WO2015083357A1 - 推定装置、プログラム、推定方法および推定システム - Google Patents

推定装置、プログラム、推定方法および推定システム Download PDF

Info

Publication number
WO2015083357A1
WO2015083357A1 PCT/JP2014/005977 JP2014005977W WO2015083357A1 WO 2015083357 A1 WO2015083357 A1 WO 2015083357A1 JP 2014005977 W JP2014005977 W JP 2014005977W WO 2015083357 A1 WO2015083357 A1 WO 2015083357A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
estimation
unit
information indicating
emotion
Prior art date
Application number
PCT/JP2014/005977
Other languages
English (en)
French (fr)
Inventor
光吉 俊二
Original Assignee
Pst株式会社
光吉 俊二
株式会社光吉研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pst株式会社, 光吉 俊二, 株式会社光吉研究所 filed Critical Pst株式会社
Priority to CN201480065678.6A priority Critical patent/CN105792758B/zh
Priority to US15/039,907 priority patent/US10485467B2/en
Priority to RU2016126695A priority patent/RU2682607C1/ru
Priority to EP14867047.4A priority patent/EP3078331B1/en
Priority to CA2932689A priority patent/CA2932689C/en
Priority to KR1020167017552A priority patent/KR101867198B1/ko
Publication of WO2015083357A1 publication Critical patent/WO2015083357A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4255Intestines, colon or appendix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4803Speech analysis specially adapted for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4857Indicating the phase of biorhythm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • A61B5/741Details of notification to user or communication with user or patient ; user input means using sound using synthesised speech
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/26Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0204Acoustic sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1103Detecting eye twinkling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7435Displaying user selection data, e.g. icons in a graphical user interface

Definitions

  • the present invention relates to an estimation apparatus, a program, an estimation method, and an estimation system for estimating a subject's disease state.
  • a subject's voice signal or an electrical signal indicating the activity of an organ such as the heart is measured, the subject's emotion or organ activity is obtained from the measured signal, and the subject is based on the time change of the obtained emotion or organ activity.
  • Techniques have been proposed for estimating the pathological conditions (see, for example, cited documents 1 and 2).
  • an object of the estimation device, program, estimation method, and estimation system disclosed herein is to easily estimate a subject's pathology without having specialized knowledge.
  • An estimation apparatus includes an extraction unit that extracts, from information indicating a subject's physiology, first information indicating a state of the subject's physiology and second information indicating at least one of the subject's emotion and organ activity; A calculation unit that calculates a degree of similarity in time change indicated by the extracted first information and the second information, and calculates a deviation amount from a predetermined state in which the subject's constancy is maintained based on the obtained degree of similarity; And an estimation unit that estimates the condition of the subject based on the amount of deviation.
  • a program extracts, from information indicating a subject's physiology, first information indicating a subject's physiology state and second information indicating at least one of the subject's emotion and organ activity, and extracting the first information
  • the degree of similarity in the time change indicated by the information and the second information is obtained, the deviation amount from the predetermined state in which the subject's constancy is maintained is calculated based on the obtained degree of similarity, and the deviation amount is calculated based on the calculated deviation amount.
  • the computer executes a process for estimating the condition of the subject.
  • the extraction unit extracts first information indicating the state of the subject's physiology and second information indicating at least one of the subject's emotion and organ activity from the information indicating the subject's physiology, The degree of similarity in the time change indicated by the extracted first information and second information is obtained, and the amount of deviation from the predetermined state in which the subject's constancy is maintained is calculated by the arithmetic unit based on the obtained degree of similarity. Based on the amount of deviation, the morbid state of the subject is estimated by the estimation unit.
  • An estimation system includes a measurement device that measures a subject's physiology, an estimation device that estimates information about the subject's physiology measured by the measurement device, and a pathology estimated by the estimation device.
  • An output device that outputs a result, and the estimation device includes, from information indicating a subject's physiology, first information indicating a state of the subject's physiology and second information indicating at least one of the subject's emotion and organ activity; The degree of similarity in the time change indicated by the extraction unit that extracts the first information and the second information extracted is obtained, and the deviation amount from the predetermined state in which the subject's constancy is maintained based on the obtained degree of similarity is obtained.
  • a calculation unit for calculating and an estimation unit for estimating the pathological condition of the subject based on the calculated deviation amount.
  • the estimation device, program, estimation method, and estimation system disclosed herein can easily estimate a subject's disease state without having specialized knowledge.
  • FIG. 1 It is a figure which shows an example of a disease state table. It is a figure which shows an example of the estimation process by the estimation apparatus shown in FIG. It is a figure which shows another embodiment of an estimation apparatus. It is a figure which shows an example of an utterance table. It is a figure which shows an example of the estimation process by the estimation apparatus shown in FIG.
  • FIG. 1 shows an embodiment of the estimation apparatus.
  • the estimation device AM shown in FIG. 1 is a computer device having an arithmetic processing device such as a CPU (Central Processing Unit) and a storage device such as a hard disk device.
  • the estimation device AM has an extraction unit EU, a calculation unit CU, and an estimation unit AU.
  • the functions of the extraction unit EU, the calculation unit CU, and the estimation unit AU may be realized by a program executed by the CPU, or may be realized by hardware.
  • the extraction unit EU obtains the pitch frequency or the fundamental frequency of the voice, the body temperature or the heart rate from the voice data uttered by the subject stored in the storage device of the estimation device AM or the information indicating the subject's physiology including the data such as the body temperature and the heart rate. First information indicating a physiological state of the subject such as a number is extracted. Further, the extraction unit EU extracts second information indicating at least one of emotions including anger and sadness in the subject and activities of organs such as the heart and intestine of the subject from information indicating the physiology of the subject.
  • the calculation unit CU obtains the degree of similarity in the time change indicated by the extracted first information and second information, and based on the obtained degree of similarity, the deviation amount from the predetermined state in which the subject's constancy is maintained (hereinafter, (Also referred to as constancy shift amount).
  • the estimation unit AU estimates the pathological condition of the subject based on the calculated constancy shift amount. And the estimation apparatus AM outputs the information which shows the disease state estimated by the estimation part AU to displays, such as external organic EL (Organic * Electro-Luminescence) and a liquid crystal.
  • displays such as external organic EL (Organic * Electro-Luminescence) and a liquid crystal.
  • the constancy shift amount in the subject is calculated using the first information indicating the physiological state of the subject and the second information indicating at least one of the subject's emotion and organ activity. To do.
  • the estimation device AM can easily estimate the pathological condition of the subject by referring to one index of the constancy shift amount without having specialized medical knowledge.
  • FIG. 2 shows another embodiment of the estimation device.
  • the estimation device 100 shown in FIG. 2 is a computer device having an arithmetic processing device such as a CPU and a storage device such as a hard disk device.
  • the estimation device 100 is connected to the measurement device 1 and the output device 2 via an interface unit included in the estimation device 100 in a wired or wireless manner. Thereby, for example, the estimation device 100, the measurement device 1, and the output device 2 operate as the estimation system SYS.
  • the measuring device 1 includes, for example, at least a microphone and measures information indicating the physiology of the subject PA. For example, the measuring device 1 measures an audio signal uttered by the subject PA via a microphone, and outputs the measured audio signal to the estimation device 100 as information indicating the physiology of the subject PA.
  • the output device 2 includes a display such as an organic EL or a liquid crystal, for example.
  • the output device 2 receives the estimation result of the pathological condition of the subject PA by the estimation device 100, and displays the received estimation result on a display such as an organic EL.
  • the output device 2 may be provided inside the estimation device 100.
  • the estimation apparatus 100 shown in FIG. 2 includes an extraction unit 10, a calculation unit 20, and an estimation unit 30.
  • the functions of the extraction unit 10, the calculation unit 20, and the estimation unit 30 may be realized by a program executed by the CPU or may be realized by hardware.
  • the extraction unit 10 uses the information indicating the physiology of the subject PA measured by the measuring device 1, the first information indicating the physiology state of the subject PA, the emotion in the subject PA, and the activity of organs such as the heart and intestine of the subject PA. And second information indicating at least one of them.
  • the extraction unit 10 outputs the extracted first information and second information to the calculation unit 20. The operation of the extraction unit 10 will be described with reference to FIGS.
  • the computing unit 20 calculates the degree of similarity of the time change between the extracted first information and the second information. For example, the computing unit 20 performs a cross-correlation process of the time change between the extracted first information and the second information, and calculates the cross-correlation coefficient as the degree of similarity. The computing unit 20 obtains a constancy shift amount in the subject PA using the plurality of calculated similarities. The operation and constancy of the calculation unit 20 will be described with reference to FIGS.
  • the estimation unit 30 estimates the pathological condition of the subject PA based on the obtained constancy shift amount in the subject PA.
  • the estimation unit 30 outputs information indicating the estimated pathology of the subject PA to the output device 2. The operation of the estimation unit 30 will be described with reference to FIGS.
  • FIG. 3 shows an example of a decision tree indicating the relationship between the fundamental frequency of the utterance of the subject PA and the emotion of the subject PA.
  • the judgment tree shown in FIG. 3 is subjective to any one of “normal”, “sadness”, “anger”, “joy”, etc. for each utterance of each of a plurality of subjects PA (for example, 100 or more). Is generated on the basis of the emotion of each subject PA evaluated in the above, the height of the extracted fundamental frequency, and the like. That is, the judgment tree shown in FIG. 3 shows the relationship between the emotions of normality, sadness, anger, and joy, and the height, intensity, and average intensity of the fundamental frequency in speech.
  • the fundamental frequency has a height of less than 150 hertz and the fundamental frequency has an intensity of 100 or more.
  • the emotion of sadness has a fundamental frequency height of less than 150 hertz and a fundamental frequency intensity of less than 100.
  • the height of the fundamental frequency is 150 Hz or more, and the average intensity of the fundamental frequency is 80 or more.
  • the emotion of joy is that the fundamental frequency is 150 Hz or higher and the fundamental frequency intensity is less than 80.
  • the decision tree shown in FIG. 3 is stored in advance in the storage device of the estimation device 100.
  • the emotion of the subject PA is normal, sad, angry, or joyful, but may include emotions such as anxiety and pain.
  • the estimation apparatus 100 may include a determination tree indicating the relationship between voice parameters such as pitch frequency and emotion.
  • the extraction unit 10 performs frequency analysis such as FFT (Fast Fourier Transform) on the speech signal of the utterance by the subject PA received from the measuring device 1 to obtain the height of the fundamental frequency and the like. Based on the height of the fundamental frequency obtained from each utterance of the subject PA and the determination tree shown in FIG. 3, the extraction unit 10 displays normality, sadness, anger and the like appearing in the subject PA at the moment of each utterance.
  • the ratio of each emotion of joy is determined in the range of 0 to 10, for example. Note that the sum of the ratios of emotions of normal, sadness, anger and joy is a constant value, for example, 10. Further, the ratio of normality, sadness, anger, and joy may be a value outside the range of 0 to 10.
  • the extraction unit 10 obtains inflection, pitch frequency, etc. from the voice signal of the subject PA. For example, the extraction unit 10 detects the region of the same frequency component from the pattern of intensity change in the speech unit of the audio signal, and acquires the time interval at which the detected region of the same frequency component appears as an inflection. Moreover, the extraction part 10 acquires a frequency spectrum from the frequency analysis of an audio
  • the extraction unit 10 obtains the degree of excitement of the subject PA (hereinafter also referred to as the degree of excitement) in the range of 0 to 10 based on a comparison between the obtained inflection and pitch frequency and a predetermined interval and a predetermined frequency.
  • the degree of excitement increases as the appearance interval of the same frequency component indicated by the intonation is shorter than the predetermined interval, or the pitch frequency is higher than the predetermined frequency.
  • the physiological excitement of the subject PA and the cranial nerve activity in the subject PA such as the sympathetic nerve and the parasympathetic nerve are closely related to each other.
  • the relationship with the emotion of the subject PA can be examined.
  • the excitement degree may be a value outside the range of 0 to 10.
  • the extraction unit 10 multiplies the obtained excitement level by the ratios of normal, sadness, anger, and joy, and determines the strengths of normal, sadness, anger, and joy.
  • the degree of excitement is an example of first information
  • the intensity of normality, sadness, anger, and joy are examples of second information.
  • FIG. 4 to FIG. 7 show examples of temporal changes in the intensity of excitement, normality, sadness, anger and joy for each subject PA.
  • the horizontal axis in FIGS. 4 to 7 shows the order of speech units by the subject PA as the time axis
  • the vertical axis in FIGS. 4 to 7 shows the excitement level and the strengths of normality, sadness, anger, and joy.
  • the solid line shows the time change of the excitement level
  • the one-dot broken line shows the time change of a value obtained by adding the strengths of normality and anger (hereinafter also referred to as “normal plus anger”).
  • the dotted line indicates the temporal change in the intensity of sadness
  • the broken line indicates the temporal change in the intensity of pleasure.
  • temporal changes in the degree of excitement, normal plus anger, sadness, and joy shown in FIGS. 4 to 7 are values obtained by moving average with a window width of 10 utterances by the computing unit 20, for example.
  • FIG. 4 shows temporal changes in the intensity of excitement, normality, sadness, anger, and joy when the subject PA is a healthy psychiatric doctor who does not suffer from mental illness and is examining a depressed patient.
  • the excitement level of the doctor who is the subject PA shows a fluctuation in the range of 1 to 3.5 while speaking.
  • doctors' emotions are generally higher than grief and joy during utterances, and the intensity of joy is generally lower than sadness because they are examining depressed patients. .
  • FIG. 5 shows temporal changes in the intensity of excitement, normality, sadness, anger, and joy when the subject PA is a depressed patient and is being examined by the doctor shown in FIG.
  • the degree of excitement of the depressed patient of subject PA shows a variation in the range of 2 to 5 while speaking, and is larger than the degree of excitement of the doctor shown in FIG. 4.
  • the emotion of a depressed patient has a normal plus anger intensity greater than sadness or joy while speaking, and the sadness intensity is greater than the joy intensity.
  • the intensity of sadness and joy of a depression patient shows a larger value than the case of the doctor shown in FIG.
  • FIG. 6 shows changes over time in the intensity of excitement, normality, sadness, anger, and joy when the subject PA is a healthy general person A who does not suffer from mental illness.
  • the excitement degree of the general person A who is the subject PA shows a fluctuation in the range of 1.5 to 4.5.
  • the emotion of ordinary person A has normal plus anger intensity greater than sadness and joy while speaking. Indicates.
  • the intensity of joy in the general person A is greater than the intensity of sadness.
  • the intensity of pleasure of the general person A is distributed in a range of larger values than the case of the doctor shown in FIG. 4 and the case of the depression patient shown in FIG.
  • the intensity of sadness is distributed in a range of lower values than the case of the doctor shown in FIG. 4 and the case of the depression patient shown in FIG.
  • FIG. 7 shows temporal changes in the intensity of excitement, normality, sadness, anger, and joy when the subject PA is a healthy general person B who does not suffer from a mental illness different from the general person A shown in FIG.
  • the excitement level of the general person B who is the subject PA shows a fluctuation in the range of 3 to 7.
  • the emotion of the general person B shows a greater value of normal plus anger than sadness or joy while speaking.
  • the intensity of pleasure of the ordinary person B is larger than the intensity of sadness as in the case of the ordinary person A shown in FIG.
  • the calculation unit 20 performs a cross-correlation process between the time change of the excitement degree and the time change of the intensity of normal plus anger, sadness, and joy.
  • the computing unit 20 obtains a cross-correlation coefficient between the degree of excitement in each subject PA and the intensity of normal plus anger, sadness and joy.
  • the window width of the cross-correlation process by the calculation unit 20 is, for example, 150 utterances, but may be set for each subject PA or according to the required processing speed, estimation accuracy, and the like.
  • FIGS. 8 to 11 show an example of the result of the cross-correlation process between the degree of excitement in the subject PA and each emotion by the calculation unit 20 shown in FIG.
  • the horizontal axis in FIGS. 8 to 11 is shown in the order of speech units by the subject PA as the time axis, and the vertical axis in FIGS. 8 to 11 shows the cross-correlation coefficient.
  • the dashed line shows the time change of the cross-correlation coefficient between the degree of excitement and normal plus anger
  • the dotted line shows the time change of the degree of excitement, the intensity of sadness and the cross-correlation coefficient
  • the broken line shows the excitement It shows the time change of cross-correlation coefficient between degree and intensity of pleasure.
  • FIG. 8 shows the change over time in the cross-correlation coefficient between the excitement level of the doctor shown in FIG. 4 and the strengths of normal plus anger, sadness, and joy.
  • the cross-correlation coefficient of normal plus anger shows a larger value than that of joy and sadness
  • the cross-correlation coefficient of sadness shows the smallest value.
  • the excitement level of each doctor and the degree of excitement calculated by the calculation unit 20 are small because the excitement level of the doctor and the number of data of each emotion are small in the window width of the cross-correlation process (for example, 150 utterance units).
  • the value of the cross-correlation coefficient with is unstable, and the reliability of the calculation result is low. Therefore, in the following description, the cross-correlation coefficient after 40 utterance units is used in the case of the doctor shown in FIG.
  • FIG. 9 shows the change over time in the cross-correlation coefficient between the excitement level of the depressed patient shown in FIG. 5 and the intensity of normal plus anger, sadness, and joy.
  • the sadness cross-correlation coefficient shows the largest value
  • the pleasure cross-correlation coefficient shows the smallest value after 100 utterance units.
  • the value of the cross-correlation coefficient between the degree of excitement calculated by the calculation unit 20 and each emotion during the period from the start of utterance to 100 utterance units is not stable. Is unreliable. Therefore, in the following description, the cross-correlation coefficient after 100 utterance units is used in the case of the depression patient shown in FIG.
  • FIG. 10 shows temporal changes in the cross-correlation coefficient between the excitement level of the general person A shown in FIG. 6 and the strengths of normal plus anger, sadness, and joy.
  • the joy cross-correlation coefficient shows the largest value
  • the sadness cross-correlation coefficient shows the smallest value after 70 utterance units.
  • the value of the cross-correlation coefficient between the degree of excitement calculated by the calculation unit 20 and each emotion is stable between the start of utterance and 70 utterance units. And the reliability of the results is low. Therefore, in the following description, in the case of the general person A shown in FIG. 10, the cross-correlation coefficient after 70 utterance units is used.
  • FIG. 11 shows temporal changes in the cross-correlation coefficient between the excitement level of the general person B shown in FIG. 7 and the strengths of normal plus anger, sadness, and joy.
  • the joy cross-correlation coefficient shows the largest value
  • the sadness cross-correlation coefficient shows the smallest value after 70 utterance units.
  • the reliability of the calculation result of the cross-correlation coefficient between the degree of excitement and each emotion by the arithmetic unit 20 is from the start of utterance to 70 utterance units. Since it is low, in the case of the general person B, the cross correlation coefficient after 70 utterance units is used.
  • the emotion of normal plus anger or joy shows the strongest correlation with the degree of excitement
  • the emotion of sadness is the degree of excitement. Shows the weakest correlation. That is, it can be considered that the healthy subject PA is in a mental state in which emotions can be freely expressed as the excitement increases. Such mental states are often in relatively primitive emotional states such as anger.
  • the emotion of sadness has the strongest correlation with the degree of excitement
  • the emotion of joy has the weakest correlation with the degree of excitement. That is, even if the subject PA who is a depression patient is in an excited state, it is considered that he is in a mental state that freezes from the bottom of his heart.
  • the arithmetic unit 20 uses, for example, the cross-correlation coefficient between the excitement level of each subject PA and the intensity of normal plus anger, sadness, and joy shown in FIGS. 8 to 11, and normal plus anger, sadness and so on in the subject PA. Find the equilibrium between the emotions of joy. That is, a living body such as a human has a property of maintaining a physiological state and a mental state in a predetermined state throughout the living body regardless of changes in internal and external environmental factors. Find the equilibrium state. The property of maintaining a predetermined state throughout the living body is referred to as “homeostasis” or “homeostasis”.
  • FIG. 12 shows an example of emotional homeostasis in the subject PA.
  • FIG. 12A shows a coordinate system in which coordinate axes representing, for example, normal plus anger, sadness, and joy affect each other at an angle of 120 degrees.
  • FIG. 12A shows the cross-correlation coefficients of normal plus anger, sadness and joy obtained by the calculation unit 20 as the strength of each emotion of the subject PA. Expressed as a vector in the coordinate direction.
  • the computing unit 20 obtains the balance between emotions from the vector of each emotion shown in FIG. It should be noted that the range of the strength of each emotion of normal plus anger, sadness and joy is equal to the range of the cross-correlation coefficient and is in the range of ⁇ 1 to 1.
  • FIG. 12B shows that the emotions in the subject PA obtained by the calculation unit 20 are balanced when the subject PA has normal plus anger, sadness, and joy strength in the vector shown in FIG.
  • the equilibrium position P1 is shown.
  • the calculation unit 20 obtains the distance between the center of the coordinate system and the equilibrium position P1 of the emotion of the subject PA as a constancy shift amount.
  • the calculation unit 20 obtains the constancy shift amount as values ⁇ , ⁇ , and ⁇ on the coordinate axes of normal plus anger, sadness, and joy.
  • the calculation unit 20 uses the cross-correlation coefficient of each emotion obtained as a vector component to determine the constancy shift of the subject PA, for example, by using differentiation or integration. Compared with the case of calculating the deviation amount, the calculation process can be speeded up.
  • FIG. 13 to FIG. 16 show an example of temporal changes in the constancy shift amounts ⁇ , ⁇ , ⁇ in each subject PA obtained by the calculation unit 20 shown in FIG.
  • the vertical axis in FIGS. 13 to 16 shows the amount of shift of each emotion
  • the horizontal axis in FIGS. 13 to 16 shows the order of speech units by the subject PA as the time axis.
  • the dashed line shows the time change of the shift amount ⁇ in the coordinate axis direction of normal plus anger
  • the dotted line shows the time change of the shift amount ⁇ in the coordinate axis direction of sadness
  • the broken line shows the shift amount ⁇ in the coordinate axis direction of pleasure.
  • the time change of is shown.
  • FIG. 13 shows changes over time in the amount of emotional constancy shift in the doctor shown in FIG.
  • FIG. 13 shows temporal changes in the shift amounts ⁇ , ⁇ , ⁇ after 40 utterances in which the cross-correlation coefficient between the excitement level and each emotion is stable.
  • the normal plus anger deviation amount ⁇ is a positive value and is larger than the sadness and joy deviation amounts ⁇ and ⁇ .
  • the sadness shift amount ⁇ of the doctor is smaller than the pleasure shift amount ⁇ and shows a negative value.
  • FIG. 14 shows changes over time in the amount of emotional homeostasis in the depressed patient shown in FIG.
  • FIG. 14 shows temporal changes in the shift amounts ⁇ , ⁇ , and ⁇ after 100 utterances where the cross-correlation coefficient between the excitement level and each emotion is stable.
  • the sadness shift amount ⁇ is a positive value, which is larger than the normal plus anger and joy shift amounts ⁇ and ⁇ .
  • the joy shift amount ⁇ in the depressed patient is smaller than the normal plus anger shift amount ⁇ and shows a negative value.
  • FIG. 15 shows the change over time in the amount of deviation in emotion constancy in the general person A shown in FIG.
  • FIG. 15 shows temporal changes in the shift amounts ⁇ , ⁇ , and ⁇ after 70 utterances in which the cross-correlation coefficient between the excitement level and each emotion is stable.
  • the joy shift amount ⁇ is a positive value and is larger than the normal plus anger and sadness shift amounts ⁇ and ⁇ .
  • the sadness shift amount ⁇ of the general person A is smaller than the normal plus anger shift amount ⁇ and shows a negative value.
  • FIG. 16 shows the change over time of the amount of deviation in emotion constancy in the general person B shown in FIG.
  • FIG. 16 shows temporal changes in the shift amounts ⁇ , ⁇ , and ⁇ after 70 utterances in which the cross-correlation coefficient between the excitement level and each emotion is stable.
  • the joy shift amount ⁇ is a positive value and is larger than the normal plus anger and sadness shift amounts ⁇ and ⁇ .
  • the sadness shift amount ⁇ in the general person B is smaller than the normal plus anger shift amount ⁇ and shows a negative value.
  • the estimation unit 30 obtains the distance between the coordinate center shown in FIG. 12B and the equilibrium position P1 based on, for example, the constancy shift amount shown in FIGS.
  • the estimation unit 30 estimates the pathological condition of the subject PA based on the shift amounts ⁇ , ⁇ , ⁇ and the obtained distance of the equilibrium position P1. For example, like the doctor shown in FIG. 13, the normal plus anger deviation amount ⁇ is a positive value, the sadness deviation amount ⁇ is a negative value, and is smaller than the deviation amounts ⁇ , ⁇ , and the equilibrium position P1. Is equal to or less than the predetermined value, the estimation unit 30 estimates that the subject PA is healthy (or normal).
  • the estimation unit 30 estimates that the subject PA is in that state.
  • the estimation unit 30 estimates that the subject PA is healthy (or normal). However, the distance of the equilibrium position P1 is larger than the predetermined value even though the pleasure shift amount ⁇ is a positive value and the sadness shift amount ⁇ is a negative value and smaller than the shift amounts ⁇ and ⁇ . The estimation unit 30 estimates that the subject PA is in that state.
  • the estimation unit 30 determines that the subject PA Is estimated to be in a depressed state.
  • the magnitude relationship of the shift amounts ⁇ , ⁇ , ⁇ and the relationship between the predetermined value with respect to the distance of the equilibrium position P1 and the disease state for example, International Statistical Classification of Diseases 10th Edition (ICD-10) etc. It should be determined based on this.
  • the determined magnitude relationship between the shift amounts ⁇ , ⁇ , ⁇ and the relationship between the predetermined value and the disease state with respect to the distance of the equilibrium position P1 are stored in advance in the storage device of the estimation device 100.
  • ICD is an abbreviation for International, Statistical, Classification, of Disseases, and Related, Health, and Problems.
  • the predetermined value may be adjusted in consideration of individual differences of the subject PA.
  • the estimation unit 30 may determine the pathological condition of the subject PA in detail in consideration of the deviation amounts ⁇ , ⁇ , ⁇ and the distance of the equilibrium position P1 as well as the direction in which the equilibrium position P1 is biased with respect to the coordinate center. .
  • the estimation unit 30 may estimate the pathological condition of the subject PA based on the deviation amounts ⁇ , ⁇ , ⁇ .
  • the estimation unit 30 may estimate the pathological condition of the subject PA based on, for example, the immobilization or the speed of change of the bias indicated by the homeostasis deviation amounts ⁇ , ⁇ , ⁇ in the subject PA.
  • the estimation unit 30 may estimate the pathological condition of the subject PA using the deviation amounts ⁇ , ⁇ , ⁇ calculated by the calculation unit 20 over a long period of time such as two weeks. By using the deviation amount data over a long period of time, the estimation unit 30 can estimate the pathology of the subject PA with high accuracy.
  • FIG. 17 shows an example of an estimation process performed by the estimation apparatus 100 shown in FIG. Steps S10 to S40 are executed when the CPU mounted on the estimation device 100 executes the estimation program. That is, FIG. 17 shows another embodiment of the program and the estimation method.
  • the extraction unit 10, the calculation unit 20, and the estimation unit 30 illustrated in FIG. 2 are realized by executing a program. Note that the processing illustrated in FIG. 17 may be realized by hardware mounted on the estimation apparatus 100. In this case, the extraction unit 10, the calculation unit 20, and the estimation unit 30 illustrated in FIG. 2 are realized by a circuit arranged in the estimation device 100.
  • the extraction unit 10 includes the first information indicating the physiological state of the subject PA based on the information indicating the physiological state of the subject PA measured by the measuring device 1. Second information indicating at least one of emotion and organ activity is extracted.
  • step S20 as described with reference to FIGS. 4 to 11, the calculation unit 20 performs a cross-correlation process on the temporal change between the extracted first information and second information, and indicates a mutual degree. A correlation coefficient is calculated.
  • step S30 as described with reference to FIG. 12 to FIG. 16, the arithmetic unit 20 obtains a constancy shift amount in the subject PA based on the obtained cross-correlation coefficient.
  • step S40 the estimation unit 30 estimates the pathological condition of the subject PA based on the constancy shift amount in the subject PA obtained by the calculation unit 20, as described with reference to FIGS.
  • the estimation process by the estimation apparatus 100 ends.
  • the flow shown in FIG. 17 may be repeatedly executed every time an instruction from the doctor or the subject PA is received, or may be executed at a predetermined frequency.
  • the estimation device 100 outputs the estimation result to the output device 2.
  • the output device 2 displays a homeostatic deviation amount together with the estimated pathological result.
  • the output device 2 displays the magnitude of the constancy shift amount, that is, the degree of the symptom in the estimated pathological condition or the degree of health in the subject PA, as a color or an animated expression of a person or animal, and displays it on the display. May be.
  • the output device 2 may display advice such as a treatment method for the estimated disease state according to the magnitude of the homeostatic deviation amount.
  • the first information indicating the physiological state of the subject PA and the second information indicating at least one of the emotion and organ activity of the subject PA are used.
  • the amount of sex deviation is calculated.
  • the estimation apparatus 100 can easily estimate the pathological condition of the subject PA by referring to the index of the constancy shift amount without having specialized medical knowledge.
  • calculation unit 20 uses, for example, a determination tree that indicates the relationship between the fundamental frequency of the utterance and the emotion shown in FIG. The intensity of emotions of normality, sadness, anger and joy may be sought.
  • FIG. 18 shows an example of a judgment tree between the heart rate and heart rate variability of the subject PA and the emotion of the subject PA.
  • RRV R ⁇ RariVariance
  • a normal emotion is defined as a case where the heart rate is less than 80 bps and the RRV is 100 or more.
  • sadness is defined as a case where the heart rate is less than 80 bps and the RRV is less than 100.
  • An anger emotion is defined as a case where the heart rate is 80 bps or more and the power of the low frequency component LF of the heart rate variability is 80 or more.
  • the emotion of joy is defined as a case where the heart rate is 80 bps or more and the power of the low frequency component LF is less than 80.
  • the calculation unit 20 calculates the constancy shift amounts ⁇ , ⁇ , ⁇ in the subject PA as shown in FIG. 12C. For example, the shift amounts ⁇ , ⁇ , ⁇ as shown in FIG. You may ask for.
  • FIG. 19 shows another example of emotional homeostasis in the subject PA.
  • the coefficient h shown in FIG. 19 is an index indicating which of the deviation amount ⁇ in the coordinate axis direction of pleasure and the deviation amount ⁇ in the coordinate axis direction of sadness is larger in the vector V1 from the center of the coordinate system toward the equilibrium position P1. . That is, the coefficient h indicates a positive value when the joy shift amount ⁇ is greater than the sadness shift amount ⁇ , and indicates a negative value when the sadness shift amount ⁇ is greater than the joy shift amount ⁇ .
  • the coefficient h is 0.
  • the computing unit 20 obtains an angle ⁇ between the vector V1 and the pleasure coordinate axis, for example, to obtain the coefficient h.
  • the angle ⁇ indicates a small value close to 0 degrees (that is, the direction of the vector V1 is the direction of the pleasure coordinate axis) when the pleasure shift amount ⁇ is larger than the sadness shift amount ⁇ .
  • the angle ⁇ indicates a large value in which the direction of the vector V1 is close to the coordinate axis direction of the sadness. As shown in FIG.
  • the calculation unit 20 includes a case where the equilibrium position P1 is in a region between pleasure and sadness (counterclockwise) (hereinafter, region A) and a region between pleasure and sadness (clockwise).
  • region A a region between pleasure and sadness
  • region B a region between pleasure and sadness
  • the direction of the vector V1 is the negative direction of the coordinate axis of normal plus anger.
  • the joy shift amount ⁇ and the sadness shift amount ⁇ antagonize each other and indicate a shift amount larger than the normal plus anger shift amount ⁇ .
  • the normal plus anger shift amount ⁇ indicates a smaller shift amount than the pleasure shift amount ⁇ and the sadness shift amount ⁇ . Therefore, when the vector V1 is in the region A, the calculation unit 20 obtains
  • the direction of the vector V1 is the positive direction of the coordinate axis of normal plus anger.
  • the amount of joy shift ⁇ and the amount of sadness shift ⁇ are antagonistic to each other but are smaller than the normal plus anger shift ⁇ .
  • the normal plus anger shift amount ⁇ is larger than the pleasure shift amount ⁇ and the sadness shift amount ⁇ . Therefore, when the vector V1 is in the region B, the arithmetic unit 20 obtains L ⁇
  • the calculation unit 20 can calculate the positive shift amount ⁇ when the equilibrium position P1 is near the positive normal plus anger axis, and is negative when the equilibrium position P1 is near the negative normal plus anger axis.
  • the shift amount ⁇ can be calculated.
  • the estimation unit 30 uses the shift amounts ⁇ , ⁇ , and ⁇ shown in FIG. 19 so that the shift amount ⁇ of sadness is a positive value larger than 0, and the shift amounts ⁇ , ⁇ of normal plus anger and joy are set to 0. If the value is near small, it is estimated that the subject PA is in a depressed state. Further, the estimation unit 30 determines that the subject PA is in such a state when the joy shift amount ⁇ is a positive value larger than 0 and the normal plus anger and sadness shift amounts ⁇ and ⁇ are close to 0. presume.
  • the estimation unit 30 antagonizes the subject PA. Presumes that he is so depressed.
  • FIG. 20 shows another embodiment of the estimation device and the estimation process. Elements having the same or similar functions as those described in FIG. 2 are denoted by the same or similar reference numerals, and detailed description thereof will be omitted.
  • the estimation device 100a is connected to the measurement device 1a and the output device 2 in a wired or wireless manner via an interface unit included in the estimation device 100a. Thereby, the estimation apparatus 100a, the measurement apparatus 1a, and the output apparatus 2 operate
  • the measuring device 1a includes, for example, a microphone, a heart rate meter, an electrocardiograph, a blood pressure meter, a thermometer, a skin resistance meter, or a plurality of devices such as a camera and an MRI (Magnetic-Resonance-Imaging) device, and information indicating the physiology of the subject PA. Measure.
  • the measuring device 1a outputs information indicating the measured physiology of the subject PA to the estimating device 100a.
  • the measuring device 1a may include an acceleration sensor or an electronic gyro.
  • Information indicating the physiology of the subject PA measured by the measuring device 1a includes, for example, the heart rate (pulse rate), heart rate variability, blood pressure, body temperature, sweating amount (skin resistance, skin potential), eye movement, pupil, along with audio signals. It has a diameter and number of blinks.
  • the physiological information to be measured includes, for example, inhalation, hormones, internal secretions such as biomolecules, brain waves, fMRI (functional MRI) information, and the like.
  • the estimation apparatus 100a includes an extraction unit 10a, a calculation unit 20a, an estimation unit 30a, a test unit 40, and a storage unit 50.
  • the functions of the extraction unit 10a, the calculation unit 20a, the estimation unit 30a, and the test unit 40 may be realized by a program executed by the CPU, or may be realized by hardware.
  • the extraction unit 10a extracts the first information indicating the physiological state of the subject PA from the information indicating the physiological state of the subject PA measured by the measuring device 1a in the same or similar manner as the extraction unit 10 illustrated in FIG. Further, the extraction unit 10a is the same as or similar to the extraction unit 10 shown in FIG. 2, and information on the physiology of the subject PA measured by the measuring device 1a is used to determine the emotion in the subject PA and the heart and intestine of the subject PA. Second information indicating at least one of organ activities is extracted.
  • the extraction unit 10a extracts, for example, the heart rate (pulse rate) measured by a heart rate meter or the like included in the measurement device 1a as second information indicating the emotion or organ activity in the subject PA.
  • the heart rate pulse rate
  • it has the property that the pulsation of the heart increases by increasing the amount of adrenaline secretion in the body due to excitement and tension, and the heart rate (pulse rate) increases.
  • the extraction unit 10a performs frequency analysis such as FFT on the electrocardiogram waveform of the subject PA measured using the electrocardiograph included in the measuring device 1a, and acquires the heart rate variability of the subject PA. Then, the extraction unit 10a compares the amount of the acquired low-frequency component LF (for example, 0.04 to 0.14 hertz) and the high-frequency component HF (for example, 0.14 to 0.5 hertz) of the heartbeat variability. The level of PA excitement and tension is extracted as first information indicating the physiological state of the subject PA.
  • the low frequency component LF of heart rate variability mainly increases with the activity of the sympathetic nerve
  • the high frequency component HF has a property of increasing with the activity of the parasympathetic nerve.
  • the extraction unit 10a extracts, for example, a blood pressure value measured using a sphygmomanometer included in the measurement device 1a as second information indicating the emotion of the subject PA and the activity of the organ.
  • blood pressure has the property that when blood vessels contract with excitement or tension, blood flow resistance increases and blood pressure increases.
  • the extraction unit 10a extracts, for example, the value of the body temperature measured using a thermometer included in the measuring device 1a as the second information indicating the emotion of the subject PA and the activity of the organ.
  • body temperature has the property that an increase in heart rate, an increase in blood sugar level, a tension in muscle, and the like occur due to excitement and tension, and heat is generated in the body to increase body temperature.
  • the extraction unit 10a uses, for example, the value of the sweating amount (skin resistance, skin potential) measured by using a skin resistance meter included in the measuring device 1a to indicate the emotion and organ activity in the subject PA. Extract as The amount of perspiration (skin resistance, skin potential) has the property that perspiration is promoted by excitement and tension, and the skin resistance decreases.
  • the extraction unit 10a uses, for example, eye movements, pupil diameters, and the number of blinks measured using an electrooculometer, a camera, or the like of the measurement apparatus 1a as the second information indicating the emotion or organ activity in the subject PA. Extract.
  • the extraction unit 10a performs face recognition processing on an image photographed by a camera or the like, and extracts the recognized facial expression and the temporal change of the facial expression as second information indicating the emotion and organ activity in the subject PA. May be.
  • the movement of the eyeball is such that the movement of the eyeball becomes intense due to excitement and tension
  • the pupil diameter has the property that the pupil expands due to excitement and tension
  • the number of blinks increases due to the excitement and tension.
  • the extraction unit 10a determines, for example, the number of breaths, the number of breaths, the speed, the amount of exhaust, and the like measured from the respiratory volume and respiratory sound by a respiratory meter (respiratory flow meter), a spirometer, or a microphone included in the measuring device 1a. This is extracted as second information indicating emotions and organ activities. Exhalation has the property that the number of breaths, speed, and displacement increase due to excitement and tension.
  • the extraction unit 10a extracts, for example, each endocrine product such as a hormone or a biomolecule measured using an analysis device included in the measurement device 1a as second information indicating emotion or organ activity in the subject PA.
  • endocrine secretions such as hormones and biomolecules are measured by the chemical analyzer of saliva, blood, lymph, sweat, digestive fluid, urine, etc. collected from the subject PA by the analyzer of the measuring device 1a.
  • the endocrine secretion may be measured by the measuring device 1a from the peripheral blood vessel, digestive system, myoelectric potential, skin temperature, blood flow volume, immune system or the like in the subject PA.
  • Endocrine secretions have the property that the excretion or tension changes the amount or quality of hormones or biomolecules secreted in the body.
  • the extraction unit 10a shows the amount of change with respect to time of the electroencephalogram measured using a brain activity meter such as an optical type, a magnetic type or a potential type included in the measuring device 1a. It extracts as the 1st information to show.
  • the electroencephalogram has the property that the waveform changes due to excitement and tension.
  • the extraction unit 10a determines the blood flow volume and oxyhemoglobin distribution in each active site in the brain included in the fMRI information measured by the MRI apparatus included in the measurement apparatus 1a, and the emotion and organ activity in the subject PA. It extracts as the 2nd information which shows.
  • the measured fMRI information has a property that an active site in the brain changes due to excitement or tension. For example, emotional excitement and tension appear as changes in blood flow in the limbic system (amygdala), hypothalamus, cerebellum, brainstem or hippocampus. Such a change in blood flow changes the distribution of oxyhemoglobin in the brain.
  • the extraction unit 10a may extract the movement of the subject PA as second information indicating the emotion or organ activity in the subject PA.
  • the calculation unit 20a calculates the degree of similarity of the time change between the first information and the second information extracted by the extraction unit 10a. For example, the computing unit 20a performs a cross-correlation process of the time change between the extracted first information and the second information, and calculates the cross-correlation coefficient as a degree of similarity. The computing unit 20a obtains a constancy shift amount in the subject PA using the plurality of similarities in the emotion and organ activity of the subject PA calculated. The operation and constancy of the calculation unit 20a will be described with reference to FIG.
  • the test unit 40 calculates energy acting on the emotion and organ activity of the subject PA from the constancy shift calculated by the calculation unit 20a.
  • the test unit 40 inputs the calculated energy into a calculation model representing the living body of the subject PA, and simulates homeostasis in the subject PA.
  • the calculation model and the operation of the test unit 40 will be described with reference to FIGS.
  • the storage unit 50 is a hard disk device, a memory, or the like.
  • the storage unit 50 stores a program executed by the CPU. Further, the storage unit 50 stores data 60 indicating the result of the simulation by the test unit 40. The data 60 will be described with reference to FIG.
  • the program for executing the estimation process can be recorded and distributed on a removable disk such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the estimation device 100a may download a program for executing the estimation process from a network via a network interface included in the estimation device 100a and store the program in the storage unit 50.
  • the estimation unit 30a estimates the pathology of the subject PA from the pattern of homeostasis simulated by the test unit 40. The operation of the estimation unit 30a will be described with reference to FIGS.
  • FIG. 21 schematically shows an example of a homeostatic chain in the subject PA.
  • the balance of homeostasis in the whole living body of the subject PA is represented by the rotation of a circular figure, and is defined as a circulatory system 200.
  • the circulatory system 200 further includes a plurality of circulatory systems K (K1-K10) such as substances and organs that form the subject PA, for example.
  • the circulatory system K1-K10 is represented by a circular rotation smaller than the circulatory system 200 that is linked to each other to maintain the balance of homeostasis.
  • the circulatory system K1 shows the homeostasis of the subject PA based on the voice signal uttered by the subject PA via the vocal cords.
  • the circulatory system K2 indicates heart homeostasis in the subject PA based on, for example, heart rate and heart rate variability.
  • the circulatory system K3 indicates the homeostasis of the digestive system in the subject PA such as the stomach, the small intestine, and the large intestine.
  • the circulatory system K4 indicates, for example, the homeostasis of the immune system that protects the subject PA from illness and the like.
  • the circulatory system K5 indicates, for example, the homeostasis of a hormone that transmits information that regulates the function of an organ included in the living body of the subject PA.
  • the circulatory system K6 shows homeostasis of biomolecules such as plural kinds of proteins generated by the gene of the subject PA, for example.
  • the circulatory system K7 shows, for example, the homeostasis of the gene of the subject PA.
  • the circulatory system K8 shows, for example, the homeostasis of the cells that form the subject PA.
  • the circulatory system K9 indicates, for example, homeostasis in the limbic system of the subject PA including the amygdala among the brain closely related to the emotion.
  • the circulatory system K10 shows homeostasis of a neurotransmitter that mediates information transmission at a synapse, for example.
  • the circulation system 200 has 10 circulation systems K1 to K10, the circulation system 200 is not limited to this and may include a plurality of circulation systems other than 10.
  • Each circulation system K may further include a plurality of circulation systems.
  • the circulatory system K1 of the vocal cords may have a plurality of circulatory systems showing emotions such as anger, normality, sadness, and joy in the subject PA.
  • the cardiac circulatory system K2 may include a plurality of circulatory systems that indicate, for example, the heart rate and heart rate variability in the subject PA.
  • the calculation unit 20a uses a plurality of similar degrees in the emotion and organ activity of the subject PA calculated, for example, to calculate the constancy shift amount in each circulatory system K in the subject PA as described in FIG. Ask. For example, similarly to the calculation unit 20 illustrated in FIG. 2, the calculation unit 20 a calculates the amount of emotional constancy shift in the subject PA based on the voice signal of the subject PA. In addition, the calculation unit 20a, for example, with respect to the temporal change of the excitement level or the tension level obtained from the ratio between the low frequency component LF and the high frequency component HF of the heart rate fluctuation measured by the electrocardiograph, the heart rate, the blood pressure, and the like. To perform cross-correlation processing.
  • the calculating part 20a calculates the deviation
  • the arithmetic unit 20a calculates the constancy shift amount in all the circulatory systems K1-K10, but may calculate the constancy shift amount in some of the circulatory systems K.
  • FIG. 22 shows an example of a calculation model of the circulatory system 200 used by the test unit 40 shown in FIG. 20 for simulation of homeostasis in the subject PA.
  • the circulatory system K1-K10 included in the circulatory system 200 shown in FIG. 21 is represented by a shaft SH (SH1-SH10), Built in.
  • the length, pitch width, thread direction, and the like of each of the shafts SH1 to SH10 are determined based on the characteristics of the living body of the subject PA.
  • the shafts SH1 to SH10 are connected at the joint B1 so that the centers of the axes between the shafts coincide with each other, thereby forming the circulation system 200.
  • nuts NT1-NT10 are arranged on the shafts SH1-SH10 of the circulation system K1-K10.
  • the test unit 40 simulates the homeostasis in the circulation system 200 by rotating the shaft SH, and detects the homeostasis state in each of the circulation systems K1-K10 from the change in the position of the nuts NT1-NT10.
  • the length, pitch width, screw thread direction, and the like of the shaft SH1 of the vocal cord circulation system K1 are determined based on, for example, the frequency distribution indicated by the speech signal of the speech by the subject PA, and the frequency characteristics such as inflection and pitch frequency. Is done. Further, the length, pitch width, screw thread direction, and the like of the shaft SH2 of the cardiac circulatory system K2 are determined based on characteristics such as the heart beat time interval of the subject PA and the frequency distribution of heartbeat variability, for example. .
  • the length, pitch width, and thread direction of the shaft SH3 of the circulatory system K3 of the digestive system are, for example, characteristics such as the length of the small intestine and large intestine of the subject PA or the moving speed of contraction waves accompanying peristalsis To be determined.
  • the length, pitch width, and thread direction of the circulatory system K4 of the immune system are, for example, the number of leukocytes including neutrophils, eosinophils, basophils, lymphocytes, monocytes, etc. in the blood of the subject PA. Determined based on the characteristics of The length of the circulatory system K5, the pitch width, the direction of the thread, etc. are, for example, the amount of hormone synthesized or secreted in each organ of the subject PA, the rate at which the hormone circulates in the body by body fluid such as blood, etc. Determined based on the characteristics of
  • the length, pitch width, screw thread direction, etc. of the circulatory system K6 of biomolecules are, for example, nucleic acids, proteins, polysaccharides, amino acids that are constituents thereof, and various kinds of foods ingested by the subject PA. It is determined based on the amount of sugar, as well as the intake of lipids and vitamins.
  • the length, pitch width, and thread direction of the gene circulation system K7 are determined based on characteristics such as the frequency of gene division and the length of the gene of the subject PA, for example.
  • the length, pitch width, and thread direction of the cell circulatory system K8 are, for example, the amount of carbohydrates, lipids, proteins (amino acids), nucleic acids, etc.
  • the length, pitch width, screw thread direction, and the like of the circulatory system K9 of the brain are determined based on characteristics such as temporal variation of the brain activity including the amygdala and the frequency distribution in the brain of the subject PA.
  • the length, pitch width, and thread direction of the neurotransmitter circulatory system K10 are, for example, dependent on the secretion amount and characteristic reaction rate of amino acids, peptides, monoamines, etc. that mediate information transmission at the synapse of the subject PA. To be determined.
  • Information indicating the length, pitch width, screw thread direction, and the like of each of the set shafts SH1 to SH10 is stored in advance in the storage unit 50 for each subject PA. Further, for example, the test unit 40 receives information indicating the length, pitch width, screw thread direction, and the like of each of the shafts SH1 to SH10 of the subject PA via an input device such as a keyboard or a touch panel included in the estimation device 100a. You may receive it.
  • the test unit 40 calculates the energy acting on the emotion and organ activity of the subject PA from the constancy shift amount in each of the circulatory systems K1-K10 calculated by the calculation unit 20a. For example, as shown in FIG. 12B, when the emotional equilibrium position P1 in the subject PA calculated by the calculation unit 20a is different from the center of the coordinate system, similar to the calculation unit 20 shown in FIG. It shows that the emotion of the PA, that is, the constancy of the circulatory system K1 is displaced from the predetermined state. The deviation of homeostasis appears in the subject PA in the form of stress, for example, and affects not only the circulatory system K1 of the subject PA but also other circulatory systems K2-K10 such as the heart or digestive system.
  • the test unit 40 calculates the energy acting on the emotion of the subject PA such as stress and the activity of the organ from the constancy shift amount calculated for each of the circulatory systems K1 to K10 by the calculation unit 20a.
  • the test unit 40 calculates energy E (K1) from the emotion constancy shift amounts ⁇ , ⁇ , ⁇ calculated by the calculation unit 20a in the vocal cord circulation system K1.
  • E (K1) sqrt ( ⁇ ⁇ ⁇ + ⁇ ⁇ ⁇ + ⁇ ⁇ ⁇ ) (1)
  • the test unit 40 calculates the energy E (K1) generated in the vocal circulatory system K1 from the constancy shift amounts ⁇ , ⁇ , ⁇ of the emotion as shown in the equation (1).
  • the energy E (K1) may be calculated using a function F ( ⁇ , ⁇ , ⁇ ) having the constancy shift amounts ⁇ , ⁇ , ⁇ as variables.
  • the test unit 40 For each of the circulatory systems K2 to K10, the test unit 40 uses the amount of heat consumed by stress, exercise, etc. or the ingested food, etc. as energy from the constancy shift in each circulatory system K calculated by the arithmetic unit 20a. Calculated as E (K2) -E (K10), respectively. The test unit 40 sums the energy calculated in each of the circulation systems K1 to K10 using the equation (2).
  • TE E (K1) + E (K2) + E (K3) + E (K4) + E (K5) + E (K6) + E (K7) + E (K8) + E (K9) + E (K10) (2)
  • E (K2), E (K3), E (K4), E (K5), E (K6), E (K7), E (K8), E (K9), and E (K10) are circulating.
  • the energy generated in the system K2-K10 is shown.
  • TE indicates the total energy.
  • the test unit 40 calculates the energy TE by summing the energy E (K1) -E (K10) generated in each of the circulation systems K1-K10, but weights the energy E (K1) -E (K10).
  • the energy TE may be obtained by addition.
  • the test unit 40 may obtain the energy TE by multiplying the energy E (K1) ⁇ E (K10).
  • the test unit 40 inputs the calculated energy TE to the circulation system 200 and rotates the shaft SH at a rotation speed corresponding to the magnitude of the energy TE. For example, when the energy TE is a positive value, the test unit 40 rotates the shaft SH clockwise, and when the energy TE is a negative value, the test unit 40 rotates the shaft SH counterclockwise.
  • the input energy TE is applied by the test unit 40 so that the displacement amounts L1-L10 in which the nuts NT1-NT10 are displaced in accordance with the rotation of the shaft SH are within the range of the lengths of the shafts SH1-SH10. Be controlled.
  • the energy TE becomes a positive or negative value because, for example, the energy that causes the shaft SH to rotate clockwise or counterclockwise depends on the direction of the thread of each of the shafts SH1 to SH10 in the circulation system K1 to K10. This is because it is generated. That is, for example, in the circulation system K in which the shaft SH rotates clockwise according to the direction of the thread, positive energy is generated, and in the circulation system K in which the shaft SH rotates counterclockwise, negative energy is generated. . Note that, for example, when the energy TE is a negative value, the test unit 40 rotates the entire shaft SH1-SH10 clockwise, and when the energy TE is a positive value, the entire shaft SH1-SH10 rotates counterclockwise. You may let them.
  • the test unit 40 displaces the position of the nuts NT1-NT10 by rotating the shafts SH1-SH10 with energy TE.
  • the test unit 40 uses the displacements L1-L10 of the nuts NT1-NT10 from the centers C1-C10 of the shafts SH1-SH10 as changes in the homeostasis (or deviations in homeostasis) of the circulation systems K1-K10.
  • the test unit 40 stores the detected displacement amounts L1 to L10 as data 60 in the storage unit 50.
  • the test unit 40 detects from the displacements L1-L10 the speed at which the nuts NT1-NT10 move in the axial directions of the shafts SH1-SH10.
  • the test unit 40 inputs the velocity detected in the circulation system K1-K10 to the circulation system 200 as newly generated energy E (K1) -E (K10).
  • the test unit 40 determines that some of the circulation systems K calculated by the calculation unit 20a.
  • the energy TE may be obtained from the constancy shift amount at, and the constancy of the circulatory system 200 may be simulated based on the obtained energy TE.
  • the test unit 40 may detect all the displacements L1-L10 in the circulation system K1-K10 from the simulation. Since the test unit 40 detects the displacement amount L of all the circulatory systems K from the simulation, the estimation device 100a is more subject than the case where the constancy shift amount in the circulatory system K calculated by the arithmetic unit 20a is used.
  • the pathological condition of PA can be estimated with high accuracy.
  • test unit 40 uses the distances from the centers C1-C10 of the shafts SH1-SH10 as the displacements L1-L10 in the respective circulation systems K1-K10, it is not limited to this.
  • the displacement amount L1-L10 may be the distance between the nuts NT1-NT10 or the distance from the joint B1.
  • FIG. 23 shows an example of data 60 of the displacement L1-L10 of each circulation system K1-K10 in the subject PA.
  • the data 60 has storage areas for the date and the circulation system K1-K10, respectively.
  • the date and time (for example, October 2013) when the test unit 40 executes a simulation of the change in constancy of the circulatory system 200 and detects the displacement L1-L10 in each of the circulatory systems K1-K10. 29th, 9: 10: 0, etc.) are stored.
  • the time interval at which the test unit 40 detects the displacements L1-L10 is 1 minute, 1 hour, 1 day, 1 week, 1 month, etc. In the case of the data 60 shown in FIG. Time interval.
  • the displacement amounts L1-L10 of the nuts NT1-NT10 detected by the test unit 40 are stored.
  • the units of the displacements L1-L10 are centimeters, millimeters, etc.
  • the estimation unit 30a reads the date of the data 60 and the displacements L1-L10 in the circulation system K1-K10 from the storage unit 50.
  • the estimation unit 30a estimates the pathological condition of the subject PA from the time variation patterns of the read displacement amounts L1-L10.
  • the storage unit 50 stores in advance data of typical time variation patterns of the displacement amounts L1-L10 indicated by the circulatory systems K1-K10 when the subject PA is healthy.
  • the estimation unit 30a compares the time change of the displacement amount L1-L10 detected by the test unit 40 with a typical time change of the displacement amount L1-L10 when the subject PA is healthy, The pathological condition of the subject PA is estimated from the results. For example, the estimation unit 30a obtains a pattern difference between the time change of the displacement amount L1-L10 detected by the test unit 40 and a typical time change of the displacement amount L1-L10 when the subject PA is healthy. The obtained difference is compared with a predetermined threshold value indicating each disease state.
  • the estimation unit 30a calculates the time variation of the displacement amount L2 detected by the test unit 40 and a typical time variation of the displacement amount L2 when the subject PA is healthy. Find the difference.
  • the estimation unit 30a compares a predetermined threshold value indicating a heart disease such as myocardial infarction or angina pectoris and the obtained difference, and determines whether the subject PA suffers from a heart disease such as myocardial infarction or angina Estimate whether or not.
  • FIG. 24 shows an example of an estimation process performed by the estimation apparatus 100a shown in FIG. Steps S100 to S160 are realized by the CPU installed in the estimation device 100a executing the estimation program. That is, FIG. 24 shows another embodiment of the estimation program and the estimation method.
  • the extraction unit 10a, the calculation unit 20a, the estimation unit 30a, and the test unit 40 illustrated in FIG. 20 are realized by executing the estimation program.
  • the processing illustrated in FIG. 24 may be realized by hardware mounted on the estimation device 100a.
  • the calculation unit 10a, the calculation unit 20a, the estimation unit 30a, and the test unit 40 illustrated in FIG. 20 are realized by a circuit arranged in the estimation device 100a.
  • step S100 as described in FIG. 20, the extraction unit 10a, based on the information indicating the physiology of the subject PA measured by the measurement device 1a, the first information indicating the physiology state of the subject PA, the emotion and Second information indicating the state of activity of the organ is extracted.
  • step S110 as described with reference to FIG. 21, the calculation unit 20a performs a cross-correlation process on the temporal change between the extracted first information and second information, and shows a cross-correlation coefficient indicating the degree of similarity. Is calculated.
  • step S120 as described with reference to FIGS. 12 and 21, the calculation unit 20a obtains a constancy shift amount in each of the circulation systems K1-K10 of the subject PA based on the obtained cross-correlation coefficient.
  • step S130 the test unit 40 calculates energy E (K1) -E (K10) from the constancy shift amount in each of the circulation systems K1-K10 calculated by the calculation unit 20a. . Using the equation (2), the test unit 40 adds the calculated energies E (K1) -E (K10) to obtain the energy TE.
  • step S140 as described in FIG. 22, the test unit 40 inputs the energy TE totaled in step S130 to the circulatory system 200, and simulates the homeostasis of the circulatory system 200 in the subject PA.
  • step S150 the test unit 40 detects the displacement amounts L1-L10 in each circulation system K1-K10 from the constancy simulation executed in step S140.
  • the test unit 40 stores the detected displacements L1-L10 in each circulation system K1-K10 as data 60 in the storage unit 50.
  • the estimation unit 30a estimates the pathological condition of the subject PA from the temporal change patterns of the displacement amounts L1-L10 in the circulatory system K1-K10. For example, the estimating unit 30a compares the time variation pattern of the displacement amount L1-L10 detected by the test unit 40 with a typical time variation pattern of the displacement amount L1-L10 when the subject PA is healthy, The pathological condition of the subject PA is estimated from the comparison result.
  • the estimation process by the estimation apparatus 100a ends.
  • the flow shown in FIG. 24 may be repeatedly executed every time an instruction from the doctor or the subject PA is received, or may be executed at a predetermined frequency.
  • the estimation device 100a outputs the estimation result to the output device 2.
  • the output device 2 displays a homeostatic deviation amount together with the estimated pathological result.
  • the output device 2 displays the magnitude of the constancy shift amount, that is, the degree of the symptom in the estimated pathological condition or the degree of health in the subject PA, as a color or an animated expression of a person or animal, and displays it on the display. May be.
  • the output device 2 may display advice such as a treatment method for the estimated disease state according to the magnitude of the homeostatic deviation amount.
  • the estimation apparatus 100a can easily estimate the pathological condition of the subject PA by referring to the index of the constancy shift amount without having specialized medical knowledge.
  • the estimation device 100a executes a constancy simulation in the subject PA using the constancy shift amount in each circulation system K as input energy.
  • the estimation apparatus 100a compares the time change of homeostasis detected from the executed simulation with the time change of homeostasis shown when the subject PA is healthy, so that the pathological condition of the subject PA can be accurately compared to the conventional case. Can be estimated.
  • FIG. 25 shows another embodiment of the estimation device. Elements having the same or similar functions as those described in FIG. 20 are denoted by the same or similar reference numerals, and detailed description thereof will be omitted.
  • the estimation device 100b, the measurement device 1a, and the output device 2 operate as the estimation system SYS.
  • the estimation device 100b shown in FIG. 25 is a computer device having an arithmetic processing device such as a CPU and a storage device such as a hard disk device.
  • the estimation device 100b is connected to the measurement device 1a and the output device 2 in a wired or wireless manner via an interface unit included in the estimation device 100b. Accordingly, the estimation device 100b, the measurement device 1a, and the output device 2 operate as the estimation system SYS.
  • the estimation device 100b includes an extraction unit 10a, a calculation unit 20a, an estimation unit 30b, a test unit 40a, and a storage unit 50a.
  • the functions of the extraction unit 10a, the calculation unit 20a, the estimation unit 30b, and the test unit 40a may be realized by a program executed by the CPU or may be realized by hardware.
  • the storage unit 50a is a hard disk device, a memory, or the like.
  • the storage unit 50a stores a program executed by the CPU.
  • the storage unit 50a stores data 60a indicating the result of simulation by the test unit 40a, and a pathological condition table 70 for the estimation unit 30b to determine the pathological condition of the subject PA using the data 60a.
  • the data 60a and the disease state table 70 will be described with reference to FIGS.
  • the program for executing the estimation process can be recorded and distributed on a removable disk such as a CD or a DVD, for example.
  • the estimation device 100b may download a program for executing the estimation process from a network via a network interface included in the estimation device 100b and store the program in the storage unit 50a.
  • the test unit 40a calculates the energy acting on the emotion and organ activity of the subject PA from the constancy shift calculated by the calculation unit 20a.
  • the test unit 40a inputs the calculated energy to a calculation model representing the living body of the subject PA, and simulates homeostasis in the subject PA.
  • the calculation model and the operation of the test unit 40a will be described with reference to FIG.
  • the estimation unit 30b estimates the pathology of the subject PA from the pattern of homeostasis simulated by the test unit 40a. The operation of the estimation unit 30b will be described with reference to FIGS.
  • FIG. 26 shows an example of a calculation model of the circulatory system 200a in which the test unit 40a shown in FIG. 25 uses the homeostasis in the subject PA for simulation.
  • the calculation model of the circulatory system 200a shown in FIG. 26 includes, for example, four circulatory systems Ka (Ka1-Ka4) included in the circulatory system 200a.
  • Circulation system 200a and circulation system Ka1-Ka4 included in circulation system 200a are represented by gear MG and gears Ga1-Ga2, Gb1-Gb2, Gc1, Gd1-Gd2, and are constructed in a virtual space such as a computer device.
  • the gear MG rotates based on energy E (Ka1) -E (Ka4) calculated from the constancy shift amount in each circulation system Ka1-Ka4 obtained by the calculation unit 20a.
  • E Ka1 -E (Ka4)
  • the gears Ga1-Ga2, Gb1-Gb2, Gc1, Gd1-Gd2 of each circulation system Ka1-Ka4 rotate.
  • each of the circulation systems Ka1, Ka2, Ka4 has two gears Ga1-Ga2, Gb1-Gb2, Gd1-Gd2, and the circulation system Ka3 has one gear Gc1.
  • each circulation system Ka1-Ka4 the diameter and number of teeth of the gear MG and the number, diameter, number of teeth, and the like included in each circulation system Ka1-Ka4 are determined based on the characteristics of the living body of the subject PA.
  • the test unit 40a simulates homeostasis in the circulation system 200a by rotating the gear MG, and detects the homeostasis state in each of the circulation systems Ka1 to Ka4 from the rotation speeds of the gears Ga2, Gb2, Gc1, and Gd2. .
  • the number of gears, the diameter, the number of teeth, etc. included in the circulatory system Ka are frequency characteristics such as frequency distribution, inflection and pitch frequency in the speech signal uttered by the subject PA, for example. To be determined.
  • the number of gears, the diameter, the number of teeth, etc. included in the circulatory system Ka are determined based on characteristics such as the heart beat time interval and the frequency distribution of heartbeat variability, for example. Is done.
  • the circulatory system Ka is a digestive system, the number of gears, the diameter, the number of teeth, etc.
  • the circulatory system Ka included in the circulatory system Ka are, for example, the length of the small intestine, the large intestine, etc., or the moving speed of contraction waves accompanying peristalsis Determined based on the characteristics of
  • the number of gears, diameter, number of teeth, etc. included in the circulatory system Ka are, for example, neutrophils, eosinophils, basophils, lymphocytes in the blood of the subject PA. It is determined based on the characteristics of the white blood cell count including monocytes.
  • the number of gears, the diameter, the number of teeth, etc. included in the circulatory system Ka are, for example, the amount of hormone synthesized or secreted in each organ of the subject PA, blood, etc. It is determined on the basis of characteristics such as the rate at which hormones circulate in the body by body fluids.
  • the number of gears, the diameter, the number of teeth, etc. included in the circulatory system Ka are, for example, nucleic acids, proteins, polysaccharides, constituents thereof contained in food etc. taken by the subject PA It is determined based on the intake amount of amino acids and various sugars as well as lipids and vitamins.
  • the number of gears, the diameter, the number of teeth, etc. included in the circulatory system Ka are determined based on characteristics such as the frequency of gene division and the length of the gene in the subject PA, for example.
  • the circulatory system Ka included in the circulatory system Ka are, for example, the time variation of the brain activity including the amygdala, the frequency distribution, etc. Determined based on characteristics.
  • the number of gears, diameter, number of teeth, etc. contained in the circulatory system Ka include, for example, the secreted amount of amino acids, peptides, monoamines, etc. that mediate information transmission at synapses. It is determined based on the characteristic reaction rate.
  • Information indicating the set diameter and the number of teeth of the gear MG and the number of gears, the diameter and the number of teeth of each of the gears Ga1-Ga2, Gb1-Gb2, Gc1, Gd1-Gd2 are stored in the storage unit 50 of the estimation device 100b. , Stored in advance for each subject PA. Further, the test unit 40, for example, via the input device such as a keyboard included in the estimation device 100b, the diameter and the number of teeth of the gear MG, and the gears of the gears Ga1-Ga2, Gb1-Gb2, Gc1, Gd1-Gd2 You may receive the information which shows the number of teeth, a diameter, the number of teeth, etc.
  • each circulation system Ka may further include a plurality of circulation systems.
  • the circulatory system Ka when the circulatory system Ka is a vocal cord, the subject PA may have a plurality of gears indicating a plurality of circulatory systems indicating emotions such as anger, normality, sadness, and joy.
  • the circulatory system Ka when the circulatory system Ka is a heart, for example, it may have a plurality of gears indicating a plurality of circulatory systems indicating the heart rate, heart rate variability, etc. in the subject PA.
  • the test unit 40a uses the equations (1) and (2) to calculate the energy from the constancy shift amount in each of the circulation systems Ka1-Ka4 calculated by the calculation unit 20a.
  • TE is calculated.
  • the test unit 40a inputs the calculated energy TE to the circulation system 200a, and rotates the gear MG at a rotation speed corresponding to the magnitude of the energy TE. For example, when the energy TE is a positive value, the test unit 40a rotates the gear MG clockwise, and when the energy TE is a negative value, the test unit 40a rotates the gear MG counterclockwise. Note that, for example, the test unit 40a may rotate the gear MG counterclockwise when the energy TE is a positive value, and rotate the gear MG clockwise when the energy TE is a negative value.
  • the test unit 40a simulates the homeostasis in the circulation system 200a by rotating the gear MG, and detects, for example, the homeostasis state in each of the circulation systems Ka1 to Ka4 as the rotation speed of the gear.
  • the test unit 40a stores the detected rotation speed R1-R4 in the storage unit 50a. Further, the test unit 40a inputs the rotation speed R1-R4 detected in each circulation system Ka1-Ka4 to the circulation system 200a as newly generated energy E (Ka1) -E (Ka4).
  • the test unit 40a uses the partial circulation system Ka calculated by the calculation unit 20a.
  • the energy TE may be obtained from the constancy shift amount at, and the homeostasis of the circulation system 200a may be simulated based on the obtained energy TE.
  • the test unit 40a may detect all the rotational speeds R1-R4 in the circulation system Ka1-Ka4 from the simulation. Since the test unit 40a detects the rotational speed R of all the circulatory systems Ka from the simulation, the estimation device 100b is more subject than the case where the constancy shift amount in the circulatory system Ka calculated by the arithmetic unit 20a is used.
  • the pathological condition of PA can be estimated with high accuracy.
  • FIG. 27 shows an example of data 60a of the rotational speeds R1-R4 of each circulatory system Ka1-Ka4 in the subject PA.
  • the data 60a has storage areas for date and circulation systems Ka1-Ka4, respectively.
  • the time interval at which the test unit 40a detects the rotational speed R1-R4 is 1 minute, 1 hour, 1 day, 1 week, 1 month, etc. In the case of the data 60a shown in FIG. A time interval of minutes.
  • the rotational speeds R1-R4 for example, 20 revolutions per minute
  • the rotational speeds R1-R4 for example, 20 revolutions per minute
  • FIG. 28 shows an example of the disease state table 70.
  • the pathological condition table 70 has storage areas for pathological conditions and circulatory systems Ka1-Ka4.
  • the pathological condition storage area stores pathological conditions such as major depression, depression, normality (ie, subject PA is healthy), depression, and personality disorder.
  • pathological conditions such as major depression, depression, normality (ie, subject PA is healthy), depression, and personality disorder.
  • disease state table 70 shown in FIG. 28 mental disease is shown as the disease state, but it may have heart disease such as myocardial infarction or brain disease such as cerebral infarction.
  • the storage area of the circulatory system Ka1-Ka4 conditions for estimating each pathological condition stored in the pathological condition storage area by the estimation unit 30b are stored. It should be noted that the storage area in which “-” is stored indicates that it is not included in the condition for estimating the corresponding disease state.
  • the estimation unit 30b presumes subject PA as major depression. That is, major depression indicates a state in which the homeostasis that all emotions of anger, normality, sadness, and joy do not appear in the subject PA is biased.
  • the estimation unit 30b estimates subject PA to be depressed. That is, depression indicates a state in which constancy is biased such that the emotion of sadness appears less frequently in the subject PA.
  • the threshold ⁇ is set in advance and stored in the storage unit 50a. Moreover, the threshold value ⁇ may be set to a different value for each subject PA.
  • the estimating unit 30b When each of the circulatory systems Ka1-Ka4 shows emotions of anger, normality, sadness, and joy, and when the rotational speed R3 of sadness is a rotational speed between the threshold value ⁇ and the threshold value ⁇ ( ⁇ > ⁇ ), the estimating unit 30b
  • the subject PA is assumed to be normal (that is, the subject PA is healthy). That is, the pathological condition of normal indicates that the emotion of sadness appears moderately in the subject PA together with other emotions, and homeostasis is not biased.
  • the threshold value ⁇ is set in advance and stored in the storage unit 50a.
  • the threshold value ⁇ may be set to a different value for each subject PA.
  • the estimation unit 30b estimates the subject PA to be depressed. That is, the depression indicates that sad emotions frequently appear in the subject PA and the homeostasis is biased. Further, the estimation unit 30b estimates that the personality disorder is the case where the rotation speed R1 of anger and the rotation speed R4 of joy are equal to each other regardless of the rotation speed of emotions of normal and sadness. That is, the personality disorder indicates that emotions that conflict with anger and joy appear simultaneously in the subject PA.
  • Each of the circulatory systems Ka1-Ka4 has emotions of anger, normality, sadness and joy.
  • the pathological condition is panic disorder
  • the circulatory system of emotions such as anger, normality, sadness and joy
  • the circulatory system of heartbeats etc. It is good to do.
  • the estimation unit 30b reads the data 60a and the disease state table 70 from the storage unit 50a.
  • the estimation unit 30b for a predetermined period such as one day or two weeks, reads out the frequency of appearance of the rotational speed satisfying the conditions of the circulatory systems Ka1-Ka4 indicated by each pathological condition stored in the pathological condition table 70 from the read data 60a Calculate using. That is, for example, when the circulatory system Ka1-Ka4 has an emotion of anger, normality, sadness, and joy, the estimation unit 30b determines the appearance frequency at which the rotational speed R1-R4 is 0 (no rotation) in the predetermined period. Calculated for each Ka.
  • the estimation unit 30b calculates the appearance frequency when the rotation speed R3 in the sadness circulation system Ka3 is smaller than the threshold value ⁇ , between the threshold value ⁇ and the threshold value ⁇ , and larger than the threshold value ⁇ , respectively, in a predetermined period. To do. Further, the estimation unit 30b calculates an appearance frequency at which the rotation speed R1 of the angry circulation system Ka1 and the rotation speed R4 of the pleasure circulation system Ka4 are equal to each other in a predetermined period.
  • the appearance frequency of the rotational speed of each circulation system Ka in a predetermined period is an example of a pattern of change in homeostasis.
  • the estimation unit 30b extracts, for example, a condition indicating an appearance frequency equal to or higher than the threshold Th among the calculated appearance frequencies.
  • the estimation unit 30b uses the extracted condition and the disease state table 70 to estimate a disease state satisfying the combination of the extracted conditions as the disease state of the subject PA.
  • the predetermined period is determined based on a psychiatric standard such as ICD-10.
  • the threshold Th is set in advance and stored in the storage unit 50a.
  • the threshold Th may be set to a different value for each subject PA and pathological condition.
  • the estimation unit 30b calculates the appearance frequency of the rotation speed R1-R4 in each circulation system Ka1-Ka4, but calculates the average value and deviation of the rotation speed R1-R4 of each circulation system Ka1-Ka4 in a predetermined period. May be. The estimating unit 30b then calculates the average value and deviation time variation of the calculated rotation speeds R1-R4 of each circulatory system Ka1-Ka4, and the typical time variation of the average value and deviation when the subject PA is healthy. And the pathological condition of the subject PA may be estimated from the comparison result.
  • FIG. 29 shows an example of the estimation process by the estimation apparatus 100b shown in FIG. Note that, among the processes of the steps shown in FIG. 29, those showing the same or similar processes as the steps shown in FIG. 24 are given the same step numbers, and detailed description thereof is omitted.
  • Step S100 to step S140, step S150a, and step S160a are realized when the CPU mounted on the estimation device 100b executes the estimation program. That is, FIG. 29 shows another embodiment of the estimation program and the estimation method.
  • the extraction unit 10a, the calculation unit 20a, the estimation unit 30b, and the test unit 40a illustrated in FIG. 25 are realized by executing the estimation program.
  • the processing illustrated in FIG. 29 may be realized by hardware mounted on the estimation device 100b.
  • the extraction unit 10a, the calculation unit 20a, the estimation unit 30b, and the test unit 40a illustrated in FIG. 25 are realized by a circuit arranged in the estimation device 100b.
  • the estimation apparatus 100b performs the process of step S150a after performing the process of step S100 to step S140 shown in FIG.
  • step S150a the test unit 40a detects the rotational speed R1-R4 in each circulation system Ka1-Ka4 from the constancy simulation executed in step S140.
  • the test unit 40a stores the detected rotation speed R1-R4 in each circulation system Ka1-Ka4 as data 60a in the storage unit 50a.
  • step S160a the estimation unit 30b estimates the pathological condition of the subject PA based on the data 60a of the rotational speed R1-R4 in the circulatory system Ka1-Ka4 and the pathological table 70 as described with reference to FIGS.
  • the estimation process by the estimation apparatus 100b ends.
  • the flow shown in FIG. 29 may be repeatedly executed every time an instruction from the doctor or the subject PA is received, or may be executed at a predetermined frequency.
  • the estimation device 100b outputs the estimation result to the output device 2.
  • the output device 2 displays the amount of homeostasis along with the estimated pathological result.
  • the output device 2 displays the magnitude of the constancy shift amount, that is, the degree of the symptom in the estimated pathological condition or the degree of health in the subject PA, as a color or an animated expression of a person or animal, and displays it on the display. May be.
  • the output device 2 may display advice such as a treatment method for the estimated disease state according to the magnitude of the homeostatic deviation amount.
  • the estimation apparatus 100b can easily estimate the pathological condition of the subject PA by referring to the index of the constancy shift amount without having specialized medical knowledge.
  • the estimating apparatus 100b executes a constancy simulation in the subject PA using the constancy shift amount in each circulation system Ka as input energy.
  • the estimation device 100b calculates the appearance frequency of the rotation speed in each circulatory system Ka indicating the change in homeostasis detected from the executed simulation and the appearance frequency of the rotation speed in each circulatory system Ka when the subject PA is healthy. Compare. And the estimation apparatus 100b can estimate the pathological condition of the subject PA with higher accuracy than before by using the comparison result and the pathological condition table 70.
  • FIG. 30 shows another embodiment of the estimation device. Elements having the same or similar functions as those described in FIG. 25 are denoted by the same or similar reference numerals, and detailed description thereof will be omitted.
  • the estimation device 100c is a computer device having an arithmetic processing device such as a CPU and a storage device such as a hard disk device.
  • the estimation device 100c is connected to the measurement device 1a and the output device 2a by wire or wireless via an interface unit included in the estimation device 100c. Accordingly, the estimation device 100c, the measurement device 1a, and the output device 2a operate as the estimation system SYS.
  • the output device 2a has, for example, a display such as an organic EL or liquid crystal, and a speaker that outputs sound.
  • the output device 2a receives the estimation result of the pathological condition of the subject PA by the estimation device 100, and displays the received estimation result on a display such as an organic EL. Further, the output device 2a outputs a voice or the like according to the disease state estimated by the estimation device 100c by voice. Note that the output device 2a may be provided inside the estimation device 100c.
  • the estimation apparatus 100c includes an extraction unit 10a, a calculation unit 20a, an estimation unit 30c, a test unit 40a, and a storage unit 50b.
  • the functions of the extraction unit 10a, the calculation unit 20a, the estimation unit 30c, and the test unit 40a may be realized by a program executed by the CPU or may be realized by hardware.
  • the storage unit 50b is a hard disk device, a memory, or the like.
  • the storage unit 50b stores a program executed by the CPU, data 60a indicating a result of simulation by the test unit 40a, and a pathological table 70 for the estimation unit 30c to estimate the pathological condition of the subject PA using the data 60a.
  • the storage unit 50b stores an utterance table 80 having voice data such as advice for the subject PA based on the pathological condition estimated by the estimation unit 30c.
  • the utterance table 80 will be described with reference to FIG.
  • the program for executing the estimation process can be recorded and distributed on a removable disk such as a CD or a DVD, for example.
  • the estimation device 100c may download a program for executing the estimation process from the network via a network interface included in the estimation device 100c and store the program in the storage unit 50b.
  • the estimation unit 30c estimates the pathology of the subject PA from the pattern of homeostasis simulated by the test unit 40. In addition, the estimation unit 30c selects voice data such as advice for the subject PA based on the estimated pathology of the subject PA and the utterance table 80. The operation of the estimation unit 30c will be described with reference to FIG.
  • FIG. 31 shows an example of the utterance table 80.
  • the utterance table 80 has storage areas for pathological conditions and utterances.
  • the pathological condition storage area stores pathological conditions such as major depression, depression, personality disorder (male) and personality disorder (female).
  • pathological conditions such as major depression, depression, personality disorder (male) and personality disorder (female).
  • personality disorder the treatment differs between men and women, so the utterance table 80 has storage areas for personality disorder between men and women.
  • mental disease is shown as a disease state, but it may have a storage area for heart disease such as myocardial infarction or other diseases of the brain such as cerebral infarction.
  • voice data such as advice to the subject PA based on a psychiatric standard such as ICD-10 is stored in accordance with each pathological condition stored in the pathological condition storage area.
  • a psychiatric standard such as ICD-10
  • voice data for instructing the subject PA such as “Go to the hospital early” is stored in the utterance storage area.
  • the subject PA is estimated to be depressed by the estimation unit 30c, it is estimated that the subject PA is in a depressed state.
  • the estimation device 100c in order for the estimation device 100c to function as a teacher or trainer for the subject PA, for example, “simply stay inside the house.
  • Voice data is stored in the utterance storage area. That is, when the subject PA is major depression or depression, the estimation device 100c stores the speech data as the teacher or trainer of the subject PA in the utterance storage area, thereby improving the depression state in the subject PA and the subject PA.
  • the personality can be strengthened.
  • the subject PA when the subject PA is male and is estimated to have personality disorder, the subject PA tends to be unilaterally aggressive. Therefore, in order for the estimation device 100c to function as a counselor for the subject PA, for example, the subject PA may be sympathetic with the subject PA such as “Think about not only yourself but also the feelings of the other party”. Is stored in the utterance storage area. On the other hand, when the subject PA is female and is determined to have personality disorder, the subject PA is likely to be performing self-harm such as wrist cut. Therefore, in order for the estimation device 100c to function as a counselor for the subject PA, for example, “I'm always doing my best. So stop that.” Voice data to be instructed is stored in the utterance storage area. That is, when the subject PA has a personality disorder or the like, the estimation device 100c stores voice data as a counselor of the subject PA in the storage area of the utterance, thereby developing empathy in the subject PA and improving the personality of the subject PA. Can be achieved.
  • an address indicating the area of the storage unit 50b in which the voice data is stored may be stored instead of the voice data.
  • the voice data stored in the utterance storage area of the utterance table 80 may store a plurality of voice data having different utterance contents based on psychiatric standards such as ICD-10 for one disease state.
  • the extraction unit 10a extracts a break for each phoneme from the voice signal of the subject PA. That is, when the voice “Today is a good weather” is input, the extraction unit 10a reads “Kyo / U / H / I / I / T / N / Ki / D / S / Ne”. Extract breaks for each phoneme. Furthermore, the extraction unit 10a extracts a break for each word from the voice signal of the subject PA. For example, when the voice “Today is a good weather” is input, the extraction unit 10a extracts a word-by-word break such as “Kyo / Ha / Nai / Tenki / That”.
  • the estimation unit 30c performs recognition and parsing for each word included in the speech of the subject PA based on information indicating phonemes and word breaks in the speech of the subject PA extracted by the extraction unit 10a. That is, the estimation unit 30c recognizes information indicating 5W1H of “Who”, “What”, “When”, “Where”, “Why”, “How” from the voice of the subject PA, Understand the content as a natural language. And the estimation part 30c judges what kind of situation or position the subject PA is placed from the voice of the subject PA based on the content of the grasped voice. Then, the estimation unit 30c selects one of a plurality of voice data such as advice on a disease state estimated according to the determined situation or position. Thereby, the estimation apparatus 100c can perform a finer treatment with respect to the subject PA as compared with the related art.
  • the estimation unit 30c can treat the subject PA with a communication disorder by grasping the content of the voice of the subject PA. For example, the estimation unit 30c estimates whether or not the subject PA is a communication disorder from the emotion of the subject PA extracted by the extraction unit 10a when the subject PA utters a predetermined word. For example, when the extraction unit 10a utters a predetermined word indicating an emotion such as anger when the subject PA utters an emotion such as anger at the subject PA, the estimation unit 30c I can't read the atmosphere of the place and I presume it is a communication failure.
  • the estimation unit 30c estimates that there is a communication failure
  • the speech data for instructing the subject PA to have communication ability such as “read the air” is stored in the utterance so that the estimation device 100c functions as a teacher or the like. Read from area.
  • the estimation apparatus 100c can treat the communication failure of the subject PA so that the subject PA can read and communicate with the air in the field.
  • FIG. 32 shows an example of the estimation process by the estimation apparatus 100c shown in FIG. Note that among the processing of the steps shown in FIG. 30, the same or similar steps as those shown in FIG. 29 are denoted by the same step numbers, and detailed description thereof is omitted.
  • Step S100 to step S140, step S150a, step S160a, and step S170 are realized by the CPU installed in the estimation device 100c executing the estimation program. That is, FIG. 32 shows another embodiment of the estimation program and the estimation method.
  • the extraction unit 10a, the calculation unit 20a, the estimation unit 30c, and the test unit 40a illustrated in FIG. 30 are realized by executing the estimation program.
  • the processing illustrated in FIG. 32 may be realized by hardware mounted on the estimation device 100c.
  • the extraction unit 10a, the calculation unit 20a, the estimation unit 30c, and the test unit 40a illustrated in FIG. 30 are realized by a circuit arranged in the estimation device 100c.
  • the estimation apparatus 100c performs the process of step S170 after performing the process of step S100 to step S140, step S150a, and step S160a shown in FIG.
  • step S170 the estimation unit 30c reads voice data such as advice for the subject PA based on the pathological condition estimated in step S160a and the utterance table 80, as described in FIG.
  • the estimation unit 30c outputs the read audio data to the output device 2a.
  • the output device 2a displays the amount of homeostasis along with the estimated pathological result. Further, the output device 2a utters advice or the like according to the estimated pathological condition for the subject PA by outputting the voice data received from the estimation device 100c from the speaker.
  • the output device 2a displays the magnitude of the constancy shift amount, that is, the degree of the symptom in the estimated pathological condition or the degree of the health of the subject PA, with a color or an expression such as a person or animal in animation, and displays it on the display. May be. Further, the output device 2a may display an animated person or animal on the display and output the received audio data as if the displayed person or animal is speaking.
  • the flow shown in FIG. 32 may be repeatedly executed every time an instruction from the doctor or the subject PA is received, or may be executed at a predetermined frequency.
  • the estimation apparatus 100c can easily estimate the pathological condition of the subject PA by referring to the index of the constancy shift amount without having specialized medical knowledge. Further, the estimating apparatus 100c executes a constancy simulation in the subject PA using the constancy shift amount in each circulation system Ka as input energy. The estimation apparatus 100c calculates the appearance frequency of the rotation speed in each circulatory system Ka indicating the change in homeostasis detected from the executed simulation and the appearance frequency of the rotation speed in each circulatory system Ka when the subject PA is healthy. Compare. And the estimation apparatus 100c can estimate the pathological condition of the subject PA with higher accuracy than the conventional one by using the comparison result and the pathological condition table 70.
  • the estimation device 100c may estimate the state of the subject PA by measuring the physiology of the subject PA again after giving an utterance such as advice. Then, the estimation apparatus 100c evaluates the effect of the utterance such as advice based on the estimation result, and corrects the content of the advice stored in the utterance storage area of the utterance table 80 based on the evaluation. Good. Thereby, the estimation apparatus 100c can perform a fine treatment with respect to the subject PA as compared with the related art.
  • the estimation apparatus 100 (100a, 100b, 100c) showed the case where it applied to the interview and prescription in psychological counseling, psychiatry, general medical care, such as mental analysis, behavior prediction, and behavior analysis, it is not limited to this.
  • the estimation device 100 may be applied to robots, artificial intelligence, automobiles, call centers, entertainment, the Internet, mobile terminal device applications such as smartphones and tablet terminals, services, and search systems.
  • the estimation device 100 may be applied to a diagnosis device, an automatic inquiry device, a disaster triage, and the like.
  • the estimation device 100 may be applied to financial credit management systems, behavior predictions, companies, schools, government agencies, police and military, information analysis in information collection activities, psychological analysis leading to false discovery, and organization group management. Good.
  • the estimation apparatus 100 is a system that manages mental health and behavior prediction of members of an organization, researchers, employees, managers, etc., a system that controls an environment such as a residence, an office, an airplane or a spaceship, or a family It may also be applied to a means for knowing the state of mind or behavior prediction of a friend or a friend. Further, the estimation apparatus 100 may be applied to music and movie distribution, general information search, information analysis management and information processing, customer sensitivity preference market analysis, and the like, a system for managing these via a network or stand-alone, and the like. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Social Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Dermatology (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Vascular Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 被験者の生理を示す情報から、被験者の生理の状態を示す第1情報と被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出する抽出部と、抽出した第1情報と第2情報とが示す時間変化における類似の度合いを求め、求めた類似の度合いに基づき被験者における恒常性が保たれた所定状態からのずれ量を算出する演算部と、算出されたずれ量に基づいて被験者の病態を推定する推定部とを有する。

Description

推定装置、プログラム、推定方法および推定システム
 本発明は、被験者の病態を推定する推定装置、プログラム、推定方法および推定システムに関する。
 従来、被験者の音声信号、あるいは心臓等の器官の活動を示す電気信号を計測し、計測した信号から被験者の情動や器官の活動を求め、求めた情動や器官の活動の時間変化に基づいて被験者の病態を推定する技術が提案されている(例えば、引用文献1,2参照)。
国際公開第2006/132159号 特開2012-61057号公報
 しかしながら、従来技術では、計測した信号から求めた被験者の情動や器官の活動の時間変化に基づき被験者の病態を推定するにあたり、ユーザに対して医学の専門的な知識を要求する。
 一つの側面では、本件開示の推定装置、プログラム、推定方法および推定システムは、専門的な知識を有することなく、被験者の病態を容易に推定することを目的とする。
 一つの観点による推定装置は、被験者の生理を示す情報から、被験者の生理の状態を示す第1情報と被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出する抽出部と、抽出した第1情報と第2情報とが示す時間変化における類似の度合いを求め、求めた類似の度合いに基づき被験者における恒常性が保たれた所定状態からのずれ量を算出する演算部と、算出されたずれ量に基づいて被験者の病態を推定する推定部とを有する。
 別の観点によるプログラムは、被験者の生理を示す情報から、被験者の生理の状態を示す第1情報と被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出し、抽出した第1情報と第2情報とが示す時間変化における類似の度合いを求め、求めた類似の度合いに基づき被験者における恒常性が保たれた所定状態からのずれ量を算出し、算出されたずれ量に基づいて被験者の病態を推定する、処理をコンピュータに実行させる。
 別の観点による推定方法では、被験者の生理を示す情報から、被験者の生理の状態を示す第1情報と被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出部により抽出し、抽出した第1情報と第2情報とが示す時間変化における類似の度合いを求め、求めた類似の度合いに基づき被験者における恒常性が保たれた所定状態からのずれ量を演算部により算出し、算出されたずれ量に基づいて被験者の病態を推定部により推定する。
 別の観点による推定システムは、被験者の生理を計測する計測装置と、計測装置により計測された被験者の生理を示す情報を用い被験者の病態を推定する推定装置と、推定装置により推定された病態の結果を出力する出力装置とを有し、推定装置は、被験者の生理を示す情報から、被験者の生理の状態を示す第1情報と被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出する抽出部と、抽出した第1情報と第2情報とが示す時間変化における類似の度合いを求め、求めた類似の度合いに基づき被験者における恒常性が保たれた所定状態からのずれ量を算出する演算部と、算出されたずれ量に基づいて被験者の病態を推定する推定部とを有する。
 本件開示の推定装置、プログラム、推定方法および推定システムは、専門的な知識を有することなく、被験者の病態を容易に推定することができる。
推定装置の一実施形態を示す図である。 推定装置の別の実施形態を示す図である。 被験者の発話の基本周波数と被験者の情動との関係を示す判断木の一例を示す図である。 医師の興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化の一例を示す図である。 うつ病患者の興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化の一例を示す図である。 一般人の興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化の一例を示す図である。 図6に示した一般人と異なる別の一般人の興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化の一例を示す図である。 図2に示した演算部による図4に示した医師における興奮度と各情動との相互相関処理の結果の一例を示す図である。 図2に示した演算部による図5に示したうつ病患者における興奮度と各情動との相互相関処理の結果の一例を示す図である。 図2に示した演算部による図6に示した一般人における興奮度と各情動との相互相関処理の結果の一例を示す図である。 図2に示した演算部による図7に示した一般人における興奮度と各情動との相互相関処理の結果の例を示す図である。 被験者における情動の恒常性の一例を示す図である。 図2に示した演算部により求められた図8に示した医師における恒常性のずれ量の時間変化の例を示す図である。 図2に示した演算部により求められた図9に示したうつ病患者における恒常性のずれ量の時間変化の例を示す図である。 図2に示した演算部により求められた図10に示した一般人における恒常性のずれ量の時間変化の例を示す図である。 図2に示した演算部により求められた図11に示した一般人における恒常性のずれ量の時間変化の例を示す図である。 図2に示した推定装置による推定処理の一例を示す図である。 被験者の心拍数および心拍変動と被験者の情動との判断木の一例を示す図 被験者における情動の恒常性の別例を示す図である。 推定装置の別の実施形態を示す図である。 被験者PAにおける恒常性の連鎖の例を模式的に示す図である。 図20に示した試験部が被験者における恒常性のシミュレーションに用いる循環系の計算モデルの一例を示す図である。 被験者における各循環系の変位のデータの一例を示す図である。 図20に示した推定装置による推定処理の一例を示す図である。である。 推定装置の別の実施形態を示す図である。 図25に示した試験部が被験者における恒常性をシミュレーションに用いる循環系の計算モデルの一例を示す図である。 被験者における各循環系の回転数のデータの一例を示す図である。 病態テーブルの一例を示す図である。 図25に示した推定装置による推定処理の一例を示す図である。 推定装置の別の実施形態を示す図である。 発話テーブルの一例を示す図である。 図30に示した推定装置による推定処理の一例を示す図である。
 以下、図面を用いて実施形態について説明する。
 図1は、推定装置の一実施形態を示す。
 図1に示した推定装置AMは、CPU(Central Processing Unit)等の演算処理装置と、ハードディスク装置等の記憶装置とを有するコンピュータ装置等である。推定装置AMは、抽出部EU、演算部CUおよび推定部AUを有する。抽出部EU、演算部CUおよび推定部AUの機能は、CPUが実行するプログラムにより実現されてもよく、ハードウェアにより実現されてもよい。
 抽出部EUは、推定装置AMの記憶装置に格納された被験者が発声した音声データあるいは体温や心拍等のデータを含む被験者の生理を示す情報から、音声のピッチ周波数や基本周波数、あるいは体温や心拍数等の被験者の生理の状態を示す第1情報を抽出する。また、抽出部EUは、被験者の生理を示す情報から、被験者における怒りや悲しみ等を含む情動および被験者の心臓や腸等の器官の活動の少なくとも一方を示す第2情報を抽出する。
 演算部CUは、抽出した第1情報と第2情報とが示す時間変化における類似の度合いを求め、求めた類似の度合いに基づき被験者における恒常性が保たれた所定状態からのずれ量(以下、恒常性のずれ量とも称する)を算出する。
 推定部AUは、算出された恒常性のずれ量に基づいて被験者の病態を推定する。そして、推定装置AMは、推定部AUにより推定された病態を示す情報を、外部の有機EL(Organic Electro-Luminescence)や液晶等のディスプレイに出力する。
 以上、図1に示した実施形態では、被験者の生理の状態を示す第1情報と被験者の情動および器官の活動の少なくとも一方を示す第2情報とを用い、被験者における恒常性のずれ量を算出する。これにより、推定装置AMは、恒常性のずれ量という1つの指標を参照することで、医学の専門的な知識を有することなく、被験者の病態を容易に推定することができる。
 図2は、推定装置の別の実施形態を示す。
 図2に示した推定装置100は、CPU等の演算処理装置と、ハードディスク装置等の記憶装置とを有するコンピュータ装置等である。推定装置100は、推定装置100に含まれるインタフェース部を介して、有線または無線で計測装置1および出力装置2に接続される。これにより、例えば、推定装置100と、計測装置1と、出力装置2とは、推定システムSYSとして動作する。
 計測装置1は、例えば、少なくともマイクロホンを含み、被験者PAの生理を示す情報を計測する。例えば、計測装置1は、マイクロホンを介して、被験者PAが発話した音声信号を計測し、計測した音声信号を被験者PAの生理を示す情報として推定装置100に出力する。
 出力装置2は、例えば、有機ELや液晶等のディスプレイを含む。出力装置2は、推定装置100による被験者PAの病態の推定結果を受信し、受信した推定結果を有機EL等のディスプレイに表示する。なお、出力装置2は、推定装置100の内部に設けられてもよい。
 図2に示した推定装置100は、抽出部10、演算部20および推定部30を有する。抽出部10、演算部20および推定部30の機能は、CPUが実行するプログラムにより実現されてもよく、ハードウェアにより実現されてもよい。
 抽出部10は、計測装置1により計測された被験者PAの生理を示す情報から、被験者PAの生理の状態を示す第1情報と、被験者PAにおける情動および被験者PAの心臓や腸等の器官の活動の少なくとも一方を示す第2情報とを抽出する。抽出部10は、抽出した第1情報および第2情報を演算部20に出力する。抽出部10の動作については、図3から図7で説明する。
 演算部20は、抽出された第1情報と第2情報との時間変化の類似の度合いを算出する。例えば、演算部20は、抽出された第1情報と第2情報との時間変化の相互相関処理を実行し、相互相関係数を類似の度合いとして算出する。演算部20は、算出した複数の類似の度合いを用い、被験者PAにおける恒常性のずれ量を求める。演算部20の動作および恒常性については、図8から図12で説明する。
 推定部30は、求めた被験者PAにおける恒常性のずれ量に基づいて被験者PAの病態を推定する。推定部30は、推定した被験者PAの病態を示す情報を出力装置2に出力する。推定部30の動作については、図12から図16で説明する。
 図3は、被験者PAの発話の基本周波数と被験者PAの情動との関係を示す判断木の一例を示す。図3に示した判断木は、例えば、複数の被験者PA(例えば100名以上)の各々の発話ごとに、“平常”、“悲しみ”、“怒り”および“喜び”等のいずれかに主観的に評価された各被験者PAの情動と、抽出された基本周波数の高さ等とに基づいて生成される。すなわち、図3に示した判定木は、平常、悲しみ、怒りおよび喜びの各情動と、発話における基本周波数の高さ、強度および平均強度との関係を示す。例えば、平常の情動は、基本周波数の高さが150ヘルツ未満、且つ基本周波数の強度が100以上である。悲しみの情動は、基本周波数の高さが150ヘルツ未満、且つ基本周波数の強度が100未満である。怒りの情動は、基本周波数の高さが150ヘルツ以上、且つ基本周波数の平均強度が80以上である。喜びの情動は、基本周波数の高さが150ヘルツ以上、且つ基本周波数の強度が80未満である。
 なお、図3に示した判断木は、推定装置100の記憶装置に予め格納される。また、図3に示した判定木では、被験者PAの情動として、平常、悲しみ、怒り、喜びとしたが、不安、苦痛等の情動を含んでもよい。また、推定装置100は、ピッチ周波数等の音声パラメータと情動との関係を示す判断木を有してもよい。
 例えば、抽出部10は、計測装置1から受信する被験者PAによる発話の音声信号にFFT(Fast Fourier Transform)等の周波数解析を実行し、基本周波数の高さ等を求める。抽出部10は、被験者PAの各発話から求めた基本周波数の高さ等と図3に示した判定木とに基づいて、各発話の瞬間において被験者PAに出現している平常、悲しみ、怒りおよび喜びの情動それぞれの割合を、例えば0から10の値の範囲で求める。なお、平常、悲しみ、怒りおよび喜びの情動の割合を合計した値は、一定値であり、例えば、10とする。また、平常、悲しみ、怒り、喜びの割合は、0から10の値の範囲以外の範囲の値でよい。
 また、抽出部10は、被験者PAの音声信号から、抑揚やピッチ周波数等を求める。例えば、抽出部10は、音声信号の発話単位における強度変化のパターンから同一周波数成分の領域を検出し、検出した同一周波数成分の領域が出現する時間間隔を抑揚として取得する。また、抽出部10は、例えば、音声信号の周波数解析から周波数スペクトルを取得する。抽出部10は、取得した周波数スペクトルを周波数軸上でずらしながら自己相関処理を実行し、自己相関係数の波形を求める。抽出部10は、求めた自己相関係数の波形における山と山または谷と谷の間隔に基づいてピッチ周波数を求める。そして、抽出部10は、求めた抑揚およびピッチ周波数と所定の間隔および所定の周波数との比較から被験者PAの興奮の度合い(以下、興奮度とも称する)を0から10の値の範囲で求める。興奮度は、抑揚が示す同一周波数成分における出現間隔が所定の間隔より短くなるほど、あるいはピッチ周波数が所定の周波数より高いほど高くなる。換言すれば、被験者PAの生理的な興奮と、交感神経や副交感神経等の被験者PAにおける脳神経の活動とは密接に関係していることから、興奮度を介して、被験者PAの脳神経の活動と被験者PAの情動との関係を調べることができる。なお、興奮度は、0から10の値の範囲以外の範囲の値でもよい。
 抽出部10は、例えば、求めた興奮度と、平常、悲しみ、怒りおよび喜びそれぞれの割合と乗算し、平常、悲しみ、怒りおよび喜びそれぞれの強度を求める。興奮度は、第1情報の一例であり、平常、悲しみ、怒りおよび喜びの強度は、第2情報の一例である。
 図4から図7は、被験者PAごとの興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化の一例を示す。図4から図7の横軸は時間軸として被験者PAによる発話単位の順番を示し、図4から図7の縦軸は興奮度、および平常、悲しみ、怒り、喜びの各強度を示す。実線は、興奮度の時間変化を示し、一点破線は、平常と怒りとの強度を足した値(以下、“平常プラス怒り”とも称する)の時間変化を示す。また、点線は、悲しみの強度の時間変化を示し、破線は、喜びの強度の時間変化を示す。
 なお、図4から図7に示した興奮度、平常プラス怒り、悲しみおよび喜びの強度の時間変化は、例えば、演算部20により10発話単位のウインドウ幅で移動平均された値を示す。
 また、平常と怒りとの強度を合わせるのは、発明者が、被験者PAが精神疾患を患っているか否かを推定するにあたり、悲しみと喜びとの情動に特徴的な変化が現れるものと推定し、平常および怒りを他の情動として扱うためである。なお、平常および怒りの情動についても、悲しみと喜びと同様に個別に調べられてもよい。
 図4は、被験者PAが精神疾患を患っていない健康な精神科の医師で、うつ病患者を診察している時の興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化を示す。図4に示すように、被験者PAである医師の興奮度は、発話している間、1から3.5の範囲の変動を示す。また、医師の情動は、発話の間、平常プラス怒りの強度が悲しみや喜びよりも大きく、うつ病患者を診察していることから喜びの強度が、悲しみと比べて全体的に低い値を示す。
 図5は、被験者PAがうつ病患者で、図4に示した医師による診察を受けている時の興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化を示す。図5に示すように、被験者PAのうつ病患者の興奮度は、発話している間、2から5の範囲の変動を示し、図4に示す医師の興奮度より大きい値を示す。また、うつ病患者の情動は、発話している間、平常プラス怒りの強度が悲しみや喜びよりも大きく、悲しみの強度は、喜びの強度より大きい値を示す。そして、うつ病患者の悲しみおよび喜びの強度は、図4に示す医師の場合より大きい値を示す。
 図6は、被験者PAが精神疾患を患っていない健康な一般人Aの場合における興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化を示す。図6に示すように、被験者PAである一般人Aの興奮度は、1.5から4.5の範囲の変動を示す。また、一般人Aの情動は、図4に示した医師の場合や図5に示したうつ病患者の場合と同様に、発話している間、平常プラス怒りの強度が悲しみや喜びよりも大きいことを示す。一方、一般人Aにおける喜びの強度は、悲しみの強度より大きい値を示す。さらに、図6に示すように、一般人Aの喜びの強度は、図4に示した医師の場合や図5に示したうつ病患者の場合と比べて大きい値の範囲に分布し、一般人Aの悲しみの強度は、図4に示した医師の場合や図5に示したうつ病患者の場合と比べて低い値の範囲に分布している。
 図7は、被験者PAが、図6に示した一般人Aとは異なる精神疾患を患っていない健康な一般人Bの場合における興奮度、平常、悲しみ、怒りおよび喜びの強度の時間変化を示す。図7に示すように、被験者PAである一般人Bの興奮度は、3から7の範囲の変動を示す。また、一般人Bの情動は、図6に示した一般人Aの場合と同様に、発話している間、平常プラス怒りの強度が悲しみや喜びよりも大きい値を示す。また、一般人Bの喜びの強度は、図6に示した一般人Aの場合と同様に、悲しみの強度より大きい値を示す。
 演算部20は、例えば、図4から図7に示した各被験者PAにおいて、興奮度の時間変化と、平常プラス怒り、悲しみおよび喜びの強度の時間変化それぞれとの相互相関処理を実行する。演算部20は、各被験者PAにおける興奮度と、平常プラス怒り、悲しみおよび喜びの強度との相互相関係数をそれぞれ求める。なお、演算部20による相互相関処理のウインドウ幅は、例えば150発話とするが、被験者PAごと、あるいは要求される処理速度や推定の精度等に応じて設定されてもよい。
 図8から図11は、図2に示した演算部20による被験者PAにおける興奮度と各情動との相互相関処理の結果の一例を示す。図8から図11の横軸は時間軸として被験者PAによる発話単位の順番で示し、図8から図11の縦軸は相互相関係数を示す。また、一点破線は、興奮度と平常プラス怒りの強度との相互相関係数の時間変化を示し、点線は、興奮度と悲しみの強度と相互相関係数の時間変化を示し、破線は、興奮度と喜びの強度との相互相関係数の時間変化を示す。
 図8は、図4に示した医師における興奮度と、平常プラス怒り、悲しみ、喜びの各々の強度との相互相関係数の時間変化を示す。図8に示した医師では、40発話単位以降において、平常プラス怒りの相互相関係数が、喜びや悲しみの場合より大きな値を示し、悲しみの相互相関係数が、最も小さな値を示す。なお、発話開始から40発話単位までは、相互相関処理のウインドウ幅(例えば150発話単位)における医師の興奮度および各情動のデータ数が少ないため、演算部20により算出された興奮度と各情動との相互相関係数の値が安定せず、算出結果の信頼性が低い。そのため、以下の説明では、図8に示した医師の場合には、40発話単位以降の相互相関係数を用いる。
 図9は、図5に示したうつ病患者における興奮度と、平常プラス怒り、悲しみおよび喜びの各々の強度との相互相関係数の時間変化を示す。図9に示したうつ病患者では、100発話単位以降において、悲しみの相互相関係数が、最も大きな値を示し、喜びの相互相関係数が、最も小さな値を示す。なお、図8の場合と同様に、図9では、発話開始から100発話単位までの間における演算部20により算出された興奮度と各情動との相互相関係数の値が安定せず、結果の信頼性が低い。そのため、以下の説明では、図9に示したうつ病患者の場合には、100発話単位以降の相互相関係数を用いる。
 図10は、図6に示した一般人Aにおける興奮度と、平常プラス怒り、悲しみおよび喜びの各々の強度との相互相関係数の時間変化を示す。図10に示した一般人Aでは、70発話単位以降において、喜びの相互相関係数が、最も大きな値を示し、悲しみの相互相関係数が、最も小さな値を示す。なお、図8、図9の場合と同様に、図10では、発話開始から70発話単位までの間において、演算部20により算出された興奮度と各情動との相互相関係数の値が安定せず、結果の信頼性が低い。そのため、以下の説明では、図10に示した一般人Aの場合には、70発話単位以降の相互相関係数を用いる。
 図11は、図7に示した一般人Bにおける興奮度と、平常プラス怒り、悲しみおよび喜びの各々の強度との相互相関係数の時間変化を示す。図11に示した一般人Bでは、70発話単位以降において、喜びの相互相関係数が、最も大きな値を示し、悲しみの相互相関係数が、最も小さな値を示す。なお、図8から図10の場合と同様に、図11では、発話開始から70発話単位までの間において、演算部20による興奮度と各情動との相互相関係数の算出結果の信頼性が低いため、一般人Bの場合には、70発話単位以降の相互相関係数を用いる。
 図8から図11に示すように、被験者PAが医師、一般人Aおよび一般人Bの健康な人の場合、平常プラス怒りあるいは喜びの情動は興奮度と最も強い相関を示し、悲しみの情動は興奮度と最も弱い相関を示す。すなわち、健康な被験者PAは、興奮の高まりとともに、感情を素直に出せる心的状態にあると考えられる。そして、このような心的状態は、怒りといった比較的原始的な感情状態にある場合が多い。一方、被験者PAがうつ病患者である場合、悲しみの情動は興奮度と最も強い相関を示し、喜びの情動は興奮度と最も弱い相関を示す。すなわち、うつ病患者である被験者PAは、興奮状態にあったとしても、それに反して心底から凍り付いている心的状態にあると考えられる。
 演算部20は、例えば、図8から図11に示した各被験者PAの興奮度と平常プラス怒り、悲しみおよび喜びの強度との相互相関係数を用いて、被験者PAにおける平常プラス怒り、悲しみおよび喜びの情動の間における均衡状態を求める。すなわち、人間等の生体は、生理的状態および心的状態を、内部や外部の環境因子の変化にかかわらず、生体全体で所定状態に保とうとする性質を有するため、演算部20は、情動間の均衡状態を求める。なお、生体全体で所定状態に保とうとする性質は、“恒常性”あるいは“ホメオスタシス”と称す。
 図12は、被験者PAにおける情動の恒常性の一例を示す。図12(a)は、例えば、平常プラス怒り、悲しみおよび喜びの各情動を示す座標軸が120度の角度で互いに交差する座標系を示す。図12(a)は、例えば、図8から図11に示したように、演算部20により求められた平常プラス怒り、悲しみおよび喜びの相互相関係数を被験者PAの各情動の強さとして各座標方向のベクトルで表す。演算部20は、図12(a)に示した各情動のベクトルから情動間の均衡を求める。なお、平常プラス怒り、悲しみおよび喜びの各情動の強さの範囲は、相互相関係数の範囲に等しく、-1から1の範囲である。
 図12(b)は、被験者PAの平常プラス怒り、悲しみおよび喜びの強さが図12(a)に示したベクトルの場合に、演算部20によって求められた被験者PAにおける各情動が均衡している均衡位置P1を示す。図12(b)に示すように、求められた被験者PAの情動の均衡位置P1は、座標系の中心からずれている。そこで、演算部20は、座標系の中心と被験者PAの情動の均衡位置P1との距離を恒常性のずれ量として求める。演算部20は、例えば、図12(c)に示すように、恒常性のずれ量を平常プラス怒り、悲しみおよび喜びの各座標軸における値α,β,γとして求める。このように、演算部20は、求められた各情動の相互相関係数をベクトルの成分として用い被験者PAの恒常性のずれ量を求めることで、例えば、微分や積分等を用いて恒常性のずれ量を算出する場合と比べて、演算処理を高速化することができる。
 図13から図16は、図2に示した演算部20により求められた各被験者PAにおける恒常性のずれ量α,β,γの時間変化の一例を示す。図13から図16の縦軸は各情動のずれ量を示し、図13から図16の横軸は時間軸として被験者PAによる発話単位の順番を示す。また、一点破線は、平常プラス怒りの座標軸方向のずれ量αの時間変化を示し、点線は、悲しみの座標軸方向のずれ量βの時間変化を示し、破線は、喜びの座標軸方向のずれ量γの時間変化を示す。
 図13は、図8に示した医師における情動の恒常性のずれ量の時間変化を示す。なお、図13では、興奮度と各情動との相互相関係数が安定する40発話以降におけるずれ量α,β,γの時間変化を示す。図13に示すように、医師において、平常プラス怒りのずれ量αは、正の値で、悲しみおよび喜びのずれ量β,γより大きな値を示す。また、医師における悲しみのずれ量βは、喜びのずれ量γより小さく負の値を示す。
 図14は、図9に示したうつ病患者における情動の恒常性のずれ量の時間変化を示す。なお、図14は、興奮度と各情動との相互相関係数が安定する100発話以降におけるずれ量α,β,γの時間変化を示す。図14に示すように、うつ病患者において、悲しみのずれ量βは、正の値で、平常プラス怒りおよび喜びのずれ量α,γより大きな値を示す。また、うつ病患者における喜びのずれ量γは、平常プラス怒りのずれ量αより小さく負の値を示す。
 図15は、図10に示した一般人Aにおける情動の恒常性のずれ量の時間変化を示す。なお、図15は、興奮度と各情動との相互相関係数が安定する70発話以降におけるずれ量α,β,γの時間変化をそれぞれ示す。図15に示した一般人Aでは、喜びのずれ量γは、正の値で、平常プラス怒りおよび悲しみのずれ量α,βより大きな値を示す。また、一般人Aにおける悲しみのずれ量βは、平常プラス怒りのずれ量αより小さく負の値を示す。
 図16は、図11に示した一般人Bにおける情動の恒常性のずれ量の時間変化を示す。なお、図16は、興奮度と各情動との相互相関係数が安定する70発話以降におけるずれ量α,β,γの時間変化をそれぞれ示す。図16に示した一般人Bでは、図15に示した一般人Aの場合と同様に、喜びのずれ量γは、正の値で、平常プラス怒りおよび悲しみのずれ量α,βより大きな値を示す。また、一般人Bにおける悲しみのずれ量βは、平常プラス怒りのずれ量αより小さく負の値を示す。
 推定部30は、例えば、図12から図16に示した恒常性のずれ量に基づいて、図12(b)に示した座標中心と均衡位置P1との距離を求める。推定部30は、ずれ量α,β,γと求めた均衡位置P1の距離とに基づいて、被験者PAの病態を推定する。例えば、図13に示した医師のように、平常プラス怒りのずれ量αが正の値で、且つ悲しみのずれ量βが負の値でずれ量α,γより小さな値を示し、均衡位置P1の距離が所定値以下の場合、推定部30は、被験者PAは健康(あるいは平常)であると推定する。しかしながら、平常プラス怒りのずれ量αが正の値で、且つ悲しみのずれ量βが負の値でずれ量α,γより小さな値を示すにもかかわらず、均衡位置P1の距離が所定値より大きい場合、推定部30は、被験者PAはそう状態にあると推定する。
 また、例えば、図16に示した一般人Bのように、喜びのずれ量γが正の値で、且つ悲しみのずれ量βが負の値でずれ量α,γより小さな値を示し、均衡位置P1の距離が所定値以下の場合、推定部30は、被験者PAは健康(あるいは平常)であると推定する。しかしながら、喜びのずれ量γが正の値で、且つ悲しみのずれ量βが負の値でずれ量α,γより小さな値を示すにもかかわらず、均衡位置P1の距離が所定値より大きい場合、推定部30は、被験者PAはそう状態にあると推定する。一方、例えば、図14に示したうつ病患者のように、悲しみのずれ量βが正の値で、且つ平常プラス怒りおよび喜びのずれ量α,γより大きい場合、推定部30は、被験者PAをうつ状態にあると推定する。
 なお、ずれ量α,β,γの大小関係および均衡位置P1の距離に対する所定値と病態との関係については、例えば、疾病及び関連保健問題の国際統計分類第10版(ICD-10)等に基づいて決定されるのがよい。決定されたずれ量α,β,γの大小関係および均衡位置P1の距離に対する所定値と病態との関係は、推定装置100の記憶装置に予め格納される。ここで、ICDは、International Statistical Classification of Diseases and Related Health Problemsの略である。また、所定値は、被験者PAの個人差を考慮して調整されてもよい。
 また、推定部30は、ずれ量α,β,γおよび均衡位置P1の距離とともに、座標中心に対する均衡位置P1が偏った向き等を考慮して、被験者PAの病態を詳細に判定してもよい。また、推定部30は、ずれ量α,β,γに基づいて、被験者PAの病態を推定してもよい。あるいは、推定部30は、例えば、被験者PAにおける恒常性のずれ量α,β,γが示す偏りの固定化あるいは変化の速さに基づいて、被験者PAの病態を推定してもよい。
 また、推定部30は、2週間等の長期間に亘って演算部20により算出されたずれ量α,β,γを用いて被験者PAの病態を推定してもよい。長期間に亘るずれ量のデータを用いることで、推定部30は、被験者PAの病態を確度高く推定することができる。
 図17は、図2に示した推定装置100による推定処理の一例を示す。ステップS10からステップS40は、推定装置100に搭載されるCPUが推定プログラムを実行することにより実行される。すなわち、図17は、プログラムおよび推定方法の別の実施形態を示す。この場合、図2に示した抽出部10、演算部20および推定部30は、プログラムの実行により実現される。なお、図17に示した処理は、推定装置100に搭載されるハードウェアにより実現されてもよい。この場合、図2に示した抽出部10、演算部20および推定部30は、推定装置100内に配置される回路により実現される。
 ステップS10では、抽出部10は、図2から図7で説明したように、計測装置1により計測された被験者PAの生理を示す情報に基づいて、被験者PAの生理の状態を示す第1情報と、情動および器官の活動の少なくとも一方を示す第2情報とを抽出する。
 ステップS20では、演算部20は、図4から図11で説明したように、抽出された第1情報と第2情報との時間変化に対して相互相関処理を実行し、類似の度合いを示す相互相関係数を算出する。
 ステップS30では、演算部20は、図12から図16で説明したように、求めた相互相関係数に基づいて、被験者PAにおける恒常性のずれ量を求める。
 ステップS40では、推定部30は、図12から図16で説明したように、演算部20により求められた被験者PAにおける恒常性のずれ量に基づいて、被験者PAの病態を推定する。
 そして、推定装置100による推定処理は終了する。図17に示したフローは、医者あるいは被験者PAからの指示を受ける度に繰り返し実行されてもよく、所定の頻度で実行されてもよい。そして、推定装置100は、推定結果を出力装置2に出力する。出力装置2は、推定された病態の結果とともに、恒常性のずれ量を表示する。また、出力装置2は、恒常性のずれ量の大きさ、すなわち推定された病態における症状の度合いまたは被験者PAにおける健康を示す度合いを、色あるいはアニメーションの人物や動物等の表情で表しディスプレイに表示してもよい。また、出力装置2は、恒常性のずれ量の大きさに応じて、推定された病態に対する処置方法等の助言を表示してもよい。
 以上、図2から図17に示した実施形態では、被験者PAの生理の状態を示す第1情報と被験者PAの情動および器官の活動の少なくとも一方を示す第2情報とを用い、被験者PAにおける恒常性のずれ量を算出する。これにより、推定装置100は、恒常性のずれ量という指標を参照することで、医学の専門的な知識を有することなく、被験者PAの病態を容易に推定することができる。
 なお、演算部20は、図3に示した発話の基本周波数と情動との関係を示す判断木の代わりに、例えば、心拍数および鼓動変動と情動との関係を示す判断木を用い、被験者PAにおける平常、悲しみ、怒りおよび喜びの情動の強度を求めてもよい。
 図18は、被験者PAの心拍数および心拍変動と被験者PAの情動との判断木の一例を示す。なお、RRV(R-R Variance)は、心電図におけるR波とR波との間隔の分散を示す。図18に示すように、例えば、平常の情動は、心拍数が80bps未満、且つRRVが100以上の場合と定義される。また、悲しみの情動は、心拍数が80bps未満、且つRRVが100未満の場合と定義される。怒りの情動は、心拍数が80bps以上、且つ心拍変動の低周波成分LFのパワーが80以上の場合と定義される。喜びの情動は、心拍数が80bps以上、且つ低周波成分LFのパワーが80未満の場合と定義される。
 また、演算部20は、図12(c)に示したように被験者PAにおける恒常性のずれ量α,β,γを求めたが、例えば、図19に示すようにずれ量α,β,γを求めてもよい。
 図19は、被験者PAにおける情動の恒常性の別例を示す。図19に示した係数hは、座標系の中心から均衡位置P1に向かうベクトルV1において、喜びの座標軸方向のずれ量γと悲しみの座標軸方向のずれ量βとのどちらが大きいかを示す指標である。すなわち、係数hは、喜びのずれ量γが悲しみのずれ量βより大きい場合に正の値を示し、悲しみのずれ量βが喜びのずれ量γより大きい場合に負の値を示す。また、喜びのずれ量γと悲しみのずれ量βとが拮抗している場合、係数hは0になる。
 演算部20は、例えば、係数hを求めるために、ベクトルV1と喜びの座標軸となす角度θを求める。なお、角度θは、喜びのずれ量γが悲しみのずれ量βより大きい場合、0度(すなわちベクトルV1の向きが喜びの座標軸方向)に近い小さな値を示す。一方、悲しみのずれ量βが喜びのずれ量γより大きい場合、角度θは、ベクトルV1の向きが悲しみの座標軸方向に近い大きな値を示す。図19に示すように、演算部20は、均衡位置P1が喜び-悲しみ(反時計回り)の間の領域(以下、領域A)にある場合と、喜び-悲しみ(時計回り)の間の領域(以下、領域B)にある場合とに応じて、求めた角度θおよびベクトルV1の長さLを用い係数hを求める。そして、演算部20は、求めた係数hをベクトルV1の喜びのずれ量γとし、マイナスの係数hを悲しみのずれ量βとする。すなわち、β+γ=0となる。
 また、図19(a)に示した領域Aの場合、係数hが0(すなわち角度θがπ/3)に近い値の場合、ベクトルV1の向きは、平常プラス怒りの座標軸の負の方向となる。すなわち、喜びのずれ量γと悲しみのずれ量βとは、互いに拮抗し平常プラス怒りのずれ量αよりも大きなずれ量を示す。換言すれば、平常プラス怒りのずれ量αは、喜びのずれ量γと悲しみのずれ量βと比べて小さなずれ量を示す。そこで、演算部20は、ベクトルV1が領域Aにある場合、|h|-Lを平常プラス怒りのずれ量αとして求める。一方、図19(b)に示した領域Bの場合、係数hが0(すなわち角度θが2π/3)に近い値の場合、ベクトルV1の向きは、平常プラス怒りの座標軸の正の方向となる。すなわち、喜びのずれ量γと悲しみのずれ量βとは、互いに拮抗するが平常プラス怒りのずれ量αよりも小さなずれ量を示す。換言すれば、平常プラス怒りのずれ量αは、喜びのずれ量γと悲しみのずれ量βと比べて大きなずれ量を示す。そこで、演算部20は、ベクトルV1が領域Bにある場合、L-|h|を平常プラス怒りのずれ量αとして求める。これにより、演算部20は、均衡位置P1が正の平常プラス怒りの軸付近にある場合、正のずれ量αを算出でき、均衡位置P1が負の平常プラス怒りの軸付近にある場合、負のずれ量αを算出できる。
 例えば、推定部30は、図19に示したずれ量α,β,γを用い、悲しみのずれ量βが0より大きな正の値で、平常プラス怒りおよび喜びのずれ量α,γが0に近い小さな値の場合、被験者PAはうつ状態にあると推定する。また、推定部30は、喜びのずれ量γが0より大きな正の値で、平常プラス怒りおよび悲しみのずれ量α,βの値が0に近い値の場合、被験者PAはそう状態にあると推定する。また、推定部30は、平常プラス怒り成分のずれ量αが0より小さい(-1に近い)値で、悲しみと喜びとのずれ量β,γが同じ値で拮抗している場合、被験者PAはそううつ状態にあると推定する。
 図20は、推定装置および推定処理の別の実施形態を示す。図2で説明した要素と同一または同様の機能を有する要素については、同一または同様の符号を付し、これらについては、詳細な説明を省略する。
 図20に示した推定装置100aは、CPU等の演算処理装置と、ハードディスク装置等の記憶装置とを有するコンピュータ装置等である。推定装置100aは、推定装置100aに含まれるインタフェース部を介して、有線または無線で計測装置1aおよび出力装置2に接続される。これにより、推定装置100aと、計測装置1aと、出力装置2とは、推定システムSYSとして動作する。
 計測装置1aは、例えば、マイクロホン、心拍計、心電計、血圧計、体温計、皮膚抵抗計、あるいはカメラ、MRI(Magnetic Resonance Imaging)装置等の複数の機器を含み、被験者PAの生理を示す情報を計測する。計測装置1aは、計測した被験者PAの生理を示す情報を推定装置100aに出力する。なお、計測装置1aは、加速度センサあるいは電子ジャイロ等を有してもよい。
 計測装置1aにより計測される被験者PAの生理を示す情報は、音声信号とともに、例えば、心拍(脈拍)数、心拍変動、血圧、体温、発汗量(皮膚抵抗,皮膚電位)、眼球の運動、瞳孔径、まばたき数を有する。さらに、計測される生理情報は、例えば、吐息、ホルモン、生体分子等の体内分泌物、脳波、fMRI(functional MRI)情報等を有する。
 また、推定装置100aは、抽出部10a、演算部20a、推定部30a、試験部40および記憶部50を有する。抽出部10a、演算部20a、推定部30aおよび試験部40の機能は、CPUが実行するプログラムにより実現されてもよく、ハードウェアにより実現されてもよい。
 抽出部10aは、図2に示した抽出部10と同一または同様に、計測装置1aにより計測された被験者PAの生理を示す情報から、被験者PAの生理の状態を示す第1情報を抽出する。また、抽出部10aは、図2に示した抽出部10と同一または同様に、計測装置1aにより計測された被験者PAの生理を示す情報から、被験者PAにおける情動および被験者PAの心臓や腸等の器官の活動の少なくとも一方を示す第2情報を抽出する。
 抽出部10aは、例えば、計測装置1aに含まれる心拍計等により計測された心拍(脈拍)数を被験者PAにおける情動や器官の活動を示す第2情報として抽出する。なお、興奮や緊張により体内のアドレナリン分泌量が増すことによって心臓の拍動が増加し、心拍(脈拍)数は、増加するという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれる心電計を用いて計測された被験者PAの心電波形にFFT等の周波数解析を実行し、被験者PAの心拍変動を取得する。そして、抽出部10aは、取得した心拍変動の低周波成分LF(例えば0.04から0.14ヘルツ)と高周波成分HF(例えば0.14から0.5ヘルツ)との量を比較し、被験者PAの興奮や緊張のレベルを被験者PAの生理状態を示す第1情報として抽出する。なお、心拍変動の低周波成分LFは、主に交感神経の活動に伴って増え、高周波成分HFは、副交感神経の活動に伴って増えるという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれる血圧計を用いて計測された血圧の値を、被験者PAの情動や臓器の活動を示す第2情報として抽出する。なお、血圧は、興奮や緊張に伴って血管が収縮すると、血流抵抗が増して血圧が増加するという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれる体温計等を用いて計測された体温の値を被験者PAの情動や器官の活動を示す第2情報として抽出する。なお、体温は、興奮や緊張によって心拍増加、血糖値上昇、筋肉の緊張等が生じ、体内で熱が生成されて体温が上昇するという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれる皮膚抵抗計等を用いて計測された発汗量(皮膚抵抗,皮膚電位)の値を被験者PAにおける情動や臓器の活動を示す第2情報として抽出する。なお、発汗量(皮膚抵抗,皮膚電位)は、興奮や緊張によって発汗が促進され、皮膚抵抗が下がるという性質を有する。
 また、抽出部10aは、例えば、計測装置1aの眼電位計やカメラ等を用いて計測された眼球の運動、瞳孔径およびまばたきの回数を被験者PAにおける情動や臓器の活動を示す第2情報として抽出する。抽出部10aは、例えば、カメラ等で撮影された画像に対し顔認識の処理を実行し、認識された表情および表情の時間変化を被験者PAにおける情動や臓器の活動を示す第2情報として抽出してもよい。なお、眼球の運動は、興奮や緊張により眼球の運動が激しくなり、瞳孔径は、興奮や緊張により瞳孔が拡大し、まばたき数は、興奮や緊張によりまばたきの回数が増えるという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれる呼吸計(呼吸流量計)、肺活量計あるいはマイクロホン等により呼吸量や呼吸音から計測された吐息の回数、速度、排気量等を被験者PAにおける情動や臓器の活動を示す第2情報として抽出する。なお、吐息は、興奮や緊張により、吐息の回数、速度、排気量が上昇するという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれる分析装置を用いて計測されたホルモン、生体分子等の体内分泌物それぞれを被験者PAにおける情動や臓器の活動を示す第2情報として抽出する。なお、ホルモン、生体分子等の体内分泌物は、計測装置1aの分析装置が、被験者PAから採取した唾液、血液、リンパ液、汗、消化液、または尿等を化学分析することで計測される。あるいは、体内分泌物は、被験者PAにおける末梢血管、消化系、筋電位、皮膚温度、血流量、または免疫系等から計測装置1aにより計測されてもよい。なお、体内分泌物は、興奮や緊張により、体内におけるホルモンや生体分子の分泌量または質が変化するという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれる光学式、磁気式あるいは電位式等の脳活動計を用いて計測された脳波の時間に対する変化量等を、被験者PAにおける興奮や緊張を示す第1情報として抽出する。なお、脳波は、興奮や緊張により波形が変化するという性質を有する。
 また、抽出部10aは、例えば、計測装置1aに含まれるMRI装置により計測されたfMRI情報に含まれる脳内の各活動部位における血流量や酸化ヘモグロビンの分布を、被験者PAにおける情動や臓器の活動を示す第2情報として抽出する。なお、計測されたfMRI情報は、興奮や緊張により脳内の活動部位が変化するという性質を有する。例えば、情動に関する興奮や緊張は、辺縁系(扁桃体)、視床下部、小脳、脳幹、または海馬等に血流量の変化となって現れる。このような血流量の変化は、酸化ヘモグロビンの脳内分布を変化させる。
 なお、抽出部10aは、計測装置1aが加速度センサあるいは電子ジャイロ等を有する場合、被験者PAの動きを、被験者PAにおける情動や臓器の活動を示す第2情報として抽出してもよい。
 演算部20aは、抽出部10aにより抽出された第1情報と第2情報との時間変化の類似の度合いを算出する。例えば、演算部20aは、抽出された第1情報と第2情報との時間変化の相互相関処理を実行し、相互相関係数を類似の度合いとして算出する。演算部20aは、算出した被験者PAの情動および器官の活動における複数の類似の度合いを用い、被験者PAにおける恒常性のずれ量を求める。演算部20aの動作および恒常性については、図21で説明する。
 試験部40は、演算部20aにより算出された恒常性のずれ量から被験者PAの情動および器官の活動に作用するエネルギーを算出する。試験部40は、算出したエネルギーを被験者PAの生体を表す計算モデルに入力し、被験者PAにおける恒常性をシミュレーションする。計算モデルおよび試験部40の動作については、図22および図23で説明する。
 記憶部50は、ハードディスク装置およびメモリ等である。記憶部50は、CPUが実行するプログラムを格納する。また、記憶部50は、試験部40によるシミュレーションの結果を示すデータ60を格納する。データ60については、図23で説明する。
 なお、推定処理を実行するプログラムは、例えば、CD(Compact Disc)あるいはDVD(Digital Versatile Disc)等のリムーバブルディスクに記録して頒布することができる。また、推定装置100aは、推定処理を実行するためのプログラムを、推定装置100aに含まれるネットワークインタフェースを介してネットワークからダウンロードし、記憶部50に格納してもよい。
 推定部30aは、試験部40によりシミュレーションされた恒常性の変化のパターンから被験者PAの病態を推定する。推定部30aの動作については、図22および図23で説明する。
 図21は、被験者PAにおける恒常性の連鎖の例を模式的に示す。図21では、例えば、被験者PAの生体全体における恒常性の均衡を円形の図形の回転で表し、循環系200とする。循環系200は、例えば、被験者PAを形成する物質や器官等の複数の循環系K(K1-K10)をさらに有する。図21では、互いに連鎖して恒常性の均衡を保つ循環系200より小さな円形の回転で循環系K1-K10を表す。例えば、循環系K1は、声帯を介して、被験者PAにより発話された音声信号に基づいた被験者PAの情動の恒常性を示す。循環系K2は、例えば、心拍数や心拍変動等に基づいた被験者PAにおける心臓の恒常性を示す。循環系K3は、例えば、胃、小腸や大腸等の被験者PAにおける消化器系の恒常性を示す。循環系K4は、例えば、被験者PAを病気等から保護する免疫系の恒常性を示す。循環系K5は、例えば、被験者PAの生体に含まれる器官の働きを調節する情報の伝達を行うホルモンの恒常性を示す。
 また、循環系K6は、例えば、被験者PAの遺伝子が生成する複数種類のタンパク質等の生体分子の恒常性を示す。循環系K7は、例えば、被験者PAの遺伝子の恒常性を示す。循環系K8は、例えば、被験者PAを形成する細胞の活動の恒常性を示す。循環系K9は、例えば、情動と密接な関係のある脳のうち、扁桃体等を含む被験者PAの大脳辺縁系における活動の恒常性を示す。循環系K10は、例えば、シナプスで情報伝達を介在する神経伝達物質の恒常性を示す。
 なお、循環系200は、循環系K1-K10の10個を有するとしたが、これに限定されず、10以外の複数の循環系を含んでもよい。また、各循環系Kは、さらに複数の循環系を有してもよい。例えば、声帯の循環系K1は、被験者PAにおける怒り、平常、悲しみ、喜び等の情動を示す複数の循環系を有してもよい。また、心臓の循環系K2は、例えば、被験者PAにおける心拍数や心拍変動等を示す複数の循環系を有してもよい。
 例えば、演算部20aは、算出した被験者PAの情動および器官の活動における複数の類似の度合いを用い、例えば、図12で説明したように、被験者PAにおける各循環系Kにおける恒常性のずれ量を求める。演算部20aは、例えば、図2に示した演算部20と同様に、被験者PAの音声信号に基づいて、被験者PAにおける情動の恒常性のずれ量を算出する。また、演算部20aは、例えば、心電計で計測された心拍変動の低周波成分LFと高周波成分HFとの比から求まる興奮度あるいは緊張度と、心拍数および血圧等との時間変化に対して相互相関処理を実行する。そして、演算部20aは、例えば、興奮度あるいは緊張度と、心拍数および血圧等それぞれとの時間変化の相互相関係数から、被験者PAにおける心臓の恒常性のずれ量を算出する。
 なお、演算部20aは、全ての循環系K1-K10における恒常性のずれ量を算出したが、一部の循環系Kにおける恒常性のずれ量を算出してもよい。
 図22は、図20に示した試験部40が被験者PAにおける恒常性のシミュレーションに用いる循環系200の計算モデルの一例を示す。図22に示した循環系200の計算モデルは、例えば、図21に示した循環系200に含まれる循環系K1-K10がシャフトSH(SH1-SH10)で表され、コンピュータ装置等の仮想空間上に構築される。シャフトSH1-SH10それぞれの長さ、ピッチ幅およびねじ山の向き等は、被験者PAの生体の特性に基づいて決定される。そして、シャフトSH1-SH10は、接合部B1でシャフト間の軸の中心が一致するように連結され、循環系200を形成する。また、循環系K1-K10のシャフトSH1-SH10それぞれに、ナットNT1-NT10が配置される。試験部40は、例えば、シャフトSHを回転させることで循環系200における恒常性をシミュレーションし、循環系K1-K10それぞれにおける恒常性の状態をナットNT1-NT10の位置の変化から検出する。
 なお、声帯の循環系K1のシャフトSH1の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAによる発話の音声信号が示す周波数分布、抑揚やピッチ周波数等の周波数特性に基づいて決定される。また、心臓の循環系K2のシャフトSH2の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAの心臓の鼓動の時間間隔や心拍変動の周波数分布等の特性に基づいて決定される。消化器系の循環系K3のシャフトSH3の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAの小腸や大腸等の長さ、あるいは蠕動運動に伴う収縮波の移動速度等の特性に基づいて決定される。免疫系の循環系K4の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAの血液中の好中球、好酸球、好塩基球、リンパ球、単球等を含む白血球数の特性に基づいて決定される。ホルモンの循環系K5の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAの各器官で合成または分泌されるホルモンの量や、血液等の体液により体内をホルモンが循環する速度等の特性に基づいて決定される。
 また、生体分子の循環系K6の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAにより摂取された食物等に含まれる核酸、タンパク質、多糖、それらの構成要素であるアミノ酸や各種の糖、ならびに脂質やビタミン等の摂取量に基づいて決定される。遺伝子の循環系K7の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAが有する遺伝子の分裂の頻度や遺伝子の長さ等の特性に基づいて決定される。また、細胞の循環系K8の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAの細胞に含まれる糖質、脂質、タンパク質(アミノ酸)、核酸等の量や、細胞の寿命等の特性に基づいて決定される。脳の循環系K9の長さ、ピッチ幅およびねじ山の向き等は、被験者PAの脳のうち、例えば、扁桃体等を含む脳活動の時間変動や周波数分布等の特性に基づいて決定される。神経伝達物質の循環系K10の長さ、ピッチ幅およびねじ山の向き等は、例えば、被験者PAのシナプスで情報伝達を介在するアミノ酸、ペプチド類、モノアミン類等の分泌量や特性反応速度等に基づいて決定される。
 設定されたシャフトSH1-SH10それぞれの長さ、ピッチ幅およびねじ山の向き等を示す情報は、予め被験者PAごとに記憶部50に格納される。また、例えば、試験部40は、推定装置100aに含まれるキーボードやタッチパネル等の入力装置を介して、被験者PAのシャフトSH1-SH10それぞれの長さ、ピッチ幅およびねじ山の向き等を示す情報を受けてもよい。
 試験部40は、演算部20aにより算出された循環系K1-K10それぞれにおける恒常性のずれ量から被験者PAの情動および器官の活動に作用するエネルギーを算出する。例えば、図12(b)に示したように、図2に示した演算部20と同様に、演算部20aにより算出された被験者PAにおける情動の均衡位置P1が座標系の中心と異なる場合、被験者PAの情動、すなわち循環系K1の恒常性が所定状態から変位しずれたことを示す。恒常性のずれは、例えば、ストレスという形態で被験者PAに現れ、被験者PAの循環系K1だけでなく、心臓あるいは消化器系等の他の循環系K2-K10に対しても影響を与える。そこで、試験部40は、例えば、演算部20aにより循環系K1-K10それぞれにおいて算出された恒常性のずれ量から、ストレス等の被験者PAの情動および器官の活動に作用するエネルギーとして算出する。例えば、試験部40は、式(1)を用い、声帯の循環系K1において、演算部20aにより算出された情動の恒常性のずれ量α,β,γからエネルギーE(K1)を算出する。
E(K1)=sqrt(α×α+β×β+γ×γ) ・・・(1)
 なお、試験部40は、式(1)に示すように、情動の恒常性のずれ量α,β,γから声帯の循環系K1において生成されるエネルギーE(K1)を算出したが、情動の恒常性のずれ量α,β,γを変数とする関数F(α,β,γ)を用い、エネルギーE(K1)を算出してもよい。
 試験部40は、循環系K2-K10それぞれについても、演算部20aにより算出された各循環系Kにおける恒常性のずれ量から、ストレス、運動等により消費された熱量、あるいは摂取した食物等をエネルギーE(K2)-E(K10)としてそれぞれ算出する。試験部40は、循環系K1-K10それぞれにおいて算出したエネルギーを、式(2)を用いて合計する。
TE=E(K1)+E(K2)+E(K3)+E(K4)+E(K5)+E(K6)+E(K7)+E(K8)+E(K9)+E(K10) ・・・(2)
ここで、E(K2),E(K3),E(K4),E(K5),E(K6),E(K7),E(K8),E(K9),E(K10)は、循環系K2-K10において生成されたエネルギーを示す。TEは、合計したエネルギーを示す。なお、試験部40は、循環系K1-K10それぞれで生成されたエネルギーE(K1)-E(K10)を合計してエネルギーTEを求めたが、エネルギーE(K1)-E(K10)を重み付け加算してエネルギーTEを求めてもよい。あるいは、試験部40は、エネルギーE(K1)-E(K10)を乗算してエネルギーTEを求めてもよい。
 試験部40は、算出したエネルギーTEを循環系200に入力し、エネルギーTEの大きさに応じた回転速度でシャフトSHを回転させる。また、試験部40は、例えば、エネルギーTEが正の値の場合、シャフトSHを時計回りに回転させ、エネルギーTEが負の値の場合、シャフトSHを反時計回りに回転させる。なお、入力されるエネルギーTEは、各ナットNT1-NT10がシャフトSHの回転に応じて変位する変位量L1-L10が各シャフトSH1-SH10の長さの範囲内に収まるように、試験部40により制御される。
 また、エネルギーTEが正または負の値になるのは、例えば、シャフトSH1-SH10それぞれのねじ山の向きに応じ、シャフトSHを時計回りまたは反時計回りに回転させるエネルギーが循環系K1-K10で生成されるためである。すなわち、例えば、ねじ山の向きにより時計回りにシャフトSHが回転する循環系Kでは、正のエネルギーが生成され、反時計回りにシャフトSHが回転する循環系Kでは、負のエネルギーが生成される。なお、試験部40は、例えば、エネルギーTEが負の値の場合、シャフトSH1-SH10全体を時計回りに回転させ、エネルギーTEが正の値の場合、シャフトSH1-SH10全体を反時計回りに回転させてもよい。
 試験部40は、エネルギーTEによりシャフトSH1-SH10を回転させることで、ナットNT1-NT10の位置を変位させる。試験部40は、シャフトSH1-SH10それぞれの中心C1-C10からのナットNT1-NT10それぞれの変位量L1-L10を、循環系K1-K10それぞれの恒常性の変化(あるいは恒常性のずれ量)として検出する。試験部40は、例えば、検出した変位量L1-L10を記憶部50にデータ60として格納する。また、試験部40は、ナットNT1-NT10それぞれがシャフトSH1-SH10それぞれの軸方向に移動する速度を変位量L1-L10から検出する。試験部40は、循環系K1-K10において検出した速度を新たに生成されたエネルギーE(K1)-E(K10)として、循環系200に入力する。
 なお、演算部20aが、循環系K1-K10のうちの一部の循環系Kにおける恒常性のずれ量を算出する場合、試験部40は、演算部20aにより算出された一部の循環系Kにおける恒常性のずれ量からエネルギーTEを求め、求めたエネルギーTEに基づいて循環系200の恒常性をシミュレーションしてもよい。そして、試験部40は、シミュレーションから循環系K1-K10における全ての変位量L1-L10を検出してもよい。試験部40が、全ての循環系Kの変位量Lをシミュレーションから検出するため、推定装置100aは、演算部20aにより算出された循環系Kにおける恒常性のずれ量を用いる場合と比べて、被験者PAの病態を確度高く推定することができる。
 また、試験部40は、各循環系K1-K10における変位量L1-L10として、シャフトSH1-SH10それぞれの中心C1-C10からの距離としたが、これに限定されない。例えば、変位量L1-L10は、ナットNT1-NT10間の距離であってもよく、接合部B1からの距離であってもよい。
 図23は、被験者PAにおける各循環系K1-K10の変位量L1-L10のデータ60の一例を示す。データ60は、日付および循環系K1-K10の格納領域をそれぞれ有する。
 日付の格納領域には、試験部40が、例えば、循環系200の恒常性の変化のシミュレーションを実行し、循環系K1-K10それぞれにおける変位量L1-L10を検出した日時(例えば2013年10月29日9時10分0秒等)が格納される。試験部40が変位量L1-L10の検出を行う時間間隔は、1分、1時間、1日、1週間、1ヶ月等であり、図23に示したデータ60の場合には、例えば、1時間の時間間隔とする。
 循環系K1-K10の各格納領域には、例えば、試験部40により検出されたナットNT1-NT10それぞれの変位量L1-L10が格納される。なお、変位量L1-L10の単位は、センチメートルやミリメートル等である
 推定部30aは、記憶部50からデータ60の日付および循環系K1-K10における変位量L1-L10を読み出す。推定部30aは、読み出した変位量L1-L10それぞれの時間変化のパターンから被験者PAの病態を推定する。例えば、記憶部50には、被験者PAが健康である場合に循環系K1-K10それぞれが示す変位量L1-L10それぞれの典型的な時間変化のパターンのデータを予め格納される。そして、推定部30aは、試験部40により検出された変位量L1-L10の時間変化と、被験者PAが健康である場合の変位量L1-L10の典型的な時間変化とを比較し、比較の結果から被験者PAの病態を推定する。例えば、推定部30aは、試験部40により検出された変位量L1-L10の時間変化と、被験者PAが健康である場合の変位量L1-L10の典型的な時間変化とのパターンの差分を求め、求めた差分と各病態を示す所定の閾値とを比較する。すなわち、例えば、心臓の循環系K2の場合、推定部30aは、試験部40により検出された変位量L2の時間変化と被験者PAが健康である場合の変位量L2の典型的な時間変化との差分を求める。推定部30aは、予め設定された心筋梗塞あるいは狭心症等の心臓病を示す所定の閾値と求めた差分とを比較し、被験者PAが心筋梗塞あるいは狭心症等の心臓病を患っているか否かを推定する。
 図24は、図20に示した推定装置100aによる推定処理の一例を示す。ステップS100からステップS160は、推定装置100aに搭載されるCPUが推定プログラムを実行することにより実現される。すなわち、図24は、推定プログラムおよび推定方法の別の実施形態を示す。この場合、図20に示した抽出部10a、演算部20a、推定部30aおよび試験部40は、推定プログラムの実行により実現される。なお、図24に示した処理は、推定装置100aに搭載されるハードウェアにより実現されてもよい。この場合、図20に示した演算部10a、演算部20a、推定部30aおよび試験部40は、推定装置100a内に配置される回路により実現される。
 ステップS100では、抽出部10aは、図20で説明したように、計測装置1aにより計測された被験者PAの生理を示す情報に基づいて、被験者PAの生理の状態を示す第1情報と、情動および器官の活動の状態を示す第2情報とを抽出する。
 ステップS110では、演算部20aは、図21で説明したように、抽出された第1情報と第2情報との時間変化に対して相互相関処理を実行し、類似の度合いを示す相互相関係数を算出する。
 ステップS120では、演算部20aは、図12および図21で説明したように、求めた相互相関係数に基づいて、被験者PAの循環系K1-K10それぞれにおける恒常性のずれ量を求める。
 ステップS130では、試験部40は、図22で説明したように、演算部20aにより算出された循環系K1-K10それぞれにおける恒常性のずれ量からエネルギーE(K1)-E(K10)を算出する。試験部40は、式(2)を用いて、算出したエネルギーE(K1)-E(K10)を合計しエネルギーTEを求める。
 ステップS140では、試験部40は、図22で説明したように、ステップS130で合計したエネルギーTEを循環系200に入力し、被験者PAにおける循環系200の恒常性をシミュレーションする。
 ステップS150では、試験部40は、図22で説明したように、ステップS140で実行した恒常性のシミュレーションから、各循環系K1-K10における変位量L1-L10を検出する。試験部40は、検出した各循環系K1-K10における変位量L1-L10を、データ60として記憶部50に格納する。
 ステップS160では、推定部30aは、図23で説明したように、循環系K1-K10における変位量L1-L10それぞれの時間変化のパターンから被験者PAの病態を推定する。例えば、推定部30aは、試験部40により検出された変位量L1-L10の時間変化のパターンと、被験者PAが健康な場合の変位量L1-L10の典型的な時間変化パターンとを比較し、比較の結果から被験者PAの病態を推定する。
 そして、推定装置100aによる推定処理は終了する。図24に示したフローは、医者あるいは被験者PAからの指示を受ける度に繰り返し実行されてもよく、所定の頻度で実行されてもよい。そして、推定装置100aは、推定結果を出力装置2に出力する。出力装置2は、推定された病態の結果とともに、恒常性のずれ量を表示する。また、出力装置2は、恒常性のずれ量の大きさ、すなわち推定された病態における症状の度合いまたは被験者PAにおける健康を示す度合いを、色あるいはアニメーションの人物や動物等の表情で表しディスプレイに表示してもよい。また、出力装置2は、恒常性のずれ量の大きさに応じて、推定された病態に対する処置方法等の助言を表示してもよい。
 以上、図20から図24に示した実施形態では、被験者PAの生理の状態を示す第1情報と被験者PAの情動および器官の活動を示す第2情報とを用い、被験者PAにおける恒常性のずれ量を算出する。これにより、推定装置100aは、恒常性のずれ量という指標を参照することで、医学の専門的な知識を有することなく、被験者PAの病態を容易に推定することができる。また、推定装置100aは、各循環系Kにおける恒常性のずれ量を入力エネルギーとする被験者PAにおける恒常性のシミュレーションを実行する。推定装置100aは、実行したシミュレーションから検出された恒常性の時間変化と、被験者PAが健康な場合に示す恒常性の時間変化とを比較することで、被験者PAの病態を従来と比べて精度良く推定することができる。
 図25は、推定装置の別の実施形態を示す。図20で説明した要素と同一または同様の機能を有する要素については、同一または同様の符号を付し、これらについては、詳細な説明を省略する。例えば、推定装置100bと、計測装置1aと、出力装置2とは、推定システムSYSとして動作する。
 図25に示した推定装置100bは、CPU等の演算処理装置と、ハードディスク装置等の記憶装置とを有するコンピュータ装置等である。推定装置100bは、推定装置100bに含まれるインタフェース部を介して、有線または無線で計測装置1aおよび出力装置2に接続される。これにより、推定装置100bと、計測装置1aと、出力装置2とは、推定システムSYSとして動作する。
 また、推定装置100bは、抽出部10a、演算部20a、推定部30b、試験部40aおよび記憶部50aを有する。抽出部10a、演算部20a、推定部30bおよび試験部40aの機能は、CPUが実行するプログラムにより実現されてもよく、ハードウェアにより実現されてもよい。
 記憶部50aは、ハードディスク装置およびメモリ等である。記憶部50aは、CPUが実行するプログラムを格納する。また、記憶部50aは、試験部40aによるシミュレーションの結果を示すデータ60a、および推定部30bがデータ60aを用いて被験者PAの病態を判定するための病態テーブル70を格納する。データ60aおよび病態テーブル70については、図27および図28で説明する。
 なお、推定処理を実行するプログラムは、例えば、CDあるいはDVD等のリムーバブルディスクに記録して頒布することができる。また、推定装置100bは、推定処理を実行するためのプログラムを、推定装置100bに含まれるネットワークインタフェースを介してネットワークからダウンロードし、記憶部50aに格納してもよい。
 試験部40aは、演算部20aにより算出された恒常性のずれ量から被験者PAの情動および器官の活動に作用するエネルギーを算出する。試験部40aは、算出したエネルギーを被験者PAの生体を表す計算モデルに入力し、被験者PAにおける恒常性をシミュレーションする。計算モデルおよび試験部40aの動作については、図26で説明する。
 推定部30bは、試験部40aによりシミュレーションされた恒常性の変化のパターンから被験者PAの病態を推定する。推定部30bの動作については、図27および図28で説明する。
 図26は、図25に示した試験部40aが被験者PAにおける恒常性をシミュレーションに用いる循環系200aの計算モデルの一例を示す。図26に示した循環系200aの計算モデルは、例えば、循環系200aに含まれる4つの循環系Ka(Ka1-Ka4)を有する。循環系200aおよび循環系200aに含まれる循環系Ka1-Ka4は、ギアMGおよびギアGa1-Ga2、Gb1-Gb2、Gc1、Gd1-Gd2で表され、コンピュータ装置等の仮想空間上に構築される。ギアMGは、演算部20aにより求められた各循環系Ka1-Ka4における恒常性のずれ量から算出されるエネルギーE(Ka1)-E(Ka4)に基づいて回転する。ギアMGが回転することで、各循環系Ka1-Ka4のギアGa1-Ga2、Gb1-Gb2、Gc1、Gd1-Gd2は回転する。図26に示すように、循環系Ka1、Ka2、Ka4の各々は、2つのギアGa1-Ga2、Gb1-Gb2、Gd1-Gd2を有し、循環系Ka3は、1つのギアGc1を有する。なお、ギアMGの直径および歯数、および各循環系Ka1-Ka4に含まれるギアの数、直径および歯数等は、被験者PAの生体の特性に基づいて決定される。試験部40aは、例えば、ギアMGを回転させることで循環系200aにおける恒常性をシミュレーションし、循環系Ka1-Ka4それぞれにおける恒常性の状態をギアGa2、Gb2、Gc1、Gd2の回転数から検出する。
 なお、循環系Kaが声帯の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、被験者PAが発話する音声信号における周波数分布、抑揚やピッチ周波数等の周波数特性に基づいて決定される。また、循環系Kaが心臓の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、心臓の鼓動の時間間隔や心拍変動の周波数分布等の特性に基づいて決定される。循環系Kaが消化器系の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、小腸や大腸等の長さ、あるいは蠕動運動に伴う収縮波の移動速度等の特性に基づいて決定される。循環系Kaが免疫系の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、被験者PAの血液中の好中球、好酸球、好塩基球、リンパ球、単球等を含む白血球数の特性に基づいて決定される。
 また、循環系Kaがホルモンの場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、被験者PAの各器官で合成または分泌されるホルモンの量や、血液等の体液により体内をホルモンが循環する速度等の特性に基づいて決定される。循環系Kaが生体分子の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、被験者PAが摂取する食物等に含まれる核酸、タンパク質、多糖、それらの構成要素であるアミノ酸や各種の糖、ならびに脂質やビタミン等の摂取量に基づいて決定される。循環系Kaが遺伝子の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、被験者PAにおける遺伝子の分裂の頻度や遺伝子の長さ等の特性に基づいて決定される。また、循環系Kaが細胞の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、細胞に含まれる糖質、脂質、タンパク質(アミノ酸)、核酸等の量や、細胞の寿命等の特性に基づいて決定される。循環系Kaが脳の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、被験者PAの脳のうち、例えば、扁桃体等を含む脳活動の時間変動や周波数分布等の特性に基づいて決定される。循環系Kaが神経伝達物質の場合には、循環系Kaに含まれるギアの数、直径および歯数等は、例えば、シナプスで情報伝達を介在するアミノ酸、ペプチド類、モノアミン類等の分泌量や特性反応速度等に基づいて決定される。
 設定されたギアMGの直径および歯数、およびギアGa1-Ga2、Gb1-Gb2、Gc1、Gd1-Gd2それぞれのギアの数、直径および歯数等を示す情報は、推定装置100bの記憶部50に、予め被験者PAごとに記憶される。また、試験部40は、例えば、推定装置100bに含まれるキーボード等の入力装置を介して、ギアMGの直径および歯数、およびギアGa1-Ga2、Gb1-Gb2、Gc1、Gd1-Gd2それぞれのギアの数、直径および歯数等を示す情報を受けてもよい。
 なお、循環系200aは、循環系Ka1-Ka4の4つを有するとしたが、これに限定されず、4以外の複数の循環系を含んでもよい。また、各循環系Kaは、さらに複数の循環系を有してもよい。例えば、循環系Kaが声帯の場合には、被験者PAにおける怒り、平常、悲しみ、喜び等の情動を示す複数の循環系を示す複数のギアを有してもよい。また、循環系Kaが心臓の場合には、例えば、被験者PAにおける心拍数や心拍変動等を示す複数の循環系を示す複数のギアを有してもよい。
 試験部40aは、図20に示した試験部40と同様に、式(1)および式(2)を用い、演算部20aにより算出された循環系Ka1-Ka4それぞれにおける恒常性のずれ量からエネルギーTEを算出する。試験部40aは、算出したエネルギーTEを循環系200aに入力し、エネルギーTEの大きさに応じた回転速度でギアMGを回転させる。例えば、試験部40aは、エネルギーTEが正の値の場合、ギアMGを時計回りに回転させ、エネルギーTEが負の値の場合、ギアMGを反時計回りに回転させる。なお、試験部40aは、例えば、エネルギーTEが正の値の場合、ギアMGを反時計回りに回転させ、エネルギーTEが負の値の場合、ギアMGを時計回りに回転させてもよい。
 試験部40aは、ギアMGを回転させることで循環系200aにおける恒常性をシミュレーションし、例えば、循環系Ka1-Ka4それぞれにおける恒常性の状態をギアの回転数として検出する。試験部40aは、検出した回転数R1-R4を記憶部50aに格納する。また、試験部40aは、各循環系Ka1-Ka4において検出した回転数R1-R4を新たに生成されたエネルギーE(Ka1)-E(Ka4)として、循環系200aに入力する。
 なお、演算部20aが、循環系Ka1-Ka4のうちの一部の循環系Kaにおける恒常性のずれ量を算出する場合、試験部40aは、演算部20aにより算出された一部の循環系Kaにおける恒常性のずれ量からエネルギーTEを求め、求めたエネルギーTEに基づいて循環系200aの恒常性をシミュレーションしてもよい。そして、試験部40aは、シミュレーションから循環系Ka1-Ka4における全ての回転数R1-R4を検出してもよい。試験部40aが、全ての循環系Kaの回転数Rをシミュレーションから検出するため、推定装置100bは、演算部20aにより算出された循環系Kaにおける恒常性のずれ量を用いる場合と比べて、被験者PAの病態を確度高く推定することができる。
 図27は、被験者PAにおける各循環系Ka1-Ka4の回転数R1-R4のデータ60aの一例を示す。データ60aは、日付および循環系Ka1-Ka4の格納領域をそれぞれ有する。
 日付の格納領域には、試験部40aが、例えば、循環系200の恒常性の変化のシミュレーションを実行し、循環系Ka1-Ka4それぞれにおける回転数R1-R4を検出した日時(例えば2013年10月29日9時10分0秒等)が格納される。試験部40aが回転数R1-R4の検出を行う時間間隔は、1分、1時間、1日、1週間、1ヶ月等であり、図27に示したデータ60aの場合には、例えば、1分の時間間隔とする。
 循環系Ka1-Ka4の各格納領域には、例えば、試験部40aにより検出されたギアGa2、Gb2、Gc1、Gd2の回転数R1-R4(例えば毎分20回転等)それぞれが格納される。
 図28は、病態テーブル70の一例を示す。病態テーブル70は、病態および循環系Ka1-Ka4の格納領域をそれぞれ有する。
 病態の格納領域には、大うつ、うつ、平常(すなわち被験者PAは健康)、そううつおよび人格障害等の病態が格納される。なお、図28に示した病態テーブル70では、病態として、精神疾患を示したが、心筋梗塞等の心臓疾患あるいは脳梗塞等の脳の疾患を有してもよい。
 循環系Ka1-Ka4の格納領域には、病態の格納領域に格納される病態の各々が推定部30bにより推定されるための条件が格納される。なお、“-”が格納される格納領域は、対応する病態を推定する条件に含まれないことを示す。例えば、循環系Ka1-Ka4のそれぞれが怒り、平常、悲しみおよび喜びの情動を示し、怒り、平常、悲しみおよび喜び全ての情動における回転数R1-R4が0(無回転)となる場合、推定部30bは、被験者PAを大うつと推定する。すなわち、大うつは、怒り、平常、悲しみおよび喜び全ての情動が被験者PAにおいて出現しないという恒常性が偏った状態を示す。また、循環系Ka1-Ka4のそれぞれが怒り、平常、悲しみおよび喜びの情動を示し、怒り、平常および喜びの情動の回転数に拘わらず、悲しみの回転数R3が閾値αより小さい場合、推定部30bは、被験者PAをうつと推定する。すなわち、うつは、悲しみの情動が被験者PAにおいて出現の頻度が小さいという恒常性が偏った状態を示す。なお、閾値αは、予め設定され記憶部50aに格納される。また、閾値αは、被験者PAごとに異なる値に設定されてもよい。
 また、循環系Ka1-Ka4それぞれが怒り、平常、悲しみおよび喜びの情動を示し、悲しみの回転数R3が閾値αと閾値β(β>α)との間の回転数の場合、推定部30bは、被験者PAを平常(すなわち被験者PAは健康)と推定する。すなわち、平常という病態は、悲しみの情動が他の情動とともに被験者PAにおいて適度に出現し、恒常性が偏っていない状態であることを示す。なお、閾値βは、予め設定され記憶部50aに格納される。また、閾値βは、被験者PAごとに異なる値に設定されてもよい。
 また、循環系Ka1-Ka4それぞれが怒り、平常、悲しみおよび喜びの情動を示し、悲しみの回転数R3が閾値βより大きい場合、推定部30bは、被験者PAをそううつと推定する。すなわち、そううつは、悲しみの情動が被験者PAにおいて頻繁に出現し、恒常性が偏った状態であることを示す。また、推定部30bにより人格障害と推定されるには、平常および悲しみの情動の回転数に拘わらず、怒りの回転数R1と喜びの回転数R4とが互いに等しい場合である。すなわち、人格障害は、怒りと喜びとの相反する情動が被験者PAにおいて同時に出現する状態であることを示す。
 なお、循環系Ka1-Ka4それぞれは、怒り、平常、悲しみおよび喜びの情動としたが、病態がパニック障害の場合、怒り、平常、悲しみおよび喜び等の情動の循環系と、心拍等の循環系とするのがよい。
 推定部30bは、記憶部50aからデータ60aおよび病態テーブル70を読み出す。推定部30bは、例えば、1日あるいは2週間等の所定期間において、病態テーブル70に格納された各病態が示す循環系Ka1-Ka4それぞれの条件を満たす回転数の出現頻度を、読み出したデータ60aを用いて算出する。すなわち、例えば、循環系Ka1-Ka4が怒り、平常、悲しみおよび喜びの情動とする場合、推定部30bは、所定期間において、回転数R1-R4が0(無回転)となる出現頻度を循環系Kaごとに算出する。また、推定部30bは、所定期間において、悲しみの循環系Ka3における回転数R3が、閾値αより小さい場合、閾値αと閾値βとの間の場合および閾値βより大きい場合の出現頻度をそれぞれ算出する。さらに、推定部30bは、所定期間において、怒りの循環系Ka1の回転数R1と喜びの循環系Ka4の回転数R4とが互いに等しくなる出現頻度を算出する。所定期間における各循環系Kaの回転数の出現頻度は、恒常性の変化のパターンの一例である。
 推定部30bは、例えば、算出した各出現頻度のうち閾値Th以上の出現頻度を示した条件を抽出する。推定部30bは、抽出した条件と病態テーブル70とを用い、抽出した条件の組合せを満たす病態を、被験者PAの病態として推定する。なお、所定期間は、ICD-10等の精神医療の規格に基づいて決定される。また、閾値Thは、予め設定され記憶部50aに格納される。また、閾値Thは、被験者PAおよび病態ごとに異なる値に設定されてもよい。
 なお、推定部30bは、各循環系Ka1-Ka4における回転数R1-R4の出現頻度を算出したが、所定期間における各循環系Ka1-Ka4の回転数R1-R4の平均値および偏差を算出してもよい。そして、推定部30bは、算出した各循環系Ka1-Ka4の回転数R1-R4の平均値および偏差の時間変化と、被験者PAが健康である場合の平均値および偏差の典型的な時間変化とを比較し、比較の結果から被験者PAの病態を推定してもよい。
 図29は、図25に示した推定装置100bによる推定処理の一例を示す。なお、図29に示したステップの処理のうち、図24に示したステップと同一または同様の処理を示すものについては、同一のステップ番号を付し、詳細な説明を省略する。ステップS100からステップS140、ステップS150aおよびステップS160aは、推定装置100bに搭載されるCPUが推定プログラムを実行することにより実現される。すなわち、図29は、推定プログラムおよび推定方法の別の実施形態を示す。この場合、図25に示した抽出部10a、演算部20a、推定部30bおよび試験部40aは、推定プログラムの実行により実現される。なお、図29に示した処理は、推定装置100bに搭載されるハードウェアにより実現されてもよい。この場合、図25に示した抽出部10a、演算部20a、推定部30bおよび試験部40aは、推定装置100b内に配置される回路により実現される。
 推定装置100bは、図29に示したステップS100からステップS140の処理を実行した後、ステップS150aの処理を実行する。
 ステップS150aでは、試験部40aは、図26で説明したように、ステップS140で実行した恒常性のシミュレーションから、各循環系Ka1-Ka4における回転数R1-R4を検出する。試験部40aは、検出した各循環系Ka1-Ka4における回転数R1-R4を、データ60aとして記憶部50aに格納する。
 ステップS160aでは、推定部30bは、図27および図28で説明したように、循環系Ka1-Ka4における回転数R1-R4のデータ60aおよび病態テーブル70に基づいて被験者PAの病態を推定する。
 そして、推定装置100bによる推定処理は終了する。図29に示したフローは、医者あるいは被験者PAからの指示を受ける度に繰り返し実行されてもよく、所定の頻度で実行されてもよい。そして、推定装置100bは、推定結果を出力装置2に出力する。出力装置2は、推定された病態の結果とともに、恒常性のずれ量に表示する。また、出力装置2は、恒常性のずれ量の大きさ、すなわち推定された病態における症状の度合いまたは被験者PAにおける健康を示す度合いを、色あるいはアニメーションの人物や動物等の表情で表しディスプレイに表示してもよい。また、出力装置2は、恒常性のずれ量の大きさに応じて、推定された病態に対する処置方法等の助言を表示してもよい。
 以上、図25から図29に示した実施形態では、被験者PAの生理の状態を示す第1情報と被験者PAの情動および器官の活動を示す第2情報とを用い、被験者PAにおける恒常性のずれ量を算出する。これにより、推定装置100bは、恒常性のずれ量という指標を参照することで、医学の専門的な知識を有することなく、被験者PAの病態を容易に推定することができる。また、推定装置100bは、各循環系Kaにおける恒常性のずれ量を入力エネルギーとする被験者PAにおける恒常性のシミュレーションを実行する。推定装置100bは、実行したシミュレーションから検出された恒常性の変化を示す各循環系Kaにおける回転数の出現頻度と、被験者PAが健康な場合に示す各循環系Kaにおける回転数の出現頻度とを比較する。そして、推定装置100bは、比較した結果と病態テーブル70とを用いることで、被験者PAの病態を従来と比べて精度良く推定することができる。
 図30は、推定装置の別の実施形態を示す。図25で説明した要素と同一または同様の機能を有する要素については、同一または同様の符号を付し、これらについては、詳細な説明を省略する。推定装置100cは、CPU等の演算処理装置と、ハードディスク装置等の記憶装置とを有するコンピュータ装置等である。推定装置100cは、推定装置100cに含まれるインタフェース部を介して、有線または無線で計測装置1aおよび出力装置2aに接続される。これにより、推定装置100cと、計測装置1aと、出力装置2aとは、推定システムSYSとして動作する。
 出力装置2aは、例えば、有機ELや液晶等のディスプレイ、および音声を出力するスピーカを有する。出力装置2aは、推定装置100による被験者PAの病態の推定結果を受信し、受信した推定結果を有機EL等のディスプレイに表示する。また、出力装置2aは、推定装置100cにより推定された病態に応じた助言等を音声で出力する。なお、出力装置2aは、推定装置100cの内部に設けられてもよい。
 また、推定装置100cは、抽出部10a、演算部20a、推定部30c、試験部40aおよび記憶部50bを有する。抽出部10a、演算部20a、推定部30cおよび試験部40aの機能は、CPUが実行するプログラムにより実現されてもよく、ハードウェアにより実現されてもよい。
 記憶部50bは、ハードディスク装置およびメモリ等である。記憶部50bは、CPUが実行するプログラム、試験部40aによるシミュレーションの結果を示すデータ60a、および推定部30cがデータ60aを用いて被験者PAの病態を推定するための病態テーブル70を格納する。また、記憶部50bは、推定部30cにより推定された病態に基づいて被験者PAに対する助言等の音声データを有する発話テーブル80を格納する。発話テーブル80については、図31で説明する。
 なお、推定処理を実行するプログラムは、例えば、CDあるいはDVD等のリムーバブルディスクに記録して頒布することができる。また、推定装置100cは、推定処理を実行するためのプログラムを、推定装置100cに含まれるネットワークインタフェースを介してネットワークからダウンロードし、記憶部50bに格納してもよい。
 推定部30cは、試験部40によりシミュレーションされた恒常性の変化のパターンから被験者PAの病態を推定する。また、推定部30cは、推定した被験者PAの病態と発話テーブル80とに基づいて、被験者PAに対する助言等の音声データを選択する。推定部30cの動作については、図31で説明する。
 図31は、発話テーブル80の一例を示す。発話テーブル80は、病態および発話の格納領域をそれぞれ有する。
 病態の格納領域には、大うつ、うつ、人格障害(男性)および人格障害(女性)等の病態が格納される。なお、人格障害の場合、男性と女性とで処置が異なることから、発話テーブル80は、男性と女性との人格障害の格納領域をそれぞれ有する。また、発話テーブル80では、病態として、精神疾患を示したが、心筋梗塞等の心臓疾患あるいは脳梗塞等の脳の他の疾患の格納領域を有してもよい。
 発話の格納領域には、病態の格納領域に格納される病態の各々に応じて、ICD-10等の精神医療の規格に基づく被験者PAに対する助言等の音声データが格納される。例えば、推定部30cにより被験者PAが大うつと推定された場合、被験者PAにおけるうつの症状がかなり進行していると推定される。そこで、推定装置100cが被験者PAの教師あるいはトレーナとして機能させるために、「早く病院に行きなさい」等の被験者PAを指導する音声データが発話の格納領域に格納される。また、推定部30cにより被験者PAがうつと推定された場合、被験者PAが抑うつ状態にあると推定される。そこで、推定装置100cが被験者PAの教師あるいはトレーナとして機能させるために、例えば、「家の中ばかり居ちゃだめだよ。たまには外で散歩しようよ」等の被験者PAに寄り添い被験者PAの精神を鍛える音声データが発話の格納領域に格納される。すなわち、被験者PAが大うつあるいはうつ等の場合、推定装置100cが被験者PAの教師あるいはトレーナとしての音声データが発話の格納領域に格納されることで、被験者PAにおける抑うつ状態の改善および被験者PAの人格の強化を図ることができる。
 また、被験者PAが男性で人格障害と推定された場合、被験者PAが一方的に攻撃的な状態になる傾向がある。そこで、推定装置100cが被験者PAのカウンセラーとして機能させるために、例えば、「自分のことばかりでなく、相手の気持ちも考えてあげなさい」等の被験者PAを諭して相手に対する共感力を持たせるように指導する音声データが発話の格納領域に格納される。一方、被験者PAが女性で人格障害と判定された場合、被験者PAはリストカット等の自傷行為をしている可能性が高い。そこで、推定装置100cが被験者PAのカウンセラーとして機能させるために、例えば、「いつもがんばっているよね。だから、そのようなことは止めなさい」等の被験者PAに寄り添って励ましつつ共感力を持たせるように指導する音声データが発話の格納領域に格納される。すなわち、被験者PAが人格障害等の場合に、推定装置100cが被験者PAのカウンセラーとしての音声データが発話の格納領域に格納されることで、被験者PAにおける共感力を育成および被験者PAの人格の改善を図ることができる。
 なお、発話の格納領域には、音声データの代わりに、音声データが格納された記憶部50bの領域を示すアドレスが格納されてもよい。
 また、発話テーブル80の発話の格納領域に格納される音声データは、1つの病態に対してICD-10等の精神医療の規格に基づいた発話内容が異なる複数の音声データが格納されてもよい。例えば、抽出部10aは、被験者PAの音声信号から音素ごとの区切りを抽出する。すなわち、「今日はいい天気ですね」の音声が入力された場合、抽出部10aは、「きょ/う/は/い/い/て/ん/き/で/す/ね」のように音素ごとの区切りを抽出する。さらに、抽出部10aは、被験者PAの音声信号から単語ごとの区切りを抽出する。例えば、「今日はいい天気ですね」の音声が入力された場合、抽出部10aは、「きょう/は/いい/てんき/ですね」のように単語ごとの区切りを抽出する。
 そして、推定部30cは、抽出部10aにより抽出された被験者PAの音声における音素および単語の区切りを示す情報に基づいて、被験者PAの音声に含まれる単語ごとの認識および構文解析を実行する。すなわち、推定部30cは、被験者PAの音声から「誰が」、「何を」、「いつ」、「どこで」、「なぜ」、「どうやって」の5W1Hを示す情報を認識し、被験者PAの音声の内容を自然言語として把握する。そして、推定部30cは、把握した音声の内容に基づいて、被験者PAの音声から被験者PAがどのような状況あるいは立場に置かれているかを判断する。そして、推定部30cは、判断した状況あるいは立場に応じて推定した病態に対する助言等の複数の音声データの中から1つを選択する。これにより、推定装置100cは、従来と比べて被験者PAに対しきめ細かな処置が可能となる。
 また、推定部30cは、被験者PAの音声の内容を把握することで、コミュニケーション障害の被験者PAに対して処置することができる。例えば、推定部30cは、被験者PAが所定の単語を発話した時の抽出部10aにより抽出された被験者PAの情動から、被験者PAがコミュニケーション障害か否かを推定する。例えば、抽出部10aが、被験者PAが怒り等の情動を示す所定の単語を発話した時に、怒り等の情動が被験者PAにおいて全く抽出されないあるいは少ししか抽出されない場合、推定部30cは、被験者PAが場の空気を読むことができずコミュニケーション障害と推定する。推定部30cは、コミュニケーション障害と推定した場合、推定装置100cが教師等として機能させるために、「空気を読みなさい」等の被験者PAにコミュニケーション力を持たせるように指導する音声データが発話の格納領域から読み出す。これにより、推定装置100cは、被験者PAが場の空気を読みコミュニケーションを行えるように、被験者PAのコミュニケーション障害に対して処置することができる。
 図32は、図30に示した推定装置100cによる推定処理の一例を示す。なお、図30に示したステップの処理のうち、図29に示したステップと同一または同様の処理を示すものについては、同一のステップ番号を付し、詳細な説明を省略する。ステップS100からステップS140、ステップS150a、ステップS160aおよびステップS170は、推定装置100cに搭載されるCPUが推定プログラムを実行することにより実現される。すなわち、図32は、推定プログラムおよび推定方法の別の実施形態を示す。この場合、図30に示した抽出部10a、演算部20a、推定部30cおよび試験部40aは、推定プログラムの実行により実現される。なお、図32に示した処理は、推定装置100cに搭載されるハードウェアにより実現されてもよい。この場合、図30に示した抽出部10a、演算部20a、推定部30cおよび試験部40aは、推定装置100c内に配置される回路により実現される。
 推定装置100cは、図32に示したステップS100からステップS140、ステップS150aおよびステップS160aの処理を実行した後、ステップS170の処理を実行する。
 ステップS170では、推定部30cは、図31で説明したように、ステップS160aで推定した病態と発話テーブル80とに基づいて、被験者PAに対する助言等の音声データを読み出す。推定部30cは、読み出した音声データを出力装置2aに出力する。
 そして、推定装置100cによる推定処理は終了する。出力装置2aは、推定された病態の結果とともに、恒常性のずれ量に表示する。また、出力装置2aは、推定装置100cから受信した音声データをスピーカから出力することで、被験者PAに対して推定された病態に応じた助言等の発話を行う。なお、出力装置2aは、恒常性のずれ量の大きさ、すなわち推定された病態における症状の度合いまたは被験者PAにおける健康を示す度合いを、色あるいはアニメーションの人物や動物等の表情で表しディスプレイに表示してもよい。また、出力装置2aは、アニメーションの人物や動物等をディスプレイに表示し、表示した人物や動物が発話しているかのように、受信した音声データを出力してもよい。
 なお、図32に示したフローは、医者あるいは被験者PAからの指示を受ける度に繰り返し実行されてもよく、所定の頻度で実行されてもよい。
 以上、図30から図32に示した実施形態では、被験者PAの生理の状態を示す第1情報と被験者PAの情動および器官の活動を示す第2情報とを用い、被験者PAにおける恒常性のずれ量を算出する。これにより、推定装置100cは、恒常性のずれ量という指標を参照することで、医学の専門的な知識を有することなく、被験者PAの病態を容易に推定することができる。また、推定装置100cは、各循環系Kaにおける恒常性のずれ量を入力エネルギーとする被験者PAにおける恒常性のシミュレーションを実行する。推定装置100cは、実行したシミュレーションから検出された恒常性の変化を示す各循環系Kaにおける回転数の出現頻度と、被験者PAが健康な場合に示す各循環系Kaにおける回転数の出現頻度とを比較する。そして、推定装置100cは、比較した結果と病態テーブル70とを用いることで、被験者PAの病態を従来と比べて精度良く推定することができる。
 また、推定装置100cは、助言等の発話をした後、被験者PAの生理を再度計測し被験者PAの状態を推定してもよい。そして、推定装置100cは、推定の結果に基づいて助言等の発話の効果を評価し、評価に基づいて発話テーブル80の発話の格納領域に格納される助言等の内容の修正等を行ってもよい。これにより、推定装置100cは、従来と比べて被験者PAに対しきめ細かな処置ができる。
 なお、推定装置100(100a、100b、100c)は、精神分析、行動予測、行動分析等の心理カウンセリング、精神医療、一般医療における面接や処方へ適用した場合を示したが、これに限定されない。例えば、推定装置100は、ロボット、人工知能や自動車、あるいはコールセンター、エンターテイメント、インターネット、スマートフォンやタブレット型端末等の携帯端末装置アプリケーションやサービス、検索システムへ応用されてもよい。また、推定装置100は、診断装置、自動問診装置、災害トリアージ等に応用されてもよい。また、推定装置100は、金融与信管理システムや行動予測、企業、学校、行政機関、警察や軍事、情報収集活動等での情報分析、虚偽発見に繋がる心理分析、組織グループ管理へ応用されてもよい。また、推定装置100は、組織の構成員、研究者や従業員、管理者等の心の健康や行動予測を管理するシステム、住居やオフィス、飛行機や宇宙船といった環境を制御するシステム、あるいは家族や友人の心の状態や行動予測を知るための手段に適用されてもよい。また、推定装置100は、音楽や映画配信、一般的な情報検索、情報分析管理や情報処理、あるいは顧客感性嗜好マーケット分析等やこれらをネットワークやスタンドアローンで管理するシステム等へ適用されてもよい。
 以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲がその精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずである。したがって、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物に拠ることも可能である。
1,1a…計測装置;2,2a…出力装置;EU,10,10a…抽出部;CU,20,20a…演算部;AU,30,30a,30b,30c…推定部;40,40a…試験部;50,50a,50b…記憶部;60,60a…データ;70…病態テーブル;80…発話テーブル;AM,100,100a,100b,100c…推定装置;200,200a,K1-K10,Ka1-Ka4…循環系;B1…接合部;PA…被験者;SH1-SH10…シャフト;NT1-NT10…ナット;MG,Ga1-Ga2、Gb1-Gb2、Gc1、Gd1-Gd2…ギア;SYS…推定システム

Claims (8)

  1.  被験者の生理を示す情報から、前記被験者の生理の状態を示す第1情報と前記被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出する抽出部と、
     抽出した前記第1情報と前記第2情報とが示す時間変化における類似の度合いを求め、求めた前記類似の度合いに基づき前記被験者における恒常性が保たれた所定状態からのずれ量を算出する演算部と、
     算出された前記ずれ量に基づいて前記被験者の病態を推定する推定部と
     を備えることを特徴とする推定装置。
  2.  請求項1に記載の推定装置において、
     前記演算部により算出された前記ずれ量から前記被験者の情動および器官の活動に作用するエネルギーを算出し、算出した前記エネルギーを入力として前記被験者における恒常性をシミュレーションする試験部を備え、
     前記推定部は、シミュレーションされた前記恒常性の変化のパターンから前記被験者の病態を推定する
     ことを特徴とする推定装置。
  3.  請求項1または請求項2に記載の推定装置において、
     前記被験者からの音声信号を前記被験者の生理を示す情報として受信する入力部を備えることを特徴とする推定装置。
  4.  請求項1または請求項2に記載の推定装置において、
     前記被験者の前記器官の活動を前記被験者の生理を示す情報として受信する入力部を備えることを特徴とする推定装置。
  5.  請求項1ないし請求項4のいずれか1項に記載の推定装置において、
     病態ごとに前記被験者への助言の音声データを格納する記憶部を備え、
     前記推定部は、推定した前記被験者の病態に基づいて前記被験者に対する助言を示す音声データを選択し、選択した前記音声データを外部の出力装置に出力する
     ことを特徴とする推定装置。
  6.  被験者の生理を示す情報から、前記被験者の生理の状態を示す第1情報と前記被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出し、
     抽出した前記第1情報と前記第2情報とが示す時間変化における類似の度合いを求め、求めた前記類似の度合いに基づき前記被験者における恒常性が保たれた所定状態からのずれ量を算出し、
     算出された前記ずれ量に基づいて前記被験者の病態を推定する
     処理をコンピュータに実行させるプログラム。
  7.  被験者の生理を示す情報から、前記被験者の生理の状態を示す第1情報と前記被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出部により抽出し、
     抽出した前記第1情報と前記第2情報とが示す時間変化における類似の度合いを求め、求めた前記類似の度合いに基づき前記被験者における恒常性が保たれた所定状態からのずれ量を演算部により算出し、
     算出された前記ずれ量に基づいて前記被験者の病態を推定部により推定する
     ことを特徴とする推定方法。
  8.  被験者の生理を計測する計測装置と、
     前記計測装置により計測された前記被験者の生理を示す情報を用い前記被験者の病態を推定する推定装置と、
     前記推定装置により推定された病態の結果を出力する出力装置とを備え、
     前記推定装置は、
     前記被験者の生理を示す情報から、前記被験者の生理の状態を示す第1情報と前記被験者の情動および器官の活動の少なくとも一方を示す第2情報とを抽出する抽出部と、
     抽出した前記第1情報と前記第2情報とが示す時間変化における類似の度合いを求め、求めた前記類似の度合いに基づき前記被験者における恒常性が保たれた所定状態からのずれ量を算出する演算部と、
     算出された前記ずれ量に基づいて前記被験者の病態を推定する推定部とを備える
     ことを特徴とする推定システム。
PCT/JP2014/005977 2013-12-05 2014-11-28 推定装置、プログラム、推定方法および推定システム WO2015083357A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480065678.6A CN105792758B (zh) 2013-12-05 2014-11-28 推定装置、记录介质以及推定系统
US15/039,907 US10485467B2 (en) 2013-12-05 2014-11-28 Estimation device, program, estimation method, and estimation system
RU2016126695A RU2682607C1 (ru) 2013-12-05 2014-11-28 Устройство оценки, программа, способ оценки и система оценки
EP14867047.4A EP3078331B1 (en) 2013-12-05 2014-11-28 Estimation program and estimation system
CA2932689A CA2932689C (en) 2013-12-05 2014-11-28 Estimation device, program, estimation method, and estimation system
KR1020167017552A KR101867198B1 (ko) 2013-12-05 2014-11-28 추정장치, 프로그램, 추정방법 및 추정시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-251867 2013-12-05
JP2013251867 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083357A1 true WO2015083357A1 (ja) 2015-06-11

Family

ID=53273142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005977 WO2015083357A1 (ja) 2013-12-05 2014-11-28 推定装置、プログラム、推定方法および推定システム

Country Status (9)

Country Link
US (1) US10485467B2 (ja)
EP (1) EP3078331B1 (ja)
JP (1) JP5755791B2 (ja)
KR (1) KR101867198B1 (ja)
CN (1) CN105792758B (ja)
CA (1) CA2932689C (ja)
HK (1) HK1225941A1 (ja)
RU (1) RU2682607C1 (ja)
WO (1) WO2015083357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885711A (zh) * 2016-03-30 2018-11-23 株式会社日本数理研究所 意思涌现装置、意思涌现方法及意思涌现程序

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436030B2 (ja) * 2015-09-17 2018-12-12 トヨタ自動車株式会社 ライフログ記録システム
JP6365554B2 (ja) * 2016-01-14 2018-08-01 マツダ株式会社 運転支援装置
JP6306071B2 (ja) 2016-02-09 2018-04-04 Pst株式会社 推定装置、推定プログラム、推定装置の作動方法および推定システム
WO2017170404A1 (ja) 2016-03-30 2017-10-05 光吉 俊二 意思創発装置、意思創発方法および意思創発プログラム
JP6350586B2 (ja) * 2016-04-25 2018-07-04 マツダ株式会社 運転支援装置
JP2017220807A (ja) * 2016-06-08 2017-12-14 株式会社日立システムズ 音声データ収集システム
USD837235S1 (en) * 2016-07-11 2019-01-01 Pmd Healthcare Display screen with graphical user interface
WO2018066674A1 (ja) * 2016-10-05 2018-04-12 京セラ株式会社 測定装置、測定方法及び測定プログラム
JP2018102705A (ja) * 2016-12-27 2018-07-05 本田技研工業株式会社 感情改善装置および感情改善方法
US10593351B2 (en) * 2017-05-03 2020-03-17 Ajit Arun Zadgaonkar System and method for estimating hormone level and physiological conditions by analysing speech samples
JP7058383B2 (ja) * 2017-10-02 2022-04-22 日本電気株式会社 情動判定装置、情動判定方法、及びプログラム
CN107802273A (zh) * 2017-11-21 2018-03-16 重庆邮电大学 一种抑郁状态监测装置、系统及预测方法
JP7112851B2 (ja) * 2018-02-05 2022-08-04 株式会社疲労科学研究所 情報処理装置、疲労評価方法及びプログラム
KR102429447B1 (ko) * 2020-05-19 2022-08-04 한양대학교 산학협력단 안면 표정 인식을 이용한 기분장애 진단을 위한 정보 제공 시스템
KR102702773B1 (ko) * 2020-06-24 2024-09-05 현대자동차주식회사 차량 및 그 제어방법
JP7477172B2 (ja) * 2021-02-19 2024-05-01 株式会社Kort Valuta 情報処理装置、情報処理システム、情報処理方法及びプログラム
JPWO2022264219A1 (ja) * 2021-06-14 2022-12-22

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132159A (ja) 2004-11-04 2006-05-25 Taiyo Kogyo Corp 屋根ユニット
WO2006132159A1 (ja) * 2005-06-09 2006-12-14 A.G.I. Inc. ピッチ周波数を検出する音声解析装置、音声解析方法、および音声解析プログラム
JP2012000449A (ja) * 2010-05-17 2012-01-05 Mitsuyoshi Kenkyusho:Kk 行動分析方法および行動分析装置
JP2012061057A (ja) 2010-09-14 2012-03-29 Kitasato Institute 生体の電気的インピーダンス断層像測定装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI221574B (en) 2000-09-13 2004-10-01 Agi Inc Sentiment sensing method, perception generation method and device thereof and software
JP3676969B2 (ja) * 2000-09-13 2005-07-27 株式会社エイ・ジー・アイ 感情検出方法及び感情検出装置ならびに記録媒体
EP1282113B1 (en) * 2001-08-02 2005-01-12 Sony International (Europe) GmbH Method for detecting emotions from speech using speaker identification
KR20030029308A (ko) * 2001-10-06 2003-04-14 정용석 음성분석을 이용한 건강진단 시스템 및 그 방법
JP2003263503A (ja) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd 健康管理システム
JP2006006355A (ja) * 2004-06-22 2006-01-12 Sony Corp 生体情報の処理装置および映像音響再生装置
JP4590555B2 (ja) * 2004-09-02 2010-12-01 国立大学法人長岡技術科学大学 感性状態判別方法及び装置
JP4704952B2 (ja) * 2006-05-01 2011-06-22 株式会社エイ・ジー・アイ 心的状態判定装置、およびプログラム
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
KR101437186B1 (ko) * 2009-01-28 2014-09-05 경희대학교 산학협력단 다중 센서 기반으로 감지한 사용자 감정 상태에 대한 응답 방법.
WO2011011413A2 (en) 2009-07-20 2011-01-27 University Of Florida Research Foundation, Inc. Method and apparatus for evaluation of a subject's emotional, physiological and/or physical state with the subject's physiological and/or acoustic data
CN103108584B (zh) * 2010-06-22 2015-10-07 吉里医疗有限公司 用于检测低血糖症症状的改进的系统
US9763617B2 (en) 2011-08-02 2017-09-19 Massachusetts Institute Of Technology Phonologically-based biomarkers for major depressive disorder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132159A (ja) 2004-11-04 2006-05-25 Taiyo Kogyo Corp 屋根ユニット
WO2006132159A1 (ja) * 2005-06-09 2006-12-14 A.G.I. Inc. ピッチ周波数を検出する音声解析装置、音声解析方法、および音声解析プログラム
JP2012000449A (ja) * 2010-05-17 2012-01-05 Mitsuyoshi Kenkyusho:Kk 行動分析方法および行動分析装置
JP2012061057A (ja) 2010-09-14 2012-03-29 Kitasato Institute 生体の電気的インピーダンス断層像測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3078331A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885711A (zh) * 2016-03-30 2018-11-23 株式会社日本数理研究所 意思涌现装置、意思涌现方法及意思涌现程序
CN108885711B (zh) * 2016-03-30 2022-09-20 株式会社日本数理研究所 意思涌现装置、意思涌现方法及存储介质

Also Published As

Publication number Publication date
CA2932689C (en) 2018-07-31
RU2682607C1 (ru) 2019-03-19
KR101867198B1 (ko) 2018-06-12
KR20160092011A (ko) 2016-08-03
JP2015128579A (ja) 2015-07-16
US10485467B2 (en) 2019-11-26
US20170000397A1 (en) 2017-01-05
CN105792758A (zh) 2016-07-20
HK1225941A1 (zh) 2017-09-22
EP3078331A4 (en) 2017-08-09
EP3078331A1 (en) 2016-10-12
CA2932689A1 (en) 2015-06-11
JP5755791B2 (ja) 2015-07-29
EP3078331B1 (en) 2022-05-11
CN105792758B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
JP5755791B2 (ja) 推定装置、プログラム、推定装置の作動方法および推定システム
US12076136B2 (en) Smart watch
Yannakakis et al. Psychophysiology in games
TWI722160B (zh) 意思創發裝置、意思創發方法及意思創發程式
CN112040849B (zh) 用于确定对象血压的系统和方法
US10791985B2 (en) Cardio-kinetic cross-spectral density for assessment of sleep physiology
Vakulenko et al. Prospect of Creating a Virtual Reality System with Feedback for the Correction of the Patient’s Psychological State Based on the Results of the Analysis of Arterial Pulsations Registered during Blood Pressure Measurement Using the Oranta-AO Information System
US20240008813A1 (en) Smart wearable device and method for estimating traditional medicine system parameters
Oviedo et al. Cardiorespiratory coordination during exercise in adults with Down syndrome
Coppini et al. Moving Medical Semeiotics to the Digital Realm
Amira et al. Stress level classification using heart rate variability
WO2017170404A1 (ja) 意思創発装置、意思創発方法および意思創発プログラム
Arsalan et al. Human Stress Assessment: A Comprehensive Review of Methods Using Wearable Sensors and Non-wearable Techniques
Tokmak et al. Investigating the Effect of Body Composition Differences on Seismocardiogram Characteristics
Choudhury et al. New Frontiers of Cardiovascular Screening Using Unobtrusive Sensors, AI, and IoT
Nesaragi et al. Non-invasive waveform analysis for emergency triage via simulated hemorrhage: An experimental study using novel dynamic lower body negative pressure model
RU2279847C2 (ru) Способ прогнозирования индекса альфа-ритма ээг у больных психосоматическими заболеваниями
Fallmann et al. Fine-grained sleep-wake behaviour analysis
Gharamyan Meta-analysis of randomized clinical trials on the speed of pulse wave propagation
Zhou et al. On Design of SILU Algorithm to Enable Our New ABPM System for Stroke Risk Early-Warning
Taghibeyglou et al. Machine Learning-Enabled Hypertension Screening Through Acoustical Speech Analysis: Model Development and Validation
Tavares Study of Physiological Parameters of the Human Body for Variability: Case Study of Heart
Radha Data-driven health monitoring and lifestyle interventions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039907

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2932689

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014867047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167017552

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016126695

Country of ref document: RU

Kind code of ref document: A