WO2015081677A1 - 利用磁悬浮系统的平面发电机 - Google Patents

利用磁悬浮系统的平面发电机 Download PDF

Info

Publication number
WO2015081677A1
WO2015081677A1 PCT/CN2014/079494 CN2014079494W WO2015081677A1 WO 2015081677 A1 WO2015081677 A1 WO 2015081677A1 CN 2014079494 W CN2014079494 W CN 2014079494W WO 2015081677 A1 WO2015081677 A1 WO 2015081677A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnet
annular
magnetic levitation
rotating disk
force
Prior art date
Application number
PCT/CN2014/079494
Other languages
English (en)
French (fr)
Inventor
梁锡球
Original Assignee
平面发电机发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平面发电机发展有限公司 filed Critical 平面发电机发展有限公司
Priority to EP14867401.3A priority Critical patent/EP3042799A4/en
Publication of WO2015081677A1 publication Critical patent/WO2015081677A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/04Other wind motors the wind-engaging parts being attached to carriages running on tracks or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power generating device, and more particularly to a planar power generator utilizing magnetic levitation technology.
  • a generator is a mechanical device that converts other forms of energy into electrical energy. It is driven by a water turbine, a steam turbine, a diesel engine, or other power machinery to convert energy generated by water flow, gas flow, fuel combustion, or nuclear fission into mechanical energy to the generator. , then converted by the generator into electrical energy. Generators have a wide range of uses in industrial and agricultural production, national defense, technology and daily life.
  • the general principle of generator construction is: The magnetic circuit and circuit that make electromagnetic induction with each other are formed by appropriate magnetic conductive and conductive materials to generate electromagnetic power for energy conversion purposes.
  • a general generator includes a stator and a rotor. The rotor rotates in the stator to perform a movement of the cutting magnetic line, thereby generating an induced potential, which is led out through the terminal and connected to the circuit, thereby generating a current.
  • This method of cutting the magnetic lines by rotating the rotor around the stator necessarily requires a rotating shaft, which causes problems of shaft wear, vibration and heat dissipation, and the shaft friction also causes unnecessary loss.
  • other auxiliary devices are required to solve these problems. This increases the manufacturing cost, and if these auxiliary devices are not used, the life of the generator will be greatly reduced. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a planar generator using a magnetic levitation system, which can be rotated by an external wind or exhaust wind in a magnetic levitation state.
  • the magnetic lines of force generate electricity through the electromagnetic induction device to generate electricity, and the resistance of the rotary motion is small, the power consumption is small, and the loss is small.
  • a planar generator utilizing a magnetic levitation system comprising an annular ferromagnetic rail and a rotating disk located above the annular ferromagnetic rail, the rotating disc cooperating with the annular ferromagnetic rail to generate a magnetic levitation force and a urging force;
  • the annular ferromagnetic rail The invention comprises an annular base, two mutually spaced annular wheel rails projecting upward from the annular base, and a plurality of first electromagnets for generating a magnetic levitation force are protruded between the two annular wheel rails, and each of the first electromagnets surrounds the annular base
  • the circumference of the first electromagnet is equally spaced, and the top of each of the first electromagnets is provided with an electromagnetic induction device for generating electricity;
  • the two sides of the bottom of the rotating disc are respectively mounted with rolling wheels respectively engaged with the circular wheel rails, and both sides of the bottom of the rotating disc a second electromagnet that directly generates a magnetic levit
  • the hood is urged to actuate the rotating disk along the circumferential direction of the annular base under the action of external wind, the wheel is in rolling engagement with the annular wheel rail; thereafter, the magnetic levitation force and wind of the rotating disk in the first electromagnet and the second electromagnet
  • the driving force of the hood is rotated along the circumferential direction of the annular base, and the magnetic lines of force passing through the electromagnetic induction device are changed, thereby generating an electromotive force for generating electricity for recovering electric energy for driving the magnetic levitation of the train, and the rotating disk is suspended in the annular ferromagnetic Above the rail, the wheel is disengaged from the annular wheel rail.
  • the rotating disk is an integrated continuous annular disk
  • the second electromagnets are equally spaced around the circumference of the rotating disk at the bottom of the rotating disk, and the spacing between adjacent second electromagnets and adjacent The spacing of an electromagnet is equal.
  • the hoods are an odd number and are equally spaced around the circumference of the rotating disk. And each of the hoods is symmetrical about the central axis of the rotating disk.
  • rotating disks are an odd number independent of each other, and are circumferentially spaced around the annular base, and the hood is fixed to the top of each rotating disk.
  • the second electromagnets are equally spaced around the circumference of the annular substrate at the bottom of each of the rotating disks, and the pitch of the adjacent second electromagnets is equal to the spacing of the adjacent first electromagnets.
  • the front end and the rear end of the rotating disk in the circumferential direction of rotation are respectively provided with a first permanent magnet, and the opposite ends of the two first permanent magnets on the adjacent rotating disk are repelled.
  • the electromagnetic induction device includes a double-sided electromagnet and a generator assembly that forms a generator with the double-sided electromagnet.
  • the two annular wheel rails are integrally formed with the annular base and are both second permanent magnets; the outer side of the wheel of the rotating disc protrudes downward with symmetrical wings, the inner sides of the two wings and the rotation
  • the bottom surface of the disc is provided with a third permanent magnet, and the opposite ends of the third permanent magnet and the second permanent magnet repel each other.
  • the outer side of the annular ferromagnetic rail is provided with a collecting funnel for collecting external wind flow, the collecting funnel having a large opening facing outward and a small opening facing the top of the rotating disc.
  • the planar generator using the magnetic levitation system includes a linear ferromagnetic guide and a train located above the linear ferromagnetic rail, the train and the linear type
  • the ferromagnetic rail cooperates to generate a magnetic levitation force and a driving force
  • the linear ferromagnetic rail comprises a sleeper, two mutually spaced linear wheel rails protruding upward from the sleeper, and a plurality of linear wheel rails are protruded between the two
  • the first electromagnet that generates the magnetic levitation force the first electromagnets are equally spaced along the length direction of the linear ferromagnetic rail, and the top of each of the first electromagnets is provided with an electromagnetic induction device for generating electricity, the first electromagnet And the electromagnetic induction device forms a first linear type ferromagnetic rail;
  • the two sides of the bottom of the train are respectively mounted with rolling wheels respectively matched with the linear wheel rails, and the wheels on both sides of the
  • the hood is driven by an external wind to drive the train along the length direction of the linear ferromagnetic rail, and the wheel is in rolling engagement with the linear wheel rail; thereafter, the train is in magnetic levitation of the first electromagnet and the second electromagnet
  • the force and the driving force move along the length direction of the linear ferromagnetic guide rail, and the magnetic lines of force passing through the electromagnetic induction device change, thereby generating an electromotive force to generate electricity, and the train is suspended above the linear ferromagnetic rail, the wheel and the straight line
  • the wheel track is detached.
  • the rotating disk of the present invention is activated by the wind thrust of the wind hood, and at the same time, the flow force of the gas that must be exhausted by means of the train forward power, by means of wind power or by means of a diesel engine, and the first electromagnet and the first after energization
  • the magnetic levitation force and the driving force of the two electromagnets interact to rotate around the circumferential direction of the annular base.
  • the odd number of the hoods of the present invention can maintain at least one of the hoods in a state of effectively urging the rotating disk to rotate in the wind, which is beneficial to the continuous and smooth circumferential rotation of the rotating disk;
  • the first electromagnet and the second electromagnet disposed at intervals of the present invention will generate electromagnetic fields of different magnitudes after passing different currents, so that the first electromagnet and the second electromagnet in the advancing direction are attracted to each other.
  • FIG. 1 is a perspective view showing a first embodiment of a planar generator using a magnetic levitation system according to the present invention
  • Figure 2 is a cross-sectional view showing the cooperation of the rotating disk and the annular ferromagnetic rail of the present invention
  • FIG. 3 is a schematic perspective view of a toroidal ferromagnetic rail of the present invention.
  • FIG. 4 is a schematic perspective view showing a second embodiment of a planar generator using a magnetic levitation system according to the present invention.
  • Figure 5 is a top plan view of a second embodiment of a planar generator utilizing a magnetic levitation system
  • Figure 6 is a block diagram showing another embodiment of a planar generator utilizing a magnetic levitation system of the present invention.
  • annular ferromagnetic rail 11, annular base; 12, circular wheel rail; 13, first electromagnet; 14, electromagnetic induction device; 2, rotating disk; 21, wheel; 22, second electromagnetic device; 23, hood; 24, wing; 25, the third permanent magnet; 26, the first permanent magnet; 3, the funnel; 31, large mouth; 32, small mouth; 4, sleepers; 5, linear wheel track ; 6, linear ferromagnetic rail.
  • a planar generator using a magnetic levitation system as shown in FIG. 1 includes an annular ferromagnetic rail 1 and a rotating disk 2 located above the annular ferromagnetic rail 1.
  • the rotating disk 2 cooperates with the annular ferromagnetic rail 1 to generate a magnetic levitation force and a driving force.
  • the planar generator referred to here refers to the electromagnet in A form of generator that generates electricity and generates electricity under the action of relative motion in the plane.
  • the annular ferromagnetic rail 1 includes an annular base 11 and two mutually spaced annular wheel rails 12 projecting upwardly from the annular base 11 with a plurality of projections between the two annular wheel rails 12 for generating a magnetic levitation.
  • the first electromagnets 13 of the force, the first electromagnets 13 are equally spaced around the circumference of the annular base 11, and the tops of the first electromagnets 13 are provided with electromagnetic induction means 14 for generating electricity;
  • the two sides of the bottom of the rotating disk 2 are respectively mounted with the wheels 21 which are respectively rotatably engaged with the annular wheel rails 12.
  • the wheels 21 on the bottom sides of the rotating disk 2 are downwardly protruded to directly generate magnetic levitation force and driving force with the first electromagnets 13.
  • a second electromagnet 22 a magnetic line of force is generated between the first electromagnet 13 and the second electromagnet 22, the magnetic field line passes through the magnetic induction device 14;
  • a top of the rotating disk 2 is fixed with a trumpet-shaped hood 23 for concentrating As the driving force of the rotating disk, the opening direction of the riding hood 23 is tangent to the circumferential direction of the annular base 11;
  • the hood 23 pushes the rotary disk 2 in the circumferential direction of the annular base 11 under the action of external wind, and the wheel 21 is in rolling engagement with the annular wheel rail 12; thereafter, the magnetic levitation of the rotary disk 2 at the first electromagnet 13 and the second electromagnet 22
  • the force and the wind rotate along the circumferential direction of the annular base 11 under the urging force of the hood, and the magnetic lines of force passing through the electromagnetic induction device 14 are changed, thereby generating an electromotive force to generate electricity for recovering electric energy for driving the magnetic levitation of the train, in the first electromagnet
  • the rotary disk 2 is suspended above the annular ferromagnetic guide 1 and the wheel 21 is disengaged from the annular wheel rail 12.
  • the electromagnetic induction device 14 includes a double-sided electromagnet (not shown) and a generator assembly (not shown) that forms a generator with the double-sided electromagnet, and the electromagnetic induction device 14 changes with a conventional magnetic line of force.
  • the generated electromotive force is used to realize electromagnetic induction.
  • the hood 23 can also be provided as a symmetrical fan blade, a blade or the like that can generate power after contact with the wind.
  • the planar generator using the magnetic levitation system can be placed at the intake port of the engine (engine) exhaust pipe, and the exhaust pressure is generated by mechanically burning the diesel to generate the exhaust pressure, and the rotating disk is rotated to generate the power generation function. It can also be set on the beach or grassland with continuous wind source.
  • the first electromagnet 13 and the second electromagnet 22 are simultaneously energized, and the current magnitude and direction of the first electromagnet 13 and the second electromagnet 22 are controlled.
  • the wheel 21 is disengaged from the annular wheel rail 12 as soon as possible, and the rolling wear is reduced.
  • the wheel rail 12 acts as a backup rolling support, and if the wind is sufficient, it can be directly supplied for power generation.
  • the wheel 21 and the annular wheel rail 12 can also act as a balance support adjustment when the rotating disk 2 is subjected to an unstable external force.
  • the magnetic levitation described herein is a conventional magnetic levitation technique and will not be described here.
  • the rotating disk 2 of the present embodiment is an integrated continuous annular disk, and the second electromagnets 22 are equally spaced around the circumference of the rotating disk 2 at the bottom of the rotating disk 2, and adjacent to the second.
  • the pitch of the electromagnets 22 is equal to the pitch of the adjacent first electromagnets 13.
  • the ring-shaped rotating disk 2 allows the first electromagnet 13 to be in contact with the second electromagnet 22 at a large area at a time, which is advantageous for generating a power output of a larger power, and also facilitates a smoother rotation support of the rotating disk 2.
  • the hoods 23 of the present embodiment are an odd number and are equally spaced around the circumference of the rotating disk 2. And each of the hoods 23 is symmetrical about the central axis of the rotary disk 2.
  • the electromagnetic induction device 14 can also be provided as a power generating device composed of an induction coil or a permanent magnet electromagnet and a common power generating circuit and components.
  • the two annular wheel rails 12 are integrally formed with the annular base 11 and are both second permanent magnets, that is, made of a permanent magnet material; the wheels of the rotating disk 2
  • the outer side of the 21 has a symmetrical wing 24, and the inner side of the two wings 24 and the bottom surface of the rotating disk 2 are respectively provided with a third permanent magnet 25, and the third permanent magnet 25 is opposite to the second permanent magnet.
  • the polarity of the end is repulsive. Under the repulsive force of the opposite ends of the second permanent magnet and the third permanent magnet, the rotating disc 2 can obtain effective self-balancing adjustment, reducing Friction loss.
  • the two flaps 24 also serve as a symmetrical automatic balance adjustment of the rotating disk 2.
  • the outer side of the annular ferromagnetic rail 1 is provided with a collecting funnel 3 for collecting external airflow.
  • the collecting funnel 3 has a large opening 31 facing outward and a small opening 32 facing the top of the rotating disk 2. After collecting the external airflow through the large mouth 31, the wind collecting funnel 3 blows a high pressure wind through the small opening 32 to a hood 23 on the top of the rotating disk 2, so that each of the hoods 23 has a windward driving force, and the hood is reduced. 23 leeward wind resistance.
  • the small opening 32 may face the opening of the hood 23 (as shown in Fig. 5), or may be slightly inclined from the opening of the hood 23 (as shown in Figs. 1 and 4).
  • the second embodiment of the present invention utilizes a magnetic levitation system.
  • the second embodiment differs from the first embodiment in that:
  • the rotary disk 2 is an odd number independent of each other and distributed around the circumferential direction of the annular base 11, and a wind cover 23 is fixed to the top of each of the rotary disks 2.
  • the second electromagnets 22 are equally spaced around the circumference of the annular base 11 at the bottom of each of the rotary discs 2, and the pitch of the adjacent second electromagnets 22 is equal to the pitch of the adjacent first electromagnets 13.
  • the front end and the rear end of the rotary disk 2 in the circumferential direction of rotation are respectively provided with first permanent magnets 26, and the opposite ends of the two first permanent magnets 26 on the adjacent rotating disk 2 are repelled.
  • the respective rotating disks 2 Under the magnetic levitation force and the urging force of the first electromagnet 13 and the second electromagnet 22, the respective rotating disks 2 can be respectively rotated circumferentially on the annular base 11, and the external wind can push the rotating disk 2 one by one, so that the wind can be made More efficient use is obtained, and at the same time, the first permanent magnets 26 can also prevent adjacent rotating disks 2 from colliding with each other.
  • the diameter of the toroidal ferromagnetic rail 1 can also be infinitely expanded, and a certain section of the toroidal ferromagnetic rail 1 is a nearly linear type, which can be applied to a rail in a magnetic levitation conveying system, and the rotating disc 2 is equivalent to a train in a magnetic levitation conveying system.
  • the first electromagnet 13 and the electromagnetic induction device 14 are arranged in a straight line like the rail, and the first electromagnet 13 may be a permanent magnet or a wound charging electromagnet; the second electromagnet is mounted on the bottom of the train.
  • planar generator using a magnetic levitation system includes a linear ferromagnetic guide 6 and a train (not shown) located above the linear ferromagnetic guide 6, and the train cooperates with the linear ferromagnetic guide 6 to generate a magnetic levitation.
  • the linear ferromagnetic rail 6 comprises a sleeper 4, two mutually spaced linear wheel rails 5 projecting upward from the sleeper 4, and two linear wheel rails 5
  • the first electromagnet 13 and the electromagnetic induction device 14 form a first linear type ferromagnetic rail; on both sides of the bottom of the train, wheels are respectively mounted on the bottom of the linear wheel rail 5, and the bottom of the train A second electromagnet 22 directly generating a magnetic levitation force and a driving force directly with the first electromagnet 13 is protruded downward between the two wheels, and the second electromagnet 22 extends along the length of the train to form a second linear type ferroelectric ferromagnetic A magnetic line is generated between the first electromagnet 13 and the second electromagnet 22, and the magnetic line passes through the electromagnetic induction device 14 to form a linear power generation assembly; a trumpet-shaped hood is fixed on the top of the train, and the opening direction of the hood is The direction of travel of the train is opposite;
  • the wind hood pushes the train along the length direction of the linear ferromagnetic rail under the action of the external wind, and the wheel is in rolling engagement with the linear wheel rail 5; thereafter, the magnetic levitation force and the pushing of the train on the first electromagnet 13 and the second electromagnet 22
  • the force moves along the length of the linear ferromagnetic guide 6, and the magnetic lines of force passing through the electromagnetic induction device 14 change, thereby generating an electromotive force to generate electricity, for recovering electric energy for driving the magnetic levitation of the train, and the train is suspended in the linear ferromagnetic Above the guide rail 6, the wheel is disengaged from the linear wheel rail 5.
  • the linear ferromagnetic rail 6 is equivalent to the annular ferromagnetic rail 1 according to the first embodiment, and the train is equivalent to the rotating disc 2 described in the second embodiment.
  • the sleeper 4 is equivalent to the annular base 11 according to the first embodiment.
  • the power generation principle of another embodiment of the planar generator of the magnetic levitation system is the same as that of the first embodiment.
  • the planar generator of the above magnetic levitation system can be auxiliaryly added to the bottom of the existing motor car, electric vehicle or subway, and a magnetic spiral floating rail can be placed at the center of the original double rail fixed in the middle of the sleeper railway rail.
  • the first electromagnet in the middle of the sleeper double track, the electromagnetic induction device is the generator stator, and the second electromagnet as a row of rotors is installed in the center of the double wheel or the double track at the bottom of each train to form a rail type magnetic levitation power generation system.
  • the train travels forward it will install a series of rail-type magnetic levitation power generation systems to generate electricity during the journey, and feed back into the train to consume electricity to save power.
  • the magnetic gyrus power generation system rail is not used to pull the train forward, but it is charged to create a magnetic levitation state to make the train float and reduce weight and reduce power consumption.
  • it is a "semi-magnetic suspension semi-mechanical electric power train, which uses the mechanical brake system of the motor train to assist the light floating function of the magnetic levitation.
  • the magnetic levitation is a series of power generation systems that have the advantage of generating electricity in the process of advancement. It is a kind of
  • the hybrid train can be installed at the bottom of the train, at the bottom of the subway train, and can be installed at the bottom of the traditional diesel-powered train. In addition to making the train smooth and light, it can be used for power generation, and the battery is added as electric power on the train. There is no need to add another set of generators.

Abstract

一种磁悬浮系统的平面发电机,包括环形铁磁导轨(1)和位于该环形铁磁导轨(1)上方的旋转盘(2);环形铁磁导轨(1)包括环形基底(11)、由环形基底(11)向上凸出的两条相互间隔的环形车轮轨(12),两环形车轮轨(12)之间凸出多个第一电磁体(13),各第一电磁体(13)绕环形基底(11)的周向等间隔分布,且各第一电磁体(13)顶部均设有电磁感应装置(14);旋转盘(2)的底部两侧安装有分别与环形车轮轨(12)滚动配合的车轮(21),旋转盘(2)的底部两侧车轮(21)之间向下凸出有第二电磁体(22),第一电磁体(13)和第二电磁体(22)间产生磁力线穿过电磁感应装置(14);旋转盘(2)的顶部固定有兜风罩(23),兜风罩(23)的开口方向与环形基底(11)的周向相切。该磁悬浮系统的平面发电机通过外部风力作用在磁悬浮状态下旋转运动而使磁力线穿过电磁感应装置产生变化而发电,其旋转运动阻力小,损耗小。

Description

利用磁悬浮系统的平面发电机
技术领域 本发明涉及发电装置, 具体涉及利用磁悬浮技术的平面发电机。 背景技术 发电机是将其他形式的能源转换成电能的机械设备, 它由水轮机、 汽轮机、 柴油机或其他动力机械驱动, 将水流, 气流, 燃料燃烧或原 子核裂变产生的能量转化为机械能传给发电机, 再由发电机转换为电 能。 发电机在工农业生产、 国防、 科技及日常生活中有广泛的用途。 发电机构造的一般原则是: 用适当的导磁和导电材料构成互相进 行电磁感应的磁路和电路, 以产生电磁功率, 达到能量转换的目的。 目前一般的发电机包括定子和转子, 转子在定子中旋转, 做切割磁力 线的运动, 从而产生感应电势, 通过接线端子引出, 接在回路中, 便 产生了电流。 这种靠转子绕定子旋转来切割磁力线的方式, 必然需要转轴, 则 带来轴磨损、 震动和散热的问题, 轴摩擦力也将带来无谓损耗, 目前, 解决这些问题均需要提供其它辅助装置, 从而增加制造成本, 若不使 用这些辅助装置, 又将大大降低发电机的使用寿命。 发明内容
本发明所要解决的技术问题, 就是提供利用磁悬浮系统的平面发 电机, 能通过外部风力或排气风力作用在磁悬浮状态下旋转运动而使 磁力线穿过电磁感应装置产生变化而发电, 其旋转运动阻力小, 耗电 小、 损耗小。
为解决上述技术问题, 本发明采取的技术方案如下:
利用磁悬浮系统的平面发电机, 包括环形铁磁导轨和位于该环形 铁磁导轨上方的旋转盘, 所述旋转盘与所述环形铁磁导轨配合产生磁 悬浮力及推动力; 所述环形铁磁导轨包括环形基底、 由环形基底向上 凸出的两条相互间隔的环形车轮轨, 两环形车轮轨之间凸出有多个用 于产生磁悬浮力的第一电磁体, 各第一电磁体绕环形基底的周向等间 隔分布, 且各第一电磁体的顶部均设有用于发电的电磁感应装置; 所 述旋转盘的底部两侧安装有分别与环形车轮轨滚动配合的车轮, 旋转 盘底部两侧车轮之间向下凸出有直接与第一电磁体产生磁悬浮力及推 动力的第二电磁体, 第一电磁体和第二电磁体间产生磁力线, 该磁力 线穿过电磁感应装置; 所述旋转盘的顶部固定有喇叭状的兜风罩, 该 兜风罩 (风叶、 风翼) 用于集中引风而作为旋转盘的驱动力, 兜风罩 的开口方向与环形基底的周向相切;
所述兜风罩在外部风力作用下推动旋转盘沿环形基底的周向启 动, 所述车轮与环形车轮轨滚动配合; 此后, 所述旋转盘在第一电磁 体和第二电磁体的磁悬浮力和风对兜风罩的推动力作用下沿环形基底 的周向转动, 穿过电磁感应装置的磁力线发生变化, 从而产生电动势 而发电, 用于回收电能供列车磁悬浮驱动, 所述旋转盘悬浮于环形铁 磁导轨上方, 所述车轮与环形车轮轨脱离。
进一歩地, 所述旋转盘为一体化连续的环形盘, 所述第二电磁体 在旋转盘的底部绕旋转盘的周向等间隔分布, 且相邻第二电磁体的间 距与相邻第一电磁体的间距相等。
进一歩地, 所述兜风罩为奇数个, 并绕旋转盘的周向等间距分布, 且各兜风罩以旋转盘的中轴轴对称。
进一歩地, 所述旋转盘为相互独立的奇数个, 并绕环形基底的周 向间隔分布, 每个旋转盘的顶部均固定有所述兜风罩。
进一歩地, 所述第二电磁体分别在各个旋转盘的底部绕环形基底 的周向等间隔分布, 且相邻第二电磁体的间距与相邻第一电磁体的间 距相等。
进一歩地, 所述旋转盘周向转动方向上的前端和后端分别设有第 一永磁磁铁, 相邻旋转盘上两第一永磁磁铁相对端极性相斥。
进一歩地, 所述电磁感应装置包括双面电磁铁和与该双面电磁铁 组成发电机的发电机组件。
进一歩地, 两所述环形车轮轨与环形基底一体成型, 且均为第二 永磁磁铁; 所述旋转盘的车轮外侧向下凸出有对称的护翼, 两护翼的 内侧面以及旋转盘的底面均设有第三永磁磁铁, 第三永磁磁铁与第二 永磁磁铁的相对端极性相斥。
进一歩地, 所述环形铁磁导轨的外侧设有一用于聚集外部风流的 聚风漏斗, 该聚风漏斗具有朝外的大口和朝向旋转盘顶部的小口。
作为本利用磁悬浮系统的平面发电机的另一种实施方式, 该利用 磁悬浮系统的平面发电机包括直线型铁磁导轨和位于该直线型铁磁导 轨上方的列车, 所述列车与所述直线型铁磁导轨配合产生磁悬浮力及 推动力; 所述直线型铁磁导轨包括枕木、 由枕木向上凸出的两条相互 间隔的直线型车轮轨, 两直线型车轮轨之间凸出有多个用于产生磁悬 浮力的第一电磁体, 各第一电磁体沿直线型铁磁导轨的长度方向等间 隔分布, 且各第一电磁体的顶部均设有用于发电的电磁感应装置, 第 一电磁体和电磁感应装置形成第一直线型发电铁磁导轨; 所述列车的 底部两侧安装有分别与直线型车轮轨滚动配合的车轮, 列车底部两侧 车轮之间向下凸出有直接与第一电磁体产生磁悬浮力及推动力的第二 电磁体, 第二电磁体沿列车的长度方向延伸, 形成第二直线型发电铁 磁导轨, 第一电磁体和第二电磁体间产生磁力线, 该磁力线穿过电磁 感应装置, 形成直线型的发电组件; 所述列车的顶部固定有喇叭状的 兜风罩, 兜风罩的开口方向与列车的行进方向相反;
所述兜风罩在外部风力作用下推动列车沿直线型铁磁导轨的长度 方向启动, 所述车轮与直线型车轮轨滚动配合; 此后, 所述列车在第 一电磁体和第二电磁体的磁悬浮力和推动力作用下沿直线型铁磁导轨 的长度方向移动, 穿过电磁感应装置的磁力线发生变化, 从而产生电 动势而发电, 所述列车悬浮于直线型铁磁导轨上方, 所述车轮与直线 型车轮轨脱离。
相比现有技术, 本发明的有益效果在于:
( 1 )本发明的旋转盘在兜风罩的兜风推力作用下启动, 同时可借 助列车往前动力、借助风力或借助柴油机燃烧必须排出的气体流动力, 并在通电后的第一电磁体和第二电磁体相互作用的磁悬浮力和推动力 作用下绕环形基底周向顺势转动, 由于第一电磁体和第二电磁体的电 磁场不断发生变化, 使得穿过电磁感应装置的磁力线不断发生变化, 从而对应产生电动势实现发电, 由于旋转盘在转动过程中仅剩风阻损 耗和切割磁力线的损耗, 运动阻力小, 所以在能量转换过程中的无谓 损耗大大减小, 并可在外部源源不断风源的作用下持续发电;
( 2 )本发明奇数数量的兜风罩, 可保持至少有一个兜风罩处于迎 风有效推动旋转盘转动的状态, 有利于旋转盘的持续、 平稳周向转动;
( 3 )本发明间隔设置的第一电磁体和第二电磁体将在通以不同电 流后产生大小不同的电磁场, 从而使得第一电磁体和前进方向的第二 电磁体自身顺势吸引前行, 进一歩利于旋转盘的持续、 平稳周向转动;
( 4 ) 本发明的第二永磁磁铁和第三永磁磁铁相对的一端极性相 斥, 使旋转盘在环形基底上方得到有效的自动平衡调节, 可进一歩减 小车轮与环形车轮轨用作平衡条件时的摩擦损耗, 以最少的能量损耗 发电。
下面结合附图和具体实施方式对本发明作进一歩详细说明。
附图说明
图 1 为本发明利用磁悬浮系统的平面发电机实施例一立体结构示 意图;
图 2为本发明旋转盘和环形铁磁导轨配合的截面图;
图 3为本发明环形铁磁导轨的立体结构示意图;
图 4为本发明利用磁悬浮系统的平面发电机实施例二的立体结构 示意图;
图 5 为本发明利用磁悬浮系统的平面发电机实施例二的俯视示意 图;
图 6为本发明利用磁悬浮系统的平面发电机的另一种实施方式的 结构示意图。
图中: 1、 环形铁磁导轨; 11、 环形基底; 12、 环形车轮轨; 13、 第一电磁体; 14、 电磁感应装置; 2、 旋转盘; 21、 车轮; 22、 第二电 磁装置; 23、 兜风罩; 24、 护翼; 25、 第三永磁磁铁; 26、 第一永磁 磁铁; 3、 聚风漏斗; 31、 大口; 32、 小口; 4、 枕木; 5、 直线型车轮 轨; 6、 直线型铁磁导轨。
具体实施方式
实施例一
如图 1所示的利用磁悬浮系统的平面发电机,包括环形铁磁导轨 1 和位于该环形铁磁导轨 1上方的旋转盘 2, 旋转盘 2与环形铁磁导轨 1 配合产生磁悬浮力及推动力。 这里称谓的平面发电机, 是指电磁体在 平面上相对运动的作用下产生电流而发电的发电机形式。
如图 3所示, 环形铁磁导轨 1包括环形基底 11、 由环形基底 11 向上凸出的两条相互间隔的环形车轮轨 12,两环形车轮轨 12之间凸出 有多个用于产生磁悬浮力的第一电磁体 13,各第一电磁体 13绕环形基 底 11的周向等间隔分布, 且各第一电磁体 13的顶部均设有用于发电 的电磁感应装置 14; 如图 2所示, 旋转盘 2的底部两侧安装有分别与 环形车轮轨 12滚动配合的车轮 21, 旋转盘 2底部两侧车轮 21之间向 下凸出有直接与第一电磁体 13 产生磁悬浮力及推动力的第二电磁体 22, 第一电磁体 13和第二电磁体 22间产生磁力线, 该磁力线穿过磁 感应装置 14; 旋转盘 2的顶部固定有喇叭状的兜风罩 23, 该兜风罩用 于集中引风而作为旋转盘的驱动力, 兜风罩 23的开口方向与环形基底 11的周向相切;
兜风罩 23在外部风力作用下推动旋转盘 2沿环形基底 11的周向 启动, 车轮 21与环形车轮轨 12滚动配合; 此后, 旋转盘 2在第一电 磁体 13和第二电磁体 22的磁悬浮力和风对兜风罩的推动力作用下沿 环形基底 11的周向转动, 穿过电磁感应装置 14的磁力线发生变化, 从而产生电动势而发电, 用于回收电能供列车磁悬浮驱动, 在第一电 磁体 13和第二电磁体 14产生的磁悬浮力足以支撑旋转盘 2重量后, 旋转盘 2悬浮于环形铁磁导轨 1上方, 车轮 21与环形车轮轨 12脱离。
其中, 电磁感应装置 14包括双面电磁铁(图中未示出)和与该双 面电磁铁组成发电机的发电机组件(图中未示出), 该电磁感应装置 14 以常规的磁力线变化所产生的电动势来实现电磁感应方式的发电。 兜 风罩 23也可设置为对称的风叶、翼叶等可与风接触后产生动力的装置。
可将本利用磁悬浮系统的平面发电机置于发动机 (引擎) 排气管 的进气口处, 利用机械燃烧柴油发电的排风位置,造出排气压力,使旋 转盘转动而造出发电功能; 也可设置在具有连续风源的海边、 草原上。 当兜风罩 23受风力兜风推动旋转盘 2后,再同时对第一电磁体 13 和第二电磁体 22通电, 并控制通入第一电磁体 13和第二电磁体 22的 电流大小、 方向, 以产生磁悬浮力和推动力, 使车轮 21尽快脱离环形 车轮轨 12, 减少滚动磨损, 当对第一电磁体 13和第二电磁体 22停止 供电后, 两者间失去磁悬浮力, 车轮 21和环形车轮轨 12起备用的滚 动支撑作用, 此时若风力足够, 也可直接供以发电。 此外, 车轮 21和 环形车轮轨 12也可在旋转盘 2在受不稳定外力作用下的时, 起平衡支 撑调节作用。 此处所述的磁悬浮, 为现有常规磁悬浮技术, 此处不做 赘述。
如图 1-3所示, 本实施例的旋转盘 2为一体化连续的环形盘, 第 二电磁体 22在旋转盘 2的底部绕旋转盘 2的周向等间隔分布, 且相邻 第二电磁体 22的间距与相邻第一电磁体 13的间距相等。 环形形状的 旋转盘 2可使第一电磁体 13时刻以较大的面积与第二电磁体 22接触, 有利于产生较大功率的电源输出, 也利于旋转盘 2得到更加平稳的旋 转支持。
为保持至少有一个兜风罩 23在风力作用下做有效功, 防止兜风罩 23的迎风作用和背风作用抵消, 本实施例的兜风罩 23为奇数个, 并绕 旋转盘 2的周向等间距分布,且各兜风罩 23以旋转盘 2的中轴轴对称。
本领域技术人员可以理解的是电磁感应装置 14也可设置为以感应 线圈或永磁电磁铁的方式与常用发电电路、 元件组成的发电装置。
为进一歩保证旋转盘 2周向转动的平稳、 平衡, 两环形车轮轨 12 与环形基底 11一体成型, 且均为第二永磁磁铁, 即采用永磁磁铁材料 制成; 旋转盘 2的车轮 21外侧向下凸出有对称的护翼 24, 两护翼 24 的内侧面以及旋转盘 2的底面均设有第三永磁磁铁 25, 第三永磁磁铁 25与第二永磁磁铁的相对端极性相斥。 在第二永磁磁铁和第三永磁磁 铁相对端的斥力作用下, 旋转盘 2可得到有效的自身平衡调节, 减少 摩擦损耗。 同时, 两护翼 24也起到了对旋转盘 2的对称的自动平衡调 节作用。
为在如海边、草原上设置的本平面发电机的兜风罩 23得到有效的 迎风推动力, 如图 1所示, 环形铁磁导轨 1的外侧设有一用于聚集外 部风流的聚风漏斗 3, 该聚风漏斗 3具有朝外的大口 31和朝向旋转盘 2顶部的小口 32。 聚风漏斗 3经大口 31聚集外部风流后, 将产生较高 压力的风流经小口 32吹向旋转盘 2顶部的一个兜风罩 23上, 使各个 兜风罩 23—一得到迎风推动力, 减少兜风罩 23的背风风阻。 其中, 小口 32的朝向可正对兜风罩 23的开口 (如图 5所示), 也可与兜风罩 23的开口稍稍偏离倾斜 (如图 1、 图 4所示)。
实施例二
如图 2-3、图 4-5所示为本发明利用磁悬浮系统的平面发电机的实 施例二, 本实施例二与实施例一的不同之处在于:
旋转盘 2为相互独立的奇数个,并绕环形基底 11的周向间隔分布, 每个旋转盘 2的顶部均固定有兜风罩 23。第二电磁体 22分别在各个旋 转盘 2的底部绕环形基底 11的周向等间隔分布,且相邻第二电磁体 22 的间距与相邻第一电磁体 13的间距相等。旋转盘 2周向转动方向上的 前端和后端分别设有第一永磁磁铁 26, 相邻旋转盘 2上两第一永磁磁 铁 26相对端极性相斥。
在第一电磁体 13和第二电磁体 22的磁悬浮力和推动力作用下, 各个旋转盘 2可分别在环形基底 11上周向转动, 而外部风力可一一推 动旋转盘 2, 可使风力得到更加有效的利用, 同时, 第一永磁磁铁 26 的也可防止相邻旋转盘 2相互碰撞。
也可将环形铁磁导轨 1的直径无限扩大,则某一段环形铁磁导轨 1 呈近直线型, 可应用于磁悬浮输送系统中的路轨, 旋转盘 2 则相当于 磁悬浮输送系统中的列车。 在两条路轨之间枕木中间或是中央间隔并 排设置所述的第一电磁体 13 和电磁感应装置 14, 与路轨一样呈直线 型, 第一电磁体 13可以是永磁铁或者是绕线的充电电磁铁; 列车底部 安装所述第二电磁体 22, 借助现有电动列车应付出的应有往前拉动, 与下方的第一电磁体 13而造出电磁性的磨擦,切割磁感应线产生电流, 在第一电磁体 13和第二电磁体 14之间形成变化的电磁场带, 而电磁 感应装置恰好在该处因变化的电磁场而产生电动势进而得到电流的汇 集, 这是另一种实施方式的利用磁悬浮系统的平面发电机, 具体如下: 如图 6所示, 该利用磁悬浮系统的平面发电机包括直线型铁磁导 轨 6和位于该直线型铁磁导轨 6上方的列车(图中未示出), 列车与直 线型铁磁导轨 6配合产生磁悬浮力及推动力; 直线型铁磁导轨 6包括 枕木 4、 由枕木 4向上凸出的两条相互间隔的直线型车轮轨 5, 两直线 型车轮轨 5之间凸出有多个用于产生磁悬浮力的第一电磁体 13, 各第 一电磁体 13沿直线型铁磁导轨 6的长度方向等间隔分布, 且各第一电 磁体 13的顶部均设有用于发电的电磁感应装置 14, 第一电磁体 13和 电磁感应装置 14形成第一直线型发电铁磁导轨; 列车的底部两侧安装 有分别与直线型车轮轨 5滚动配合的车轮, 列车底部两侧车轮之间向 下凸出有直接与第一电磁体 13 产生磁悬浮力及推动力的第二电磁体 22, 第二电磁体 22沿列车的长度方向延伸, 形成第二直线型发电铁磁 导轨, 第一电磁体 13和第二电磁体 22间产生磁力线, 该磁力线穿过 电磁感应装置 14, 形成直线型的发电组件; 列车的顶部固定有喇叭状 的兜风罩, 兜风罩的开口方向与列车的行进方向相反;
兜风罩在外部风力作用下推动列车沿直线型铁磁导轨的长度方向 启动, 车轮与直线型车轮轨 5滚动配合; 此后, 列车在第一电磁体 13 和第二电磁体 22的磁悬浮力和推动力作用下沿直线型铁磁导轨 6的长 度方向移动, 穿过电磁感应装置 14的磁力线发生变化, 从而产生电动 势而发电, 用于回收电能供列车磁悬浮驱动, 列车悬浮于直线型铁磁 导轨 6上方, 车轮与直线型车轮轨 5脱离。
其中, 直线型铁磁导轨 6相当于实施例一所述的环形铁磁导轨 1, 列车相当于实施例二所述的旋转盘 2,枕木 4相当于实施例一所述的环 形基底 11, 该磁悬浮系统的平面发电机的另一种实施例方式的发电原 理与实施例一所述的发电原理相同。
可将上述磁悬浮系统的平面发电机, 辅助性地加设在现有动车、 电动车或地铁的车底,以及在原先的双轨固定在枕木铁路轨中间中央 位置加设一条磁旋浮路轨,安放在枕木双轨中间的第一电磁体、 电磁感 应装置为发电机定子,第二电磁体作为一列转子是安装在每节列车底 部的双车轮或双路轨之中央, 形成路轨式磁悬浮发电系统。 当列车往 前行进时,其安放一系列路轨式磁悬浮发电系统自会在行进中发电,回 馈入列车耗用电力中而令列车省电。 磁旋浮发电系统路轨是不作牵拉 列车往前行进的作用,而是充电造出磁悬浮状态下令列车轻浮减重而 作出减少耗电的作用。简而言之,就是"半磁悬浮半机械能电动力列车, 起用动车的机械刹车系统,辅助有磁悬浮的轻盈浮起作用,更加上磁悬 浮是一系列发电系统在前进中不断有发电优势,是一种的混合动力的 列车,可装设在动车底部,地下铁列车底部, 更可装在传统柴油发动列 车底部,除了令列车平稳轻盈并可发电使用,而且在列车上加设电池作 为电动力外就不用加设另一组发电机了。
上述实施方式仅为本发明的优选实施方式, 不能以此来限定本发 明保护的范围, 本领域的技术人员在本发明的基础上所做的任何非实 质性的变化及替换均属于本发明所要求保护的范围。

Claims

权利要求
1、 利用磁悬浮系统的平面发电机, 其特征在于: 包括环形铁磁导 轨和位于该环形铁磁导轨上方的旋转盘, 所述旋转盘与所述环形铁磁 导轨配合产生磁悬浮力及推动力; 所述环形铁磁导轨包括环形基底、 由环形基底向上凸出的两条相互间隔的环形车轮轨, 两环形车轮轨之 间凸出有多个用于产生磁悬浮力的第一电磁体, 各第一电磁体绕环形 基底的周向等间隔分布, 且各第一电磁体的顶部均设有用于发电的电 磁感应装置; 所述旋转盘的底部两侧安装有分别与环形车轮轨滚动配 合的车轮, 旋转盘底部两侧车轮之间向下凸出有直接与第一电磁体产 生磁悬浮力及推动力的第二电磁体, 第一电磁体和第二电磁体间产生 磁力线, 该磁力线穿过电磁感应装置; 所述旋转盘的顶部固定有喇叭 状的兜风罩, 该兜风罩用于集中引风而作为旋转盘的驱动力, 兜风罩 的开口方向与环形基底的周向相切;
所述兜风罩在外部风力作用下推动旋转盘沿环形基底的周向启 动, 所述车轮与环形车轮轨滚动配合; 此后, 所述旋转盘在第一电磁 体和第二电磁体的磁悬浮力和风对兜风罩的推动力作用下沿环形基底 的周向转动, 穿过电磁感应装置的磁力线发生变化, 从而产生电动势 而发电, 用于回收电能供列车磁悬浮驱动, 所述旋转盘悬浮于环形铁 磁导轨上方, 所述车轮与环形车轮轨脱离。
2、 根据权利要求 1所述的利用磁悬浮系统的平面发电机, 其特征 在于: 所述旋转盘为一体化连续的环形盘, 所述第二电磁体在旋转盘 的底部绕旋转盘的周向等间隔分布, 且相邻第二电磁体的间距与相邻 第一电磁体的间距相等。
3、 根据权利要求 2所述的利用磁悬浮系统的平面发电机, 其特征 在于: 所述兜风罩为奇数个, 并绕旋转盘的周向等间距分布, 且各兜 风罩以旋转盘的中轴轴对称。
4、 根据权利要求 1所述的利用磁悬浮系统的平面发电机, 其特征 在于: 所述旋转盘为相互独立的奇数个, 并绕环形基底的周向间隔分 布, 每个旋转盘的顶部均固定有所述兜风罩。
5、 根据权利要求 4所述的利用磁悬浮系统的平面发电机, 其特征 在于: 所述第二电磁体分别在各个旋转盘的底部绕环形基底的周向等 间隔分布, 且相邻第二电磁体的间距与相邻第一电磁体的间距相等。
6、 根据权利要求 4所述的利用磁悬浮系统的平面发电机, 其特征 在于: 所述旋转盘周向转动方向上的前端和后端分别设有第一永磁磁 铁, 相邻旋转盘上两第一永磁磁铁相对端极性相斥。
7、 根据权利要求 1所述的利用磁悬浮系统的平面发电机, 其特征 在于: 所述电磁感应装置包括双面电磁铁和与该双面电磁铁组成发电 机的发电机组件。
8、根据权利要求 1-7任一项所述的利用磁悬浮系统的平面发电机, 其特征在于: 两所述环形车轮轨与环形基底一体成型, 且均为第二永 磁磁铁; 所述旋转盘的车轮外侧向下凸出有对称的护翼, 两护翼的内 侧面以及旋转盘的底面均设有第三永磁磁铁, 第三永磁磁铁与第二永 磁磁铁的相对端极性相斥。
9、根据权利要求 1-7任一项所述的利用磁悬浮系统的平面发电机, 其特征在于: 所述环形铁磁导轨的外侧设有一用于聚集外部风流的聚 风漏斗, 该聚风漏斗具有朝外的大口和朝向旋转盘顶部的小口。
10、 利用磁悬浮系统的平面发电机, 其特征在于: 包括直线型铁 磁导轨和位于该直线型铁磁导轨上方的列车, 所述列车与所述直线型 铁磁导轨配合产生磁悬浮力及推动力; 所述直线型铁磁导轨包括枕木、 由枕木向上凸出的两条相互间隔的直线型车轮轨, 两直线型车轮轨之 间凸出有多个用于产生磁悬浮力的第一电磁体, 各第一电磁体沿直线 型铁磁导轨的长度方向等间隔分布, 且各第一电磁体的顶部均设有用 于发电的电磁感应装置, 第一电磁体和电磁感应装置形成第一直线型 发电铁磁导轨; 所述列车的底部两侧安装有分别与直线型车轮轨滚动 配合的车轮, 列车底部两侧车轮之间向下凸出有直接与第一电磁体产 生磁悬浮力及推动力的第二电磁体, 第二电磁体沿列车的长度方向延 伸, 形成第二直线型发电铁磁导轨, 第一电磁体和第二电磁体相互对 应且相互之间产生磁力线, 该磁力线穿过电磁感应装置, 形成直线型 的发电组件; 所述列车的顶部固定有喇叭状的兜风罩, 兜风罩的开口 方向与列车的行进方向相反;
所述兜风罩在外部风力作用下推动列车沿直线型铁磁导轨的长度 方向启动, 所述车轮与直线型车轮轨滚动配合; 此后, 所述列车在第 一电磁体和第二电磁体的磁悬浮力和推动力作用下沿直线型铁磁导轨 的长度方向移动, 穿过电磁感应装置的磁力线发生变化, 从而产生电 动势而发电, 用于回收电能供列车磁悬浮驱动, 所述列车悬浮于直线 型铁磁导轨上方, 所述车轮与直线型车轮轨脱离。
PCT/CN2014/079494 2013-12-02 2014-06-09 利用磁悬浮系统的平面发电机 WO2015081677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14867401.3A EP3042799A4 (en) 2013-12-02 2014-06-09 Planar electric generator using magnetic levitation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310629455.5A CN103723053B (zh) 2013-12-02 2013-12-02 利用磁悬浮系统的平面发电机
CN201310629455.5 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015081677A1 true WO2015081677A1 (zh) 2015-06-11

Family

ID=50447442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079494 WO2015081677A1 (zh) 2013-12-02 2014-06-09 利用磁悬浮系统的平面发电机

Country Status (5)

Country Link
US (1) US9278627B2 (zh)
EP (1) EP3042799A4 (zh)
CN (1) CN103723053B (zh)
TW (1) TWI535178B (zh)
WO (1) WO2015081677A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605663B2 (en) 2010-08-24 2017-03-28 Qwtip Llc System and method for separating fluids and creating magnetic fields
CN104023809B (zh) 2011-08-24 2017-09-22 Qwtip有限责任公司 水处理系统及方法
US9469553B2 (en) 2011-08-24 2016-10-18 Qwtip, Llc Retrofit attachments for water treatment systems
WO2013029010A1 (en) 2011-08-24 2013-02-28 Qwtip Llc Water treatment system and method
AR093196A1 (es) 2012-02-28 2015-05-27 Qwtip Llc Sistema y metodo de desalinizacion y/o produccion de gas
WO2013130888A1 (en) * 2012-02-29 2013-09-06 Qwtip Llc Levitation and distribution system and method
MX2015006633A (es) * 2012-12-07 2015-10-14 Kite Gen Res Srl Sistema eolico para convertir energia despazando sobre una via modulos tirados por cometas y proceso para producir energia electrica a traves de dicho sistema.
CN103723053B (zh) * 2013-12-02 2015-10-28 平面发电机发展有限公司 利用磁悬浮系统的平面发电机
CN103778971B (zh) * 2013-12-23 2016-08-17 狼嗥出版社有限公司 一种核聚变炉
WO2017185271A1 (zh) * 2016-04-28 2017-11-02 龚达明 利用永磁力和重力驱动的动力系统
CN107465363B (zh) * 2017-09-12 2020-03-27 梁锡球 改进的利用磁悬浮系统的平面发电机
CN108505454A (zh) * 2018-07-04 2018-09-07 重庆三峡学院 一种桥梁转体施工升降转体组件
CN108677748A (zh) * 2018-07-04 2018-10-19 重庆三峡学院 一种桥梁转体施工助力式下转体座
CN108978498A (zh) * 2018-07-04 2018-12-11 重庆三峡学院 一种桥梁转体施工电磁助力组件
CN108505451A (zh) * 2018-07-04 2018-09-07 重庆三峡学院 一种桥梁转体施工磁助力转体座
CN108505452A (zh) * 2018-07-04 2018-09-07 重庆三峡学院 一种桥梁转体施工助力式上转体座
CN108660943A (zh) * 2018-07-06 2018-10-16 重庆三峡学院 一种桥梁转体施工体系
CN108660945A (zh) * 2018-07-06 2018-10-16 重庆三峡学院 一种桥梁转体施工助力式升降转体系统
CN109889023A (zh) * 2019-04-02 2019-06-14 夏善胜 U型驱动器
CN113037003B (zh) * 2021-04-13 2022-03-11 深圳市泰道精密机电有限公司 一种转矩密度高的弧形无框电机
CN113238278B (zh) * 2021-05-31 2022-03-01 中国工程物理研究院激光聚变研究中心 基于无人机的激光聚变中子活化转移装置
CN113790064A (zh) * 2021-10-15 2021-12-14 四川省交通勘察设计研究院有限公司 一种适用于地铁隧道的多功能联络通道及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721693A (zh) * 2004-07-14 2006-01-18 王伟 超大风叶型风力机
CN1836952A (zh) * 2005-11-04 2006-09-27 沈武云 空气能高速列车
CN102022269A (zh) * 2009-09-11 2011-04-20 武汉孙言明太阳能科技有限公司 新型串联罐状壳体叶轮高速高效风车发电装置
EP2536009A1 (en) * 2010-02-08 2012-12-19 National Wind Energy Co. Ltd. Magnetic levitation supporting structure for vertical shaft disc-type motor
DE102011116690A1 (de) * 2011-10-24 2013-04-25 Volker Osterlitz Ring- oder Scheibengenerator mit integrierter magnetischer Lagerung
CN103723053A (zh) * 2013-12-02 2014-04-16 平面发电机发展有限公司 利用磁悬浮系统的平面发电机

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE142827C (zh) *
BE675213A (zh) * 1965-01-21 1966-05-16
JPS4820215B1 (zh) * 1969-09-11 1973-06-19
FR2135800A5 (zh) * 1971-04-29 1972-12-22 Comp Generale Electricite
JP3349137B2 (ja) * 1999-10-13 2002-11-20 東海旅客鉄道株式会社 車両推進装置
JP4007476B2 (ja) * 2000-04-14 2007-11-14 三菱電機株式会社 車両用交流発電機
IL140105A (en) * 2000-12-05 2005-05-17 Sergei Latyshev Wind-driven power station
JP2005161974A (ja) * 2003-12-02 2005-06-23 Tokyu Construction Co Ltd 鉄道用リニアモータ台車及び二次側導体
US20060208603A1 (en) * 2005-03-18 2006-09-21 Rt Patent Company, Inc. Rotating electric machine with variable length air gap
CN101192463B (zh) * 2006-11-29 2011-06-22 上海磁浮交通工程技术研究中心 应用于电磁悬浮式高速磁浮列车的高温超导磁体
US8803354B2 (en) * 2006-12-20 2014-08-12 Unimodal Systems Llc Modular electric generator for variable speed turbines
ITTO20070233A1 (it) * 2007-03-30 2007-06-29 Massimo Ippolito Sistema eolico per la conversione di energia mediante la traslazione su rotaia di moduli trainati da profili alari di potenza e procedimento di produzione di energia elettrica mediante tale sistema.
WO2009019779A1 (ja) * 2007-08-09 2009-02-12 Mitsubishi Electric Corporation 車両用ブラシレス交流発電機
EP2078853A1 (en) * 2008-01-09 2009-07-15 Ugo Nevi Machine transforming wind energy in electric energy
DE102008024414A1 (de) * 2008-05-16 2009-11-19 Nölting, Bengt, Dipl.-Phys. Dr. Drachen-Kraftwerk
EP2564063A4 (en) * 2010-04-29 2014-09-17 Thomas Patrick Bryson HYBRID DEVICE OF WIND AND SOLAR ENERGY
CN102011707B (zh) * 2010-10-19 2013-03-06 孔和平 大型磁悬浮圆轨道风力发电机
US20120148403A1 (en) * 2010-12-10 2012-06-14 Leader International Corporation Counter-rotating vertical axis wind turbine assembly
WO2012116492A1 (zh) * 2011-03-02 2012-09-07 深圳市风水轮风电科技有限公司 磁悬浮轴定位翼型风帆风力发电机
DE102012208549A1 (de) * 2012-05-22 2013-11-28 Wobben Properties Gmbh Optimierter Synchrongenerator einer getriebelosen Windenergieanlage
DE102012208547A1 (de) * 2012-05-22 2013-11-28 Wobben Properties Gmbh Synchrongenerator einer getriebelosen Windenergieanlage
DE102012208550A1 (de) * 2012-05-22 2013-11-28 Wobben Properties Gmbh Generator einer getriebelosen Windenergieanlage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721693A (zh) * 2004-07-14 2006-01-18 王伟 超大风叶型风力机
CN1836952A (zh) * 2005-11-04 2006-09-27 沈武云 空气能高速列车
CN102022269A (zh) * 2009-09-11 2011-04-20 武汉孙言明太阳能科技有限公司 新型串联罐状壳体叶轮高速高效风车发电装置
EP2536009A1 (en) * 2010-02-08 2012-12-19 National Wind Energy Co. Ltd. Magnetic levitation supporting structure for vertical shaft disc-type motor
DE102011116690A1 (de) * 2011-10-24 2013-04-25 Volker Osterlitz Ring- oder Scheibengenerator mit integrierter magnetischer Lagerung
CN103723053A (zh) * 2013-12-02 2014-04-16 平面发电机发展有限公司 利用磁悬浮系统的平面发电机

Also Published As

Publication number Publication date
EP3042799A1 (en) 2016-07-13
EP3042799A4 (en) 2017-09-20
CN103723053A (zh) 2014-04-16
CN103723053B (zh) 2015-10-28
US9278627B2 (en) 2016-03-08
US20150151649A1 (en) 2015-06-04
TWI535178B (zh) 2016-05-21
TW201524111A (zh) 2015-06-16

Similar Documents

Publication Publication Date Title
TWI535178B (zh) Plane generator using magnetic levitation system
CN101761454B (zh) 一种垂直轴磁悬浮风力发电机
US20110080004A1 (en) Renewable energy generation eco system
US20090032350A1 (en) System and method for capturing energy from a railcar
JPH04504705A (ja) 車輪式車両の独立駆動式車輪
JP2012516128A (ja) 発電効率と回転力が向上した発電装置
CN107139948A (zh) 一种高速列车运行系统及其运行方法
US20130342085A1 (en) Electric Generator for Railroad Train
CN101612994A (zh) 一种磁悬浮旋翼式飞碟
CN201535230U (zh) 一种风力发电机
CN114070129B (zh) 一种转动驱动的复合能量俘获装置
CN206914325U (zh) 一种高速列车运行系统
CN103967707A (zh) 10mw级座台式感应子风力发电机系统
WO2014015348A1 (en) Wind power station
CN106194592A (zh) 一种气悬浮风力发电机
CN111086395A (zh) 中低速磁浮列车牵引装置与中低速磁浮列车
CN204984729U (zh) 微风启动可变组风力发电机系统
WO2016153077A1 (ja) 発電装置用の回転装置
CN204827810U (zh) 筒型内封闭式风叶轮惯性辅助飞轮体
CN213072412U (zh) 一种基于磁作用传动的电动旋转装置
CN105422392A (zh) 筒型内封闭式风叶轮惯性辅助飞轮体
TWM452533U (zh) 中空式發動發電裝置
CN201747528U (zh) 风力发电装置
CN202978635U (zh) 车用的非磁性转子内外定子发电结构
CN102358424A (zh) 一种飞碟飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867401

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014867401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867401

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE