WO2013047099A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2013047099A1
WO2013047099A1 PCT/JP2012/072392 JP2012072392W WO2013047099A1 WO 2013047099 A1 WO2013047099 A1 WO 2013047099A1 JP 2012072392 W JP2012072392 W JP 2012072392W WO 2013047099 A1 WO2013047099 A1 WO 2013047099A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
display
dark
bright
Prior art date
Application number
PCT/JP2012/072392
Other languages
French (fr)
Japanese (ja)
Inventor
増田 岳志
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013047099A1 publication Critical patent/WO2013047099A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display

Definitions

  • the present invention relates to a liquid crystal display device capable of displaying a two-dimensional image and a three-dimensional image.
  • a method for allowing the user to perceive an image displayed on the screen as a stereoscopic three-dimensional image there is a method using a display device that makes the polarization state of the left-eye pixel displayed on the screen different from the polarization state of the right-eye pixel. is there.
  • the difference between the left and right polarization states may be a difference in polarization direction or a difference in the rotation direction of circularly polarized light.
  • two types of polarization control filters for example, polarizing plates
  • polarizing plates for example, polarizing plates
  • the polarization control filters are arranged so as to correspond to the left eye pixel and the right eye pixel, respectively, and the polarization of the left eye image
  • the direction and the polarization direction of the right-eye image are different.
  • the polarization control filters are simply arranged, the division of the left-eye image and the right-eye image near the boundary of the polarization control filter whose polarization direction changes is insufficient.
  • FIG. 17 is a plan view schematically showing a part of the arrangement of the polarization control filter and the pixels of the conventional display device.
  • FIG. 17 shows a correspondence relationship between the color display layer 101 and the polarization control filter 102 overlapping the color display layer 101.
  • the left and right polarization regions 102a and 102b of the polarization control filter 102 extend in the horizontal direction (row direction) of the screen, and are alternately arranged in the vertical direction (column direction).
  • the color display layer 101 has pixels of three colors of RBG corresponding to the right and left polarization regions 102a and 102b. For example, one left-eye pixel representing full color corresponds to a region surrounded by a dotted line shown in FIG.
  • FIG. 18 is a sectional view schematically showing a longitudinal section of a conventional display device. Here, a cross section along a pixel of B (blue) color is shown.
  • a color display layer 101 is provided on the glass substrate 103, and another glass substrate 104 is provided on the color display layer 101.
  • the color display layer 101 includes a liquid crystal element, a color filter, and the like.
  • a polarizing plate 105 is provided on the glass substrate 104, and a polarization control filter 102 is provided on the polarizing plate 105.
  • the polarization control filter 102 is configured by a phase difference plate having a different optical axis direction for each of the right and left polarization regions 102a and 102b.
  • a backlight (not shown) is disposed below the glass substrate 103. The user sees the light exiting from the polarization control filter 102.
  • the light of the left-eye image emitted from the left-eye pixel passes through the left-eye polarization region 102a of the polarization control filter 102 and reaches the user.
  • the right-eye image light emitted from the right-eye pixel passes through the right-eye polarization region 102 b of the polarization control filter 102 and reaches the user.
  • the light passing through the left-eye polarizing region 102a is polarized in the vertical direction
  • the light passing through the right-eye polarizing region 102b is polarized in the horizontal direction. The user visually recognizes images corresponding to the left and right eyes through the polarizing glasses.
  • the user sees the light emitted obliquely from the polarization control filter 102 of the display device as shown in FIG. Become.
  • the left and right polarizing regions 102a and 102b extend in the horizontal direction of the screen.
  • Part of the light emitted from the left-eye pixel of the color display layer 101 reaches the user through the right-eye polarization region 102b at a position corresponding to the vicinity of the boundary between the left and right polarization regions 102a and 102b. . Therefore, a phenomenon (crosstalk) occurs in the user's right eye that a part of the image for the left eye is mixed and visually recognized in addition to the image for the right eye.
  • each color pixel of the color display layer 101 is composed of the first sub-pixel and the second sub-pixel, and the first sub-pixel is located at a position corresponding to the boundary of the left and right polarization regions.
  • Patent Document 2 There is a method of arranging pixels (Patent Document 2).
  • the first subpixel located at the position corresponding to the boundary between the left and right polarization regions is displayed in black, and the image is displayed only with the second subpixel.
  • the left and right images are well separated, and the occurrence of crosstalk can be suppressed.
  • JP 2010-204389 A (published on September 16, 2010)
  • Patent Document 1 in which a plurality of subpixels are provided, in order to be able to write different data to the first subpixel and the second subpixel, each of the first subpixel and the second subpixel is individually provided. It is necessary to provide a gate line. For this reason, there are problems that the aperture ratio is reduced and the writing time to pixels for one row is shortened as compared with a normal display device.
  • FIG. 19 is an equivalent circuit diagram illustrating a configuration of a pixel in which an auxiliary capacitor for voltage reduction is provided in the first sub-pixel.
  • One pixel includes a first sub-pixel Pa and a second sub-pixel Pb.
  • the first subpixel Pa and the second subpixel Pb include a transistor Tr1 (Tr2), a liquid crystal capacitor Clc, and an auxiliary capacitor Cst.
  • Tr1 transistor
  • Clc liquid crystal capacitor
  • Cst One end of the liquid crystal capacitor Clc is connected to the counter electrode COM.
  • the first subpixel Pa includes a transistor Tr3 and a voltage drop capacitor Cd connected to the transistor Tr3.
  • the scanning signal line Gi is driven to turn on the transistors Tr1 and Tr2, and the data potential is written into the liquid crystal capacitance Clc of the first subpixel Pa and the second subpixel Pb.
  • the control signal line Csi is driven to make the transistor Tr3 conductive, charges are transferred to the voltage reduction capacitor Cd, and the pixel voltage of the liquid crystal capacitor Clc of the first subpixel Pa can be reduced.
  • the first sub-pixel Pa can be displayed dark and the second sub-pixel Pb can be displayed bright. If the first sub-pixels Pa are arranged at positions corresponding to the boundaries between the left and right polarization regions, the rows in which the first sub-pixels Pa are arranged as a black matrix, and the occurrence of crosstalk can be suppressed.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a highly productive display capable of visually recognizing a clear three-dimensional image while suppressing crosstalk in the display of the three-dimensional image. To implement the device.
  • a display device includes a first pixel including a first bright subpixel and a first dark subpixel that are adjacent to each other in the column direction, and a second bright subpixel and a second darker that are adjacent to each other in the column direction.
  • the first dark sub-pixel and the second bright sub-pixel are Placed at a position corresponding to the boundary of the kind of polarization region Ri, when displaying a three-dimensional image, in the first pixel is to display an image, in the above second pixel is characterized by comprising a display control unit for the black display.
  • a display device includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels.
  • a display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a first sub-pixel located on the upper side in the column direction and a second sub-pixel located on the lower side in the column direction, Among the plurality of pixels, in the first type pixel, the first sub pixel performs bright display, and the second sub pixel performs dark display, and in the second type pixel, the first sub pixel.
  • the polarization control layer includes two types of polarization regions that change the polarization state of light from each other, and the second subpixel includes the 2 subpixels. It is located at the position corresponding to the boundary of the different polarization regions
  • the first-type pixel is alternately displayed for each pixel row, and the first-type image and the second-eye image are displayed alternately, and the second-type pixel is displayed black.
  • a control unit is provided.
  • a display device includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels.
  • a display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a bright sub-pixel and a dark sub-pixel, and the polarization control layer includes two types of polarization regions that make light polarization states different from each other
  • a display control unit for displaying an image is provided for the pixel in which the bright sub-pixel is arranged at a position not corresponding to the boundary between the types of polarization regions.
  • the bright sub-pixel of the pixel that performs black display and the dark sub-pixel of the pixel that displays the image are arranged at positions corresponding to the boundaries between the two types of polarization regions. Black stripes can be formed on the substrate. Thereby, the image for left eyes and the image for right eyes can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
  • the bright sub-pixel is arranged at a position corresponding to the boundary between the two types of polarization regions among the plurality of pixels.
  • the display control unit is configured to display black for the pixels that are displayed, and display an image for the pixels in which the bright sub-pixels are arranged at positions that do not correspond to the boundary between the two types of polarization regions. .
  • a bright sub-pixel of a pixel that performs black display and a dark sub-pixel of a pixel that displays an image are arranged at a position corresponding to the boundary between the two types of polarization regions, and a black stripe is formed at the position. Can be formed. Thereby, the image for left eyes and the image for right eyes can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
  • FIG. 5 is an equivalent circuit diagram illustrating a configuration of a pixel in which a sub-pixel is provided with an auxiliary capacitor for voltage reduction. It is a block diagram which shows the structure of the liquid crystal display device which concerns on further another embodiment of this invention. It is a timing chart which shows the example of a drive of the said liquid crystal display device in a certain flame
  • the extending direction of the scanning signal lines is hereinafter referred to as the row direction.
  • the scanning signal line may extend in the horizontal direction or in the vertical direction when the liquid crystal display device is used (viewed).
  • FIG. 1 is a block diagram showing the configuration of the liquid crystal display device 1 of the present embodiment.
  • the liquid crystal display device 1 is a polarization-type three-dimensional image display device that displays a left-eye image and a right-eye image with polarized light that is orthogonal to each other. The user can visually recognize a stereoscopic image using polarized glasses whose polarization directions of the left and right polarizing plates are different.
  • the liquid crystal display device 1 includes a data conversion unit (display control unit) 2, a display signal generation unit (display control unit) 3, a gate driver 4, a CS driver 5, a data driver 6, a display panel (display layer) 7, and a polarization control.
  • a filter (polarization control layer) 8 is provided.
  • the liquid crystal display device 1 includes a gate line (scanning signal line) Gi, a CS line (retention capacitor line) Csi ′, and a source line (data signal line) Sj.
  • i is an integer of (1 ⁇ i ⁇ n)
  • i ′ is an integer of (1 ⁇ i ′ ⁇ n + 1)
  • j is an integer of (1 ⁇ j ⁇ m).
  • the display panel 7 is configured by overlapping a pixel array in which a plurality of pixels are arranged, a color filter corresponding to the pixels, and a polarizing plate.
  • pixels P are arranged in a matrix of n rows and m columns.
  • Each pixel P includes two subpixels Pa ⁇ Pb adjacent to each other in the column direction.
  • the gate line Gi is arranged so as to pass between the two sub pixels Pa and Pb of the pixel, and the CS line Csi is located above the pixel (above the sub pixel Pa). Is arranged, and the CS line Csi + 1 is arranged below the pixel (under the sub-pixel Pb).
  • the gate line Gi and the CS line Csi extend along the row direction.
  • the source line Sj is arranged on the left side of the pixel.
  • the source line Sj extends along the column direction.
  • the gate driver 4 is a drive circuit that drives the pixels P for n rows through the gate line Gi.
  • the gate line Gi is connected to both sub-pixels Pa and Pb of each pixel P in the i-th row.
  • the gate driver 4 supplies a scanning signal to each gate line Gi.
  • the CS driver 5 is a drive circuit that drives the pixels P for n rows via the CS line Csi ′.
  • the upper subpixel Pa of each pixel P in the i-th row forms a storage capacitor with the adjacent CS line Csi, and the lower subpixel Pb in each pixel P in the i-th row is adjacent to the CS line Csi.
  • a storage capacitor is formed with Csi + 1.
  • the CS driver 5 supplies a storage capacitor wiring signal to each CS line Csi ′.
  • the CS line Csi ' may be connected to the same CS trunk line (not shown) for each CS line to which the same storage capacitor line signal is supplied.
  • the CS driver can supply the same storage capacitor line signal to a plurality of CS lines by supplying the storage capacitor line signal to the CS trunk line.
  • the data driver 6 is a drive circuit that writes data to the pixels P for m columns via the source line Sj.
  • the source line Sj is connected to both sub-pixels Pa and Pb of each pixel P in the j-th column.
  • the data driver 6 supplies a data signal having a potential according to display data to each source line Sj.
  • the display signal generator 3 is a control drive circuit for controlling the gate driver 4, the CS driver 5, and the data driver 6 to display an image.
  • the display signal generator 3 generates timings such as a gate start pulse, a gate clock, a source start pulse, and a source clock used for the display operation.
  • the display signal generator 3 outputs display data to the data driver 6.
  • the display signal generator 3 outputs a signal for driving / controlling the gate driver 4 to the gate driver 4 and a signal for driving / controlling the CS driver 5 to the CS driver 5.
  • display data is written to each pixel P to display an image.
  • the data conversion unit 2 determines whether the video signal input from the outside indicates a two-dimensional image or a three-dimensional image.
  • the data conversion unit 2 converts the data of the video signal of the three-dimensional image input from the outside, and generates display data used for display.
  • the data converter 2 outputs display data to the display signal generator 3.
  • the liquid crystal display device 1 When displaying a three-dimensional image, the liquid crystal display device 1 alternately displays a left-eye image and a right-eye image for each pixel row. Therefore, the resolution in the column direction (vertical direction) of the image for the left eye and the image for the right eye in one frame is halved. When displaying a three-dimensional image, the liquid crystal display device 1 performs black display for each pixel column. Therefore, the resolution in the row direction (horizontal direction) of the image for the left eye and the image for the right eye in one frame is also halved. In the liquid crystal display device 1, one display region has three pixels of R (red), G (green), and B (blue) arranged in the row direction. One display area is an area in which multiple colors can be expressed by RGB.
  • the data conversion unit 2 displays the left eye image and the right eye image alternately and simultaneously for each pixel row.
  • the row data is thinned out in the vertical direction for the left-eye image and the right-eye image, and the left-eye image row data and the right-eye image row data are alternately arranged for each row.
  • the data conversion unit 2 thins out data for each display area in the row direction (corresponding to three pixels of RGB), and data for three pixels in one display area and data for black display (gradation 0). Are alternately arranged for each pixel column.
  • R, G, B as shown in FIG. 10, R (image display), G (black display), B (image display), R in the row direction. (Black display), G (image display), B (black display)... Therefore, the order of B data and G data is switched with respect to the display of the two-dimensional image.
  • the data conversion unit 2 does not perform the above-described thinning process.
  • the polarization control filter 8 includes a phase plate and has two types of polarization regions corresponding to the left and right eyes.
  • the left-eye polarizing region and the right-eye polarizing region extend in the row direction and are alternately arranged in the column direction.
  • the phase plate is a half-wave plate, and the left-eye polarization region has a half-wavelength such that the optical axis of the half-wave plate coincides with the polarization direction of the light that has passed through the polarizing plate of the display panel 7.
  • a board is placed.
  • a half-wave plate is disposed so that the polarization direction of the light that has passed through the polarizing plate of the display panel 7 and the optical axis of the half-wave plate are at an angle of 45 °. ing. That is, light polarized in the vertical direction is emitted from the polarization region for the left eye, and light polarized in the horizontal direction is emitted from the polarization region for the right eye.
  • the left and right polarization directions are not limited to this.
  • FIG. 2 is a diagram illustrating a partial configuration of the display panel 7 included in the liquid crystal display device 1 as an equivalent circuit.
  • the pixel Pij in the i-th row and j-th column includes two sub-pixels Pa and Pb.
  • the two subpixels Pa and Pb are arranged adjacent to each other in the column direction.
  • Each sub-pixel Pa ⁇ Pb includes a transistor Tr and a pixel electrode PE. That is, one pixel Pij includes two transistors Tr.
  • the gate line Gi is arranged between the two sub-pixels Pa and Pb of the pixel Pij. Further, a CS line Csi is disposed above the sub pixel Pa on the upstream side (upper side) in the scanning direction, and a CS line Csi + 1 is disposed below the sub pixel Pb on the downstream side (lower side) in the scanning direction. A source line Sj is arranged on the left side of the sub-pixels Pa and Pb.
  • the pixel electrode PE sandwiches a liquid crystal layer with a counter electrode (not shown) to form a liquid crystal capacitor. Further, the pixel electrode PE of the upper sub-pixel Pa of the pixel Pij forms a storage capacitor Ccs with the CS line Csi adjacent (adjacent) to the upper side. Similarly, the pixel electrode PE of the lower sub-pixel Pb forms a storage capacitor Ccs with the CS line Csi + 1 adjacent to (being close to) the lower side. In this way, the two sub-pixels Pa ⁇ Pb of one pixel Pij form a storage capacitor Ccs between different CS lines. Each sub-pixel Pa ⁇ Pb is a liquid crystal display element.
  • the gate electrode of the transistor Tr of each subpixel Pa ⁇ Pb of the pixel Pij is connected to a gate line Gi passing between the two subpixels Pa ⁇ Pb.
  • the pixel electrodes PE of the sub-pixels Pa and Pb of the pixel Pij are connected to the source line Sj via the transistor Tr.
  • the transistors Tr of the sub-pixels Pa and Pb are turned on (conductive) when the gate potential is high (High), and are turned off when the gate potential is low (Low) ( This is an N-channel transistor that is in a non-conductive state.
  • the present invention is not limited to this, and a P-channel transistor in which the gate potential and the ON / OFF state are reversed can also be used.
  • the liquid crystal display device 1 performs dot inversion driving.
  • the liquid crystal display device 1 writes display data to each pixel so that pixels in which positive data is written in the row direction and column direction and pixels in which negative data is written are alternately arranged. Further, the liquid crystal display device 1 inverts the polarity of data written to each pixel for each frame (one frame or several frames).
  • FIG. 3 and 4 are timing charts showing an example of driving the liquid crystal display device 1 in a certain frame (first frame).
  • FIG. 3 shows the potential (data potential) VSj of the data signal supplied to the source line Sj and the potential (gate potential) VGi of the gate pulse supplied to the gate lines Gi to Gi + 3 with respect to time (horizontal axis).
  • VGi + 3 the potential (CS potential) VCsi to VCsi + 3 of the storage capacitor wiring signal supplied to the CS lines Csi to Csi + 3, and the pixels Pi, j to Pi + 2, j of the i-th row, j-th column to i + 2-th row, j-th column.
  • Vpai, j to Vpai + 2, j and Vpbi, j to Vpbi + 2, j of the pixel electrode PE of each of the subpixels Pa and Pb are shown.
  • Vpbi, j + 1 to Vpbi + 2, j + 1 are shown.
  • the pixel potentials (Vpai, j to Vpai + 2, j, Vpbi, j to Vpbi + 2, j, Vpai, j + 1 to Vpai + 2, j + 1, Vpbi, j + 1 to Vpbi + 2, j + 1) of each pixel electrode are as follows. In this frame, only the potential after the gate is turned on and data is written is shown. For the sake of simplicity, the influence of pixel potential pull-in due to gate parasitic capacitance is ignored here.
  • FIG. 3 and FIG. 4 show an example in which data of the same gradation is written to each pixel when displaying a two-dimensional image. The horizontal broken line shown in FIGS. 3 and 4 indicates the potential of the counter electrode.
  • FIG. 5 is a schematic diagram showing a display state of each pixel in the first frame.
  • the polarity of data written to each pixel electrode PE is indicated by + and ⁇ .
  • the pixel electrode PE of the bright sub-pixel that performs bright display is shown in white, and the pixel electrode PE of the dark sub-pixel that performs dark display is indicated by dotted hatching.
  • Data polarity is inverted every horizontal scanning period (1H). That is, a data potential having a reverse polarity is written to the pixels in the same column for each pixel row.
  • the data potentials of two source lines adjacent to each other have opposite polarities. That is, a data potential having a different polarity for each pixel column is written to pixels in the same row.
  • the gate potential sequentially becomes H (High) level in order to turn on the transistor Tr of each pixel (conductive state).
  • the CS potential is inverted with respect to the reference potential every two horizontal scanning periods (2H). Note that the polarity of the potential VCsi of the CS line Csi and the potential VCsi + 1 of the lower CS line Csi + 1 are opposite to each other. The phase of the waveform of the potential VCsi + 1 of the CS line Csi + 1 and the potential VCsi + 2 of the CS line Csi + 2 below the CS line Csi + 1 are shifted by one horizontal scanning period. The polarity of the potential VCsi + 2 of the CS line Csi + 2 and the potential VCsi + 3 of the lower CS line Csi + 3 are opposite to each other. Although not shown, the potential VCsi + 4 of the CS line Csi + 4 is the same as the potential VCsi + 1 of the CS line Csi + 1.
  • the transistor Tr becomes conductive at the same time when the gate is turned on, so that the same data potential is written into the two sub-pixels Pa and Pb.
  • the pixel potential of the pixel electrode PE connected to the CS line via the storage capacitor Ccs also changes due to the change of the CS potential (polarity inversion).
  • the pixel potential Vpa, j and the pixel potential Vpbi, j of the two sub-pixels Pa ⁇ Pb are the same.
  • the sub-pixels Pa and Pb are connected to different CS lines Csi and Csi + 1, respectively.
  • the CS potential VCsi of the CS line Csi rises, so that the pixel potential Vpai, j of the subpixel Pa in which the positive data is written rises.
  • the CS potential VCsi + 1 of the CS line Csi + 1 is lowered, so that the pixel potential Vpbi, j of the sub-pixel Pb in which the positive data is written is lowered.
  • the effective pixel voltage of the sub-pixel Pa (average of the pixel voltages in one frame period) is increased, that is, the sub-pixel Pa of the pixel Pi, j is a bright sub-pixel that is displayed brightly.
  • the effective pixel voltage of the sub-pixel Pb is small, that is, the sub-pixel Pb of the pixel Pi, j is a dark sub-pixel that is displayed dark.
  • the pixel voltage is a difference between the potential of the counter electrode and the potential of the pixel electrode.
  • the polarity of the data potential to be written is opposite (negative polarity) (see FIG. 4). Therefore, the subpixel Pa of the pixel Pi, j + 1 is a dark subpixel that is displayed dark, and the subpixel Pb of the pixel Pi, j + 1 is a bright subpixel that is displayed brightly.
  • a bright sub-pixel and a dark sub-pixel are arranged as shown in FIG.
  • FIGS. 6 and 7 are timing charts corresponding to FIGS. 3 and 4 and showing a driving example of the liquid crystal display device 1 in the second frame subsequent to the first frame.
  • FIG. 6 shows the potential (data potential) VSj of the data signal supplied to the source line Sj and the potential (gate potential) VGi of the gate pulse supplied to the gate lines Gi to Gi + 3 with respect to time (horizontal axis).
  • VGi + 3 the potential (CS potential) VCsi to VCsi + 3 of the storage capacitor wiring signal supplied to the CS lines Csi to Csi + 3, and the pixels Pi, j to Pi + 2, j of the i-th row, j-th column to i + 2-th row, j-th column.
  • FIG. 7 shows the potentials (pixel potentials) Vpai, j + 1 to Vpai + 2, j + 1 of the pixel electrodes PE of the sub-pixels Pa and Pb of the pixels Pi, j + 1 to Pi + 2 and j + 1 in the i-th row, j + 1-th column to i + 2-th row, j + 1-th column.
  • Vpbi, j + 1 to Vpbi + 2, j + 1 are shown.
  • FIG. 8 is a schematic diagram corresponding to FIG. 5 and showing a display state of each pixel in the second frame.
  • the polarity of data written to each pixel electrode PE is indicated by + and ⁇ .
  • the pixel electrode PE of a bright subpixel that performs bright display is shown in white, and the pixel electrode PE of a dark subpixel that performs dark display is indicated by dotted hatching.
  • the data potential written to each pixel has a reverse polarity compared to the first frame. Further, the CS potential is also inverted (in reverse phase) with respect to the timing when the transistor Tr of each pixel is turned on. Therefore, in the second frame, the polarity of the data potential written to each pixel is reversed with respect to the previous frame, but as a result, the positions of the bright subpixel and the dark subpixel do not change. Thereby, the liquid crystal display device 1 can perform dot inversion driving.
  • the liquid crystal display device 1 performs the drive similar to the above. However, when displaying a three-dimensional image, black display data is supplied to the source line for each column.
  • FIG. 9 is a schematic diagram illustrating a display state of pixels when a two-dimensional image is displayed.
  • each display area AR includes three pixels P of R, G, and B arranged in the row direction.
  • pixels are arranged in the order of R, G, and B from the left in each display area AR.
  • Each pixel P includes a sub-pixel Pa arranged on the upper side and a sub-pixel Pb arranged on the lower side.
  • one of the sub pixel Pa and the sub pixel Pb is a bright sub pixel, and the other is a dark sub pixel.
  • the bright sub-pixels and the dark sub-pixels are alternately arranged in a checkered pattern in the row direction and the column direction.
  • the liquid crystal display device 1 displays an image on all bright sub-pixels and dark sub-pixels when displaying a two-dimensional image.
  • the viewing angle dependency of the ⁇ characteristic can be improved by displaying one pixel divided into a bright sub-pixel and a dark sub-pixel. Since the bright subpixel and the dark subpixel have different pixel voltages, the alignment state of the liquid crystal is different. By mixing sub-pixels having different liquid crystal alignment states, the ⁇ characteristic when viewed from an oblique direction can be made closer to the ⁇ characteristic when viewed from the front. Therefore, a liquid crystal display device with a wide viewing angle can be realized.
  • the left-eye polarization region and the right-eye polarization region of the polarization control filter 8 may be arranged for each corresponding pixel column, and the left-eye image and the right-eye image may be separated for each pixel column.
  • the left eye image and the right eye image as in the present embodiment. Is preferably displayed alternately for each row.
  • Patent Document 1 For example, a left-eye image or a right-eye image is displayed on the upper sub-pixel Pa, and only the lower sub-pixel Pb is displayed in black. A stripe is formed and the left and right images are separated.
  • the number of transistors Tr per pixel can be made two, so that the yield can be increased and the manufacturing cost is also low. Become. Further, by performing dot inversion driving, burn-in can be prevented and display with less flicker can be performed.
  • liquid crystal is a vertical alignment type liquid crystal
  • dot inversion driving A steep gradient electric field is formed between each pixel by arranging (at least partially) a pixel in which positive data is written and a pixel in which negative data is written in a checkered pattern.
  • This gradient electric field stabilizes the axially symmetric alignment domain (domain corresponding to one pixel) of the vertically aligned liquid crystal.
  • the axially symmetric alignment domain can be stabilized even in the display state of intermediate gradation, and the display quality can be improved.
  • liquid crystal display device 1 writes the same data to the sub-pixels Pa and Pb of one pixel, for example, image data is written only to one sub-pixel Pa and black display data is written only to the other sub-pixel Pb. Cannot write.
  • the liquid crystal display device 1 writes black display data to the pixel P (sub-pixel Pa ⁇ Pb) of the pixel column in which the lower sub-pixel Pb is a bright sub-pixel.
  • FIG. 10 is a schematic diagram showing a display state of pixels when a three-dimensional image is displayed.
  • the image for the left eye and the image for the right eye are displayed using the first type pixel P in which the upper sub pixel Pa is a bright sub pixel for each pixel column.
  • the lower sub-pixel Pb that performs image display is a dark sub-pixel.
  • the second type pixel in which the lower sub-pixel Pb is a bright sub-pixel displays black. Therefore, substantially all the sub-pixels Pb are darkly displayed, and black stripes are formed in the row region where the sub-pixels Pb are arranged.
  • FIG. 11 is a schematic diagram showing a display state of a three-dimensional image of the polarization control filter 8 and the display panel 7 of the liquid crystal display device of the present embodiment.
  • the polarization control filter 8 and the display panel 7 are shown in order to show the correspondence relationship between the polarization control filter 8 viewed from the normal direction of the display screen and the pixel arrangement of the display panel 7 overlapping the polarization control filter 8. Shown side by side.
  • the polarization direction of light emitted from the left-eye polarizing region 8a and the right-eye polarizing region 8b to the user is indicated by an arrow.
  • the left and right polarizing regions 8a and 8b of the polarization control filter 8 respectively extend in the horizontal direction (row direction) of the screen and are alternately arranged in the vertical direction (column direction).
  • the sub pixel Pa of the first pixel from the top of the display panel 7 shown in FIG. 11 displays an image for the left eye and is disposed at a position overlapping the polarization region 8 a for the left eye of the polarization control filter 8.
  • the sub-pixel Pa of the second pixel from the top of the display panel 7 shown in FIG. 11 displays the right-eye image and is arranged at a position overlapping the right-eye polarization region 8 b of the polarization control filter 8.
  • the sub-pixel Pb of the display panel 7 forms a black stripe and is arranged at a position corresponding to the boundary between the left and right polarization regions 8a and 8b of the polarization control filter 8 (overlapping near the boundary).
  • the liquid crystal display device 1 displays a two-dimensional image using all pixels when displaying a two-dimensional image.
  • polarized glasses are not used, and therefore the polarization direction of light of each pixel is not related to the visual recognition of the two-dimensional image. Since the liquid crystal display device 1 expresses a two-dimensional image using all the pixels and does not require a light-absorbing part for separating left and right, the image can be displayed brightly.
  • the liquid crystal display device 1 displays black (dark display) for each pixel column, and displays the three-dimensional image using half the pixel columns in the row direction.
  • black stripes extending in the row direction can be formed, and the left-eye image and the right-eye image can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
  • the data conversion unit 2 can also convert the gradation of the entire data to a lower gradation so that the dark sub-pixel is darker (black display). Below a predetermined gradation, the dark sub-pixels are displayed almost black by CS driving. Thereby, the bright sub-pixel can display an image, and the dark sub-pixel can be displayed almost black. Therefore, the black stripe becomes blacker, and the left-eye image and the right-eye image can be clearly separated.
  • the data conversion unit 2 may average the data of two horizontally adjacent display areas for each color and use them for display.
  • the data thinned out for each pixel column may be used as an image of the next frame and displayed at a double frame rate by double speed driving.
  • an image having the resolution of the original input video signal can be displayed in a pseudo manner.
  • row data thinned out in order to display the left-eye image and the right-eye image as one frame image may be displayed as another frame image and displayed at a double frame rate.
  • the liquid crystal display device has RGBY pixels.
  • FIG. 12 is a block diagram showing a configuration of the liquid crystal display device 10 of the present embodiment.
  • the liquid crystal display device 10 is a polarization-type three-dimensional image display device that displays a left-eye image and a right-eye image with polarized light that is orthogonal to each other.
  • the liquid crystal display device 10 includes a gradation conversion unit 11, a data conversion unit (display control unit) 12, a display signal generation unit (display control unit) 3, a gate driver 4, a CS driver 5, a data driver 6, a display panel (display layer). ) 14 and a polarization control filter (polarization control layer) 8.
  • the display panel 14 has four color pixels of R (red), G (green), B (blue), and Y (yellow) in order to display an image.
  • the gradation converting unit 11 displays the image indicated by the input video signal (RGB) using the RGBY four-color pixels, and converts the three-color (RGB) video signal into the four-color (RGBY) video signal. (The gradation of each pixel of four colors is determined). In the case of displaying using four colors of RGBY and the case of displaying using three colors of RGB, even if the same color specified by the same video signal is expressed, the luminance of each pixel of RGB is naturally Different.
  • the gradation converter 11 outputs the converted video signal to the data converter 12.
  • the data converter 12 determines whether the input video signal indicates a two-dimensional image or a three-dimensional image.
  • the data converter 12 converts the data of the input video signal of the three-dimensional image, and generates display data used for display.
  • the data converter 12 outputs display data to the display signal generator 3.
  • the liquid crystal display device 10 When displaying a three-dimensional image, the liquid crystal display device 10 alternately displays a left-eye image and a right-eye image for each pixel row. Therefore, the resolution in the column direction (vertical direction) of the image for the left eye and the image for the right eye in one frame is halved. Moreover, when displaying a three-dimensional image, the liquid crystal display device 10 displays the pixels of the half pixel row as a whole in black. Therefore, the resolution in the row direction (horizontal direction) of the image for the left eye and the image for the right eye in one frame is also halved.
  • one display area AR has four pixels of R (red), G (green), B (blue), and Y (yellow) arranged in the row direction.
  • One display area AR is an area in which multiple colors can be expressed by RGBY.
  • the upper subpixel Pa of R, B, and Y is a bright subpixel
  • the lower subpixel Pb of G is a bright subpixel.
  • the sub-pixel Pa on the upper side of G is a bright sub-pixel
  • the sub-pixel Pb on the lower side of R, B, and Y is a bright sub-pixel.
  • the bright pixels of the B pixel and the Y pixel are arranged side by side.
  • the data conversion unit 12 displays the left-eye image and the right-eye image alternately and simultaneously for each pixel row.
  • the row data is thinned out in the vertical direction for the left-eye image and the right-eye image, and the left-eye image row data and the right-eye image row data are alternately arranged for each row.
  • the data conversion unit 12 thins out data for each display area in the row direction (corresponding to four pixels of RGBY), data of four pixels in one display area, and data of black display for four pixels, Are arranged in a predetermined order.
  • the arrangement order of the pixels in the row direction is R, G, B, and Y, as shown in FIG.
  • FIG. 13 is a schematic diagram showing a display state of each pixel in a certain frame.
  • the polarity of data written to each pixel electrode PE is indicated by + and ⁇ .
  • the pixel electrode PE of a bright sub-pixel that performs bright display is shown in white, and the pixel electrode PE of a dark sub-pixel that performs dark display is indicated by dotted hatching.
  • FIG. 13 shows an example of the correspondence between each pixel and RGBY.
  • This embodiment differs from the first embodiment in that the B pixel and the Y pixel have the same polarity in the same pixel row so that the B bright subpixel and the Y bright subpixel are arranged in the same row. Write data. Thereby, the arrangement of the bright subpixel and the dark subpixel is the same between the B pixel and the Y pixel.
  • FIG. 14 is a schematic diagram illustrating a display state of pixels when a two-dimensional image is displayed.
  • each display area AR includes four pixels P of R, G, B, and Y arranged in the row direction.
  • pixels are arranged in the order of R, G, B, and Y from the left.
  • Each pixel P includes a sub-pixel Pa arranged on the upper side and a sub-pixel Pb arranged on the lower side.
  • one of the sub pixel Pa and the sub pixel Pb is a bright sub pixel, and the other is a dark sub pixel.
  • the liquid crystal display device 10 displays an image on all bright sub-pixels and dark sub-pixels when displaying a two-dimensional image.
  • the liquid crystal display device 10 when displaying a three-dimensional image, the liquid crystal display device 10 writes black display data to the pixel P (sub-pixel Pa ⁇ Pb) of the pixel column in which the lower sub-pixel Pb is a bright sub-pixel.
  • FIG. 15 is a schematic diagram showing a display state of pixels when a three-dimensional image is displayed.
  • the left-eye image and the right-eye image are displayed using the pixel P in which the upper sub-pixel Pa is a bright sub-pixel.
  • the lower sub-pixel Pb that performs image display is a dark sub-pixel.
  • a pixel whose lower sub-pixel Pb is a bright sub-pixel is displayed in black. Therefore, substantially all the sub-pixels Pb are darkly displayed, and black stripes are formed in the row region where the sub-pixels Pb are arranged.
  • a display area AR in which G pixels are displayed in black and R, B, and Y pixels display images, and a display in which R, B, and Y pixels are displayed in black and G pixels are displayed.
  • the areas AR are alternately arranged. Therefore, an arbitrary color (full color) is expressed by two display areas AR adjacent in the row direction.
  • FIG. 16 is a schematic diagram showing a display state of a three-dimensional image of the polarization control filter 8 and the display panel 14 of the liquid crystal display device of the present embodiment.
  • the polarization control filter 8 and the display panel 14 are shown in order to show the correspondence relationship between the polarization control filter 8 viewed from the normal direction of the display screen and the pixel arrangement of the display panel 14 overlapping the polarization control filter 8. Shown side by side.
  • the sub-pixel Pa of the first pixel from the top of the display panel 14 shown in FIG. 16 displays the left-eye image and is arranged at a position overlapping the left-eye polarization region 8 a of the polarization control filter 8.
  • the sub-pixel Pa of the second pixel from the top of the display panel 14 shown in FIG. 16 displays the image for the right eye and is arranged at a position overlapping the polarization region 8 b for the right eye of the polarization control filter 8.
  • the sub-pixel Pb of the display panel 14 forms a black stripe and is disposed at a position corresponding to the boundary between the left and right polarization regions 8a and 8b of the polarization control filter 8 (overlapping near the boundary).
  • the liquid crystal display device 10 displays a two-dimensional image using all pixels when displaying a two-dimensional image. Since the liquid crystal display device 1 expresses a two-dimensional image using all the pixels and does not require a light-absorbing part for separating left and right, the image can be displayed brightly.
  • the liquid crystal display device 10 displays a predetermined pixel column in black (dark display) and displays a three-dimensional image using half the pixel column in the row direction.
  • black stripes extending in the row direction can be formed, and the left-eye image and the right-eye image can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
  • FIG. 20 is a block diagram showing the configuration of the liquid crystal display device 15 of the present embodiment.
  • the liquid crystal display device 15 is a polarization-type three-dimensional image display device that displays a left-eye image and a right-eye image with polarized light that is orthogonal to each other.
  • the liquid crystal display device 15 includes a data conversion unit (display control unit) 16, a display signal generation unit (display control unit) 3, a gate driver 4, a CS driver 17, a data driver 6, a display panel (display layer) 7, and a polarization control.
  • a filter (polarization control layer) 8 is provided.
  • the display panel 7 is a display panel having pixels of three colors of RGB, similar to the first embodiment shown in FIGS. 2 and 9.
  • the data converter 16 determines whether the video signal input from the outside indicates a two-dimensional image or a three-dimensional image.
  • the data conversion unit 16 converts data of a video signal of a three-dimensional image input from the outside, and generates display data used for display.
  • the data converter 16 outputs display data to the display signal generator 3. Further, the data converter 16 outputs a signal indicating whether to display a two-dimensional image or a three-dimensional image to the CS driver 17 in order to switch the amplitude of the storage capacitor wiring signal supplied by the CS driver 17.
  • the data conversion unit 16 When displaying a three-dimensional image, as in the first embodiment, the data conversion unit 16 performs data thinning and rearrangement, and inserts black display data so that black display is performed for each pixel row.
  • the data conversion unit 16 When a three-dimensional image is displayed, left and right images are displayed as shown in FIG.
  • the data conversion unit 16 converts the gradation of the data so that the gradation of the pixel of the pixel for displaying the image becomes lower (darker) as a whole. If the gradation of one pixel is represented by 0 to 255 in the input video signal, it is converted into a gradation of 0 to 128, for example.
  • the CS driver 17 is a drive circuit that drives the pixels P for n rows via the CS line Csi ′.
  • the CS driver 17 supplies a storage capacitor wiring signal to each CS line Csi '.
  • the CS driver 17 determines whether to display a two-dimensional image or a three-dimensional image based on the signal input from the data conversion unit 16.
  • the CS driver 17 increases the amplitude of the storage capacitor wiring signal supplied to each CS line Csi ′ (the amplitude of the change in the CS potential) compared to displaying a two-dimensional image.
  • the liquid crystal display device 15 performs the same drive as in the first embodiment except that the amplitude of the storage capacitor wiring signal is increased when displaying a three-dimensional image.
  • FIG. 21 is a diagram corresponding to FIG. 3 and a timing chart showing an example of driving the liquid crystal display device 15 in a certain frame at the time of displaying a three-dimensional image.
  • FIG. 21 shows the potential (data potential) VSj of the data signal supplied to the source line Sj and the potential (gate potential) VGi of the gate pulse supplied to the gate lines Gi to Gi + 3 with respect to time (horizontal axis).
  • VGi + 3 the potential (CS potential) VCsi to VCsi + 3 of the storage capacitor wiring signal supplied to the CS lines Csi to Csi + 3, and the pixels Pi, j to Pi + 2, j of the i-th row, j-th column to i + 2-th row, j-th column.
  • the potentials (pixel potentials) Vpai, j to Vpai + 2, j and Vpbi, j to Vpbi + 2, j of the pixel electrode PE of each of the subpixels Pa and Pb are shown.
  • the CS potential VCsi at the time of displaying a two-dimensional image is indicated by a dotted line.
  • the pixels Pi, j to Pi + 2, j in the i-th row and j-th column to the (i + 2) -th row and the j-th column correspond to the pixels for displaying the left-eye image or the right-eye image when the three-dimensional image is displayed. ing.
  • FIG. 21 shows an example in which data of the same gradation is written to these pixels.
  • the signal of the data potential VSj corresponding to the gradation converted darker by the data converter 16 with respect to the gradation indicated by the video signal input to the liquid crystal display device 15 is supplied to the source line Sj. Further, the width of the change in the CS potential of each CS line is larger than that shown in FIG. 3 (when a two-dimensional image is displayed).
  • the change in the pixel potentials Vpai, j, Vpbi, j accompanying the change in the CS potential after data is written in the pixel (subpixel) also becomes large. Therefore, the difference between the effective values (effective pixel voltages) of the pixel potential Vpai, j and the pixel potential Vpbi, j of the two subpixels Pa and Pb of one pixel Pij becomes larger. Therefore, for the pixel Pij, the sub-pixel Pa that is a bright sub-pixel becomes brighter, and the sub-pixel Pb that is a dark sub-pixel becomes darker. The same applies to other pixels in the same pixel row. Therefore, the luminance difference between the bright sub-pixel and the dark sub-pixel can be increased.
  • a liquid crystal display device that creates bright subpixels and dark subpixels by CS driving
  • the dark subpixel is substantially equivalent to black display. It becomes brightness.
  • the dark sub-pixel Pb can be displayed darker in the pixel column that performs the image display shown in FIG. 10, so that no image is displayed on the black stripe portion. Can do. Therefore, it is possible to more clearly separate the left eye image and the right eye image and suppress the occurrence of crosstalk.
  • the bright sub-pixel becomes brighter by increasing the amplitude of the CS potential.
  • the gradation of the data of the input video signal to dark beforehand, it is possible to prevent the bright sub-pixel that performs image display from becoming too bright. Therefore, it is possible to appropriately display the intermediate gradation.
  • a display device includes a first pixel including a first bright subpixel and a first dark subpixel that are adjacent to each other in the column direction, and a second bright subpixel and a second darker that are adjacent to each other in the column direction.
  • a display device capable of displaying an image, wherein the first bright subpixel and the second dark subpixel are arranged side by side in a row direction, and the first dark subpixel and the second bright subpixel Are arranged side by side in the row direction, and the polarization control layer includes two types of polarization regions that make the polarization states of light different from each other, and the first dark sub-pixel and the second bright sub-pixel include the 2 Placed at the position corresponding to the boundary of the polarization region of the type.
  • a display device includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels.
  • a display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a first sub-pixel located on the upper side in the column direction and a second sub-pixel located on the lower side in the column direction, Among the plurality of pixels, in the first type pixel, the first sub pixel performs bright display, and the second sub pixel performs dark display, and in the second type pixel, the first sub pixel.
  • the polarization control layer includes two types of polarization regions that change the polarization state of light from each other, and the second subpixel includes the 2 subpixels. It is located at the position corresponding to the boundary of the different polarization regions
  • the first-type pixel is alternately displayed for each pixel row, and the first-type image and the second-eye image are displayed alternately, and the second-type pixel is displayed black.
  • a control unit is provided.
  • a display device includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels.
  • a display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a bright sub-pixel and a dark sub-pixel, and the polarization control layer includes two types of polarization regions that make light polarization states different from each other
  • a display control unit that displays an image is provided for the pixels in which the bright sub-pixels are arranged at positions that do not correspond to the boundaries between the types of polarization regions.
  • the bright sub-pixel of the pixel that performs black display and the dark sub-pixel of the pixel that displays the image are arranged at positions corresponding to the boundaries between the two types of polarization regions. Black stripes can be formed on the substrate. Thereby, the image for left eyes and the image for right eyes can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
  • the display layer includes third bright subpixels and third dark subpixels adjacent to each other in the column direction, and third pixels adjacent to the first pixel in the column direction and adjacent to each other in the column direction.
  • a fourth pixel including four bright subpixels and a fourth dark subpixel and adjacent to the second pixel in the column direction, wherein the first dark subpixel and the third bright subpixel are arranged in the column direction.
  • the second bright subpixel and the fourth dark subpixel are arranged adjacent to each other in the column direction, and the third bright subpixel and the fourth dark subpixel are arranged in the row direction.
  • the third dark sub-pixel and the fourth bright sub-pixel are arranged side by side in the row direction, and when the display control unit displays a three-dimensional image, the first pixel An image for one eye is displayed, and an image for the second eye is displayed on the third pixel.
  • the second pixel and the fourth pixel may be configured for the black display.
  • the display layer includes a first storage capacitor line and a second storage capacitor line, and the first bright sub-pixel and the second dark sub-pixel form a storage capacitor with the first storage capacitor line.
  • the first dark sub-pixel and the second bright sub-pixel form a storage capacitor with the second storage capacitor line, and the display control unit includes the first storage capacitor line and the second storage capacitor line.
  • a configuration may be employed in which the first dark sub-pixel and the second dark sub-pixel are darkly displayed by driving the capacitor wiring.
  • the amplitude of the storage capacitor line signal supplied to the first storage capacitor line and the second storage capacitor line is set to be larger than that when a two-dimensional image is displayed.
  • the structure which enlarges may be sufficient.
  • the display layer includes a first scanning signal line, a first data signal line, and a second data signal line
  • the first bright sub-pixel and the first dark sub-pixel include the first scanning signal line and the first scanning signal line.
  • the second bright subpixel and the second dark subpixel are connected to the first data signal line
  • the second dark subpixel is connected to the first scanning signal line and the second data signal line
  • the display control unit is connected to the first data signal line.
  • the display of the first pixel and the second pixel may be controlled by driving one scanning signal line, the first data signal line, and the second data signal line.
  • the display control unit may be configured to display an image on the first pixel and the second pixel when displaying a two-dimensional image.
  • the first bright subpixel, the second dark subpixel, the first dark subpixel, and the second bright subpixel may be a liquid crystal display element including a liquid crystal capacitor.
  • liquid crystal display element may include a vertical alignment type liquid crystal.
  • the present invention can be used for a liquid crystal display device capable of displaying a two-dimensional image and a three-dimensional image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device is achieved that has high productivity and is able to suppress crosstalk in a three-dimensional image display to allow a three-dimensional image to be seen clearly. A liquid crystal display device (1) comprises a display control part (data converting part (2), display signal generating part (3)) that includes a first pixel and a second pixel, a dark sub-pixel of the first pixel and a bright sub-pixel of the second pixel being arranged at a position corresponding to a border between two types of polarization regions, and that displays an image at the first pixel and produces a dark display at the second pixel when displaying a three-dimensional image.

Description

表示装置Display device
 本発明は、二次元画像および三次元画像を表示可能な液晶表示装置に関する。 The present invention relates to a liquid crystal display device capable of displaying a two-dimensional image and a three-dimensional image.
 画面に表示される画像を立体的な三次元画像としてユーザに知覚させる方法として、画面に表示する左眼用画素の偏光状態と右眼用画素の偏光状態とを異ならせる表示装置を用いる方法がある。ユーザは、左眼用画素からの光のみを通過させる左眼用レンズと右眼用画素からの光のみを通過させる右眼用レンズとを備えた眼鏡を通して画面を見ることにより、立体的な三次元画像を知覚することができる。この左右の偏光状態の違いは、偏光方向の違いでも、円偏光の回転方向の違いでもよい。 As a method for allowing the user to perceive an image displayed on the screen as a stereoscopic three-dimensional image, there is a method using a display device that makes the polarization state of the left-eye pixel displayed on the screen different from the polarization state of the right-eye pixel. is there. By viewing the screen through glasses with a left-eye lens that allows only light from the left-eye pixel to pass and a right-eye lens that allows only light from the right-eye pixel to pass, The original image can be perceived. The difference between the left and right polarization states may be a difference in polarization direction or a difference in the rotation direction of circularly polarized light.
 左右用画像の偏光状態を異ならせるために、2種類の偏光制御フィルタ(例えば偏光板)を、左眼用画素および右眼用画素のそれぞれに対応するように配置し、左眼用画像の偏光方向と右眼用画像の偏光方向とを異ならせる表示装置がある。しかしながら、単に偏光制御フィルタを並べた従来の構成では、偏光方向が変化する偏光制御フィルタの境界付近での左眼用画像と右眼用画像との分割が不十分なものになる。 In order to change the polarization state of the left and right images, two types of polarization control filters (for example, polarizing plates) are arranged so as to correspond to the left eye pixel and the right eye pixel, respectively, and the polarization of the left eye image There is a display device in which the direction and the polarization direction of the right-eye image are different. However, in the conventional configuration in which the polarization control filters are simply arranged, the division of the left-eye image and the right-eye image near the boundary of the polarization control filter whose polarization direction changes is insufficient.
 図17は、従来の表示装置の偏光制御フィルタおよび画素の配置の一部を概略的に示す平面図である。図17は、色表示層101と、色表示層101上に重なる偏光制御フィルタ102との対応関係を示す。偏光制御フィルタ102の左右用の偏光領域102a・102bは、それぞれ画面の横方向(行方向)に延びており、縦方向(列方向)に交互に配置されている。色表示層101は、左右用の偏光領域102a・102bに対応して、RBGの3色の画素を有する。例えばフルカラーを表す1つの左眼用画素は、図17に示す点線で囲まれた領域に対応する。 FIG. 17 is a plan view schematically showing a part of the arrangement of the polarization control filter and the pixels of the conventional display device. FIG. 17 shows a correspondence relationship between the color display layer 101 and the polarization control filter 102 overlapping the color display layer 101. The left and right polarization regions 102a and 102b of the polarization control filter 102 extend in the horizontal direction (row direction) of the screen, and are alternately arranged in the vertical direction (column direction). The color display layer 101 has pixels of three colors of RBG corresponding to the right and left polarization regions 102a and 102b. For example, one left-eye pixel representing full color corresponds to a region surrounded by a dotted line shown in FIG.
 図18は、従来の表示装置の縦方向の断面を概略的に示す断面図である。ここでは、B(青)の色の画素に沿った断面を示す。ガラス基板103の上に色表示層101が設けられ、色表示層101の上に別のガラス基板104が設けられている。色表示層101は、液晶素子およびカラーフィルタ等によって構成されている。ガラス基板104の上に偏光板105が設けられ、偏光板105の上に偏光制御フィルタ102が設けられている。偏光制御フィルタ102は、左右用の偏光領域102a・102bごとに光学軸の向きが異なる位相差板によって構成されている。なお、バックライト(図示せず)が、ガラス基板103の下方に配置されている。ユーザは、偏光制御フィルタ102から出る光を見る。 FIG. 18 is a sectional view schematically showing a longitudinal section of a conventional display device. Here, a cross section along a pixel of B (blue) color is shown. A color display layer 101 is provided on the glass substrate 103, and another glass substrate 104 is provided on the color display layer 101. The color display layer 101 includes a liquid crystal element, a color filter, and the like. A polarizing plate 105 is provided on the glass substrate 104, and a polarization control filter 102 is provided on the polarizing plate 105. The polarization control filter 102 is configured by a phase difference plate having a different optical axis direction for each of the right and left polarization regions 102a and 102b. A backlight (not shown) is disposed below the glass substrate 103. The user sees the light exiting from the polarization control filter 102.
 ユーザが表示装置の正面にいる場合、左眼用画素から出射された左眼用画像の光は偏光制御フィルタ102の左眼用偏光領域102aを通過してユーザに到達する。同様に、右眼用画素から出射された右眼用画像の光は偏光制御フィルタ102の右眼用偏光領域102bを通過してユーザに到達する。このとき左眼用偏光領域102aを通過した光は縦方向に偏光し、右眼用偏光領域102bを通過した光は横方向に偏光しているとする。ユーザは偏光眼鏡を通して左右の眼でそれぞれに対応した画像を視認する。 When the user is in front of the display device, the light of the left-eye image emitted from the left-eye pixel passes through the left-eye polarization region 102a of the polarization control filter 102 and reaches the user. Similarly, the right-eye image light emitted from the right-eye pixel passes through the right-eye polarization region 102 b of the polarization control filter 102 and reaches the user. At this time, it is assumed that the light passing through the left-eye polarizing region 102a is polarized in the vertical direction, and the light passing through the right-eye polarizing region 102b is polarized in the horizontal direction. The user visually recognizes images corresponding to the left and right eyes through the polarizing glasses.
 一方、ユーザが表示装置の正面におらず、画面を斜めの位置から見ている場合、図18に示すように、ユーザは表示装置の偏光制御フィルタ102から斜めに出射された光を見ることになる。ここでは、表示装置の画面を下方から見上げた、または上方から見下ろした場合を考える。左右用の偏光領域102a・102bは、それぞれ画面の水平方向に延びている。左右用の偏光領域102a・102bの境界付近に対応する位置において、色表示層101の左眼用画素から出射された光の一部は、右眼用偏光領域102bを通過してユーザに到達する。そのため、ユーザの右眼には、右眼用画像に加えて左眼用画像の一部が混入して視認されるという現象(クロストーク)が発生する。 On the other hand, when the user is not in front of the display device and is viewing the screen from an oblique position, the user sees the light emitted obliquely from the polarization control filter 102 of the display device as shown in FIG. Become. Here, the case where the screen of the display device is looked up from below or from above is considered. The left and right polarizing regions 102a and 102b extend in the horizontal direction of the screen. Part of the light emitted from the left-eye pixel of the color display layer 101 reaches the user through the right-eye polarization region 102b at a position corresponding to the vicinity of the boundary between the left and right polarization regions 102a and 102b. . Therefore, a phenomenon (crosstalk) occurs in the user's right eye that a part of the image for the left eye is mixed and visually recognized in addition to the image for the right eye.
 このクロストークの発生を抑えるために、偏光制御フィルタの左右用の偏光領域の境界に吸光部を設けることが考えられる。しかしながら、偏光制御フィルタに吸光部を設けると、吸光部によって輝度(開口率)が低下するため、通常の表示装置に比べて、特に二次元画像の表示装置としての性能が劣る。 In order to suppress the occurrence of this crosstalk, it is conceivable to provide a light absorption part at the boundary between the right and left polarization regions of the polarization control filter. However, when the light absorption part is provided in the polarization control filter, the luminance (aperture ratio) is lowered by the light absorption part, so that the performance as a display device for a two-dimensional image is particularly inferior to that of a normal display device.
 そのため、クロストークの発生を抑えるために、色表示層101の各色の画素を第1サブ画素と第2サブ画素とで構成し、左右用の偏光領域の境界に対応する位置に、第1サブ画素を配置する方法がある(特許文献2)。三次元画像を表示するときは、左右用の偏光領域の境界に対応する位置にある第1サブ画素を黒表示にし、第2サブ画素のみで画像を表示する。これにより、左右用の画像がよく分離され、クロストークの発生を抑えることができる。 Therefore, in order to suppress the occurrence of crosstalk, each color pixel of the color display layer 101 is composed of the first sub-pixel and the second sub-pixel, and the first sub-pixel is located at a position corresponding to the boundary of the left and right polarization regions. There is a method of arranging pixels (Patent Document 2). When displaying a three-dimensional image, the first subpixel located at the position corresponding to the boundary between the left and right polarization regions is displayed in black, and the image is displayed only with the second subpixel. As a result, the left and right images are well separated, and the occurrence of crosstalk can be suppressed.
日本国公開特許公報「特開2010-204389号公報(2010年9月16日公開)」Japanese Patent Publication “JP 2010-204389 A (published on September 16, 2010)”
 しかしながら、複数のサブ画素を設ける特許文献1の構成では、第1サブ画素および第2サブ画素に異なるデータを書き込むことができるようにするために、第1サブ画素および第2サブ画素にそれぞれ個別のゲートラインを設ける必要がある。そのため、通常の表示装置に比べて、開口率が低下するという問題および1行分の画素への書き込み時間が短くなるという問題が生じる。 However, in the configuration of Patent Document 1 in which a plurality of subpixels are provided, in order to be able to write different data to the first subpixel and the second subpixel, each of the first subpixel and the second subpixel is individually provided. It is necessary to provide a gate line. For this reason, there are problems that the aperture ratio is reduced and the writing time to pixels for one row is shortened as compared with a normal display device.
 なお、第1サブ画素に電圧低下用の補助容量を設けることにより、第1サブ画素の画素電圧(対向電極の電位と画素電極の電位の差)を低下させることもできる。図19は、第1サブ画素に電圧低下用の補助容量を設けた画素の構成を示す等価回路図である。1つの画素は第1サブ画素Paおよび第2サブ画素Pbを含む。第1サブ画素Paおよび第2サブ画素Pbは、トランジスタTr1(Tr2)、液晶容量Clc、および補助容量Cstを備える。液晶容量Clcの一端は対向電極COMに接続される。これに加えて、第1サブ画素Paは、トランジスタTr3、およびトランジスタTr3に接続された電圧低下用容量Cdを備える。走査信号線Giを駆動してトランジスタTr1・Tr2を同時に導通させ、第1サブ画素Paおよび第2サブ画素Pbの液晶容量Clcにデータ電位を書き込む。その後、制御信号線Csiを駆動してトランジスタTr3を導通させると、電圧低下用容量Cdに電荷を移動させ、第1サブ画素Paの液晶容量Clcの画素電圧を小さくすることができる。これにより、第1サブ画素Paを暗く表示し、第2サブ画素Pbを明るく表示することができる。左右用の偏光領域の境界に対応する位置に、この第1サブ画素Paを配置すれば、第1サブ画素Paが並ぶ行がブラックマトリクスとなり、クロストークの発生を抑制することができる。 It should be noted that the pixel voltage of the first subpixel (the difference between the potential of the counter electrode and the potential of the pixel electrode) can be lowered by providing an auxiliary capacitor for voltage reduction in the first subpixel. FIG. 19 is an equivalent circuit diagram illustrating a configuration of a pixel in which an auxiliary capacitor for voltage reduction is provided in the first sub-pixel. One pixel includes a first sub-pixel Pa and a second sub-pixel Pb. The first subpixel Pa and the second subpixel Pb include a transistor Tr1 (Tr2), a liquid crystal capacitor Clc, and an auxiliary capacitor Cst. One end of the liquid crystal capacitor Clc is connected to the counter electrode COM. In addition, the first subpixel Pa includes a transistor Tr3 and a voltage drop capacitor Cd connected to the transistor Tr3. The scanning signal line Gi is driven to turn on the transistors Tr1 and Tr2, and the data potential is written into the liquid crystal capacitance Clc of the first subpixel Pa and the second subpixel Pb. After that, when the control signal line Csi is driven to make the transistor Tr3 conductive, charges are transferred to the voltage reduction capacitor Cd, and the pixel voltage of the liquid crystal capacitor Clc of the first subpixel Pa can be reduced. Thereby, the first sub-pixel Pa can be displayed dark and the second sub-pixel Pb can be displayed bright. If the first sub-pixels Pa are arranged at positions corresponding to the boundaries between the left and right polarization regions, the rows in which the first sub-pixels Pa are arranged as a black matrix, and the occurrence of crosstalk can be suppressed.
 しかしながら、図19に示す構成では、1つの画素にトランジスタが3つ必要となる。そのため、歩留まりの低下および製造コストの増加という問題が発生する。 However, in the configuration shown in FIG. 19, three transistors are required for one pixel. Therefore, problems such as a decrease in yield and an increase in manufacturing cost occur.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、生産性が高く、三次元画像の表示においてクロストークを抑制して鮮明な三次元画像を視認することができる表示装置を実現することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a highly productive display capable of visually recognizing a clear three-dimensional image while suppressing crosstalk in the display of the three-dimensional image. To implement the device.
 本発明の一態様に係る表示装置は、互いに列方向に隣接する第1明サブ画素および第1暗サブ画素を含む第1画素と、互いに列方向に隣接する第2明サブ画素および第2暗サブ画素を含む第2画素とを備える表示層と、上記表示層に重なるように配置され、上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、上記第1明サブ画素と上記第2暗サブ画素とは互いに行方向に並んで配置され、上記第1暗サブ画素と上記第2明サブ画素とは互いに行方向に並んで配置され、上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、上記第1暗サブ画素と上記第2明サブ画素とは、上記2種類の偏光領域の境界に対応する位置に配置されており、三次元画像を表示する場合、上記第1画素には画像を表示させ、上記第2画素には黒表示をさせる表示制御部を備えることを特徴としている。 A display device according to one embodiment of the present invention includes a first pixel including a first bright subpixel and a first dark subpixel that are adjacent to each other in the column direction, and a second bright subpixel and a second darker that are adjacent to each other in the column direction. A display layer including a second pixel including a sub-pixel, and a polarization control layer disposed so as to overlap the display layer and controlling a polarization state of light emitted from the pixel, a two-dimensional image and a three-dimensional image A display device capable of displaying an image, wherein the first bright subpixel and the second dark subpixel are arranged side by side in a row direction, and the first dark subpixel and the second bright subpixel Are arranged side by side in the row direction, and the polarization control layer includes two types of polarization regions that make the polarization states of light different from each other. The first dark sub-pixel and the second bright sub-pixel are Placed at a position corresponding to the boundary of the kind of polarization region Ri, when displaying a three-dimensional image, in the first pixel is to display an image, in the above second pixel is characterized by comprising a display control unit for the black display.
 本発明の一態様に係る表示装置は、複数の画素を備える表示層と、上記表示層に重なるように配置され上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、各画素は、列方向における上側に位置する第1サブ画素と、列方向における下側に位置する第2サブ画素とを含み、上記複数の画素のうち、第1型の画素では、上記第1サブ画素が明表示を行い、かつ、上記第2サブ画素が暗表示を行い、第2型の画素では、上記第1サブ画素が暗表示を行い、かつ、上記第2サブ画素が明表示を行い、上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、上記第2サブ画素は、上記2種類の偏光領域の境界に対応する位置に配置されており、三次元画像を表示する場合、上記第1型の画素には画素行毎に交互に第1眼用画像および第2眼用画像を表示させ、上記第2型の画素には黒表示をさせる表示制御部を備えることを特徴としている。 A display device according to one embodiment of the present invention includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels. A display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a first sub-pixel located on the upper side in the column direction and a second sub-pixel located on the lower side in the column direction, Among the plurality of pixels, in the first type pixel, the first sub pixel performs bright display, and the second sub pixel performs dark display, and in the second type pixel, the first sub pixel. Performs dark display, the second subpixel performs bright display, the polarization control layer includes two types of polarization regions that change the polarization state of light from each other, and the second subpixel includes the 2 subpixels. It is located at the position corresponding to the boundary of the different polarization regions When displaying a three-dimensional image, the first-type pixel is alternately displayed for each pixel row, and the first-type image and the second-eye image are displayed alternately, and the second-type pixel is displayed black. A control unit is provided.
 本発明の一態様に係る表示装置は、複数の画素を備える表示層と、上記表示層に重なるように配置され上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、各画素は、明サブ画素および暗サブ画素を含み、上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、三次元画像を表示する場合、上記複数の画素のうち、上記2種類の偏光領域の境界に対応する位置に上記明サブ画素が配置されている画素については黒表示をさせ、上記2種類の偏光領域の境界に対応しない位置に上記明サブ画素が配置されている画素については画像を表示させる表示制御部を備えることを特徴としている。 A display device according to one embodiment of the present invention includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels. A display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a bright sub-pixel and a dark sub-pixel, and the polarization control layer includes two types of polarization regions that make light polarization states different from each other When a three-dimensional image is displayed, among the plurality of pixels, a pixel in which the bright sub-pixel is arranged at a position corresponding to a boundary between the two types of polarization regions is displayed in black, and the 2 A display control unit for displaying an image is provided for the pixel in which the bright sub-pixel is arranged at a position not corresponding to the boundary between the types of polarization regions.
 上記の構成によれば、2種類の偏光領域の境界に対応する位置に、黒表示を行う画素の明サブ画素と、画像の表示を行う画素の暗サブ画素とが配置されており、該位置にブラックストライプを形成することができる。これにより、左眼用画像と右眼用画像とを明確に分離して表示することができる。よって、クロストークを抑制することができる。 According to the above configuration, the bright sub-pixel of the pixel that performs black display and the dark sub-pixel of the pixel that displays the image are arranged at positions corresponding to the boundaries between the two types of polarization regions. Black stripes can be formed on the substrate. Thereby, the image for left eyes and the image for right eyes can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
 本発明の一態様に係る表示装置は、上記のように、三次元画像を表示する場合、上記複数の画素のうち、上記2種類の偏光領域の境界に対応する位置に上記明サブ画素が配置されている画素については黒表示をさせ、上記2種類の偏光領域の境界に対応しない位置に上記明サブ画素が配置されている画素については画像を表示させる表示制御部を備えることを特徴としている。 In the display device according to one embodiment of the present invention, when a three-dimensional image is displayed as described above, the bright sub-pixel is arranged at a position corresponding to the boundary between the two types of polarization regions among the plurality of pixels. The display control unit is configured to display black for the pixels that are displayed, and display an image for the pixels in which the bright sub-pixels are arranged at positions that do not correspond to the boundary between the two types of polarization regions. .
 それゆえ、2種類の偏光領域の境界に対応する位置に、黒表示を行う画素の明サブ画素と、画像の表示を行う画素の暗サブ画素とが配置されており、該位置にブラックストライプを形成することができる。これにより、左眼用画像と右眼用画像とを明確に分離して表示することができる。よって、クロストークを抑制することができる。 Therefore, a bright sub-pixel of a pixel that performs black display and a dark sub-pixel of a pixel that displays an image are arranged at a position corresponding to the boundary between the two types of polarization regions, and a black stripe is formed at the position. Can be formed. Thereby, the image for left eyes and the image for right eyes can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
本発明の一実施形態に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on one Embodiment of this invention. 上記液晶表示装置が備える表示パネルの一部の構成を等価回路として示す図である。It is a figure which shows the structure of a part of display panel with which the said liquid crystal display device is provided as an equivalent circuit. あるフレームにおける上記液晶表示装置の駆動例を示すタイミングチャートである。It is a timing chart which shows the example of a drive of the said liquid crystal display device in a certain flame | frame. 上記フレームにおける上記液晶表示装置の駆動例を示すタイミングチャートである。4 is a timing chart showing an example of driving the liquid crystal display device in the frame. 上記フレームにおける各画素の表示状態を示す模式図である。It is a schematic diagram which shows the display state of each pixel in the said flame | frame. 別のフレームにおける上記液晶表示装置の駆動例を示すタイミングチャートである。It is a timing chart which shows the drive example of the said liquid crystal display device in another flame | frame. 上記フレームにおける上記液晶表示装置の駆動例を示すタイミングチャートである。4 is a timing chart showing an example of driving the liquid crystal display device in the frame. 上記フレームにおける各画素の表示状態を示す模式図である。It is a schematic diagram which shows the display state of each pixel in the said flame | frame. 二次元画像を表示する場合の、画素の表示状態を示す模式図である。It is a schematic diagram which shows the display state of a pixel in the case of displaying a two-dimensional image. 三次元画像を表示する場合の、画素の表示状態を示す模式図である。It is a schematic diagram which shows the display state of a pixel in the case of displaying a three-dimensional image. 上記液晶表示装置の偏光制御フィルタおよび表示パネルの三次元画像の表示状態を示す模式図である。It is a schematic diagram which shows the display state of the polarization control filter of the said liquid crystal display device, and the three-dimensional image of a display panel. 本発明の他の実施形態に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on other embodiment of this invention. あるフレームにおける各画素の表示状態を示す模式図である。It is a schematic diagram which shows the display state of each pixel in a certain frame. 二次元画像を表示する場合の、画素の表示状態を示す模式図である。It is a schematic diagram which shows the display state of a pixel in the case of displaying a two-dimensional image. 三次元画像を表示する場合の、画素の表示状態を示す模式図である。It is a schematic diagram which shows the display state of a pixel in the case of displaying a three-dimensional image. 上記液晶表示装置の偏光制御フィルタおよび表示パネルの三次元画像の表示状態を示す模式図である。It is a schematic diagram which shows the display state of the polarization control filter of the said liquid crystal display device, and the three-dimensional image of a display panel. 従来の表示装置の偏光制御フィルタおよび画素の配置の一部を概略的に示す平面図である。It is a top view which shows roughly a part of arrangement | positioning of the polarization control filter and pixel of the conventional display apparatus. 従来の表示装置の縦方向の断面を概略的に示す断面図である。It is sectional drawing which shows the cross section of the vertical direction of the conventional display apparatus roughly. サブ画素に電圧低下用の補助容量を設けた画素の構成を示す等価回路図である。FIG. 5 is an equivalent circuit diagram illustrating a configuration of a pixel in which a sub-pixel is provided with an auxiliary capacitor for voltage reduction. 本発明のさらに他の実施形態に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on further another embodiment of this invention. あるフレームにおける上記液晶表示装置の駆動例を示すタイミングチャートである。It is a timing chart which shows the example of a drive of the said liquid crystal display device in a certain flame | frame.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、説明の便宜のため、以下では走査信号線の延伸方向を行方向とする。ただし、液晶表示装置の利用(視聴)状態において、その走査信号線が横方向に延伸していても縦方向に延伸していてもよいことは言うまでもない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. For convenience of explanation, the extending direction of the scanning signal lines is hereinafter referred to as the row direction. However, it goes without saying that the scanning signal line may extend in the horizontal direction or in the vertical direction when the liquid crystal display device is used (viewed).
 以下では、ノーマリーブラックの場合を例に挙げる。この場合、液晶がオンしている(液晶の印加電圧が大きい)ときは白表示となり、液晶がオフしている(液晶の印加電圧が小さいまたは0である)ときは黒表示となる。ただし、ノーマリーホワイトの場合でも本発明を適用することができることは言うまでもない。 The following is an example of normally black. In this case, white display is performed when the liquid crystal is on (the applied voltage of the liquid crystal is large), and black display is performed when the liquid crystal is off (the applied voltage of the liquid crystal is small or 0). However, it goes without saying that the present invention can be applied even in the case of normally white.
 [実施形態1]
 (液晶表示装置の全体構成)
 図1は、本実施形態の液晶表示装置1の構成を示すブロック図である。液晶表示装置1は、左眼用画像と右眼用画像とを互いに直交する偏光によって表示する偏光式の三次元画像表示装置である。ユーザは、左右の偏光板の偏光方向が異なる偏光眼鏡を用いて、立体画像を視認することができる。
[Embodiment 1]
(Overall configuration of liquid crystal display device)
FIG. 1 is a block diagram showing the configuration of the liquid crystal display device 1 of the present embodiment. The liquid crystal display device 1 is a polarization-type three-dimensional image display device that displays a left-eye image and a right-eye image with polarized light that is orthogonal to each other. The user can visually recognize a stereoscopic image using polarized glasses whose polarization directions of the left and right polarizing plates are different.
 液晶表示装置1は、データ変換部(表示制御部)2、表示信号発生部(表示制御部)3、ゲートドライバ4、CSドライバ5、データドライバ6、表示パネル(表示層)7、および偏光制御フィルタ(偏光制御層)8を備えている。また、液晶表示装置1は、ゲートライン(走査信号線)Gi、CSライン(保持容量配線)Csi’、およびソースライン(データ信号線)Sjを備えている。ただし、iは(1≦i≦n)の整数、i’は(1≦i’≦n+1)の整数、jは(1≦j≦m)の整数とする。 The liquid crystal display device 1 includes a data conversion unit (display control unit) 2, a display signal generation unit (display control unit) 3, a gate driver 4, a CS driver 5, a data driver 6, a display panel (display layer) 7, and a polarization control. A filter (polarization control layer) 8 is provided. Further, the liquid crystal display device 1 includes a gate line (scanning signal line) Gi, a CS line (retention capacitor line) Csi ′, and a source line (data signal line) Sj. Here, i is an integer of (1 ≦ i ≦ n), i ′ is an integer of (1 ≦ i ′ ≦ n + 1), and j is an integer of (1 ≦ j ≦ m).
 表示パネル7は、複数の画素が配列した画素アレイと、画素に対応するカラーフィルタと、偏光板とが重なって構成されるものである。表示パネル7には、画素Pがn行m列のマトリクス状に配置されている。各画素Pは、互いに列方向に隣接する2つのサブ画素Pa・Pbを含む。i行j列に位置する画素Pijについて、該画素の2つのサブ画素Pa・Pbの間を通るように、ゲートラインGiが配置され、該画素の上側(サブ画素Paの上側)にCSラインCsiが配置され、該画素の下側(サブ画素Pbの下側)にCSラインCsi+1が配置されている。ゲートラインGi、およびCSラインCsiは、行方向に沿って延びている。また、i行j列に位置する画素Pijについて、該画素の左側にソースラインSjが配置されている。ソースラインSjは、列方向に沿って延びている。 The display panel 7 is configured by overlapping a pixel array in which a plurality of pixels are arranged, a color filter corresponding to the pixels, and a polarizing plate. In the display panel 7, pixels P are arranged in a matrix of n rows and m columns. Each pixel P includes two subpixels Pa · Pb adjacent to each other in the column direction. For the pixel Pij located in the i row and j column, the gate line Gi is arranged so as to pass between the two sub pixels Pa and Pb of the pixel, and the CS line Csi is located above the pixel (above the sub pixel Pa). Is arranged, and the CS line Csi + 1 is arranged below the pixel (under the sub-pixel Pb). The gate line Gi and the CS line Csi extend along the row direction. For the pixel Pij located in the i row and the j column, the source line Sj is arranged on the left side of the pixel. The source line Sj extends along the column direction.
 ゲートドライバ4は、ゲートラインGiを介してn行分の画素Pを駆動する駆動回路である。ゲートラインGiは、第i行の各画素Pの両方のサブ画素Pa・Pbに接続されている。ゲートドライバ4は、各ゲートラインGiに走査信号を供給する。 The gate driver 4 is a drive circuit that drives the pixels P for n rows through the gate line Gi. The gate line Gi is connected to both sub-pixels Pa and Pb of each pixel P in the i-th row. The gate driver 4 supplies a scanning signal to each gate line Gi.
 CSドライバ5は、CSラインCsi’を介してn行分の画素Pを駆動する駆動回路である。第i行の各画素Pの上側のサブ画素Paは、近接するCSラインCsiとの間で保持容量を形成し、第i行の各画素Pの下側のサブ画素Pbは、近接するCSラインCsi+1との間で保持容量を形成している。CSドライバ5は、各CSラインCsi’に保持容量配線信号を供給する。 The CS driver 5 is a drive circuit that drives the pixels P for n rows via the CS line Csi ′. The upper subpixel Pa of each pixel P in the i-th row forms a storage capacitor with the adjacent CS line Csi, and the lower subpixel Pb in each pixel P in the i-th row is adjacent to the CS line Csi. A storage capacitor is formed with Csi + 1. The CS driver 5 supplies a storage capacitor wiring signal to each CS line Csi ′.
 なお、CSラインCsi’は、同じ保持容量配線信号が供給されるCSライン毎に同じCS幹配線(図示せず)に接続されていてもよい。CSドライバは、CS幹配線に保持容量配線信号を供給することで、複数のCSラインに同じ保持容量配線信号を供給することができる。 Note that the CS line Csi 'may be connected to the same CS trunk line (not shown) for each CS line to which the same storage capacitor line signal is supplied. The CS driver can supply the same storage capacitor line signal to a plurality of CS lines by supplying the storage capacitor line signal to the CS trunk line.
 データドライバ6は、ソースラインSjを介してm列分の画素Pにデータを書き込む駆動回路である。ソースラインSjは、第j列の各画素Pの両方のサブ画素Pa・Pbに接続されている。データドライバ6は、各ソースラインSjに、表示データに応じた電位のデータ信号を供給する。 The data driver 6 is a drive circuit that writes data to the pixels P for m columns via the source line Sj. The source line Sj is connected to both sub-pixels Pa and Pb of each pixel P in the j-th column. The data driver 6 supplies a data signal having a potential according to display data to each source line Sj.
 表示信号発生部3は、ゲートドライバ4、CSドライバ5、およびデータドライバ6を制御して画像表示を行うための制御駆動回路である。表示信号発生部3は、表示動作に用いられるゲートスタートパルス、ゲートクロック、ソーススタートパルス、および、ソースクロックなどのタイミングを生成する。表示信号発生部3は、表示データをデータドライバ6に出力する。また、表示信号発生部3は、同時に、ゲートドライバ4を駆動・制御する信号をゲートドライバ4に出力し、CSドライバ5を駆動・制御する信号をCSドライバ5に出力する。これによって各画素Pに表示データを書き込み、画像の表示を行う。 The display signal generator 3 is a control drive circuit for controlling the gate driver 4, the CS driver 5, and the data driver 6 to display an image. The display signal generator 3 generates timings such as a gate start pulse, a gate clock, a source start pulse, and a source clock used for the display operation. The display signal generator 3 outputs display data to the data driver 6. At the same time, the display signal generator 3 outputs a signal for driving / controlling the gate driver 4 to the gate driver 4 and a signal for driving / controlling the CS driver 5 to the CS driver 5. As a result, display data is written to each pixel P to display an image.
 データ変換部2は、外部から入力された映像信号が、二次元画像を示すのか三次元画像を示すのかを判定する。データ変換部2は、外部から入力された三次元画像の映像信号のデータの変換を行い、表示に用いる表示データを生成する。データ変換部2は、表示信号発生部3に表示データを出力する。 The data conversion unit 2 determines whether the video signal input from the outside indicates a two-dimensional image or a three-dimensional image. The data conversion unit 2 converts the data of the video signal of the three-dimensional image input from the outside, and generates display data used for display. The data converter 2 outputs display data to the display signal generator 3.
 三次元画像を表示する場合、液晶表示装置1は、1画素行毎に左眼用画像と右眼用画像とを交互に表示する。そのため、1フレームにおける左眼用画像および右眼用画像の列方向(垂直方向)の解像度は半分になる。また、三次元画像を表示する場合、液晶表示装置1は、1画素列毎に黒表示を行う。そのため、1フレームにおける左眼用画像および右眼用画像の行方向(水平方向)の解像度も半分になる。なお、液晶表示装置1では、1つの表示領域は、行方向に並んだR(赤)G(緑)B(青)の3つの画素を有する。1つの表示領域は、RGBによって多色を表現することができる領域である。 When displaying a three-dimensional image, the liquid crystal display device 1 alternately displays a left-eye image and a right-eye image for each pixel row. Therefore, the resolution in the column direction (vertical direction) of the image for the left eye and the image for the right eye in one frame is halved. When displaying a three-dimensional image, the liquid crystal display device 1 performs black display for each pixel column. Therefore, the resolution in the row direction (horizontal direction) of the image for the left eye and the image for the right eye in one frame is also halved. In the liquid crystal display device 1, one display region has three pixels of R (red), G (green), and B (blue) arranged in the row direction. One display area is an area in which multiple colors can be expressed by RGB.
 例えば、左眼用画像および右眼用画像の信号が交互に入力される場合、左眼用画像および右眼用画像を1画素行毎に交互にかつ同時に表示するために、データ変換部2は、左眼用画像および右眼用画像について垂直方向において行データを間引き、左眼用画像の行データと右眼用画像の行データとを1行毎に交互に並べる。また、データ変換部2は、行方向の1表示領域(RGBの3つの画素に対応する)毎に、データを間引き、1表示領域の3つの画素のデータと黒表示(階調0)のデータとを1画素列毎に交互に並べる。なお、行方向の画素の並び順がR・G・Bの順である場合、図10に示すように、行方向においてR(画像表示)・G(黒表示)・B(画像表示)・R(黒表示)・G(画像表示)・B(黒表示)…と表示される。そのため、BのデータとGのデータは、二次元画像の表示に対して順番が入れ替えられる。 For example, when the signals for the left eye image and the right eye image are alternately input, the data conversion unit 2 displays the left eye image and the right eye image alternately and simultaneously for each pixel row. The row data is thinned out in the vertical direction for the left-eye image and the right-eye image, and the left-eye image row data and the right-eye image row data are alternately arranged for each row. The data conversion unit 2 thins out data for each display area in the row direction (corresponding to three pixels of RGB), and data for three pixels in one display area and data for black display (gradation 0). Are alternately arranged for each pixel column. When the arrangement order of the pixels in the row direction is R, G, B, as shown in FIG. 10, R (image display), G (black display), B (image display), R in the row direction. (Black display), G (image display), B (black display)... Therefore, the order of B data and G data is switched with respect to the display of the two-dimensional image.
 なお、二次元画像を表示する場合、データ変換部2は、上記の間引き処理を行わない。 In addition, when displaying a two-dimensional image, the data conversion unit 2 does not perform the above-described thinning process.
 偏光制御フィルタ8は、位相板を含み、左右の眼に対応して2種類の偏光領域を有する。左眼用偏光領域および右眼用偏光領域は、行方向に延びており、列方向に交互に配置される。位相板は1/2波長板であり、左眼用偏光領域には、表示パネル7の偏光板を通過した光の偏光方向に1/2波長板の光学軸が一致するように1/2波長板が配置されている。また、右眼用偏光領域には、表示パネル7の偏光板を通過した光の偏光方向と1/2波長板の光学軸とが45°の角度になるように1/2波長板が配置されている。すなわち、左眼用偏光領域からは垂直方向に偏光した光が出射され、右眼用偏光領域からは水平方向に偏光した光が出射される。なお、左右の偏光方向はこれに限らない。 The polarization control filter 8 includes a phase plate and has two types of polarization regions corresponding to the left and right eyes. The left-eye polarizing region and the right-eye polarizing region extend in the row direction and are alternately arranged in the column direction. The phase plate is a half-wave plate, and the left-eye polarization region has a half-wavelength such that the optical axis of the half-wave plate coincides with the polarization direction of the light that has passed through the polarizing plate of the display panel 7. A board is placed. In the right-eye polarization region, a half-wave plate is disposed so that the polarization direction of the light that has passed through the polarizing plate of the display panel 7 and the optical axis of the half-wave plate are at an angle of 45 °. ing. That is, light polarized in the vertical direction is emitted from the polarization region for the left eye, and light polarized in the horizontal direction is emitted from the polarization region for the right eye. The left and right polarization directions are not limited to this.
 (表示パネルの構成)
 図2は、液晶表示装置1が備える表示パネル7の一部の構成を等価回路として示す図である。第i行・第j列の画素Pijは、2つのサブ画素Pa・Pbを含む。2つのサブ画素Pa・Pbは、互いに列方向に隣接して配置される。各サブ画素Pa・Pbは、トランジスタTrと、画素電極PEとを有する。すなわち、1つの画素Pijは、2つのトランジスタTrを含む。
(Configuration of display panel)
FIG. 2 is a diagram illustrating a partial configuration of the display panel 7 included in the liquid crystal display device 1 as an equivalent circuit. The pixel Pij in the i-th row and j-th column includes two sub-pixels Pa and Pb. The two subpixels Pa and Pb are arranged adjacent to each other in the column direction. Each sub-pixel Pa · Pb includes a transistor Tr and a pixel electrode PE. That is, one pixel Pij includes two transistors Tr.
 上記したように、画素Pijの2つのサブ画素Pa・Pbの間にはゲートラインGiが配置されている。また、走査方向上流側(上側)のサブ画素Paの上側にはCSラインCsiが配置され、走査方向下流側(下側)のサブ画素Pbの下側にはCSラインCsi+1が配置されている。また、サブ画素Pa・Pbの左側にソースラインSjが配置されている。 As described above, the gate line Gi is arranged between the two sub-pixels Pa and Pb of the pixel Pij. Further, a CS line Csi is disposed above the sub pixel Pa on the upstream side (upper side) in the scanning direction, and a CS line Csi + 1 is disposed below the sub pixel Pb on the downstream side (lower side) in the scanning direction. A source line Sj is arranged on the left side of the sub-pixels Pa and Pb.
 画素電極PEは、対向電極(図示せず)との間で液晶層を狭持し、液晶容量を形成している。また、画素Pijの上側のサブ画素Paの画素電極PEは、上側に隣接(近接)するCSラインCsiとの間で、保持容量Ccsを形成している。同様に、下側のサブ画素Pbの画素電極PEは、下側に隣接(近接)するCSラインCsi+1との間で、保持容量Ccsを形成している。このように、1つの画素Pijの2つのサブ画素Pa・Pbは、互いに異なるCSラインとの間で保持容量Ccsを形成している。各サブ画素Pa・Pbは、液晶表示素子である。 The pixel electrode PE sandwiches a liquid crystal layer with a counter electrode (not shown) to form a liquid crystal capacitor. Further, the pixel electrode PE of the upper sub-pixel Pa of the pixel Pij forms a storage capacitor Ccs with the CS line Csi adjacent (adjacent) to the upper side. Similarly, the pixel electrode PE of the lower sub-pixel Pb forms a storage capacitor Ccs with the CS line Csi + 1 adjacent to (being close to) the lower side. In this way, the two sub-pixels Pa · Pb of one pixel Pij form a storage capacitor Ccs between different CS lines. Each sub-pixel Pa · Pb is a liquid crystal display element.
 画素Pijの各サブ画素Pa・PbのトランジスタTrのゲート電極は、その2つのサブ画素Pa・Pbの間を通るゲートラインGiに接続されている。画素Pijの各サブ画素Pa・Pbの画素電極PEは、トランジスタTrを介してソースラインSjに接続されている。 The gate electrode of the transistor Tr of each subpixel Pa · Pb of the pixel Pij is connected to a gate line Gi passing between the two subpixels Pa · Pb. The pixel electrodes PE of the sub-pixels Pa and Pb of the pixel Pij are connected to the source line Sj via the transistor Tr.
 ここでは、各サブ画素Pa・PbのトランジスタTrは、ゲート電位が高い(High)の場合にトランジスタがON状態(導通状態)になり、ゲート電位が低い(Low)の場合にトランジスタがOFF状態(非導通状態)になる、Nチャネル型トランジスタである。ただし、これに限らず、ゲート電位とON/OFF状態が逆の関係になるPチャネル型トランジスタを用いることもできる。 Here, the transistors Tr of the sub-pixels Pa and Pb are turned on (conductive) when the gate potential is high (High), and are turned off when the gate potential is low (Low) ( This is an N-channel transistor that is in a non-conductive state. However, the present invention is not limited to this, and a P-channel transistor in which the gate potential and the ON / OFF state are reversed can also be used.
 (液晶表示装置の駆動)
 次に、液晶表示装置1の駆動例について説明する。液晶表示装置1は、ドット反転駆動を行う。液晶表示装置1は、行方向および列方向に正極性のデータが書き込まれた画素と、負極性のデータが書き込まれた画素とが交互に配列するように、表示データを各画素に書き込む。さらに、液晶表示装置1は、フレーム(1フレームまたは数フレーム)毎に、各画素に書き込むデータの極性を反転させる。
(Drive of liquid crystal display device)
Next, a driving example of the liquid crystal display device 1 will be described. The liquid crystal display device 1 performs dot inversion driving. The liquid crystal display device 1 writes display data to each pixel so that pixels in which positive data is written in the row direction and column direction and pixels in which negative data is written are alternately arranged. Further, the liquid crystal display device 1 inverts the polarity of data written to each pixel for each frame (one frame or several frames).
 図3および図4は、あるフレーム(第1フレーム)における液晶表示装置1の駆動例を示すタイミングチャートである。図3には、時間(横軸)に対する、ソースラインSjに供給されるデータ信号の電位(データ電位)VSjと、ゲートラインGi~Gi+3にそれぞれ供給されるゲートパルスの電位(ゲート電位)VGi~VGi+3と、CSラインCsi~Csi+3に供給される保持容量配線信号の電位(CS電位)VCsi~VCsi+3と、第i行第j列~第i+2行第j列の画素Pi,j~Pi+2,jの各サブ画素Pa・Pbの画素電極PEの電位(画素電位)Vpai,j~Vpai+2,j、Vpbi,j~Vpbi+2,jとが示されている。図4には第i行第j+1列~第i+2行第j+1列の画素Pi,j+1~Pi+2,j+1の各サブ画素Pa・Pbの画素電極PEの電位(画素電位)Vpai,j+1~Vpai+2,j+1、Vpbi,j+1~Vpbi+2,j+1が示されている。図3および図4には、各画素電極の画素電位(Vpai,j~Vpai+2,j、Vpbi,j~Vpbi+2,j、Vpai,j+1~Vpai+2,j+1、Vpbi,j+1~Vpbi+2,j+1)については、そのフレームにおいてゲートがONになってデータが書き込まれてからの電位のみを示す。なお簡単のため、ここではゲート寄生容量による画素電位の引き込み等の影響は無視する。図3および図4には、二次元画像を表示する場合として、各画素に同じ階調のデータを書き込む例を示す。図3および図4に示す水平方向の破線は、対向電極の電位を示す。 3 and 4 are timing charts showing an example of driving the liquid crystal display device 1 in a certain frame (first frame). FIG. 3 shows the potential (data potential) VSj of the data signal supplied to the source line Sj and the potential (gate potential) VGi of the gate pulse supplied to the gate lines Gi to Gi + 3 with respect to time (horizontal axis). VGi + 3, the potential (CS potential) VCsi to VCsi + 3 of the storage capacitor wiring signal supplied to the CS lines Csi to Csi + 3, and the pixels Pi, j to Pi + 2, j of the i-th row, j-th column to i + 2-th row, j-th column. The potentials (pixel potentials) Vpai, j to Vpai + 2, j and Vpbi, j to Vpbi + 2, j of the pixel electrode PE of each of the subpixels Pa and Pb are shown. In FIG. 4, the potentials (pixel potentials) Vpai, j + 1 to Vpai + 2, j + 1 of the pixel electrodes PE of the subpixels Pa and Pb of the pixels Pi, j + 1 to Pi + 2, j + 1 in the i-th row, j + 1-th column to the (i + 2) -th row, j + 1-th column. , Vpbi, j + 1 to Vpbi + 2, j + 1 are shown. 3 and 4, the pixel potentials (Vpai, j to Vpai + 2, j, Vpbi, j to Vpbi + 2, j, Vpai, j + 1 to Vpai + 2, j + 1, Vpbi, j + 1 to Vpbi + 2, j + 1) of each pixel electrode are as follows. In this frame, only the potential after the gate is turned on and data is written is shown. For the sake of simplicity, the influence of pixel potential pull-in due to gate parasitic capacitance is ignored here. FIG. 3 and FIG. 4 show an example in which data of the same gradation is written to each pixel when displaying a two-dimensional image. The horizontal broken line shown in FIGS. 3 and 4 indicates the potential of the counter electrode.
 図5は、第1フレームにおける各画素の表示状態を示す模式図である。図5において、各画素電極PEには書き込まれたデータの極性を+、-で示している。また、図5において、明表示を行う明サブ画素の画素電極PEは白色で示し、暗表示を行う暗サブ画素の画素電極PEは点々のハッチングを施して示す。 FIG. 5 is a schematic diagram showing a display state of each pixel in the first frame. In FIG. 5, the polarity of data written to each pixel electrode PE is indicated by + and −. In FIG. 5, the pixel electrode PE of the bright sub-pixel that performs bright display is shown in white, and the pixel electrode PE of the dark sub-pixel that performs dark display is indicated by dotted hatching.
 データ電位は、1水平走査期間(1H)毎に極性が反転する。すなわち、同じ列の画素には、画素行毎に逆極性のデータ電位が書き込まれる。また、互いに隣接する2つのソースラインのデータ電位は逆極性になっている。すなわち、同じ行の画素には、画素列毎に異なる極性のデータ電位が書き込まれる。 Data polarity is inverted every horizontal scanning period (1H). That is, a data potential having a reverse polarity is written to the pixels in the same column for each pixel row. The data potentials of two source lines adjacent to each other have opposite polarities. That is, a data potential having a different polarity for each pixel column is written to pixels in the same row.
 ゲート電位は、各画素のトランジスタTrをON(導通状態)にするために、順次H(High)レベルになる。 The gate potential sequentially becomes H (High) level in order to turn on the transistor Tr of each pixel (conductive state).
 CS電位は、2水平走査期間(2H)毎に基準の電位に対して反転する。なお、CSラインCsiの電位VCsiとその下側のCSラインCsi+1の電位VCsi+1とは、極性が逆になっている。CSラインCsi+1の電位VCsi+1とその下側のCSラインCsi+2の電位VCsi+2とは、波形の位相が1水平走査期間ずれている。CSラインCsi+2の電位VCsi+2とその下側のCSラインCsi+3の電位VCsi+3とは、極性が逆になっている。なお、図示はしていないが、CSラインCsi+4の電位VCsi+4は、CSラインCsi+1の電位VCsi+1と同じである。 The CS potential is inverted with respect to the reference potential every two horizontal scanning periods (2H). Note that the polarity of the potential VCsi of the CS line Csi and the potential VCsi + 1 of the lower CS line Csi + 1 are opposite to each other. The phase of the waveform of the potential VCsi + 1 of the CS line Csi + 1 and the potential VCsi + 2 of the CS line Csi + 2 below the CS line Csi + 1 are shifted by one horizontal scanning period. The polarity of the potential VCsi + 2 of the CS line Csi + 2 and the potential VCsi + 3 of the lower CS line Csi + 3 are opposite to each other. Although not shown, the potential VCsi + 4 of the CS line Csi + 4 is the same as the potential VCsi + 1 of the CS line Csi + 1.
 1つの画素の2つのサブ画素Pa・Pbについては、ゲートONによって同時にトランジスタTrが導通状態になるので、該2つのサブ画素Pa・Pbには同じデータ電位が書き込まれる。 For the two sub-pixels Pa and Pb of one pixel, the transistor Tr becomes conductive at the same time when the gate is turned on, so that the same data potential is written into the two sub-pixels Pa and Pb.
 画素(サブ画素)にデータが書き込まれた後、CS電位の変化(極性の反転)により、CSラインに保持容量Ccsを介して繋がる画素電極PEの画素電位も変化する。1つの画素Pijに注目すると、サブ画素Pa・Pbにデータが書き込まれた直後は、2つのサブ画素Pa・Pbの画素電位Vpai,jおよび画素電位Vpbi,jは同じである。ここで、サブ画素Pa・Pbはそれぞれ異なるCSラインCsi・Csi+1に繋がる。トランジスタTrがOFF(ゲート電位がL(Low))になった後、CSラインCsiのCS電位VCsiは上昇するので、正極性のデータが書き込まれたサブ画素Paの画素電位Vpai,jは上昇する。一方、トランジスタTrがOFFになった後、CSラインCsi+1のCS電位VCsi+1は下降するので、正極性のデータが書き込まれたサブ画素Pbの画素電位Vpbi,jは下降する。 After data is written in the pixel (sub-pixel), the pixel potential of the pixel electrode PE connected to the CS line via the storage capacitor Ccs also changes due to the change of the CS potential (polarity inversion). When attention is paid to one pixel Pij, immediately after data is written to the sub-pixels Pa · Pb, the pixel potential Vpa, j and the pixel potential Vpbi, j of the two sub-pixels Pa · Pb are the same. Here, the sub-pixels Pa and Pb are connected to different CS lines Csi and Csi + 1, respectively. After the transistor Tr is turned off (the gate potential is L (Low)), the CS potential VCsi of the CS line Csi rises, so that the pixel potential Vpai, j of the subpixel Pa in which the positive data is written rises. . On the other hand, after the transistor Tr is turned off, the CS potential VCsi + 1 of the CS line Csi + 1 is lowered, so that the pixel potential Vpbi, j of the sub-pixel Pb in which the positive data is written is lowered.
 これにより、サブ画素Paの実効画素電圧(1フレーム期間の画素電圧の平均)は大きくなる、すなわち、画素Pi,jのサブ画素Paは明るく表示される明サブ画素となる。これに対し、サブ画素Pbの実効画素電圧は小さくなる、すなわち、画素Pi,jのサブ画素Pbは暗く表示される暗サブ画素となる。ここで、画素電圧は、対向電極の電位と画素電極の電位の差である。 Thereby, the effective pixel voltage of the sub-pixel Pa (average of the pixel voltages in one frame period) is increased, that is, the sub-pixel Pa of the pixel Pi, j is a bright sub-pixel that is displayed brightly. On the other hand, the effective pixel voltage of the sub-pixel Pb is small, that is, the sub-pixel Pb of the pixel Pi, j is a dark sub-pixel that is displayed dark. Here, the pixel voltage is a difference between the potential of the counter electrode and the potential of the pixel electrode.
 隣の画素列の画素Pi,j+1のサブ画素Pa・Pbについては、書き込まれるデータ電位の極性が逆(負極性)である(図4参照)。それゆえ、画素Pi,j+1のサブ画素Paは暗く表示される暗サブ画素となり、画素Pi,j+1のサブ画素Pbは明るく表示される明サブ画素となる。 Regarding the sub-pixels Pa and Pb of the pixels Pi and j + 1 in the adjacent pixel column, the polarity of the data potential to be written is opposite (negative polarity) (see FIG. 4). Therefore, the subpixel Pa of the pixel Pi, j + 1 is a dark subpixel that is displayed dark, and the subpixel Pb of the pixel Pi, j + 1 is a bright subpixel that is displayed brightly.
 よって、第1フレームにおいては、図5に示すように明サブ画素と暗サブ画素とが配置される。 Therefore, in the first frame, a bright sub-pixel and a dark sub-pixel are arranged as shown in FIG.
 図6および図7は、図3および図4に対応し、第1フレームの次の第2フレームにおける液晶表示装置1の駆動例を示すタイミングチャートである。図6には、時間(横軸)に対する、ソースラインSjに供給されるデータ信号の電位(データ電位)VSjと、ゲートラインGi~Gi+3にそれぞれ供給されるゲートパルスの電位(ゲート電位)VGi~VGi+3と、CSラインCsi~Csi+3に供給される保持容量配線信号の電位(CS電位)VCsi~VCsi+3と、第i行第j列~第i+2行第j列の画素Pi,j~Pi+2,jの各サブ画素Pa・Pbの画素電極PEの電位(画素電位)Vpai,j~Vpai+2,j、Vpbi,j~Vpbi+2,jとが示されている。図7には第i行第j+1列~第i+2行第j+1列の画素Pi,j+1~Pi+2,j+1の各サブ画素Pa・Pbの画素電極PEの電位(画素電位)Vpai,j+1~Vpai+2,j+1、Vpbi,j+1~Vpbi+2,j+1が示されている。図6および図7には、各画素電極の画素電位(Vpai,j~Vpai+2,j、Vpbi,j~Vpbi+2,j、Vpai,j+1~Vpai+2,j+1、Vpbi,j+1~Vpbi+2,j+1)については、そのフレームにおいてゲートがONになってデータが書き込まれてからの電位のみを示す。 FIGS. 6 and 7 are timing charts corresponding to FIGS. 3 and 4 and showing a driving example of the liquid crystal display device 1 in the second frame subsequent to the first frame. FIG. 6 shows the potential (data potential) VSj of the data signal supplied to the source line Sj and the potential (gate potential) VGi of the gate pulse supplied to the gate lines Gi to Gi + 3 with respect to time (horizontal axis). VGi + 3, the potential (CS potential) VCsi to VCsi + 3 of the storage capacitor wiring signal supplied to the CS lines Csi to Csi + 3, and the pixels Pi, j to Pi + 2, j of the i-th row, j-th column to i + 2-th row, j-th column. The potentials (pixel potentials) Vpai, j to Vpai + 2, j and Vpbi, j to Vpbi + 2, j of the pixel electrode PE of each of the subpixels Pa and Pb are shown. FIG. 7 shows the potentials (pixel potentials) Vpai, j + 1 to Vpai + 2, j + 1 of the pixel electrodes PE of the sub-pixels Pa and Pb of the pixels Pi, j + 1 to Pi + 2 and j + 1 in the i-th row, j + 1-th column to i + 2-th row, j + 1-th column. , Vpbi, j + 1 to Vpbi + 2, j + 1 are shown. 6 and 7, the pixel potentials (Vpai, j to Vpai + 2, j, Vpbi, j to Vpbi + 2, j, Vpai, j + 1 to Vpai + 2, j + 1, Vpbi, j + 1 to Vpbi + 2, j + 1) of each pixel electrode are shown in FIG. In this frame, only the potential after the gate is turned on and data is written is shown.
 図8は、図5に対応し、第2フレームにおける各画素の表示状態を示す模式図である。図8において、各画素電極PEには書き込まれたデータの極性を+、-で示している。また、図8において、明表示を行う明サブ画素の画素電極PEは白色で示し、暗表示を行う暗サブ画素の画素電極PEは点々のハッチングを施して示す。 FIG. 8 is a schematic diagram corresponding to FIG. 5 and showing a display state of each pixel in the second frame. In FIG. 8, the polarity of data written to each pixel electrode PE is indicated by + and −. In FIG. 8, the pixel electrode PE of a bright subpixel that performs bright display is shown in white, and the pixel electrode PE of a dark subpixel that performs dark display is indicated by dotted hatching.
 第2フレームでは、各画素に対して書き込むデータ電位が、第1フレームと比べて逆極性になっている。さらに、各画素のトランジスタTrがONになるタイミングに対して、CS電位も反転している(逆位相になっている)。そのため、第2フレームでは、前のフレームに対して各画素に書き込まれるデータ電位の極性は逆になるが、結果的に、明サブ画素および暗サブ画素の位置は変わらない。これにより、液晶表示装置1は、ドット反転駆動を行うことができる。 In the second frame, the data potential written to each pixel has a reverse polarity compared to the first frame. Further, the CS potential is also inverted (in reverse phase) with respect to the timing when the transistor Tr of each pixel is turned on. Therefore, in the second frame, the polarity of the data potential written to each pixel is reversed with respect to the previous frame, but as a result, the positions of the bright subpixel and the dark subpixel do not change. Thereby, the liquid crystal display device 1 can perform dot inversion driving.
 なお、三次元画像を表示する場合も、液晶表示装置1は、上記と同様の駆動を行う。ただし三次元画像を表示する場合、ソースラインには、1列毎に黒表示のデータが供給される。 In addition, also when displaying a three-dimensional image, the liquid crystal display device 1 performs the drive similar to the above. However, when displaying a three-dimensional image, black display data is supplied to the source line for each column.
 (二次元画像および三次元画像の表示)
 図9は、二次元画像を表示する場合の、画素の表示状態を示す模式図である。液晶表示装置1では、各表示領域ARは、行方向に並ぶR・G・Bの3つの画素Pを含む。ここでは、各表示領域ARの中で、左からR・G・Bの順に画素が配列している。各画素Pは、上側に配置されたサブ画素Paと下側に配置されたサブ画素Pbとを含む。上述したように、サブ画素Paおよびサブ画素Pbのいずれか一方は明サブ画素であり、他方は暗サブ画素である。明サブ画素と暗サブ画素とは、市松状に行方向および列方向において交互に位置する。
(Display of 2D and 3D images)
FIG. 9 is a schematic diagram illustrating a display state of pixels when a two-dimensional image is displayed. In the liquid crystal display device 1, each display area AR includes three pixels P of R, G, and B arranged in the row direction. Here, pixels are arranged in the order of R, G, and B from the left in each display area AR. Each pixel P includes a sub-pixel Pa arranged on the upper side and a sub-pixel Pb arranged on the lower side. As described above, one of the sub pixel Pa and the sub pixel Pb is a bright sub pixel, and the other is a dark sub pixel. The bright sub-pixels and the dark sub-pixels are alternately arranged in a checkered pattern in the row direction and the column direction.
 液晶表示装置1は、二次元画像を表示する場合、全ての明サブ画素および暗サブ画素に画像を表示させる。 The liquid crystal display device 1 displays an image on all bright sub-pixels and dark sub-pixels when displaying a two-dimensional image.
 このように、1つの画素を明サブ画素と暗サブ画素とに分けて表示することで、γ特性の視角依存性を改善することができる。明サブ画素と暗サブ画素とは、画素電圧が異なるので、液晶の配向状態が異なる。液晶の配向状態が異なるサブ画素を混ぜることで、斜めから見たときのγ特性を正面から見たときのγ特性に近いものにすることができる。そのため、視野角が広い液晶表示装置を実現することができる。 In this way, the viewing angle dependency of the γ characteristic can be improved by displaying one pixel divided into a bright sub-pixel and a dark sub-pixel. Since the bright subpixel and the dark subpixel have different pixel voltages, the alignment state of the liquid crystal is different. By mixing sub-pixels having different liquid crystal alignment states, the γ characteristic when viewed from an oblique direction can be made closer to the γ characteristic when viewed from the front. Therefore, a liquid crystal display device with a wide viewing angle can be realized.
 ここで、三次元画像を表示する場合、左眼用画像を表示する行と、右眼用画像を表示する行とに分けて表示を行う必要がある。なお、偏光制御フィルタ8の左眼用偏光領域および右眼用偏光領域を、対応する画素列毎に配置し、画素列毎に左眼用画像と右眼用画像とを分けることもできる。ただし、ユーザが表示画面を見る場合、上下の斜め方向より、左右の斜め方向から見ることが多いので、クロストークを抑制するために、本実施形態のように左眼用画像と右眼用画像とは行毎に交互に表示する方が好ましい。 Here, when displaying a three-dimensional image, it is necessary to perform display separately for a line for displaying an image for the left eye and a line for displaying an image for the right eye. The left-eye polarization region and the right-eye polarization region of the polarization control filter 8 may be arranged for each corresponding pixel column, and the left-eye image and the right-eye image may be separated for each pixel column. However, when the user looks at the display screen, the user often sees the image from the left and right diagonal directions rather than from the upper and lower diagonal directions. Therefore, in order to suppress crosstalk, the left eye image and the right eye image as in the present embodiment. Is preferably displayed alternately for each row.
 特許文献1の構成では、例えば上側のサブ画素Paに左眼用画像または右眼用画像を表示させ、下側のサブ画素Pbだけを黒表示にすることで、左右用の画像の間にブラックストライプを形成し、左右用の画像を分離する。 In the configuration of Patent Document 1, for example, a left-eye image or a right-eye image is displayed on the upper sub-pixel Pa, and only the lower sub-pixel Pb is displayed in black. A stripe is formed and the left and right images are separated.
 CS電位の駆動によってドット反転駆動を行う本実施形態の液晶表示装置1では、1画素当たりのトランジスタTrの数を2個にすることができるので、歩留まりを高くすることができ、製造コストも低くなる。また、ドット反転駆動を行うことにより、焼き付きを防ぐことができ、かつ、フリッカの少ない表示を行うことができる。 In the liquid crystal display device 1 of this embodiment that performs dot inversion driving by driving the CS potential, the number of transistors Tr per pixel can be made two, so that the yield can be increased and the manufacturing cost is also low. Become. Further, by performing dot inversion driving, burn-in can be prevented and display with less flicker can be performed.
 また、液晶が垂直配向型の液晶である場合、さらにドット反転駆動の利点がある。正極性のデータが書き込まれた画素と負極性のデータが書き込まれた画素とを(少なくとも部分的に)市松状に配置することにより、各画素の間に急峻な傾斜電界が形成される。この傾斜電界によって、垂直配向型液晶の軸対称配向ドメイン(1画素に対応するドメイン)が安定化される。その結果、中間階調の表示状態においても軸対称配向ドメインを安定化することができ、表示品位を向上することができる。 Further, when the liquid crystal is a vertical alignment type liquid crystal, there is an additional advantage of dot inversion driving. A steep gradient electric field is formed between each pixel by arranging (at least partially) a pixel in which positive data is written and a pixel in which negative data is written in a checkered pattern. This gradient electric field stabilizes the axially symmetric alignment domain (domain corresponding to one pixel) of the vertically aligned liquid crystal. As a result, the axially symmetric alignment domain can be stabilized even in the display state of intermediate gradation, and the display quality can be improved.
 ただし、液晶表示装置1は、1つの画素のサブ画素Pa・Pbに同じデータを書き込むので、例えば一方のサブ画素Paのみに画像のデータを書き込み、他方のサブ画素Pbのみに黒表示のデータを書き込むことはできない。 However, since the liquid crystal display device 1 writes the same data to the sub-pixels Pa and Pb of one pixel, for example, image data is written only to one sub-pixel Pa and black display data is written only to the other sub-pixel Pb. Cannot write.
 そこで、液晶表示装置1は、三次元画像を表示する場合、下側のサブ画素Pbが明サブ画素である画素列の画素P(サブ画素Pa・Pb)には黒表示のデータを書き込む。 Therefore, when displaying a three-dimensional image, the liquid crystal display device 1 writes black display data to the pixel P (sub-pixel Pa · Pb) of the pixel column in which the lower sub-pixel Pb is a bright sub-pixel.
 図10は、三次元画像を表示する場合の、画素の表示状態を示す模式図である。左眼用画像および右眼用画像は、1画素列毎に、上側のサブ画素Paが明サブ画素である第1型の画素Pを用いて表示される。画像表示を行う該画素の下側のサブ画素Pbは、暗サブ画素である。一方、下側のサブ画素Pbが明サブ画素である第2型の画素は、黒表示になる。そのため、サブ画素Pbは、実質的に全て暗表示になり、サブ画素Pbが並ぶ行領域にブラックストライプが形成される。 FIG. 10 is a schematic diagram showing a display state of pixels when a three-dimensional image is displayed. The image for the left eye and the image for the right eye are displayed using the first type pixel P in which the upper sub pixel Pa is a bright sub pixel for each pixel column. The lower sub-pixel Pb that performs image display is a dark sub-pixel. On the other hand, the second type pixel in which the lower sub-pixel Pb is a bright sub-pixel displays black. Therefore, substantially all the sub-pixels Pb are darkly displayed, and black stripes are formed in the row region where the sub-pixels Pb are arranged.
 なお、行方向において、Gの画素が黒表示でRおよびBの画素が画像表示を行う表示領域ARと、RおよびBの画素が黒表示でGの画素が画像表示を行う表示領域ARとが交互に並ぶ。よって、任意の色(フルカラー)は、行方向に隣接する2つの表示領域ARによって表現される。 In the row direction, there are a display area AR in which G pixels are displayed in black and R and B pixels display an image, and a display area AR in which R and B pixels are displayed in black and G pixels are displayed. Line up alternately. Therefore, an arbitrary color (full color) is expressed by two display areas AR adjacent in the row direction.
 図11は、本実施形態の液晶表示装置の偏光制御フィルタ8および表示パネル7の三次元画像の表示状態を示す模式図である。図11では、表示画面の法線方向から見た偏光制御フィルタ8、および偏光制御フィルタ8に重なる表示パネル7の画素の配置の対応関係を示すために、偏光制御フィルタ8と表示パネル7とを横に並べて示す。また、図11では、左眼用偏光領域8aおよび右眼用偏光領域8bからユーザへ出射する光の偏光方向を矢印で表す。 FIG. 11 is a schematic diagram showing a display state of a three-dimensional image of the polarization control filter 8 and the display panel 7 of the liquid crystal display device of the present embodiment. In FIG. 11, the polarization control filter 8 and the display panel 7 are shown in order to show the correspondence relationship between the polarization control filter 8 viewed from the normal direction of the display screen and the pixel arrangement of the display panel 7 overlapping the polarization control filter 8. Shown side by side. In FIG. 11, the polarization direction of light emitted from the left-eye polarizing region 8a and the right-eye polarizing region 8b to the user is indicated by an arrow.
 偏光制御フィルタ8の左右用の偏光領域8a・8bは、それぞれ画面の横方向(行方向)に延びており、縦方向(列方向)に交互に配置されている。例えば、図11に示す表示パネル7の上から1番目の画素のサブ画素Paは、左眼用画像を表示し、偏光制御フィルタ8の左眼用偏光領域8aに重なる位置に配置されている。図11に示す表示パネル7の上から2番目の画素のサブ画素Paは、右眼用画像を表示し、偏光制御フィルタ8の右眼用偏光領域8bに重なる位置に配置されている。そして、表示パネル7のサブ画素Pbは、ブラックストライプを形成し、偏光制御フィルタ8の左右用の偏光領域8a・8bの境界に対応する(境界付近に重なる)位置に配置されている。 The left and right polarizing regions 8a and 8b of the polarization control filter 8 respectively extend in the horizontal direction (row direction) of the screen and are alternately arranged in the vertical direction (column direction). For example, the sub pixel Pa of the first pixel from the top of the display panel 7 shown in FIG. 11 displays an image for the left eye and is disposed at a position overlapping the polarization region 8 a for the left eye of the polarization control filter 8. The sub-pixel Pa of the second pixel from the top of the display panel 7 shown in FIG. 11 displays the right-eye image and is arranged at a position overlapping the right-eye polarization region 8 b of the polarization control filter 8. The sub-pixel Pb of the display panel 7 forms a black stripe and is arranged at a position corresponding to the boundary between the left and right polarization regions 8a and 8b of the polarization control filter 8 (overlapping near the boundary).
 液晶表示装置1は、二次元画像を表示する場合、全ての画素を用いて二次元画像を表示する。液晶表示装置1が表示した二次元画像をユーザが見る場合、偏光眼鏡は使用されないので、各画素の光の偏光方向は二次元画像の視認には関係しない。液晶表示装置1は、全ての画素を用いて二次元画像を表現するので、また左右分離用の吸光部が必要ないので、画像を明るく表示することができる。 The liquid crystal display device 1 displays a two-dimensional image using all pixels when displaying a two-dimensional image. When the user views the two-dimensional image displayed by the liquid crystal display device 1, polarized glasses are not used, and therefore the polarization direction of light of each pixel is not related to the visual recognition of the two-dimensional image. Since the liquid crystal display device 1 expresses a two-dimensional image using all the pixels and does not require a light-absorbing part for separating left and right, the image can be displayed brightly.
 一方、液晶表示装置1は、三次元画像を表示する場合、1画素列毎に黒表示(暗表示)にし、行方向の半分の画素列を用いて三次元画像を表示する。これにより行方向に延びるブラックストライプを形成することができ、左眼用画像と右眼用画像とを明確に分離して表示することができる。よって、クロストークを抑制することができる。 On the other hand, when displaying a three-dimensional image, the liquid crystal display device 1 displays black (dark display) for each pixel column, and displays the three-dimensional image using half the pixel columns in the row direction. Thereby, black stripes extending in the row direction can be formed, and the left-eye image and the right-eye image can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
 (変形例)
 また、三次元画像を表示する場合、データ変換部2は、暗サブ画素がより暗く(黒表示に)なるように、データ全体の階調を低い階調に変換することもできる。所定の階調以下では、CS駆動によって暗サブ画素はほぼ黒表示になる。これにより、明サブ画素は画像を表示し、暗サブ画素はほぼ黒表示にすることができる。それゆえ、よりブラックストライプが黒くなり、左眼用画像と右眼用画像とを明確に分離することができる。
(Modification)
In addition, when displaying a three-dimensional image, the data conversion unit 2 can also convert the gradation of the entire data to a lower gradation so that the dark sub-pixel is darker (black display). Below a predetermined gradation, the dark sub-pixels are displayed almost black by CS driving. Thereby, the bright sub-pixel can display an image, and the dark sub-pixel can be displayed almost black. Therefore, the black stripe becomes blacker, and the left-eye image and the right-eye image can be clearly separated.
 なお上記では、入力された三次元画像の映像信号のデータを表示のためのデータに変換するために、行方向の1表示領域毎にデータを間引き、1表示領域のデータと黒表示のデータとを1画素列毎に交互に並べる場合について説明したが、これに限らない。データ変換部2は、間引くのではなく、横に隣接する2つの表示領域のデータを各色毎に平均して、表示に用いてもよい。 In the above, in order to convert the input video signal data of the three-dimensional image into data for display, the data is thinned out for each display area in the row direction, and the data for one display area and the data for black display are displayed. However, the present invention is not limited to this. Instead of thinning out, the data conversion unit 2 may average the data of two horizontally adjacent display areas for each color and use them for display.
 また、画素列毎に間引いたデータを次のフレームの画像とし、倍速駆動によって2倍のフレームレートで表示させてもよい。この場合は擬似的に元の入力された映像信号の解像度の画像を表示することができる。なお、左眼用画像と右眼用画像とを1フレームの画像として表示するために間引いた行データについても、別のフレームの画像とし、さらに倍のフレームレートで表示を行ってもよい。 Further, the data thinned out for each pixel column may be used as an image of the next frame and displayed at a double frame rate by double speed driving. In this case, an image having the resolution of the original input video signal can be displayed in a pseudo manner. Note that row data thinned out in order to display the left-eye image and the right-eye image as one frame image may be displayed as another frame image and displayed at a double frame rate.
 [実施形態2]
 本発明の別の実施形態について説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材・構成については、同じ符号を付記し、その詳細な説明を省略する。本実施形態では、液晶表示装置はRGBYの画素を有する。
[Embodiment 2]
Another embodiment of the present invention will be described. For convenience of explanation, members and configurations having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and detailed descriptions thereof are omitted. In the present embodiment, the liquid crystal display device has RGBY pixels.
 (液晶表示装置の全体構成)
 図12は、本実施形態の液晶表示装置10の構成を示すブロック図である。液晶表示装置10は、左眼用画像と右眼用画像とを互いに直交する偏光によって表示する偏光式の三次元画像表示装置である。
(Overall configuration of liquid crystal display device)
FIG. 12 is a block diagram showing a configuration of the liquid crystal display device 10 of the present embodiment. The liquid crystal display device 10 is a polarization-type three-dimensional image display device that displays a left-eye image and a right-eye image with polarized light that is orthogonal to each other.
 液晶表示装置10は、階調変換部11、データ変換部(表示制御部)12、表示信号発生部(表示制御部)3、ゲートドライバ4、CSドライバ5、データドライバ6、表示パネル(表示層)14、および偏光制御フィルタ(偏光制御層)8を備えている。表示パネル14は、画像を表示するために、R(赤)、G(緑)、B(青)、Y(黄)の4色の画素を有する。 The liquid crystal display device 10 includes a gradation conversion unit 11, a data conversion unit (display control unit) 12, a display signal generation unit (display control unit) 3, a gate driver 4, a CS driver 5, a data driver 6, a display panel (display layer). ) 14 and a polarization control filter (polarization control layer) 8. The display panel 14 has four color pixels of R (red), G (green), B (blue), and Y (yellow) in order to display an image.
 階調変換部11は、入力された映像信号(RGB)が示す画像をRGBYの4色の画素を用いて表示するために、3色(RGB)の映像信号を4色(RGBY)の映像信号に変換する(4色の各画素の階調を決定する)。なお、RGBYの4色を用いて表示する場合と、RGBの3色を用いて表示する場合とでは、同じ映像信号で指定される同じ色を表現するとしても、当然RGBの各画素の輝度は異なる。階調変換部11は、変換した映像信号をデータ変換部12に出力する。 The gradation converting unit 11 displays the image indicated by the input video signal (RGB) using the RGBY four-color pixels, and converts the three-color (RGB) video signal into the four-color (RGBY) video signal. (The gradation of each pixel of four colors is determined). In the case of displaying using four colors of RGBY and the case of displaying using three colors of RGB, even if the same color specified by the same video signal is expressed, the luminance of each pixel of RGB is naturally Different. The gradation converter 11 outputs the converted video signal to the data converter 12.
 データ変換部12は、入力された映像信号が、二次元画像を示すのか三次元画像を示すのかを判定する。データ変換部12は、入力された三次元画像の映像信号のデータの変換を行い、表示に用いる表示データを生成する。データ変換部12は、表示信号発生部3に表示データを出力する。 The data converter 12 determines whether the input video signal indicates a two-dimensional image or a three-dimensional image. The data converter 12 converts the data of the input video signal of the three-dimensional image, and generates display data used for display. The data converter 12 outputs display data to the display signal generator 3.
 三次元画像を表示する場合、液晶表示装置10は、1画素行毎に左眼用画像と右眼用画像とを交互に表示する。そのため、1フレームにおける左眼用画像および右眼用画像の列方向(垂直方向)の解像度は半分になる。また、三次元画像を表示する場合、液晶表示装置10は、全体の半分の画素列の画素を黒表示にする。そのため、1フレームにおける左眼用画像および右眼用画像の行方向(水平方向)の解像度も半分になる。 When displaying a three-dimensional image, the liquid crystal display device 10 alternately displays a left-eye image and a right-eye image for each pixel row. Therefore, the resolution in the column direction (vertical direction) of the image for the left eye and the image for the right eye in one frame is halved. Moreover, when displaying a three-dimensional image, the liquid crystal display device 10 displays the pixels of the half pixel row as a whole in black. Therefore, the resolution in the row direction (horizontal direction) of the image for the left eye and the image for the right eye in one frame is also halved.
 本実施形態では、各画素の明サブ画素および暗サブ画素の配置は、図14に示すように配置される。液晶表示装置10では、1つの表示領域ARは、行方向に並んだR(赤)G(緑)B(青)Y(黄)の4つの画素を有する。1つの表示領域ARは、RGBYによって多色を表現することができる領域である。ある表示領域ARでは、R・B・Yの上側のサブ画素Paが明サブ画素となり、Gの下側のサブ画素Pbが明サブ画素となる。その行方向に隣接する表示領域ARでは、Gの上側のサブ画素Paが明サブ画素となり、R・B・Yの下側のサブ画素Pbが明サブ画素となる。Bの画素とYの画素とは、その明サブ画素が並んで配置される。 In this embodiment, the arrangement of the bright sub-pixels and the dark sub-pixels of each pixel is arranged as shown in FIG. In the liquid crystal display device 10, one display area AR has four pixels of R (red), G (green), B (blue), and Y (yellow) arranged in the row direction. One display area AR is an area in which multiple colors can be expressed by RGBY. In a certain display area AR, the upper subpixel Pa of R, B, and Y is a bright subpixel, and the lower subpixel Pb of G is a bright subpixel. In the display area AR adjacent to the row direction, the sub-pixel Pa on the upper side of G is a bright sub-pixel, and the sub-pixel Pb on the lower side of R, B, and Y is a bright sub-pixel. The bright pixels of the B pixel and the Y pixel are arranged side by side.
 例えば、左眼用画像および右眼用画像の信号が交互に入力される場合、左眼用画像および右眼用画像を1画素行毎に交互にかつ同時に表示するために、データ変換部12は、左眼用画像および右眼用画像について垂直方向において行データを間引き、左眼用画像の行データと右眼用画像の行データとを1行毎に交互に並べる。また、データ変換部12は、行方向の1表示領域(RGBYの4つの画素に対応する)毎に、データを間引き、1表示領域の4つの画素のデータと4画素分の黒表示のデータとを所定の順に並べる。なお、行方向の画素の並び順がR・G・B・Yの順である場合、図15に示すように、行方向においてR(画像表示)・G(黒表示)・B(画像表示)・Y(画像表示)・R(黒表示)・G(画像表示)・B(黒表示)・Y(黒表示)…と表示される。そのため、GのデータとB・Yのデータとは、二次元画像の表示に対して順番が入れ替えられる。 For example, when the signals for the left-eye image and the right-eye image are alternately input, the data conversion unit 12 displays the left-eye image and the right-eye image alternately and simultaneously for each pixel row. The row data is thinned out in the vertical direction for the left-eye image and the right-eye image, and the left-eye image row data and the right-eye image row data are alternately arranged for each row. Further, the data conversion unit 12 thins out data for each display area in the row direction (corresponding to four pixels of RGBY), data of four pixels in one display area, and data of black display for four pixels, Are arranged in a predetermined order. When the arrangement order of the pixels in the row direction is R, G, B, and Y, as shown in FIG. 15, R (image display), G (black display), and B (image display) in the row direction. Y (image display), R (black display), G (image display), B (black display), Y (black display)... Therefore, the order of the G data and the B · Y data is switched with respect to the display of the two-dimensional image.
 (液晶表示装置の駆動)
 図13は、あるフレームにおける各画素の表示状態を示す模式図である。図13において、各画素電極PEには書き込まれたデータの極性を+、-で示している。また、図13において、明表示を行う明サブ画素の画素電極PEは白色で示し、暗表示を行う暗サブ画素の画素電極PEは点々のハッチングを施して示す。なお、図13には、各画素とRGBYとの対応関係の一例を示す。
(Drive of liquid crystal display device)
FIG. 13 is a schematic diagram showing a display state of each pixel in a certain frame. In FIG. 13, the polarity of data written to each pixel electrode PE is indicated by + and −. In FIG. 13, the pixel electrode PE of a bright sub-pixel that performs bright display is shown in white, and the pixel electrode PE of a dark sub-pixel that performs dark display is indicated by dotted hatching. FIG. 13 shows an example of the correspondence between each pixel and RGBY.
 本実施形態において実施形態1と異なる点は、Bの明サブ画素とYの明サブ画素とが同じ行に並ぶように、同じ画素行において、Bの画素とYの画素には、同じ極性のデータを書き込む。これにより、Bの画素とYの画素とは、明サブ画素および暗サブ画素の配置が同じになる。 This embodiment differs from the first embodiment in that the B pixel and the Y pixel have the same polarity in the same pixel row so that the B bright subpixel and the Y bright subpixel are arranged in the same row. Write data. Thereby, the arrangement of the bright subpixel and the dark subpixel is the same between the B pixel and the Y pixel.
 (二次元画像および三次元画像の表示)
 図14は、二次元画像を表示する場合の、画素の表示状態を示す模式図である。液晶表示装置10では、各表示領域ARは、行方向に並ぶR・G・B・Yの4つの画素Pを含む。ここでは、各表示領域ARの中で、左からR・G・B・Yの順に画素が配列している。各画素Pは、上側に配置されたサブ画素Paと下側に配置されたサブ画素Pbとを含む。上述したように、サブ画素Paおよびサブ画素Pbのいずれか一方は明サブ画素であり、他方は暗サブ画素である。
(Display of 2D and 3D images)
FIG. 14 is a schematic diagram illustrating a display state of pixels when a two-dimensional image is displayed. In the liquid crystal display device 10, each display area AR includes four pixels P of R, G, B, and Y arranged in the row direction. Here, in each display area AR, pixels are arranged in the order of R, G, B, and Y from the left. Each pixel P includes a sub-pixel Pa arranged on the upper side and a sub-pixel Pb arranged on the lower side. As described above, one of the sub pixel Pa and the sub pixel Pb is a bright sub pixel, and the other is a dark sub pixel.
 液晶表示装置10は、二次元画像を表示する場合、全ての明サブ画素および暗サブ画素に画像を表示させる。 The liquid crystal display device 10 displays an image on all bright sub-pixels and dark sub-pixels when displaying a two-dimensional image.
 一方、液晶表示装置10は、三次元画像を表示する場合、下側のサブ画素Pbが明サブ画素である画素列の画素P(サブ画素Pa・Pb)には黒表示のデータを書き込む。 On the other hand, when displaying a three-dimensional image, the liquid crystal display device 10 writes black display data to the pixel P (sub-pixel Pa · Pb) of the pixel column in which the lower sub-pixel Pb is a bright sub-pixel.
 図15は、三次元画像を表示する場合の、画素の表示状態を示す模式図である。左眼用画像および右眼用画像は、上側のサブ画素Paが明サブ画素である画素Pを用いて表示される。画像表示を行う該画素の下側のサブ画素Pbは、暗サブ画素である。一方、下側のサブ画素Pbが明サブ画素である画素は、黒表示になる。そのため、サブ画素Pbは、実質的に全て暗表示になり、サブ画素Pbが並ぶ行領域にブラックストライプが形成される。 FIG. 15 is a schematic diagram showing a display state of pixels when a three-dimensional image is displayed. The left-eye image and the right-eye image are displayed using the pixel P in which the upper sub-pixel Pa is a bright sub-pixel. The lower sub-pixel Pb that performs image display is a dark sub-pixel. On the other hand, a pixel whose lower sub-pixel Pb is a bright sub-pixel is displayed in black. Therefore, substantially all the sub-pixels Pb are darkly displayed, and black stripes are formed in the row region where the sub-pixels Pb are arranged.
 なお、行方向において、Gの画素が黒表示でR、BおよびYの画素が画像表示を行う表示領域ARと、R、BおよびYの画素が黒表示でGの画素が画像表示を行う表示領域ARとが交互に並ぶ。よって、任意の色(フルカラー)は、行方向に隣接する2つの表示領域ARによって表現される。 In the row direction, a display area AR in which G pixels are displayed in black and R, B, and Y pixels display images, and a display in which R, B, and Y pixels are displayed in black and G pixels are displayed. The areas AR are alternately arranged. Therefore, an arbitrary color (full color) is expressed by two display areas AR adjacent in the row direction.
 図16は、本実施形態の液晶表示装置の偏光制御フィルタ8および表示パネル14の三次元画像の表示状態を示す模式図である。図16では、表示画面の法線方向から見た偏光制御フィルタ8、および偏光制御フィルタ8に重なる表示パネル14の画素の配置の対応関係を示すために、偏光制御フィルタ8と表示パネル14とを横に並べて示す。 FIG. 16 is a schematic diagram showing a display state of a three-dimensional image of the polarization control filter 8 and the display panel 14 of the liquid crystal display device of the present embodiment. In FIG. 16, the polarization control filter 8 and the display panel 14 are shown in order to show the correspondence relationship between the polarization control filter 8 viewed from the normal direction of the display screen and the pixel arrangement of the display panel 14 overlapping the polarization control filter 8. Shown side by side.
 例えば、図16に示す表示パネル14の上から1番目の画素のサブ画素Paは、左眼用画像を表示し、偏光制御フィルタ8の左眼用偏光領域8aに重なる位置に配置されている。図16に示す表示パネル14の上から2番目の画素のサブ画素Paは、右眼用画像を表示し、偏光制御フィルタ8の右眼用偏光領域8bに重なる位置に配置されている。そして、表示パネル14のサブ画素Pbは、ブラックストライプを形成し、偏光制御フィルタ8の左右用の偏光領域8a・8bの境界に対応する(境界付近に重なる)位置に配置されている。 For example, the sub-pixel Pa of the first pixel from the top of the display panel 14 shown in FIG. 16 displays the left-eye image and is arranged at a position overlapping the left-eye polarization region 8 a of the polarization control filter 8. The sub-pixel Pa of the second pixel from the top of the display panel 14 shown in FIG. 16 displays the image for the right eye and is arranged at a position overlapping the polarization region 8 b for the right eye of the polarization control filter 8. The sub-pixel Pb of the display panel 14 forms a black stripe and is disposed at a position corresponding to the boundary between the left and right polarization regions 8a and 8b of the polarization control filter 8 (overlapping near the boundary).
 液晶表示装置10は、二次元画像を表示する場合、全ての画素を用いて二次元画像を表示する。液晶表示装置1は、全ての画素を用いて二次元画像を表現するので、また左右分離用の吸光部が必要ないので、画像を明るく表示することができる。 The liquid crystal display device 10 displays a two-dimensional image using all pixels when displaying a two-dimensional image. Since the liquid crystal display device 1 expresses a two-dimensional image using all the pixels and does not require a light-absorbing part for separating left and right, the image can be displayed brightly.
 一方、液晶表示装置10は、三次元画像を表示する場合、所定の画素列を黒表示(暗表示)にし、行方向の半分の画素列を用いて三次元画像を表示する。これにより行方向に延びるブラックストライプを形成することができ、左眼用画像と右眼用画像とを明確に分離して表示することができる。よって、クロストークを抑制することができる。 On the other hand, when displaying a three-dimensional image, the liquid crystal display device 10 displays a predetermined pixel column in black (dark display) and displays a three-dimensional image using half the pixel column in the row direction. Thereby, black stripes extending in the row direction can be formed, and the left-eye image and the right-eye image can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
 [実施形態3]
 本発明のさらに別の実施形態について説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材・構成については、同じ符号を付記し、その詳細な説明を省略する。本実施形態では、三次元画像を表示する場合、二次元画像を表示する場合より、CS電位の振幅を大きくする。
[Embodiment 3]
Still another embodiment of the present invention will be described. For convenience of explanation, members and configurations having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and detailed descriptions thereof are omitted. In the present embodiment, when displaying a three-dimensional image, the amplitude of the CS potential is made larger than when displaying a two-dimensional image.
 (液晶表示装置の全体構成)
 図20は、本実施形態の液晶表示装置15の構成を示すブロック図である。液晶表示装置15は、左眼用画像と右眼用画像とを互いに直交する偏光によって表示する偏光式の三次元画像表示装置である。
(Overall configuration of liquid crystal display device)
FIG. 20 is a block diagram showing the configuration of the liquid crystal display device 15 of the present embodiment. The liquid crystal display device 15 is a polarization-type three-dimensional image display device that displays a left-eye image and a right-eye image with polarized light that is orthogonal to each other.
 液晶表示装置15は、データ変換部(表示制御部)16、表示信号発生部(表示制御部)3、ゲートドライバ4、CSドライバ17、データドライバ6、表示パネル(表示層)7、および偏光制御フィルタ(偏光制御層)8を備えている。表示パネル7は、図2および図9に示す実施形態1と同様の、RGBの3色の画素を有する表示パネルである。 The liquid crystal display device 15 includes a data conversion unit (display control unit) 16, a display signal generation unit (display control unit) 3, a gate driver 4, a CS driver 17, a data driver 6, a display panel (display layer) 7, and a polarization control. A filter (polarization control layer) 8 is provided. The display panel 7 is a display panel having pixels of three colors of RGB, similar to the first embodiment shown in FIGS. 2 and 9.
 データ変換部16は、外部から入力された映像信号が、二次元画像を示すのか三次元画像を示すのかを判定する。データ変換部16は、外部から入力された三次元画像の映像信号のデータの変換を行い、表示に用いる表示データを生成する。データ変換部16は、表示信号発生部3に表示データを出力する。また、データ変換部16は、CSドライバ17が供給する保持容量配線信号の振幅を切り替えるために、二次元画像を表示するのか三次元画像を表示するのかを示す信号をCSドライバ17に出力する。 The data converter 16 determines whether the video signal input from the outside indicates a two-dimensional image or a three-dimensional image. The data conversion unit 16 converts data of a video signal of a three-dimensional image input from the outside, and generates display data used for display. The data converter 16 outputs display data to the display signal generator 3. Further, the data converter 16 outputs a signal indicating whether to display a two-dimensional image or a three-dimensional image to the CS driver 17 in order to switch the amplitude of the storage capacitor wiring signal supplied by the CS driver 17.
 三次元画像を表示する場合、実施形態1と同様に、データ変換部16は、データの間引きと並び替えを行い、1画素行毎に黒表示になるよう、黒表示のデータを挿入する。三次元画像を表示する場合、図10に示すように左右用の画像の表示が行われる。 When displaying a three-dimensional image, as in the first embodiment, the data conversion unit 16 performs data thinning and rearrangement, and inserts black display data so that black display is performed for each pixel row. When a three-dimensional image is displayed, left and right images are displayed as shown in FIG.
 また、データ変換部16は、画像の表示を行う画素のデータの階調について、全体的に階調が低くなるように(暗くなるように)、データの階調を変換する。入力された映像信号において1つの画素の階調が0~255で表されているとすると、例えばそれを0~128の階調に変換する。 Also, the data conversion unit 16 converts the gradation of the data so that the gradation of the pixel of the pixel for displaying the image becomes lower (darker) as a whole. If the gradation of one pixel is represented by 0 to 255 in the input video signal, it is converted into a gradation of 0 to 128, for example.
 CSドライバ17は、CSラインCsi’を介してn行分の画素Pを駆動する駆動回路である。CSドライバ17は、各CSラインCsi’に保持容量配線信号を供給する。ここで、CSドライバ17は、データ変換部16から入力された信号に基づいて、二次元画像を表示するのか三次元画像を表示するのかを判定する。三次元画像を表示する場合、CSドライバ17は、二次元画像を表示する場合より、各CSラインCsi’に供給する保持容量配線信号の振幅(CS電位の変化の振幅)を大きくする。 The CS driver 17 is a drive circuit that drives the pixels P for n rows via the CS line Csi ′. The CS driver 17 supplies a storage capacitor wiring signal to each CS line Csi '. Here, the CS driver 17 determines whether to display a two-dimensional image or a three-dimensional image based on the signal input from the data conversion unit 16. When displaying a three-dimensional image, the CS driver 17 increases the amplitude of the storage capacitor wiring signal supplied to each CS line Csi ′ (the amplitude of the change in the CS potential) compared to displaying a two-dimensional image.
 (液晶表示装置の駆動)
 次に、液晶表示装置15の駆動例について説明する。液晶表示装置15は、三次元画像の表示時において保持容量配線信号の振幅を大きくすること以外は、実施形態1と同様の駆動を行う。
(Drive of liquid crystal display device)
Next, an example of driving the liquid crystal display device 15 will be described. The liquid crystal display device 15 performs the same drive as in the first embodiment except that the amplitude of the storage capacitor wiring signal is increased when displaying a three-dimensional image.
 図21は、図3に対応する図であり、三次元画像の表示時の、あるフレームにおける液晶表示装置15の駆動例を示すタイミングチャートである。図21には、時間(横軸)に対する、ソースラインSjに供給されるデータ信号の電位(データ電位)VSjと、ゲートラインGi~Gi+3にそれぞれ供給されるゲートパルスの電位(ゲート電位)VGi~VGi+3と、CSラインCsi~Csi+3に供給される保持容量配線信号の電位(CS電位)VCsi~VCsi+3と、第i行第j列~第i+2行第j列の画素Pi,j~Pi+2,jの各サブ画素Pa・Pbの画素電極PEの電位(画素電位)Vpai,j~Vpai+2,j、Vpbi,j~Vpbi+2,jとが示されている。なお、図21には、参考までに二次元画像の表示時のCS電位VCsiを点線で示す。ここで、第i行第j列~第i+2行第j列の画素Pi,j~Pi+2,jは、三次元画像の表示時において左眼用画像または右眼用画像を表示する画素に対応している。図21では、これらの画素に同じ階調のデータを書き込む例を示す。 FIG. 21 is a diagram corresponding to FIG. 3 and a timing chart showing an example of driving the liquid crystal display device 15 in a certain frame at the time of displaying a three-dimensional image. FIG. 21 shows the potential (data potential) VSj of the data signal supplied to the source line Sj and the potential (gate potential) VGi of the gate pulse supplied to the gate lines Gi to Gi + 3 with respect to time (horizontal axis). VGi + 3, the potential (CS potential) VCsi to VCsi + 3 of the storage capacitor wiring signal supplied to the CS lines Csi to Csi + 3, and the pixels Pi, j to Pi + 2, j of the i-th row, j-th column to i + 2-th row, j-th column. The potentials (pixel potentials) Vpai, j to Vpai + 2, j and Vpbi, j to Vpbi + 2, j of the pixel electrode PE of each of the subpixels Pa and Pb are shown. In FIG. 21, for reference, the CS potential VCsi at the time of displaying a two-dimensional image is indicated by a dotted line. Here, the pixels Pi, j to Pi + 2, j in the i-th row and j-th column to the (i + 2) -th row and the j-th column correspond to the pixels for displaying the left-eye image or the right-eye image when the three-dimensional image is displayed. ing. FIG. 21 shows an example in which data of the same gradation is written to these pixels.
 液晶表示装置15に入力された映像信号が示す階調に対して、データ変換部16によって暗めに変換された階調に対応するデータ電位VSjの信号が、ソースラインSjに供給される。また、各CSラインのCS電位の変化の幅は、図3に示す場合(二次元画像を表示する場合)よりも大きい。 The signal of the data potential VSj corresponding to the gradation converted darker by the data converter 16 with respect to the gradation indicated by the video signal input to the liquid crystal display device 15 is supplied to the source line Sj. Further, the width of the change in the CS potential of each CS line is larger than that shown in FIG. 3 (when a two-dimensional image is displayed).
 そのため、画素(サブ画素)にデータが書き込まれた後の、CS電位の変化に伴う画素電位Vpai,j、Vpbi,jの変化も大きくなる。それゆえ、1つの画素Pijの2つのサブ画素Pa・Pbの画素電位Vpai,jおよび画素電位Vpbi,jの実効値(実効画素電圧)の差は、より大きくなる。そのため、画素Pijについて、明サブ画素であるサブ画素Paはより明るくなり、暗サブ画素であるサブ画素Pbはより暗くなる。同じ画素行の他の画素についても同様である。よって、明サブ画素と暗サブ画素との輝度差を大きくすることができる。 Therefore, the change in the pixel potentials Vpai, j, Vpbi, j accompanying the change in the CS potential after data is written in the pixel (subpixel) also becomes large. Therefore, the difference between the effective values (effective pixel voltages) of the pixel potential Vpai, j and the pixel potential Vpbi, j of the two subpixels Pa and Pb of one pixel Pij becomes larger. Therefore, for the pixel Pij, the sub-pixel Pa that is a bright sub-pixel becomes brighter, and the sub-pixel Pb that is a dark sub-pixel becomes darker. The same applies to other pixels in the same pixel row. Therefore, the luminance difference between the bright sub-pixel and the dark sub-pixel can be increased.
 CS駆動によって明サブ画素と暗サブ画素とを作る液晶表示装置では、一般に、画素に書き込まれるデータの階調がある所定の階調より低い場合、その暗サブ画素は、黒表示とほぼ同等の輝度になる。 In a liquid crystal display device that creates bright subpixels and dark subpixels by CS driving, generally, when the gradation of data written to a pixel is lower than a predetermined gradation, the dark subpixel is substantially equivalent to black display. It becomes brightness.
 本実施形態の液晶表示装置15では、図10に示す画像表示を行う画素列において、暗サブ画素Pbの表示をより暗くすることができるので、ブラックストライプの部分に画像が表示されないようにすることができる。よって、左眼用画像と右眼用画像とをより明確に分離して、クロストークの発生を抑制することができる。 In the liquid crystal display device 15 of the present embodiment, the dark sub-pixel Pb can be displayed darker in the pixel column that performs the image display shown in FIG. 10, so that no image is displayed on the black stripe portion. Can do. Therefore, it is possible to more clearly separate the left eye image and the right eye image and suppress the occurrence of crosstalk.
 また、CS電位の振幅を大きくすることにより、明サブ画素はより明るくなる。これに対し、入力された映像信号のデータの階調をあらかじめ暗めに変換しておくことにより、画像表示を行う明サブ画素が明るくなりすぎることを防ぐことができる。よって、中間階調の表示を適切に行うことができる。 Also, the bright sub-pixel becomes brighter by increasing the amplitude of the CS potential. On the other hand, by converting the gradation of the data of the input video signal to dark beforehand, it is possible to prevent the bright sub-pixel that performs image display from becoming too bright. Therefore, it is possible to appropriately display the intermediate gradation.
 [他の変形例]
 本発明の一態様に係る表示装置は、互いに列方向に隣接する第1明サブ画素および第1暗サブ画素を含む第1画素と、互いに列方向に隣接する第2明サブ画素および第2暗サブ画素を含む第2画素とを備える表示層と、上記表示層に重なるように配置され、上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、上記第1明サブ画素と上記第2暗サブ画素とは互いに行方向に並んで配置され、上記第1暗サブ画素と上記第2明サブ画素とは互いに行方向に並んで配置され、上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、上記第1暗サブ画素と上記第2明サブ画素とは、上記2種類の偏光領域の境界に対応する位置に配置されており、三次元画像を表示する場合、上記第1画素には画像を表示させ、上記第2画素には黒表示をさせる表示制御部を備える。
[Other variations]
A display device according to one embodiment of the present invention includes a first pixel including a first bright subpixel and a first dark subpixel that are adjacent to each other in the column direction, and a second bright subpixel and a second darker that are adjacent to each other in the column direction. A display layer including a second pixel including a sub-pixel, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixel. A display device capable of displaying an image, wherein the first bright subpixel and the second dark subpixel are arranged side by side in a row direction, and the first dark subpixel and the second bright subpixel Are arranged side by side in the row direction, and the polarization control layer includes two types of polarization regions that make the polarization states of light different from each other, and the first dark sub-pixel and the second bright sub-pixel include the 2 Placed at the position corresponding to the boundary of the polarization region of the type. , When displaying a three-dimensional image, the the first pixel to display the image, in the above second pixel comprising a display control unit for the black display.
 本発明の一態様に係る表示装置は、複数の画素を備える表示層と、上記表示層に重なるように配置され上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、各画素は、列方向における上側に位置する第1サブ画素と、列方向における下側に位置する第2サブ画素とを含み、上記複数の画素のうち、第1型の画素では、上記第1サブ画素が明表示を行い、かつ、上記第2サブ画素が暗表示を行い、第2型の画素では、上記第1サブ画素が暗表示を行い、かつ、上記第2サブ画素が明表示を行い、上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、上記第2サブ画素は、上記2種類の偏光領域の境界に対応する位置に配置されており、三次元画像を表示する場合、上記第1型の画素には画素行毎に交互に第1眼用画像および第2眼用画像を表示させ、上記第2型の画素には黒表示をさせる表示制御部を備える。 A display device according to one embodiment of the present invention includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels. A display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a first sub-pixel located on the upper side in the column direction and a second sub-pixel located on the lower side in the column direction, Among the plurality of pixels, in the first type pixel, the first sub pixel performs bright display, and the second sub pixel performs dark display, and in the second type pixel, the first sub pixel. Performs dark display, the second subpixel performs bright display, the polarization control layer includes two types of polarization regions that change the polarization state of light from each other, and the second subpixel includes the 2 subpixels. It is located at the position corresponding to the boundary of the different polarization regions When displaying a three-dimensional image, the first-type pixel is alternately displayed for each pixel row, and the first-type image and the second-eye image are displayed alternately, and the second-type pixel is displayed black. A control unit is provided.
 本発明の一態様に係る表示装置は、複数の画素を備える表示層と、上記表示層に重なるように配置され上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、各画素は、明サブ画素および暗サブ画素を含み、上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、三次元画像を表示する場合、上記複数の画素のうち、上記2種類の偏光領域の境界に対応する位置に上記明サブ画素が配置されている画素については黒表示をさせ、上記2種類の偏光領域の境界に対応しない位置に上記明サブ画素が配置されている画素については画像を表示させる表示制御部を備える。 A display device according to one embodiment of the present invention includes a display layer including a plurality of pixels, and a polarization control layer that is disposed so as to overlap the display layer and controls a polarization state of light emitted from the pixels. A display device capable of displaying a three-dimensional image and a three-dimensional image, wherein each pixel includes a bright sub-pixel and a dark sub-pixel, and the polarization control layer includes two types of polarization regions that make light polarization states different from each other When a three-dimensional image is displayed, among the plurality of pixels, a pixel in which the bright sub-pixel is arranged at a position corresponding to a boundary between the two types of polarization regions is displayed in black, and the 2 A display control unit that displays an image is provided for the pixels in which the bright sub-pixels are arranged at positions that do not correspond to the boundaries between the types of polarization regions.
 上記の構成によれば、2種類の偏光領域の境界に対応する位置に、黒表示を行う画素の明サブ画素と、画像の表示を行う画素の暗サブ画素とが配置されており、該位置にブラックストライプを形成することができる。これにより、左眼用画像と右眼用画像とを明確に分離して表示することができる。よって、クロストークを抑制することができる。 According to the above configuration, the bright sub-pixel of the pixel that performs black display and the dark sub-pixel of the pixel that displays the image are arranged at positions corresponding to the boundaries between the two types of polarization regions. Black stripes can be formed on the substrate. Thereby, the image for left eyes and the image for right eyes can be clearly separated and displayed. Therefore, crosstalk can be suppressed.
 また、上記表示層は、互いに列方向に隣接する第3明サブ画素および第3暗サブ画素を含み上記第1画素に対して列方向に隣接する第3画素と、互いに列方向に隣接する第4明サブ画素および第4暗サブ画素を含み上記第2画素に対して列方向に隣接する第4画素とを備え、上記第1暗サブ画素と上記第3明サブ画素とは互いに列方向に隣接して配置され、上記第2明サブ画素と上記第4暗サブ画素とは互いに列方向に隣接して配置され、上記第3明サブ画素と上記第4暗サブ画素とは互いに行方向に並んで配置され、上記第3暗サブ画素と上記第4明サブ画素とは互いに行方向に並んで配置され、上記表示制御部は、三次元画像を表示する場合、上記第1画素には第1眼用画像を表示させ、上記第3画素には第2眼用画像を表示させ、上記第2画素および上記第4画素には黒表示をさせる構成であってもよい。 The display layer includes third bright subpixels and third dark subpixels adjacent to each other in the column direction, and third pixels adjacent to the first pixel in the column direction and adjacent to each other in the column direction. A fourth pixel including four bright subpixels and a fourth dark subpixel and adjacent to the second pixel in the column direction, wherein the first dark subpixel and the third bright subpixel are arranged in the column direction. The second bright subpixel and the fourth dark subpixel are arranged adjacent to each other in the column direction, and the third bright subpixel and the fourth dark subpixel are arranged in the row direction. The third dark sub-pixel and the fourth bright sub-pixel are arranged side by side in the row direction, and when the display control unit displays a three-dimensional image, the first pixel An image for one eye is displayed, and an image for the second eye is displayed on the third pixel. The second pixel and the fourth pixel may be configured for the black display.
 また、上記表示層は、第1保持容量配線および第2保持容量配線を備え、上記第1明サブ画素および上記第2暗サブ画素は、上記第1保持容量配線との間で保持容量を形成し、上記第1暗サブ画素および上記第2明サブ画素は、上記第2保持容量配線との間で保持容量を形成し、上記表示制御部は、上記第1保持容量配線および上記第2保持容量配線を駆動することで、上記第1暗サブ画素および上記第2暗サブ画素を暗表示にさせる構成であってもよい。 The display layer includes a first storage capacitor line and a second storage capacitor line, and the first bright sub-pixel and the second dark sub-pixel form a storage capacitor with the first storage capacitor line. The first dark sub-pixel and the second bright sub-pixel form a storage capacitor with the second storage capacitor line, and the display control unit includes the first storage capacitor line and the second storage capacitor line. A configuration may be employed in which the first dark sub-pixel and the second dark sub-pixel are darkly displayed by driving the capacitor wiring.
 また、上記表示制御部は、三次元画像を表示する場合、上記第1保持容量配線および上記第2保持容量配線に供給する保持容量配線信号の振幅を、二次元画像を表示する場合よりも、大きくする構成であってもよい。 In addition, when the display control unit displays a three-dimensional image, the amplitude of the storage capacitor line signal supplied to the first storage capacitor line and the second storage capacitor line is set to be larger than that when a two-dimensional image is displayed. The structure which enlarges may be sufficient.
 また、上記表示層は、第1走査信号線、第1データ信号線、および第2データ信号線を備え、上記第1明サブ画素および上記第1暗サブ画素は、上記第1走査信号線および上記第1データ信号線に接続され、上記第2明サブ画素および上記第2暗サブ画素は、上記第1走査信号線および上記第2データ信号線に接続され、上記表示制御部は、上記第1走査信号線、上記第1データ信号線、および上記第2データ信号線を駆動することで、上記第1画素および上記第2画素の表示を制御する構成であってもよい。 The display layer includes a first scanning signal line, a first data signal line, and a second data signal line, and the first bright sub-pixel and the first dark sub-pixel include the first scanning signal line and the first scanning signal line. The second bright subpixel and the second dark subpixel are connected to the first data signal line, the second dark subpixel is connected to the first scanning signal line and the second data signal line, and the display control unit is connected to the first data signal line. The display of the first pixel and the second pixel may be controlled by driving one scanning signal line, the first data signal line, and the second data signal line.
 また、上記表示制御部は、二次元画像を表示する場合、上記第1画素および上記第2画素に画像を表示させる構成であってもよい。 The display control unit may be configured to display an image on the first pixel and the second pixel when displaying a two-dimensional image.
 また、上記第1明サブ画素、上記第2暗サブ画素、上記第1暗サブ画素、および上記第2明サブ画素は、液晶容量を含む液晶表示素子であってもよい。 The first bright subpixel, the second dark subpixel, the first dark subpixel, and the second bright subpixel may be a liquid crystal display element including a liquid crystal capacitor.
 また、上記液晶表示素子は、垂直配向型の液晶を含む構成であってもよい。 Further, the liquid crystal display element may include a vertical alignment type liquid crystal.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、二次元画像および三次元画像を表示可能な液晶表示装置に利用することができる。 The present invention can be used for a liquid crystal display device capable of displaying a two-dimensional image and a three-dimensional image.
1、10、15  液晶表示装置
2、12、16  データ変換部(表示制御部)
3  表示信号発生部(表示制御部)
4  ゲートドライバ
5、17  CSドライバ
6  データドライバ
7、14  表示パネル(表示層)
8  偏光制御フィルタ(偏光制御層)
8a  左眼用偏光領域
8b  右眼用偏光領域
11  階調変換部
AR  表示領域
Ccs  保持容量
Csi  CSライン(保持容量配線)
Gi  ゲートライン(走査信号線)
P  画素
PE  画素電極
Pa、Pb  サブ画素
Sj  ソースライン(データ信号線)
Tr  トランジスタ
1, 10, 15 Liquid crystal display device 2, 12, 16 Data conversion unit (display control unit)
3 Display signal generator (display controller)
4 Gate driver 5, 17 CS driver 6 Data driver 7, 14 Display panel (display layer)
8 Polarization control filter (polarization control layer)
8a Polarizing region for left eye 8b Polarizing region for right eye 11 Gradation conversion part AR Display region Ccs Retention capacitance Csi CS line (retention capacitance wiring)
Gi gate line (scanning signal line)
P pixel PE pixel electrode Pa, Pb sub pixel Sj source line (data signal line)
Tr transistor

Claims (10)

  1.  互いに列方向に隣接する第1明サブ画素および第1暗サブ画素を含む第1画素と、互いに列方向に隣接する第2明サブ画素および第2暗サブ画素を含む第2画素とを備える表示層と、上記表示層に重なるように配置され、上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、
     上記第1明サブ画素と上記第2暗サブ画素とは互いに行方向に並んで配置され、
     上記第1暗サブ画素と上記第2明サブ画素とは互いに行方向に並んで配置され、
     上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、
     上記第1暗サブ画素と上記第2明サブ画素とは、上記2種類の偏光領域の境界に対応する位置に配置されており、
     三次元画像を表示する場合、上記第1画素には画像を表示させ、上記第2画素には黒表示をさせる表示制御部を備えることを特徴とする表示装置。
    A display comprising: a first pixel including a first bright subpixel and a first dark subpixel adjacent to each other in the column direction; and a second pixel including a second bright subpixel and a second dark subpixel adjacent to each other in the column direction. A display device comprising a layer and a polarization control layer arranged to overlap the display layer and controlling a polarization state of light emitted from the pixel, and capable of displaying a two-dimensional image and a three-dimensional image. ,
    The first bright sub-pixel and the second dark sub-pixel are arranged side by side in the row direction,
    The first dark sub-pixel and the second bright sub-pixel are arranged side by side in the row direction,
    The polarization control layer includes two types of polarization regions that make the polarization states of light different from each other,
    The first dark sub-pixel and the second bright sub-pixel are arranged at positions corresponding to boundaries between the two types of polarization regions,
    A display device comprising: a display control unit that displays an image on the first pixel and displays black on the second pixel when displaying a three-dimensional image.
  2.  上記表示層は、互いに列方向に隣接する第3明サブ画素および第3暗サブ画素を含み上記第1画素に対して列方向に隣接する第3画素と、互いに列方向に隣接する第4明サブ画素および第4暗サブ画素を含み上記第2画素に対して列方向に隣接する第4画素とを備え、
     上記第1暗サブ画素と上記第3明サブ画素とは互いに列方向に隣接して配置され、
     上記第2明サブ画素と上記第4暗サブ画素とは互いに列方向に隣接して配置され、
     上記第3明サブ画素と上記第4暗サブ画素とは互いに行方向に並んで配置され、
     上記第3暗サブ画素と上記第4明サブ画素とは互いに行方向に並んで配置され、
     上記表示制御部は、三次元画像を表示する場合、上記第1画素には第1眼用画像を表示させ、上記第3画素には第2眼用画像を表示させ、上記第2画素および上記第4画素には黒表示をさせることを特徴とする請求項1に記載の表示装置。
    The display layer includes a third bright subpixel and a third dark subpixel that are adjacent to each other in the column direction, a third pixel that is adjacent to the first pixel in the column direction, and a fourth light that is adjacent to the first pixel in the column direction. A fourth pixel including a sub-pixel and a fourth dark sub-pixel and adjacent to the second pixel in the column direction,
    The first dark sub-pixel and the third bright sub-pixel are disposed adjacent to each other in the column direction,
    The second bright sub-pixel and the fourth dark sub-pixel are disposed adjacent to each other in the column direction,
    The third bright sub-pixel and the fourth dark sub-pixel are arranged side by side in the row direction,
    The third dark sub-pixel and the fourth bright sub-pixel are arranged side by side in the row direction,
    When displaying the three-dimensional image, the display control unit displays the first eye image on the first pixel, displays the second eye image on the third pixel, and displays the second pixel and the second pixel. The display device according to claim 1, wherein the fourth pixel displays black.
  3.  上記表示層は、第1保持容量配線および第2保持容量配線を備え、
     上記第1明サブ画素および上記第2暗サブ画素は、上記第1保持容量配線との間で保持容量を形成し、
     上記第1暗サブ画素および上記第2明サブ画素は、上記第2保持容量配線との間で保持容量を形成し、
     上記表示制御部は、上記第1保持容量配線および上記第2保持容量配線を駆動することで、上記第1暗サブ画素および上記第2暗サブ画素を暗表示にさせることを特徴とする請求項1または2に記載の表示装置。
    The display layer includes a first storage capacitor line and a second storage capacitor line,
    The first bright sub-pixel and the second dark sub-pixel form a storage capacitor with the first storage capacitor line,
    The first dark sub-pixel and the second bright sub-pixel form a storage capacitor with the second storage capacitor line,
    The display control unit drives the first storage capacitor line and the second storage capacitor line to darken the first dark subpixel and the second dark subpixel. 3. The display device according to 1 or 2.
  4.  上記表示制御部は、三次元画像を表示する場合、上記第1保持容量配線および上記第2保持容量配線に供給する保持容量配線信号の振幅を、二次元画像を表示する場合よりも、大きくすることを特徴とする請求項3に記載の表示装置。 When displaying a three-dimensional image, the display control unit increases the amplitude of the storage capacitor line signal supplied to the first storage capacitor line and the second storage capacitor line, compared to when displaying a two-dimensional image. The display device according to claim 3.
  5.  上記表示層は、第1走査信号線、第1データ信号線、および第2データ信号線を備え、
     上記第1明サブ画素および上記第1暗サブ画素は、上記第1走査信号線および上記第1データ信号線に接続され、
     上記第2明サブ画素および上記第2暗サブ画素は、上記第1走査信号線および上記第2データ信号線に接続され、
     上記表示制御部は、上記第1走査信号線、上記第1データ信号線、および上記第2データ信号線を駆動することで、上記第1画素および上記第2画素の表示を制御することを特徴とする請求項1から4のいずれか一項に記載の表示装置。
    The display layer includes a first scanning signal line, a first data signal line, and a second data signal line,
    The first bright sub-pixel and the first dark sub-pixel are connected to the first scanning signal line and the first data signal line,
    The second bright sub-pixel and the second dark sub-pixel are connected to the first scanning signal line and the second data signal line,
    The display control unit controls display of the first pixel and the second pixel by driving the first scanning signal line, the first data signal line, and the second data signal line. The display device according to any one of claims 1 to 4.
  6.  上記表示制御部は、二次元画像を表示する場合、上記第1画素および上記第2画素に画像を表示させることを特徴とする請求項1から5のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 5, wherein when the two-dimensional image is displayed, the display control unit displays the image on the first pixel and the second pixel.
  7.  上記第1明サブ画素、上記第2暗サブ画素、上記第1暗サブ画素、および上記第2明サブ画素は、液晶容量を含む液晶表示素子であることを特徴とする請求項1から6のいずれか一項に記載の表示装置。 7. The liquid crystal display element according to claim 1, wherein the first bright sub-pixel, the second dark sub-pixel, the first dark sub-pixel, and the second bright sub-pixel are liquid crystal display elements including a liquid crystal capacitor. The display device according to any one of the above.
  8.  上記液晶表示素子は、垂直配向型の液晶を含むことを特徴とする請求項7に記載の表示装置。 The display device according to claim 7, wherein the liquid crystal display element includes vertically aligned liquid crystal.
  9.  複数の画素を備える表示層と、上記表示層に重なるように配置され上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、
     各画素は、列方向における上側に位置する第1サブ画素と、列方向における下側に位置する第2サブ画素とを含み、
     上記複数の画素のうち、第1型の画素では、上記第1サブ画素が明表示を行い、かつ、上記第2サブ画素が暗表示を行い、第2型の画素では、上記第1サブ画素が暗表示を行い、かつ、上記第2サブ画素が明表示を行い、
     上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、
     上記第2サブ画素は、上記2種類の偏光領域の境界に対応する位置に配置されており、
     三次元画像を表示する場合、上記第1型の画素には画素行毎に交互に第1眼用画像および第2眼用画像を表示させ、上記第2型の画素には黒表示をさせる表示制御部を備えることを特徴とする表示装置。
    A display layer including a plurality of pixels and a polarization control layer that is arranged so as to overlap the display layer and controls the polarization state of light emitted from the pixels can display a two-dimensional image and a three-dimensional image. A display device,
    Each pixel includes a first sub-pixel located on the upper side in the column direction and a second sub-pixel located on the lower side in the column direction,
    Among the plurality of pixels, in the first type pixel, the first sub pixel performs bright display, and the second sub pixel performs dark display, and in the second type pixel, the first sub pixel. Performs dark display, and the second sub-pixel performs bright display,
    The polarization control layer includes two types of polarization regions that make the polarization states of light different from each other,
    The second sub-pixel is disposed at a position corresponding to a boundary between the two types of polarization regions,
    When displaying a three-dimensional image, the first-type pixel is alternately displayed for each pixel row on the first-type pixel, and the second-type pixel is displayed on black. A display device comprising a control unit.
  10.  複数の画素を備える表示層と、上記表示層に重なるように配置され上記画素から出射される光の偏光状態を制御する偏光制御層とを備え、二次元画像および三次元画像の表示が可能な表示装置であって、
     各画素は、明サブ画素および暗サブ画素を含み、
     上記偏光制御層は、光の偏光状態を互いに異ならせる2種類の偏光領域を含み、
     三次元画像を表示する場合、上記複数の画素のうち、上記2種類の偏光領域の境界に対応する位置に上記明サブ画素が配置されている画素については黒表示をさせ、上記2種類の偏光領域の境界に対応しない位置に上記明サブ画素が配置されている画素については画像を表示させる表示制御部を備えることを特徴とする表示装置。
    A display layer including a plurality of pixels and a polarization control layer that is arranged so as to overlap the display layer and controls the polarization state of light emitted from the pixels can display a two-dimensional image and a three-dimensional image. A display device,
    Each pixel includes a bright sub-pixel and a dark sub-pixel,
    The polarization control layer includes two types of polarization regions that make the polarization states of light different from each other,
    When displaying a three-dimensional image, among the plurality of pixels, a pixel in which the bright sub-pixel is arranged at a position corresponding to a boundary between the two types of polarization regions is displayed in black, and the two types of polarization A display device comprising: a display control unit configured to display an image for a pixel in which the bright sub-pixel is arranged at a position not corresponding to a boundary of a region.
PCT/JP2012/072392 2011-09-30 2012-09-03 Display device WO2013047099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218363 2011-09-30
JP2011-218363 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047099A1 true WO2013047099A1 (en) 2013-04-04

Family

ID=47995146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072392 WO2013047099A1 (en) 2011-09-30 2012-09-03 Display device

Country Status (1)

Country Link
WO (1) WO2013047099A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083522A1 (en) * 2013-12-05 2015-06-11 株式会社有沢製作所 Image display apparatus
WO2020004275A1 (en) * 2018-06-26 2020-01-02 京セラ株式会社 Three-dimensional display device, control controller, three-dimensional display method, three-dimensional display system, and moving body
CN114930800A (en) * 2020-01-09 2022-08-19 索尼集团公司 Image processing apparatus, image processing method, and imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139693A1 (en) * 2007-04-26 2008-11-20 Sharp Kabushiki Kaisha Liquid crystal display
JP2010204389A (en) * 2009-03-03 2010-09-16 Sony Corp Display device
JP2010250257A (en) * 2009-04-17 2010-11-04 Lg Display Co Ltd Image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139693A1 (en) * 2007-04-26 2008-11-20 Sharp Kabushiki Kaisha Liquid crystal display
JP2010204389A (en) * 2009-03-03 2010-09-16 Sony Corp Display device
JP2010250257A (en) * 2009-04-17 2010-11-04 Lg Display Co Ltd Image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083522A1 (en) * 2013-12-05 2015-06-11 株式会社有沢製作所 Image display apparatus
WO2020004275A1 (en) * 2018-06-26 2020-01-02 京セラ株式会社 Three-dimensional display device, control controller, three-dimensional display method, three-dimensional display system, and moving body
JPWO2020004275A1 (en) * 2018-06-26 2021-07-08 京セラ株式会社 3D display device, control controller, 3D display method, 3D display system, and mobile
JP7145214B2 (en) 2018-06-26 2022-09-30 京セラ株式会社 3D DISPLAY DEVICE, CONTROLLER, 3D DISPLAY METHOD, 3D DISPLAY SYSTEM, AND MOVING OBJECT
US11924400B2 (en) 2018-06-26 2024-03-05 Kyocera Corporation Three-dimensional display device, control controller, three-dimensional display method, three-dimensional display system, and moving body
CN114930800A (en) * 2020-01-09 2022-08-19 索尼集团公司 Image processing apparatus, image processing method, and imaging apparatus
CN114930800B (en) * 2020-01-09 2024-05-28 索尼集团公司 Image processing apparatus, image processing method, and imaging apparatus

Similar Documents

Publication Publication Date Title
US10204572B2 (en) Display apparatus of multi-color light sources and driving method thereof
WO2012063830A1 (en) Liquid crystal display device, display device, and gate signal line drive method
US8976083B2 (en) Three-dimensional image display device and method for driving the same
RU2487379C1 (en) Stereoscopic display device
US20120154392A1 (en) Image display device
WO2012039345A1 (en) Liquid crystal display device, and display apparatus
JP5592920B2 (en) 3D image display device
JP5425977B2 (en) Video display device
US20130027525A1 (en) Liquid-crystal display device and three-dimensional display system
US20120162208A1 (en) 2d/3d image display device
JP5583721B2 (en) 3D image display device
WO2013047099A1 (en) Display device
US9564095B2 (en) Liquid crystal display device and method for driving the liquid crystal display device whereby shadowing can be prevented
US8976205B2 (en) Method of displaying three-dimensional stereoscopic image and a display apparatus for performing the same
KR101643000B1 (en) Stereoscopic image display device and driving method therof
KR101818251B1 (en) Stereoscopic image display
KR101924621B1 (en) Image display device
WO2012043408A1 (en) Liquid crystal display device, drive method, and display apparatus
US10891909B2 (en) Display device and method for driving same
JP5465759B2 (en) Display device and driving method of display device
KR101773191B1 (en) Image display device
KR101878483B1 (en) Image display device
KR20140017225A (en) Stereoscopic image display
WO2012105369A1 (en) Display device
KR102352594B1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP