輝度R(i)に対し、垂直方向で、当該画素120に隣接する中間画素の輝度M1(i)、M2(i)、・・・Mp(i)(ただしp=2N)を用いて、数4式で補正輝度Ra(i)を決める。
[数4]
Ra(i)=R(i)-(M1(i)+M2(i)+・・・+Mp(i))/2
In the example of FIG. 14, first, an intermediate image is determined by the method of FIG. Next, the right-eye image and the left-eye image are adjusted. Hereinafter, an example of adjusting the right-eye image will be described. The brightness M1 (i), M2 (i),... Mp (i) of the intermediate pixels adjacent to the pixel 120 in the vertical direction with respect to the brightness R (i) of the pixel 120 of the right-eye image being noticed. (However, p = 2N) is used to determine the correction luminance Ra (i) using Equation (4).
[Equation 4]
Ra (i) = R (i) − (M1 (i) + M2 (i) +... + Mp (i)) / 2
 以上、図14の調整後の画像によれば、クロストークを低減しつつ、視覚上の画像の粗さをより見難くすることができる。 As described above, according to the image after adjustment in FIG. 14, it is possible to make the roughness of the visual image more difficult to see while reducing crosstalk.
 図15は、他の画素180を示す。図15の例において、画素180は、赤色につき、R主画素181およびR副画素182を有する。同様に画素180は、緑色につきG主画素183およびG副画素184を有し、青色につきB主画素185およびB副画素186を有する。 FIG. 15 shows another pixel 180. In the example of FIG. 15, the pixel 180 includes an R main pixel 181 and an R subpixel 182 for red. Similarly, the pixel 180 has a G main pixel 183 and a G subpixel 184 for green, and a B main pixel 185 and a B subpixel 186 for blue.
 G主画素183とG副画素184とは垂直方向に並んでいる。G主画素183およびG副画素184は水平方向に同じ幅を有するが、垂直方向の長さはG主画素183の方がG副画素184より長い。これにより、G主画素183の方がG副画素184より広い表示領域を有する。G主画素183とG副画素184、B主画素185とB副画素186の関係も同様である。 The G main pixel 183 and the G subpixel 184 are arranged in the vertical direction. The G main pixel 183 and the G subpixel 184 have the same width in the horizontal direction, but the length in the vertical direction is longer in the G main pixel 183 than in the G subpixel 184. Thus, the G main pixel 183 has a wider display area than the G subpixel 184. The same applies to the relationship between the G main pixel 183 and the G sub pixel 184, and the B main pixel 185 and the B sub pixel 186.
 図16は、画素180を用いた画像表示部190と偏光変調部192との位置関係を示す。画像表示部190において、図15の画素180が主面方向に二次元的に複数配されている。図16ではその一部である、3行2列分が示されている。 FIG. 16 shows the positional relationship between the image display unit 190 using the pixels 180 and the polarization modulation unit 192. In the image display unit 190, a plurality of pixels 180 in FIG. 15 are two-dimensionally arranged in the main surface direction. FIG. 16 shows a portion corresponding to 3 rows and 2 columns.
 偏光変調部192の右目領域162および左目領域164の各々は水平方向に長いストライプ状であり、例えば、水平方向のすべての画素180を覆うように配される。右目領域162および左目領域164の各々の垂直方向の幅Eは、画素180の垂直方向のピッチEに略等しい。右目領域162と左目領域164との境界は、垂直方向で互いに隣接する右目用画像を表示するR主画素181(および、G主画素183、B主画素185)と左目用画像を表示するR主画素181(および、G主画素183、B主画素185)との間に位置する。図16に示す例において、垂直方向で互いに隣接する右目用画像を表示するR主画素181と左目用画像を表示するR主画素181との間にはR副画素182があり、当該境界はR副画素182上に位置する。 Each of the right eye region 162 and the left eye region 164 of the polarization modulator 192 has a stripe shape that is long in the horizontal direction, and is arranged so as to cover all the pixels 180 in the horizontal direction, for example. The vertical width E of each of the right eye region 162 and the left eye region 164 is substantially equal to the vertical pitch E of the pixels 180. The boundary between the right eye region 162 and the left eye region 164 is such that the R main pixel 181 (and the G main pixel 183 and the B main pixel 185) displaying the right eye image adjacent to each other in the vertical direction and the R main image displaying the left eye image. It is located between the pixel 181 (and the G main pixel 183 and the B main pixel 185). In the example shown in FIG. 16, there is an R sub-pixel 182 between an R main pixel 181 that displays a right-eye image adjacent to each other in the vertical direction and an R main pixel 181 that displays a left-eye image, and the boundary is R Located on the sub-pixel 182.
 上記構成において、2次元画像を表示する場合に、駆動部170はR主画素181および対応するR副画素182を一組として輝度を制御する。同様に、駆動部170は、G主画素183および対応するG副画素184を一組として輝度を制御し、B主画素185および対応するB副画素186を一組として輝度を制御する。これにより、1つの画素180の全体を1つの点とする集合からなる2次元画像が表示される。すなわち、1つの画素180内において主画素全体と副画素全体とは同じ色を表示する。 In the above configuration, when a two-dimensional image is displayed, the driving unit 170 controls the luminance with the R main pixel 181 and the corresponding R subpixel 182 as a set. Similarly, the driving unit 170 controls the luminance with the G main pixel 183 and the corresponding G subpixel 184 as a set, and controls the luminance with the B main pixel 185 and the corresponding B subpixel 186 as a set. As a result, a two-dimensional image composed of a set having one pixel 180 as a whole is displayed. That is, in one pixel 180, the entire main pixel and the entire subpixel display the same color.
 3次元画像を表示する場合に、駆動部170は、右目領域162に対応する1列目および3列目の画素180のR主画素181、G主画素183およびB主画素185を用いて右目用画像を表示する。さらに、駆動部170は、左目領域164に対応する2列目の画素180のR主画素181、G主画素183およびB主画素185を用いて左目用画像を表示する。 When displaying a three-dimensional image, the driving unit 170 uses the R main pixel 181, the G main pixel 183, and the B main pixel 185 of the pixels 180 in the first and third columns corresponding to the right eye region 162. Display an image. Furthermore, the driving unit 170 displays the left-eye image using the R main pixel 181, the G main pixel 183, and the B main pixel 185 of the pixels 180 in the second column corresponding to the left eye region 164.
 一方、3次元画像を表示する場合に、駆動部170は、いずれの画素180についても、R副画素182、G副画素184およびB副画素186に対して右目用画像と左目用画像との中間の画像を表示する。中間の画像については、上記したいずれの中間の画像を用いてもよい。また、図13の中間の画像を用いる場合に、さらに、右目用画像と左目用画像に対して、図14の調整をしてもよい。 On the other hand, when displaying a three-dimensional image, the driving unit 170 for each pixel 180 is intermediate between the right-eye image and the left-eye image with respect to the R subpixel 182, the G subpixel 184, and the B subpixel 186. The image of is displayed. As the intermediate image, any of the intermediate images described above may be used. Further, when the intermediate image of FIG. 13 is used, the adjustment of FIG. 14 may be further performed on the right-eye image and the left-eye image.
 以上、図15および図16の実施形態によれば、クロストークを低減しつつ、視覚上の画像の粗さを見難くすることができる。 As described above, according to the embodiment of FIGS. 15 and 16, it is possible to make it difficult to see the roughness of the visual image while reducing crosstalk.
 なお、図1から図16の実施形態において、偏光の方向は一例を示したものであって、他の偏光の方向を用いてもよい。例えば、右目領域162および左目領域164の一方がλ/2板であって入射する偏光の方向を回転し、他方が光学的に等方であって入射する偏光の方向を変更しないか、右目領域162および左目領域164の両方がλ/2板で、右目用画像と左目用画像とを互いに直交する直線偏光として画像表示装置10から出力してもよい。 Note that, in the embodiments of FIGS. 1 to 16, the direction of polarization is an example, and other polarization directions may be used. For example, one of the right eye region 162 and the left eye region 164 is a λ / 2 plate and rotates the direction of incident polarized light, and the other is optically isotropic and does not change the direction of incident polarized light. Both the 162 and the left eye region 164 may be λ / 2 plates, and the right eye image and the left eye image may be output from the image display device 10 as linearly polarized light orthogonal to each other.
 また、図1から図16の実施形態において、赤、緑および青のサブ画素を用いる例を説明したが、他の色のサブ画素であってもよく、黄色等を加えた4つ以上のサブ画素が用いられてもよい。また、色のサブ画素を有しないモノクロであってもよい。 Further, in the embodiments of FIGS. 1 to 16, the example using the red, green, and blue sub-pixels has been described. However, sub-pixels of other colors may be used, and four or more sub-pixels including yellow or the like may be used. Pixels may be used. Further, it may be monochrome without color sub-pixels.
 上記図1から図16の実施形態において、右目領域162と左目領域164との境界が一致している。これに代えて、右目領域162と左目領域164とが一部重なっていてもよいし、互いに離れていてもよい。重なりまたは離れの程度は、図1から図16における境界が乗っている表示領域または遮光領域の範囲内であることが好ましい。また、右目領域162および左目領域164は画素のピッチの非整数倍、例えば、1.5倍等でもよく、画素を跨ぐ数は図1から図16の例に限られず、4つ以上の画素を跨いでもよい。 1 to FIG. 16, the boundary between the right eye region 162 and the left eye region 164 coincides. Instead, the right eye region 162 and the left eye region 164 may partially overlap or may be separated from each other. The degree of overlap or separation is preferably within the range of the display area or the light-shielding area on which the boundary in FIGS. Further, the right eye region 162 and the left eye region 164 may be non-integer multiples of the pixel pitch, for example, 1.5 times, and the number of pixels straddling is not limited to the example of FIGS. You may straddle.
 駆動部170が中間の画像を生成する機能は、画像表示装置10のドライバの一部としてASICに組み込まれていてもよいし、ソフトウェアプログラムとして画像表示装置10にインストールされていてもよい。 The function that the driving unit 170 generates an intermediate image may be incorporated in the ASIC as a part of the driver of the image display device 10, or may be installed in the image display device 10 as a software program.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.

Claims (13)

  1.  画像を形成する繰り返し単位となる画素が主面方向に二次元的に複数配列された画像表示部と、
     前記画像表示部における前記画像の出射側に配され、前記画像の偏光状態を互いに異なる状態に変調する第1変調部および第2変調部が、前記画像表示部の前記主面方向に沿った少なくとも一の方向について交互に設けられた偏光変調部と
    を備え、
     前記第1変調部および前記第2変調部のそれぞれは、前記一の方向について前記複数の画素が配されている画素ピッチよりも大きい幅を有する画像表示装置。
    An image display unit in which a plurality of pixels as a repeating unit for forming an image are two-dimensionally arranged in the main surface direction;
    A first modulation unit and a second modulation unit that are arranged on the image output side of the image display unit and modulate the polarization state of the image to different states are at least along the main surface direction of the image display unit. A polarization modulation section provided alternately in one direction,
    Each of the first modulation unit and the second modulation unit is an image display device having a width larger than a pixel pitch in which the plurality of pixels are arranged in the one direction.
  2.  前記第1変調部および前記第2変調部のそれぞれは、前記一の方向について複数の画素を跨いで配される請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein each of the first modulation unit and the second modulation unit is arranged across a plurality of pixels in the one direction.
  3.  前記複数の画素は同一の表示領域の大きさを有する請求項1または2に記載の画像表示装置。 The image display device according to claim 1, wherein the plurality of pixels have the same display area size.
  4.  前記複数の画素の各々は、互いに異なる色を表示する複数のサブ画素を有する請求項1から3のいずれか1項に記載の画像表示装置。 The image display device according to any one of claims 1 to 3, wherein each of the plurality of pixels includes a plurality of sub-pixels that display different colors.
  5.  前記複数の画素を駆動する駆動部をさらに備え、
     前記駆動部は、2次元画像を表示する場合に、前記複数の画素のそれぞれに対して独立して輝度を制御することにより前記2次元画像を表示し、
     前記駆動部は、3次元画像を表示する場合に、前記複数の画素のうち、前記第1変調部に対応する画素の少なくともいずれかを用いて右目用画像および左目用画像の一方を表示し、前記第2変調部に対応する画素の少なくともいずれかを用いて前記右目用画像および前記左目用画像の他方を表示し、他の画素を用いて前記右目用画像および前記左目用画像のいずれとも異なる第3画像を表示する請求項1から4のいずれか1項に記載の画像表示装置。
    A drive unit for driving the plurality of pixels;
    When the driving unit displays a two-dimensional image, the driving unit displays the two-dimensional image by controlling luminance independently for each of the plurality of pixels.
    When displaying the three-dimensional image, the driving unit displays one of the right-eye image and the left-eye image using at least one of the pixels corresponding to the first modulation unit among the plurality of pixels. The other of the right-eye image and the left-eye image is displayed using at least one of the pixels corresponding to the second modulation unit, and is different from the right-eye image and the left-eye image using other pixels. The image display apparatus of any one of Claim 1 to 4 which displays a 3rd image.
  6.  前記第1変調部と前記第2変調部との境界は、互いに隣接する前記右目用画像を表示する画素と前記左目用画像を表示する画素との間に位置する請求項5に記載の画像表示装置。 The image display according to claim 5, wherein a boundary between the first modulation unit and the second modulation unit is located between a pixel displaying the right-eye image and a pixel displaying the left-eye image adjacent to each other. apparatus.
  7.  前記第3画像は黒画像である請求項6に記載の画像表示装置。 The image display device according to claim 6, wherein the third image is a black image.
  8.  前記第3画像は、隣接する前記右目用画像と前記左目用画像との中間の画像である請求項6に記載の画像表示装置。 The image display device according to claim 6, wherein the third image is an intermediate image between the adjacent right-eye image and the left-eye image.
  9.  前記中間の画像は、隣接する右目用画像と左目用画像とを色毎に平均した画像である請求項8に記載の画像表示装置。 The image display device according to claim 8, wherein the intermediate image is an image obtained by averaging adjacent right-eye images and left-eye images for each color.
  10.  前記中間の画像は、隣接する右目用画像および左目用画像のうち色毎に小さい方の輝度を超えない輝度を有する画像である請求項8に記載の画像表示装置。 The image display device according to claim 8, wherein the intermediate image is an image having a luminance that does not exceed a luminance of a smaller one of the adjacent right-eye image and left-eye image for each color.
  11.  画像を形成する繰り返し単位となる画素が主面方向に二次元的に複数配列された画像表示部と、
     前記画像表示部における前記画像の出射側に配され、前記画像の偏光状態を互いに異なる状態に変調する第1変調部および第2変調部が、前記画像表示部の前記主面方向に沿った少なくとも一の方向について交互に設けられた偏光変調部と、
     前記複数の画素を駆動する駆動部と
    を備え、
     前記複数の画素のそれぞれは、前記一の方向に並んだ主画素および副画素を有し、
     前記第1変調部および前記第2変調部の境界は、前記副画素上に配され、
     前記駆動部は、2次元画像を表示する場合に、前記主画素および対応する前記副画素を一組として輝度を制御することにより前記2次元画像を表示し、
     前記駆動部は、3次元画像を表示する場合に、前記第1変調部に対応する前記主画素を用いて右目用画像および左目用画像の一方を表示し、前記第2変調部に対応する前記主画素を用いて前記右目用画像および前記左目用画像の他方を表示し、前記副画素を用いて、隣接する前記右目用画像と前記左目用画像との中間の画像を表示する画像表示装置。
    An image display unit in which a plurality of pixels as a repeating unit for forming an image are two-dimensionally arranged in the main surface direction;
    A first modulation unit and a second modulation unit that are arranged on the image output side of the image display unit and modulate the polarization state of the image to different states are at least along the main surface direction of the image display unit. Polarization modulators alternately provided in one direction;
    A drive unit for driving the plurality of pixels,
    Each of the plurality of pixels has a main pixel and a sub-pixel arranged in the one direction,
    A boundary between the first modulation unit and the second modulation unit is disposed on the sub-pixel,
    When displaying the two-dimensional image, the driving unit displays the two-dimensional image by controlling luminance with the main pixel and the corresponding sub-pixel as a set,
    When displaying a three-dimensional image, the driving unit displays one of a right-eye image and a left-eye image using the main pixel corresponding to the first modulation unit, and corresponds to the second modulation unit. An image display device that displays the other of the right-eye image and the left-eye image using a main pixel, and displays an intermediate image between the adjacent right-eye image and the left-eye image using the sub-pixel.
  12.  前記中間の画像は、隣接する右目用画像と左目用画像とを色毎に平均した画像である請求項11に記載の画像表示装置。 12. The image display device according to claim 11, wherein the intermediate image is an image obtained by averaging adjacent right-eye images and left-eye images for each color.
  13.  前記中間の画像は、隣接する右目用画像および左目用画像のうち色毎に小さい方の輝度を超えない輝度を有する画像である請求項11に記載の画像表示装置。 12. The image display device according to claim 11, wherein the intermediate image is an image having a luminance that does not exceed a smaller luminance for each color of adjacent right-eye images and left-eye images.
PCT/JP2014/080098 2013-12-05 2014-11-13 Image display apparatus WO2015083522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251840A JP2014112838A (en) 2013-12-05 2013-12-05 Image display device
JP2013-251840 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083522A1 true WO2015083522A1 (en) 2015-06-11

Family

ID=51169672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080098 WO2015083522A1 (en) 2013-12-05 2014-11-13 Image display apparatus

Country Status (3)

Country Link
JP (1) JP2014112838A (en)
TW (1) TW201534981A (en)
WO (1) WO2015083522A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520841B (en) * 2013-11-26 2018-02-14 Lg Display Co Ltd 3-dimensional image display device
CN114503556A (en) * 2019-10-01 2022-05-13 京瓷株式会社 Three-dimensional display device, controller, three-dimensional display method, three-dimensional display system, and moving object

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3817379B1 (en) * 2018-06-26 2024-03-13 Kyocera Corporation Three-dimensional display device and three-dimensional display method
CN113205760B (en) * 2021-04-29 2023-12-01 无锡唐古半导体有限公司 Silicon-based micro display and driving circuit thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204389A (en) * 2009-03-03 2010-09-16 Sony Corp Display device
JP2010250257A (en) * 2009-04-17 2010-11-04 Lg Display Co Ltd Image display device
WO2012023492A1 (en) * 2010-08-18 2012-02-23 シャープ株式会社 Stereoscopic image display panel, stereoscopic image display device, and stereoscopic image display system
WO2012111496A1 (en) * 2011-02-15 2012-08-23 シャープ株式会社 Display device and display method
WO2013047099A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204389A (en) * 2009-03-03 2010-09-16 Sony Corp Display device
JP2010250257A (en) * 2009-04-17 2010-11-04 Lg Display Co Ltd Image display device
WO2012023492A1 (en) * 2010-08-18 2012-02-23 シャープ株式会社 Stereoscopic image display panel, stereoscopic image display device, and stereoscopic image display system
WO2012111496A1 (en) * 2011-02-15 2012-08-23 シャープ株式会社 Display device and display method
WO2013047099A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520841B (en) * 2013-11-26 2018-02-14 Lg Display Co Ltd 3-dimensional image display device
CN114503556A (en) * 2019-10-01 2022-05-13 京瓷株式会社 Three-dimensional display device, controller, three-dimensional display method, three-dimensional display system, and moving object

Also Published As

Publication number Publication date
TW201534981A (en) 2015-09-16
JP2014112838A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
KR100483352B1 (en) Liquid crystal display device using thin film polarizers and retarders
WO2016102495A1 (en) Autostereoscopic display device
KR101370416B1 (en) Liquid Crystal Display Device and Method for Manufacturing The Same
EP2503787A1 (en) 2D/3D liquid crystal display device
KR100813744B1 (en) Image display
US20110279761A1 (en) Image display device
WO2013061734A1 (en) 3d display device
JP2014174449A (en) Display device
EP2827592A1 (en) 3d display method and display device
US9110304B2 (en) Two-dimensional and three-dimensional switchable liquid crystal display device and displaying method thereof
JP2014095900A (en) Liquid crystal slit grating, and three-dimensional display device
US20110221744A1 (en) Stereoscopic image display device
WO2012096032A1 (en) Three-dimensional image display device
WO2015083522A1 (en) Image display apparatus
JP2014126764A5 (en)
KR20130095686A (en) Display device
JP6376715B2 (en) Autostereoscopic display device and driving method thereof
JP2013231745A (en) Stereoscopic display device
JP2012098394A (en) Liquid crystal lens array element and method for driving the same, and stereoscopic image display device
JP2015145920A (en) image display device
KR101556817B1 (en) Stereoscopic image dislcay device
JP2003337390A (en) Device and system for image display
US20130141654A1 (en) Polarization system and three-dimensional image display apparatus having the same
US8456580B2 (en) Three-dimensional display and displaying method thereof
KR101940763B1 (en) Hybrid 3 dimensional stereography image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868024

Country of ref document: EP

Kind code of ref document: A1