WO2015081516A1 - 一种调节江河湖水位的方法和水利系统 - Google Patents

一种调节江河湖水位的方法和水利系统 Download PDF

Info

Publication number
WO2015081516A1
WO2015081516A1 PCT/CN2013/088523 CN2013088523W WO2015081516A1 WO 2015081516 A1 WO2015081516 A1 WO 2015081516A1 CN 2013088523 W CN2013088523 W CN 2013088523W WO 2015081516 A1 WO2015081516 A1 WO 2015081516A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
river
reservoir
lake
water flow
Prior art date
Application number
PCT/CN2013/088523
Other languages
English (en)
French (fr)
Inventor
揭保如
揭建刚
何大欣
周双喜
李珏
付洁
陶武金
Original Assignee
江西省丰和营造集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西省丰和营造集团有限公司 filed Critical 江西省丰和营造集团有限公司
Priority to CN201711378572.3A priority Critical patent/CN107964917B/zh
Priority to PCT/CN2013/088523 priority patent/WO2015081516A1/zh
Priority to CN201380079603.9A priority patent/CN105531424A/zh
Priority to US15/039,757 priority patent/US9915048B2/en
Publication of WO2015081516A1 publication Critical patent/WO2015081516A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/003Mechanically induced gas or liquid streams in seas, lakes or water-courses for forming weirs or breakwaters; making or keeping water surfaces free from ice, aerating or circulating water, e.g. screens of air-bubbles against sludge formation or salt water entry, pump-assisted water circulation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to the field of water conservancy construction, in particular to a non-blocking type water conservancy system.
  • Water is one of the indispensable resources for human survival. Scientific and effective regulation of water resources is a necessary way to benefit civilization. For thousands of years, civilization has devoted endless efforts and life to the use of water resources. The flood of floods has taken away countless precious lives and property. After decades of efforts, the transformation of the two major rivers and lakes system in the north and the south has achieved significant results. The Yangtze River Three Gorges River closure and the Yellow River Xiaolangdi interception are all examples of success.
  • the existing intercepting water conservancy project can not only solve the flood control problems in the middle and lower reaches, but also intensify the upstream flood disasters, causing the downstream drought, and due to the destruction of the upstream vegetation, a large amount of sedimentation is caused, which seriously hinders the development of shipping. It has caused a large number of immigrants and increased the burden on the government and the people. The greatest harm is that the ecosystem is seriously damaged, resulting in the imbalance of aquatic living environment. Over time, some aquatic organisms will be on the verge of extinction, and even induce earthquakes and climate disorder. There are also major security risks in combat readiness. Once a war breaks out in the future, the cities and villages around the reservoir will be destroyed.
  • the present invention solves the technical problem of adjusting the water level of the rivers and lakes without intercepting the rivers and lakes.
  • the technical solution of the present invention provides a non-blocking type water conservancy system, which can adjust the water level of rivers and lakes during drought and flooding without intercepting rivers and lakes.
  • the location of the non-cut-off system should be selected in the relatively low-occupancy area of the lower reaches of the city, and the rivers and lakes with wide water surface and low-lying non-farm grain-producing areas on the edge of the river, according to the local hydrological data, study the maximum rainfall and dryness in a hundred years.
  • the water storage volume of the non-cut-off water conservancy system is planned, so that it can effectively regulate water resources.
  • water is stored in the reservoir, and when it is dry, the water is discharged.
  • the large-capacity reservoir can also design hydropower.
  • the system, the reservoir dam is the water and land traffic fortress, and can form a good place for tourism to recuperate.
  • the invention provides A method for regulating the water level of rivers and lakes, adopting a non-cutting manner to establish a water storage system on one side of the river and the river, and when the water level of the river and the river exceeds the warning water level, the river water enters the water storage system, reducing the The water level of the rivers and lakes may slow down the rising speed of the rivers and lakes; when the water level of the rivers and lakes is too low, the water in the water storage system can be replenished into the rivers and lakes, causing the water level to rise or slow down.
  • the speed of the water level in the rivers and lakes is described.
  • a first water flow channel is connected to one side of the river bank to connect the river and the lake and the water storage system;
  • a second water flow channel is disposed downstream of the first water flow channel to communicate with the river and the water storage system.
  • a sluice is provided on the first water flow channel and the second water flow channel.
  • a water gate is provided at the water inlet of the first water flow channel; and a water gate is provided at the water inlet of the second water flow channel.
  • the present invention provides a water conservancy system, wherein the water conservancy system is constructed on a side of a river and water channel in a non-blocking manner, the water conservancy system including a water storage system and a first water flow channel, The water storage system is connected to the river water channel through the first water flow channel.
  • the water system further includes a second water flow channel disposed downstream of the first water flow channel to communicate the water storage system and the river water channel.
  • the water storage system includes a first sedimentation reservoir and a storage reservoir, and the first sedimentation reservoir and the reservoir are connected by a water flow channel, and the first water flow channel is connected to the first sedimentation reservoir and the river and lake water channel
  • the second water flow passage is connected to the reservoir and the river and lake water channel.
  • the water storage system further includes a second sedimentation reservoir, wherein the second sedimentation reservoir is respectively connected to the first sedimentation reservoir and the storage reservoir, and the river water flows into the first sedimentation reservoir through the first water flow channel, and is performed. Precipitating, then entering the second sedimentation reservoir and re-precipitating into the reservoir, the first water flow channel communicating with the first sedimentation reservoir and the river and lake water channel, and the second water flow channel is connected to the storage Reservoir and the rivers and lakes waterways.
  • the dam of the water conservancy system is a stepped arc-shaped slope protection structure
  • the height of the dam should exceed the highest water level in the flood season, and the actual height can be set according to the geographical location of the water storage system and the expected effect; preferably, the water system
  • the dam on one side of the river and river channel is a raft structure, and the dam on the other side of the water system is a schist structure.
  • the first water flow channel is disposed between the first sedimentation reservoir and the river water channel
  • the water inlet of the first water flow channel is provided with a partition net for preventing floating debris from entering, and a regulating water gate is arranged at the water inlet for regulating the water entering the river the first
  • the sedimentation reservoir preferably, the bottom of the first water flow channel is flush with the annual water level, and the top of the first water flow channel is level with the highest water level in the 100-year flood season.
  • the first precipitation reservoir structure described in the present invention may be a conventional structure in the art.
  • a truss structure is disposed inside the first sedimentation reservoir, and the truss structure is erected on the dams on both sides of the first sedimentation reservoir.
  • the truss structure is a truss member or a steel member.
  • the truss structure carries the flood and water pressure in the rivers, rivers and lakes, and acts as a force. When the flood returns to the natural water level, it also carries the reverse water pressure of the sediment reservoir and the reservoir, which plays a significant role in the stability of the dam. .
  • a plurality of sets of automatic overflow channels are provided to connect the first sedimentation reservoir and the second sedimentation reservoir.
  • at least four sets of automatic overflow channels are provided, which are respectively a first group of automatic overflow channels, a second group of automatic overflow channels, a third group of automatic overflow channels and a fourth group of automatic overflow channels, and isolation is provided at the water inlets of the overflow channels.
  • the first group of automatic overflow channels are equal to the 100-year dry water level
  • the second group of automatic overflow channels are equal to the annual average water level
  • the third group of automatic overflow channels are equal to the flood season warning level
  • Flat The automatic overflow channels of each group are arranged in parallel on the same horizontal plane, and the number of automatic overflow channels is not limited.
  • the total area of the automatic overflow channels in the first automatic overflow channel is smaller than that in the other groups.
  • a drainage machine may be provided to draw the flood of the first sedimentation tank over the warning line into the second sedimentation reservoir. .
  • the second precipitation reservoir structure described in the present invention may be a conventional structure in the art.
  • a plurality of sets of automatic overflow passages are provided to connect the second sedimentation reservoir and the storage reservoir.
  • at least four sets of automatic overflow channels are provided, which are a first group of automatic overflow channels, a second group of automatic overflow channels, a third group of automatic overflow channels and a fourth group of automatic overflow channels; wherein the first group of automatic overflow channels and centuries The dry water level is flat, the second automatic overflow channel is equal to the annual average water level, the third automatic overflow channel is equal to the warning water level in the flood season, and the fourth automatic overflow channel is the same as the highest water level in the 100-year flood season.
  • the automatic overflow channels of each group are arranged in parallel on the same horizontal plane, and the number of automatic overflow channels is not limited.
  • the total area of the automatic overflow channels in the first automatic overflow channel is smaller than that in the other groups.
  • at least at the water inlet of the fourth group of automatic overflow channels Isolation network.
  • the automatic overflow channel of the second sedimentation tank automatically flows the water of the over-warning line into the storage reservoir.
  • the power generation facility can be installed in the water flow channel connecting the storage reservoir of the second sedimentation reservoir, the second sedimentation The water in the reservoir flows into the reservoir after power generation to make full use of water resources to generate recycling benefits.
  • the reservoir structure in the present invention may be a conventional structure in the art.
  • the second water flow channel is disposed on the dam between the reservoir and the river channel, and the number is plural;
  • the water inlet of the second water flow channel is provided with a regulating sluice for regulating the water in the reservoir to enter the river and lake water channel;
  • the bottom of the second water flow channel is equal to the hundred years of dry water level,
  • the top of the second water flow channel is at the same level as the highest water level in the 100-year flood season.
  • a hydroelectric power generation system or an irrigation system is provided in the second water flow passage.
  • a power-dependent drainage system can also be provided to assist in the ingress and egress of water.
  • the main function of the first sedimentation tank is to introduce the flood of the flood warning line in the flood season into the reservoir, and to self-precipitate.
  • the water level of the first sedimentation reservoir reaches a certain height, the water will be discharged into the second sedimentation reservoir by itself.
  • the drainage machine can pump the flood of the first sedimentation area over the warning line into the second sedimentation bank.
  • the water level of the second sedimentation reservoir reaches a certain height, it will be discharged into the reservoir by itself.
  • the water volume of the reservoir is large, it can be drained or generated during the drought period, which plays a role in regulating drought and flood.
  • the water in the river and lake can be introduced into the first sedimentation reservoir by using the regulating water gate of the first water flow channel, and then the water in the first sedimentation reservoir is introduced into the second sedimentation reservoir through the automatic overflow channel.
  • the water in the second sedimentation reservoir enters the reservoir through the automatic overflow channel.
  • the water in the reservoir can be replenished to the rivers and lakes through the second water channel to adjust the water level. It can be used to generate electricity when it is discharged, and the water in the reservoir can be used for irrigation and domestic water.
  • the water conservancy system described in the present invention is constructed in a relatively evacuated area of the lower reaches of the city, and the river surface of the river and the river is relatively wide, and the non-farm grain-producing areas with lower banks are lower.
  • study the maximum rainfall in a hundred years and the natural environment in the dry season plan the volume of water reserves in the non-cutting water system, so that it can effectively regulate water resources, and store water in the flood season.
  • the system discharges water during drought.
  • the present invention provides a concrete prefabricated assembly comprising a plurality of individual Concrete prefabricated members, each of which is provided with a T-shaped splicing groove, and each member is connected to each other through a first member (H-type splicing unit). And each prefabricated member has a honeycomb hole and a lifting hole or a lifting ring, and the cement slurry is poured into the honeycomb hole to improve the firmness of the preform.
  • a concrete prefabricated assembly provided by the present invention includes a first member, a second member, a third member, a fourth member and a fifth member; wherein the first member
  • the cylindrical structure has an H-shaped cross section and is used for splicing between other members; the left and right sides of the second member are rectangular trapezoids, and the other surfaces are rectangular, and are disposed on the left and right sides in the height direction respectively.
  • the third member has a rectangular parallelepiped structure, and is disposed at both ends along the height direction of the rectangular body to cooperate with the first member.
  • the splicing groove; the fourth member has a rectangular parallelepiped structure as a whole, and the right and left side faces and the rear side face are disposed with the first member in the height direction of the rectangular parallelepiped.
  • the splicing groove; the fifth member has a rectangular parallelepiped structure as a whole, and the left and right sides are provided with T-shaped splicing grooves which are matched with the first member along the height direction of the rectangular parallelepiped, and the left and right sides are arranged Honeycomb holes.
  • the concrete prefabricated assembly further includes a sixth member, wherein the sixth member is a rectangular rectangular rib and has a rectangular parallelepiped structure as a whole.
  • grooves are provided on upper and lower sides of the second member, the third member, the fourth member, and the fifth member, and the sixth member is placed in the groove for assembly of upper and lower layers during assembly.
  • the connection between the two increases the stability of the connection between the upper and lower layers.
  • two sets of T-shaped splicing grooves are arranged on the second member, wherein the first group T The splicing groove is disposed to communicate with the upper bottom surface and the lower bottom surface of the second member, and one of the left and right side surfaces is disposed; the second group of T-shaped splicing grooves are disposed to communicate with the front side slope and the lower bottom surface of the second member, and the left and right sides are respectively Set one.
  • the water side of the dam surface is defined as the front side, and the back water side is the rear side, and the corresponding water side of each member is the front side, and the back water side is the rear side.
  • the invention provides a pile, beam, column and gravity type raft protection assembly prefabricated in the factory, and provides the invention
  • the non-cut-off water conservancy system is hoisted at the planned location and is not affected by the weather. It can effectively guarantee the quality and construction period.
  • the T-shaped grooving groove is designed around the assembled single wall of the berm assembly. After the two components are installed and positioned, Available type H The splicing unit is inserted into the nip groove, and then fixed with fine stone concrete, and each block is continuously installed to form a dam.
  • Figure 1 is a schematic plan view of a preferred embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line I-I of Figure 1.
  • Figure 3 is a cross-sectional view taken along line II-II of Figure 1
  • Figure 4 is a schematic view of a water flow channel in accordance with a preferred embodiment of the present invention.
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • Figure 6 is a schematic view of a second water flow channel of a preferred embodiment of the present invention.
  • Figure 7 is a partial plan view of a water conservancy system in a preferred embodiment of the present invention.
  • Figure 8 is a schematic view of a first member of a preferred embodiment of the present invention.
  • Figure 9 is a schematic view of a second member of a preferred embodiment of the present invention.
  • Figure 10 is a schematic view of a third member of a preferred embodiment of the present invention.
  • Figure 11 is a schematic view of a fourth member of a preferred embodiment of the present invention.
  • Figure 12 is a schematic view of a fifth member of a preferred embodiment of the present invention.
  • Figure 13 is a schematic view of a sixth member of a preferred embodiment of the present invention.
  • Figure 14 is a schematic view of a curved third member of a preferred embodiment of the present invention.
  • Figure 15 is a partial schematic view of a concrete wall formed by assembling and assembling various components of a preferred embodiment of the present invention.
  • the present invention provides a water conservancy system, which is constructed on the side of a river channel of a river, including a water storage system, in a non-blocking manner. And the first water flow channel 21, the water system is connected to the river water channel 01 through the first water flow channel 21.
  • the water system also includes a second water flow passage 22 and a second water flow passage 22 It is disposed downstream of the first water flow channel 21 and communicates with the water storage system 1 and the river and river water channel 01.
  • the water storage system 1 includes a first sedimentation reservoir 11 , a second sedimentation reservoir 12 and a reservoir 13 , and the river water passes through the first water flow channel 21 Entering the first sedimentation bank 11 , performing preliminary sedimentation, and then entering the second sedimentation reservoir 12 and re-precipitating into the reservoir 13 , the first water flow channel 21 is connected to the first sedimentation reservoir 11 and the river and lake water channel 01
  • the second water flow channel 22 connects the reservoir 13 and the river and river water channel 01 .
  • the first sedimentation reservoir 11 , the second sedimentation reservoir 12 and the storage reservoir are respectively arranged. 13 . Set up the power system and management area upstream of the water conservancy system.
  • the dam 3 of the water conservancy system is a stepped curved slope protection structure.
  • the dam of the waterway system on the side of the river channel is a raft structure
  • the dam 32 on the other side can be a schist structure to reduce
  • the construction cost can be a stone structure on both sides.
  • the middle portion 33 of the dam is composed of a double-faced wall 330.
  • the height of the wall 330 exceeds the highest water level in the 100-year flood season; the top of the middle portion 33 is a road, including the lane 331 and the sidewalk 332, and the side of the sidewalk 332 is provided with a guard rail 333.
  • the concrete pile 34 is laid according to the design drawing; the concrete whole platform 35 is cleaned and leveled, and the column base groove 351 is reserved during the pouring; the lifting gravity column 36 is placed in the base groove 351 and filled
  • the concrete is reinforced; then the dam walls 31 and 32 on both sides and the stern wall 330 in the middle are successively constructed, and the concrete wall or the concrete prefabricated parts may be built between the stern walls 330, or may be filled with sand.
  • the first water flow channel 21 is disposed between the first sedimentation reservoir 11 and the river and river water channel 01.
  • the number of the dam is plural; the water inlet of the first water flow channel 21 is provided with a separating net for preventing floating debris from entering, and a regulating sluice 211 is arranged at the water inlet for regulating the water of the river and the lake to enter the first sedimentation bank 11;
  • the bottom of the first water flow channel 21 is flat with the annual water level, and the top of the first water flow channel 21 is level with the highest water level in the 100-year flood season.
  • a drainage machine 111 is provided in the first sedimentation reservoir 11 for assisting the first sedimentation reservoir 11 Drains to the second sedimentation reservoir 12.
  • a steel truss 112 is provided above and inside the first sedimentation reservoir 11.
  • a plurality of sets of automatic overflow passages are provided on the dam between the first sedimentation reservoir 11 and the second sedimentation reservoir 12 .
  • four sets of automatic overflow channels are provided, which are a first group of automatic overflow channels 231, a second group of automatic overflow channels 232, a third group of automatic overflow channels 233, and a fourth group of automatic overflow channels 234.
  • a separation net 235 is provided at the water inlet of each overflow channel; wherein the first group of automatic overflow channels 231 is level with the 100-year dry water level, and the second group of automatic overflow channels 232 Same as the average annual water level, the third automatic overflow channel 233 is the same as the warning water level in the flood season, and the fourth automatic overflow channel 234 It is the same as the highest water level in the 100-year flood season.
  • the automatic overflow channels of each group are arranged in parallel on the same horizontal plane.
  • the area or number of automatic overflow channels of each group is determined by design.
  • the area or number of automatic overflow channels in the first group of automatic overflow channels is less than the automatic overflow channels in other groups. The number.
  • the automatic overflow passage 23 provided on the dam between the second sedimentation tank 12 is the same.
  • An overflow passage having the same structure as that of the above-described automatic overflow passage 23 may be provided on the dam.
  • the second water flow channel 22 is disposed on the dam between the reservoir 13 and the river and river channel 01, and the number is plural;
  • the water inlet of the second water flow channel 22 is provided with a regulating water gate 221 for regulating the water in the reservoir 13 to enter the river and lake water channel 01;
  • the bottom of the second water flow channel 22 is level with the 100-year dry water level, and the top of the second water flow channel 22 is level with the highest water level in the 100-year flood season.
  • a hydroelectric power system or an irrigation system is provided in the second water flow channel.
  • a pumping machine can be installed between the second sedimentation reservoir 12 and the reservoir 13 and between the reservoir 13 and the river and river channel 01 to assist in the ingress and egress of water.
  • the main function of the first sedimentation reservoir 11 is to introduce the flood of the flood warning line in the flood season into the reservoir to make it self-precipitate.
  • the water level of the first sedimentation reservoir 11 reaches a certain design height, part of the water will be discharged into the second sedimentation reservoir 12 by itself.
  • the water level exceeds the set height Make full use of the drainage machinery 111, and draw the flood of the super-warning line in the first sedimentation area into the second sedimentation bank.
  • the water level of the second sedimentation reservoir 12 reaches a certain design height, part of the water will be discharged into the storage reservoir 13 by itself, or a drainage machine may be arranged in the second sedimentation reservoir 12 when the water level exceeds the set height.
  • the flood in the second sedimentation area over the warning line is pumped into the reservoir.
  • the water volume of the reservoir is large, it can be drained or generated during the drought period, which plays a role in regulating drought and flood.
  • the realization manner is that when the water level exceeds the flood water level line, the regulating sluice 211 that opens the first water flow channel 21 introduces the water in the river and lake into the first sedimentation bank 11, and then the first through the automatic overflow channel and/or the pumping machine.
  • the water in the sedimentation tank 11 is introduced into the second sedimentation reservoir 12, and the water in the second sedimentation reservoir 12 enters the reservoir 13 through the automatic overflow passage.
  • the water in the reservoir 13 can be replenished to the rivers and lakes through the second water flow passage 22 to adjust the water level.
  • Water can be generated by water when discharged, and the water in the reservoir 13 can be used for irrigation and domestic water by two precipitations.
  • a stern wall 330 perpendicular to the dam can be constructed to divide the entire dam into a plurality of zones. Blocks can significantly increase the strength of the dam.
  • the water conservancy system described in the present invention is constructed in a relatively evacuated area of the lower reaches of the city, and the river surface of the river and the river is relatively wide, and the non-farm grain-producing areas with lower banks are lower.
  • This embodiment provides a concrete prefabricated assembly comprising a plurality of individual concrete prefabricated components, each of which is reserved for T The type of splicing groove, each member is connected to each other through the first member 41 (H-type splicing unit), And each prefabricated member has a honeycomb hole and a lifting hole or a lifting ring, and the cement slurry is poured into the honeycomb hole to improve the firmness of the preform.
  • the concrete prefabricated assembly in this embodiment The first member 41, the second member 42, the third member 43, the fourth member 44, and the fifth member 45 are included.
  • the first member 41 is an H-shaped splicing single body structure, and has a H-shaped cross section, and is used for splicing between other members, and each surface is provided. Honeycomb hole with a lifting ring for easy lifting.
  • the second member 42 In order to use as the slope protection unit structure of the bottom layer of the dam, the left side and the right side are right-angled trapezoids, and the other sides are rectangular.
  • the upper side of the right-angled trapezoid is 1/3-1/2 of the length of the lower side, and is set on the left and right sides respectively.
  • the T-shaped splicing groove with the matching type of the splicing unit is provided with a honeycomb hole on each side except the front side slant surface, and a sling ring is arranged on the front side slope surface and the upper bottom surface.
  • Two sets of T-shaped splicing grooves are arranged on the second member, wherein the first group T The splicing groove is disposed to communicate with the upper bottom surface and the lower bottom surface of the second member, and one of the left and right side surfaces is disposed; the second group of T-shaped splicing grooves are disposed to communicate with the front side slope and the lower bottom surface of the second member, and the left and right sides are respectively Set one.
  • Second member 42 is used as the slope protection unit structure for the bottom layer of the dam, used as the foundation of the dam wall, as the foundation of the dam wall, assembled with the third member 43 the top beam to support and stabilize the dam. .
  • the third member 43 is a single structure of the top beam and is mounted on the second member 42. Above, the whole is a rectangular parallelepiped structure, and T-shaped splicing grooves are provided at the left and right ends. Mainly subject to bending moments and shear forces.
  • the fourth member 44 is a monolithic structure of the assembled gravity column, and has a monolithic structure, and the left and right sides and the rear side are arranged in the up and down direction.
  • the T-shaped splicing groove is assembled with the fifth member 45 and used at the joint of the stern wall to increase the stability of the dam.
  • the fifth member 45 is a fabricated single wall structure, and has a rectangular parallelepiped structure as a whole, and the left and right sides are provided with T in the up and down direction.
  • the type of splicing groove is provided with a honeycomb hole on the left and right sides.
  • the yoke portion of the first member 41 having the H-type splicing unit structure is 30 mm smaller than the length of the T-shaped splicing groove of the other members to facilitate assembly.
  • the concrete prefabricated assembly further includes a sixth member 46, as shown in Fig. 13, the sixth member 46.
  • the sixth member 46 is a rectangular rib of concrete and has a rectangular parallelepiped structure as a whole. Grooves are provided on the upper and lower sides of the second member 42, the third member 43, the fourth member 44, and the fifth member 45, the groove depth being about the sixth member 46 Half of the height, the sixth member 46 is placed in the groove for assembly between the upper and lower layers during assembly, increasing the stability of the connection between the upper and lower layers.
  • the third member 43 of the concrete prefabricated assembly may be curved, as shown in Figure 14, Used on the river bank as an arc.
  • the inner arc radius of the curved third member is half the pitch of the fourth member 44 connecting the ends of the curved third member.
  • the sixth member may also be curved.
  • the arc-shaped sixth member is placed in the groove of the curved third member for the connection between the upper and lower layers, and the connection stability of the upper and lower layers is increased.
  • a part of the crucible wall formed by assembling and assembling the respective members in the present embodiment As shown in Fig. 15, a part of the crucible wall formed by assembling and assembling the respective members in the present embodiment.
  • the water side of the dam surface is defined as the front side, and the back water side is the rear side, and the corresponding water side of each member is the front side, and the back water side is the rear side.
  • the invention provides a pile, beam, column and gravity type raft protection assembly prefabricated in the factory, and provides the invention
  • the non-cut-off water conservancy system is hoisted at the planned location and is not affected by the weather. It can effectively guarantee the quality and construction period.
  • the T-shaped grooving groove is designed around the assembled single wall of the berm assembly. After the two components are installed and positioned, Available type H The splicing unit is inserted into the nip groove, and then fixed with fine stone concrete, and each block is continuously installed to form a dam.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Revetment (AREA)
  • Sewage (AREA)

Abstract

一种调节江河湖水位的方法和水利系统,其中,调节江河湖水位的方法是采用非截流的方式,在江河湖的一侧建立蓄水体系(1),当江河湖水位超过警戒水位时,江河湖水进入所述蓄水体系(1)中,当江河湖水位过低时,所述蓄水体系(1)中的蓄水补入江河湖中;水利系统是采用非截流方式,建造在江河湖水道(01)的一侧,包括蓄水体系(1)和第一水流通道(21),蓄水体系(1)通过第一水流通道(21)与所述江河湖水道(01)连通;该调节江河湖水位的方法和水利系统,在不截流江河湖的情况下,实现了在旱涝时调节江河湖水位,有效地调控了水资源。

Description

一种水利系统
技术领域
本发明涉及水利建设领域,尤其涉及一种非截流型的水利系统。
背景技术
水是人类赖以生存不可缺乏的资源之一,科学有效地调控水资源是造福人类的必要途径。千百年来,人类为利用水资源曾付出无尽的心血和生命,洪水的泛滥夺走了无数宝贵的生命与财产。经过数十年的努力,南北二大江河湖体系的改造已取得重大成果,长江三峡大江截流、黄河小浪底截流,都是成功的典范。
现有截流型水利枢纽不仅不能解决中下游的防洪问题,反而还会加剧上游的洪水灾害,造成下游的干旱,并且由于上游植被的破坏,造成大量的泥沙淤积,严重阻碍航运的发展,同时造成大量的移民,增加政府和人民的负担,最大危害是严重破坏了生态系统,造成水生物生存环境失调,久而久之,部分水生物将濒临灭绝,甚至诱发地震、气候的无序变幻。在战备上也存在重大安全隐患,一旦未来发生战争,水库周边城市、村庄将毁于一旦。
为了更好地利用淡水资源,研究一种非截流型水利系统,有着十分重要的社会与环境意义。
发明内容
有鉴于现有技术中截流型水利系统的缺陷,本发明所要解决的是在不对江河湖进行截流的情况下实现对江河湖的水位进行调节这一技术问题。
为实现上述目的,本发明的技术方案为提供一种非截流型水利系统,在不截流江河湖的情况下,实现在旱涝时调节江河湖水位。非截流型系统的选址宜选择在城市下游人口相对疏散区,且江河湖水面较宽,边岸较低洼的非农田产粮地域,根据当地水文资料,研究百年一遇的最大降雨量与枯水时期自然环境,规划制定非截流型水利系统的水储量库容积,使其能有效地调控水资源,洪汛期将水蓄入库内,旱时将水排出,大容量水库还可设计水力发电系统,储库堤坝即是水陆交通要塞,又能形成旅游休养生息的好去处。
一方面本发明提供了 一种调节江河湖水位的方法,采用非截流的方式,在江河湖的一侧建立蓄水体系,当所述江河湖水位超过警戒水位时,江河湖水进入所述蓄水体系中,降低所述江河湖水位或减缓所述江河湖水位的上涨速度;当所述江河湖水位过低时,所述蓄水体系中的蓄水能够补入所述江河湖中,使其水位升高或减缓所述江河湖水位的降低速度。
进一步地,在所述江河湖的一侧堤岸设置第一水流通道连通所述江河湖和所述蓄水体系;
进一步地,在所述第一水流通道的下游设置第二水流通道连通所述江河湖和所述蓄水体系。
进一步地,在所述第一水流通道和所述第二水流通道上设有水闸。优选地,在所述第一水流通道的进水口设有水闸;在所述第二水流通道的进水口设有水闸。
另一方面,本发明提供了一种水利系统,其中,所述水利系统采用非截流的方式,建造在江河湖水道的一侧,所述水利系统包括蓄水体系和第一水流通道,所述蓄水体系通过第一水流通道与所述江河湖水道连通。
进一步地,所述水利系统还包括第二水流通道,所述第二水流通道设置于所述第一水流通道的下游,连通所述蓄水体系和所述江河湖水道。
进一步地,所述蓄水体系包括第一沉淀库和蓄水库,所述第一沉淀库和所述蓄水库通过水流通道连通,所述第一水流通道连通第一沉淀库和江河湖水道,所述第二水流通道连通蓄水库和江河湖水道。
进一步地,所述蓄水体系还包括第二沉淀库,所述第二沉淀库分别连通所述第一沉淀库和所述蓄水库,江河湖水通过第一水流通道进入第一沉淀库,进行初步沉淀,然后进入第二沉淀库经再次沉淀后进入所述蓄水库,所述第一水流通道连通所述第一沉淀库和所述江河湖水道,所述第二水流通道连通所述蓄水库和所述江河湖水道。
进一步地,所述水利系统的堤坝为阶梯弧形砼护坡结构,所述堤坝高度应超出百年汛期最高水位,实际高度可以根据蓄水体系地理位置及预期效果设定;优选地,所述水利系统江河湖水道一侧堤坝为砼结构,所述水利系统另一侧堤坝为片石结构。
进一步地,所述第一水流通道设置于所述第一 沉淀库和所述江河湖水道之间的 堤坝上,数量为多个;优选地,所述第一水流通道的进水口设置隔离网用于阻止漂浮杂物进入,并在所述进水口设置一调控水闸,用于调控江河湖水进入所述第一 沉淀库;优选地,所述 第一水流通道底部与常年水位持平, 所述 第一水流通道顶部与百年汛期最高水位持平 。
本发明中所述第一沉淀库结构可以为本领域中的常规结构。优选地,在第一沉淀库内部设置桁架结构,所述桁架结构架设在所述第一沉淀库的两侧堤坝上。所述桁架结构为砼构件或钢构件。桁架结构承载着江、河、湖中洪水冲击与水压力,起一个力的传递作用,当洪水退回自然水位,又承载着沉淀库与蓄水库的反向水压,对堤坝起重大稳定作用。
进一步地,在所述第一沉淀库和所述第二沉淀库之间的堤坝上,设置多组自动溢水通道,以连通第一沉淀库和所述第二沉淀库。优选地,至少设置四组自动溢水通道,分别为第一组自动溢水通道、第二组自动溢水通道、第三组自动溢水通道和第四组自动溢水通道,在各溢水通道的进水口设置隔离网;其中第一组自动溢水通道与百年枯水位持平,第二组自动溢水通道与常年平均水位持平,第三组自动溢水通道与汛期警戒水位持平,第四组自动溢水通道与百年汛期最高水位持平。各组自动溢水通道在同一水平面上平行排布,每组自动溢水通道的个数不限,在较佳的实施方式中,第一组自动溢水通道中自动溢水通道的总面积小于其他各组中自动溢水通道的总面积。在更佳的实施方式中,在第一沉淀库和第二沉淀库之间除了设有自动溢水通道外,还可以设置排水机械,将第一沉淀库超警戒线的洪水抽入第二沉淀库。
本发明中所述第二沉淀库结构可以为本领域中的常规结构。
进一步地,在所述 第二沉淀库和所述蓄水库之间的堤坝上,设置多组自动溢水通道,以连通所述第二沉淀库和所述蓄水库。优选地,至少设置四组自动溢水通道,分别为第一组自动溢水通道、第二组自动溢水通道、第三组自动溢水通道和第四组自动溢水通道;其中第一组自动溢水通道与百年枯水位持平,第二组自动溢水通道与常年平均水位持平,第三组自动溢水通道与汛期警戒水位持平,第四组自动溢水通道与百年汛期最高水位持平。各组自动溢水通道在同一水平面上平行排布,每组自动溢水通道的个数不限,在较佳的实施方式中,第一组自动溢水通道中自动溢水通道的总面积小于其他各组中自动溢水通道的总面积。优选地,至少在第四组自动溢水通道进水口处设有 隔离网。 第二沉淀库的自动溢水通道将超警戒线的水自动流入蓄水库内,在较佳的实施方式中,可以在第二沉淀库连接蓄水库的水流通道中安装发电设施,第二沉淀库中的水经发电后流入蓄水库内,以充分利用水资源产生循环效益。
本发明中 所述蓄水库 结构可以为本领域中的常规结构。
进一步地,所述第二水流通道设置于所述蓄水库和所述江河湖水道之间的堤坝上, 数量为多个;并在所述 第二水流通道的 进水口设置一调控水闸,用于调控蓄水库中的水进入所述江河湖水道 ;所述 第二水流通道底部与百年枯水位持平, 所述 第二水流通道顶部与百年汛期最高水位持平 。优选地,在第二水流通道中设置水利发电系统或者灌溉系统。
在本发明的其它实施方式中,江河湖水道和第一沉淀库之间、第一沉淀库和第二沉淀库之间、第二沉淀库和蓄水库之间以及蓄水库和江河湖水道之间还可以设置动力依赖的排水系统,用于辅助水的进出。
本发明中第一沉淀库主要功能是将汛期超警戒线的洪水引入库内,使其自行沉淀,当第一沉淀库水位达到一定高度,水会自行排入第二沉淀库, 在设置排水机械的情况下,排水机械能够将第一沉淀库区超警戒线的洪水抽入第二沉淀库中, 当第二沉淀库水位达到一定高度时,又会自行排入到蓄水库内,蓄水库水量较大时,可在旱期排水或发电,起到调控旱涝作用。当达到水位超过汛期水位线时,可利用第一水流通道的调控水闸将江河湖中的水引入第一沉淀库,然后通过自动溢水通道把第一沉淀库中的水引入第二沉淀库,第二沉淀库的水通过自动溢水通道进入蓄水库。当江河湖水位较低时,可将蓄水库中的水通过第二水流通道给江河湖补水,达到调节水位的作用。在排入排出时可以用水发电,蓄水库中的水经两次沉淀,也可用作灌溉和生活用水。
本发明所记载的水利系统,事宜建造在城市下游人口相对疏散区,且江河湖水面较宽,边岸较低洼的非农田产粮地域。根据当地水文资料,研究百年一遇的最大降雨量与枯水时期自然环境,规划制定非截流型水利系统的水储量库容积,使其能有效地调控水资源,洪汛期将水蓄入蓄水体系,旱时将水排出。
在本发明的第三方面,为了方便快捷的建造上述水利系统,本发明提供了一种混凝土预制组件,包括多个 单独的 混凝土预制 构件, 每个构件都预留 T 型榫接槽,各个构件通过第一构件( H 型榫接单体)相互榫接, 并且每个预制构件上有蜂窝状孔及吊装孔或吊环,把水泥浆灌入蜂窝状孔,可提高预制件的牢固程度。
本发明提供的一种混凝土预制组件, 包括第一构件、第二构件、第三构件、第四构件和第五构件;其中,所述第一构件 为柱形结构,横截面呈 H 型,用于其他构件间的榫接;所述第二构件左右侧面为直角梯形,其余各面为矩形,在左右侧面沿高度方向分别设置与第一构件相配合的 T 型榫接槽;所述第三构件整体呈长方体结构,在两端设置沿长方体高度方向的与第一构件相配合的 T 型榫接槽;所述第四构件整体呈长方体结构,左右侧面和后侧面设置沿长方体高度方向的与第一构件相配合的 T 型榫接槽;所述第五构件整体呈长方体结构,左右侧面设置沿长方体高度方向的与第一构件相配合的 T 型榫接槽,左右侧面设置 蜂窝状孔。进一步地,所述混凝土预制组件,还包括第六构件,所述第六构件为混凝土矩形加强筋,整体呈长方体结构。优选地,在所述第二构件、第三构件、第四构件和第五构件的上下侧面设置凹槽,在装配时将所述第六构件置于所述凹槽中用于上下层结构之间的连接,增加上下层结构连接稳定性。
进一步的,为了适应河岸弧形地形,所述混凝土预制组件中的第三构件可以为弧形,用在河岸为弧形处。优选地,所述弧形第三构件内弧半径为柱间距的一半。这里柱间距是指连接弧形第三构件柱中心线的距离。 优选地,所述第六构件也可以为弧形, 在装配时将弧形第六构件置于所述弧形第三构件的凹槽中用于上下层结构之间的连接,增加上下层结构连接稳定性。
优选地,所述第二构件上设置两组 T 型榫接槽,其中第一组 T 型榫接槽被设置为连通第二构件的上底面和下底面,左右侧面各设置一个;第二组 T 型榫接槽被设置为连通第二构件的前侧斜面和下底面,左右侧面各设置一个。
本发明中,定义堤坝面水一侧为前,背水一侧为后,相应的各个构件面水一侧为前侧面,背水一侧为后侧面。
采用本发明在工厂预制好的桩、梁、柱及重力式砼护堤组件, 建设本 发明 提供的 非截流型水利系统,在规划位置吊装,不受气候影响,能有效地保证质量与工期,砼护堤组件的装配式单体墙四周均设计T型咬合 榫槽,两组件安装定位后,即可用 H 型 榫接单体 插入咬合榫槽,再用细石混凝土填实固定,各组块连续安装形成堤坝。
以下将结合附图对本 发明 的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本 发明 的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的总体平面示意图
图2是图1中I-I剖面图
图3是图1中II-II剖面图
图4是本发明的一个较佳实施例的水流通道示意图
图5是图4中的A-A剖面图
图6本发明的一个较佳实施例的第二水流通道示意图
图7本发明的一个较佳实施例中水利系统的局部平面图
图8本发明的一个较佳实施例的第一构件示意图
图9本发明的一个较佳实施例的第二构件示意图
图10本发明的一个较佳实施例的第三构件示意图
图11本发明的一个较佳实施例的第四构件示意图
图12本发明的一个较佳实施例的第五构件示意图
图13本发明的一个较佳实施例的第六构件示意图
图14本发明的一个较佳实施例的弧形第三构件示意图
图15本发明的一个较佳实施例的各个构件安装组合形成的砼墙体局部示意图
具体实施方式
实施例1
如图 1 所示,本发明提供了一种水利系统,采用非截流的方式,建造在江河湖水道的一侧,包括蓄水体系 1 和第一水流通道 21 ,水利系统通过第一水流通道 21 与所述江河湖水道 01 连通。水利系统还包括第二水流通道 22 ,第二水流通道 22 设置于所述第一水流通道 21 的下游,连通蓄水体系 1 和江河湖水道 01 。
蓄水体系 1 包括第一沉淀库 11 、第二沉淀库 12 和蓄水库 13 ,江河湖水通过第一水流通道 21 进入第一沉淀库 11 ,进行初步沉淀,然后进入第二沉淀库 12 经再次沉淀后进入蓄水库 13 ,第一水流通道 21 连通第一沉淀库 11 和江河湖水道 01 ,第二水流通道 22 连通所述蓄水库 13 和江河湖水道 01 。在蓄水体系的整体布置上,由上游至下游,分别排布第一沉淀库 11 、第二沉淀库 12 和蓄水库 13 。 在水利系统上游设置电力系统及管理区域。
参见图2,水利系统的堤坝3两侧为阶梯弧形护坡结构,在具体建造中,水利系统临江河湖水道一侧堤坝31为砼结构,另一侧堤坝32可以为片石结构,以降低建造成本,当然两侧可以均为片石结构。堤坝中间部33由两面砼墙体330构成,砼墙体330高度超出百年汛期最高水位;中间部33顶部为道路,包括车道331及人行道332,人行道332外侧设有护栏333。在堤坝建造过程中,首先在按照设计图纸打混凝土桩34;清理平整后浇混凝土整体承台35,浇筑时预留砼柱基槽351;吊装重力砼柱36置入基槽351中,并填充混凝土加固;然后依次建造两侧堤坝31、32及中间部的砼墙体330,砼墙体330之间可以采用混凝土浇筑或者混凝土预制件建造,也可以采用沙石进行填充。
参见图3,第一水流通道21设置于第一 沉淀库 11 和江河湖水道 01 之间的 堤坝上,数量为多个;第一水流通道21的进水口设置隔离网用于阻止漂浮杂物进入,并在进水口设置一调控水闸211,用于调控江河湖水进入第一 沉淀库 11 ;其中 第一水流通道21底部与常年水位持平,第一水流通道21顶部与百年汛期最高水位持平 。第一沉淀库 11 内设有排水机械 111 ,用于辅助从第一沉淀库 11 向第二沉淀库 12 排水。第一沉淀库 11 上方及内部设有钢桁架 112 。
参见图 4 和图 5 ,在第一沉淀库 11 和第二沉淀库 12 之间的堤坝上,设置多组自动溢水通道 23 。本实施例中,设置四组自动溢水通道,分别为第一组自动溢水通道 231 、第二组自动溢水通道 232 、第三组自动溢水通道 233 和第四组自动溢水通道 234 ,在各溢水通道的进水口设置隔离网 235 ;其中第一组自动溢水通道 231 与百年枯水位持平,第二组自动溢水通道 232 与常年平均水位持平,第三组自动溢水通道 233 与汛期警戒水位持平,第四组自动溢水通道 234 与百年汛期最高水位持平。各组自动溢水通道在同一水平面上平行排布,每组自动溢水通道的面积或个数由设计确定,第一组自动溢水通道中自动溢水通道的面积或个数少于其他组中自动溢水通道的个数。
在 第二沉淀库 12 和蓄水库 13 之间的堤坝上,设置多组水流通道,结构与在第一沉淀库 11 和第二沉淀库 12 之间的堤坝上设置的自动溢水通道 23 相同。在其它实施方式中,在第一沉淀库 11 和江河湖水道 01 之间的 堤坝上也可以设置与上述自动溢水通道23结构相同的溢水通道。
参见图6, 第二水流通道 22 设置于蓄水库 13 和江河湖水道 01 之间的堤坝上, 数量为多个;在 第二水流通道 22 的 进水口设置调控水闸221,用于调控蓄水库13中的水进入所述江河湖水道01 ; 第二水流通道22底部与百年枯水位持平,第二水流通道22顶部与百年汛期最高水位持平 。可选地,在第二水流通道中设置水利发电系统或者灌溉系统。
在本发明的其它实施方式中,江河湖水道 01 和第一沉淀库之间 11 、第一沉淀库 11 和第二沉淀库之间 12 、第二沉淀库 12 和蓄水库 13 之间以及蓄水库 13 和江河湖水道 01 之间还可以设置抽水机械,用于辅助水的进出。
本发明中第一沉淀库11主要功能是将汛期超警戒线的洪水引入库内,使其自行沉淀,当第一沉淀库11水位达到一定设计高度,部分水会自行排入第二沉淀库12,水位超过设定高度时, 充分利用排水机械 111 ,将第一沉淀库区超警戒线的洪水抽入第二沉淀库, 当第二沉淀库12水位达到一定设计高度时,部分水会自行排入蓄水库13内,也可以在第二沉淀库12中设置排水机械,当水位超过设定高度时 利用排水机械,将第二沉淀库区超警戒线的洪水抽入蓄水库。 蓄水库水量较大时,可在旱期排水或发电,起到调控旱涝作用。实现方式为,当达到水位超过汛期水位线时,打开第一水流通道21的调控水闸211将江河湖湖中的水引入第一沉淀库11,然后通过自动溢水通道和/或抽水机械把第一沉淀库11中的水引入第二沉淀库12,第二沉淀库12的水通过自动溢水通道进入蓄水库13。当江河湖水位较低时,可将蓄水库13中的水通过第二水流通道22给江河湖补水,达到调节水位的作用。在排入排出时可以用水发电,蓄水库13中的水经两次沉淀,也可用作灌溉和生活用水。
参见图7,为了使堤坝更为牢固且方便施工,一些实施方式中,除堤坝中间部建有砼墙体330外,还可以建造垂直于堤坝的砼墙体330,将整个堤坝分隔为许多区块,能够显著增加堤坝的强度。
本发明所记载的水利系统,事宜建造在城市下游人口相对疏散区,且江河湖水面较宽,边岸较低洼的非农田产粮地域。
实施例2
本实施例提供了一种混凝土预制组件,包括多个 单独的 混凝土预制 构件, 每个构件都预留 T 型榫接槽,各个构件通过第一构件 41 ( H 型榫接单体)相互榫接, 并且每个预制构件上有蜂窝状孔及吊装孔或吊环,把水泥浆灌入蜂窝状孔,可提高预制件的牢固程度。
本实施例中的混凝土预制组件, 包括第一构件41、第二构件42、第三构件43、第四构件44和第五构件45。
如图8所示,第一构件41为 H 型榫接单体结构,横截面呈 H 型,用于其他构件间的榫接,各面均设置 蜂窝状孔,上面设有吊环,方便吊装。
如图9所示, 第二构件 42 为用作堤坝底层的护坡单体结构,左侧面和右侧面为直角梯形,其余各面为矩形,直角梯形的上边长度为下边长度的 1/3-1/2 ,在左右侧面分别设置与第一构件 H 型榫接单体相配合的 T 型榫接槽,除前侧斜面之外的各面均设置 蜂窝状孔,在前侧斜面和上底面设置吊环 。第二构件上设置两组 T 型榫接槽,其中第一组 T 型榫接槽被设置为连通第二构件的上底面和下底面,左右侧面各设置一个;第二组 T 型榫接槽被设置为连通第二构件的前侧斜面和下底面,左右侧面各设置一个。第二构件 42 为用作堤坝底层的护坡单体结构,用于堤坝砼墙体的底层,作为堤坝砼墙体的基础,跟第三构件 43 压顶梁单体组装在一起,起到支撑、稳定堤坝的作用。
如图10所示, 第三构件 43 为压顶梁单体结构,安装在第二构件 42 之上,整体为长方体结构,在左右端部设置 T 型榫接槽。主要承受弯矩和剪力。
如图11所示, 第四构件 44 为装配式重力柱单体结构,整体程长方体结构,左右侧面和后侧面设置上下方向的 T 型榫接槽,跟第五构件 45 组装在一起,用在砼墙体连接处,增加堤坝稳定性。
如图12所示, 第五构件 45 为装配式单体墙结构,整体为长方体结构,左右侧面设置上下方向的 T 型榫接槽,左右侧面设置 蜂窝状孔。 第一构件41为 H 型榫接单体结构的榫接部位比其它构件的 T 型榫接槽长宽各小 30mm ,以方便装配。
本实施例中,混凝土预制组件还包括第六构件 46 , 如图13所示, 第六构件 46 为混凝土矩形加强筋,整体呈长方体结构。在第二构件 42 、第三构件 43 、第四构件 44 和第五构件 45 的上下侧面设置凹槽,凹槽深度约为第六构件 46 高度的一半,在装配时将所述第六构件 46 置于所述凹槽中用于上下层结构之间的连接,增加上下层结构连接稳定性。
为了适应河岸弧形地形,混凝土预制组件中的第三构件 43 可以为弧形, 如图14所示, 用在河岸为弧形处。所述弧形第三构件内弧半径为连接该弧形第三构件两端的第四构件 44 柱间距的一半。 相应地,第六构件也可以为弧形, 在装配时将弧形第六构件置于弧形第三构件的凹槽中用于上下层结构之间的连接,增加上下层结构连接稳定性。
如图15所示,为本实施例中各个构件安装组合形成的砼墙体局部。
本发明中,定义堤坝面水一侧为前,背水一侧为后,相应的各个构件面水一侧为前侧面,背水一侧为后侧面。
采用本发明在工厂预制好的桩、梁、柱及重力式砼护堤组件, 建设本 发明 提供的 非截流型水利系统,在规划位置吊装,不受气候影响,能有效地保证质量与工期,砼护堤组件的装配式单体墙四周均设计T型咬合 榫槽,两组件安装定位后,即可用 H 型 榫接单体 插入咬合榫槽,再用细石混凝土填实固定,各组块连续安装形成堤坝。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (21)

  1. 一种调节江河湖水位的方法,其中,采用非截流的方式,在江河湖的一侧建立蓄水体系,
    当所述江河湖水位超过警戒水位时,江河湖水进入所述蓄水体系中,降低所述江河湖水位或减缓所述江河湖水位的上涨速度;
    当所述江河湖水位过低时,所述蓄水体系中的蓄水能够补入所述江河湖中,使其水位升高或减缓所述江河湖水位的降低速度。
  2. 如权利要求1所述的方法,其中,在所述江河湖的一侧堤岸设置第一水流通道连通所述江河湖和所述蓄水体系。
  3. 如权利要求2所述的方法,其中,在所述第一水流通道的下游设置第二水流通道连通所述江河湖和所述蓄水体系。
  4. 如权利要求3所述的方法,其中,所述第一水流通道的进水口设有水闸。
  5. 如权利要求3所述的方法,其中,所述第二水流通道的进水口设有水闸。
  6. 一种水利系统,其中,所述水利系统采用非截流的方式,建造在江河湖水道的一侧,所述水利系统包括蓄水体系和第一水流通道,所述蓄水体系通过第一水流通道与所述江河湖水道连通。
  7. 如权利要求6所述的水利系统,其中,所述水利系统还包括第二水流通道,所述第二水流通道设置于所述第一水流通道的下游,连通所述蓄水体系和所述江河湖水道。
  8. 如权利要求7所述的水利系统,其中,所述蓄水体系包括第一沉淀库和蓄水库,所述第一沉淀库和所述蓄水库通过水流通道连通,所述第一水流通道连通第一沉淀库和江河湖水道,所述第二水流通道连通蓄水库和江河湖水道。
  9. 如权利要求8所述的水利系统,其中,所述蓄水体系还包括第二沉淀库,所述第二沉淀库分别连通所述第一沉淀库和所述蓄水库,江河湖水通过第一水流通道进入第一沉淀库,进行初步沉淀,然后进入第二沉淀库经再次沉淀后进入所述蓄水库。
  10. 如权利要求6所述的水利系统,其中,所述水利系统的堤坝为阶梯弧形护坡结构,所述堤坝高度超出百年汛期最高水位。
  11. 如权利要求10所述的水利系统,其中,所述水利系统临江河湖水道一侧堤坝为砼结构,所述水利系统另一侧堤坝为片石结构。
  12. 如权利要求9所述的水利系统,其中,所述第一水流通道设置于所述第一沉淀库和所述江河湖水道之间的堤坝上,数量为多个;所述第一水流通道的进水口设置隔离网用于阻止漂浮杂物进入,并在所述进水口设置一调控水闸,用于调控江河湖水进入所述第一沉淀库;所述第一水流通道底部与常年平均水位持平,所述第一水流通道顶部与百年汛期最高水位持平。
  13. 如权利要求9所述的水利系统,其中,在所述第一沉淀库和所述第二沉淀库之间的堤坝上,设置多组自动溢水通道。
  14. 如权利要求13所述的水利系统,其中,至少设置四组所述自动溢水通道,分别为第一组自动溢水通道、第二组自动溢水通道、第三组自动溢水通道和第四组自动溢水通道,在各溢水通道的进水口设置隔离网;其中第一组自动溢水通道与百年枯水位持平,第二组自动溢水通道与常年平均水位持平,第三组自动溢水通道与汛期警戒水位持平,第四组自动溢水通道与百年汛期最高水位持平。
  15. 如权利要求9所述的水利系统,其中,在所述第二沉淀库和所述蓄水库之间的堤坝上,设置多组自动溢水通道。
  16. 如权利要求15所述的水利系统,其中,至少设置四组所述自动溢水通道,分别为第一组自动溢水通道、第二组自动溢水通道、第三组自动溢水通道和第四组自动溢水通道;其中第一组自动溢水通道与百年枯水位持平,第二组自动溢水通道与常年平均水位持平,第三组自动溢水通道与汛期警戒水位持平,第四组自动溢水通道与百年汛期最高水位持平。
  17. 如权利要求9所述的水利系统,其中,所述第二水流通道设置于所述蓄水库和所述江河湖水道之间的堤坝上,数量为多个;并在所述第二水流通道的进水口设置一调控水闸,用于调控蓄水库中的水进入所述江河湖水道;所述第二水流通道底部与百年枯水位持平,所述第二水流通道顶部与百年汛期最高水位持平。
  18. 一种混凝土预制组件,包括第一构件、第二构件、第三构件、第四构件和第五构件;其中,
    所述第一构件为柱形结构,横截面呈H型,用于其他构件间的榫接;
    所述第二构件左右侧面为直角梯形,其余各面为矩形,在左右侧面沿高度方向分别设置与第一构件相配合的T型榫接槽;
    所述第三构件整体呈长方体结构,在两端设置沿长方体高度方向的与第一构件相配合的T型榫接槽;
    所述第四构件整体呈长方体结构,左右侧面和后侧面设置沿长方体高度方向的与第一构件相配合的T型榫接槽;
    所述第五构件整体呈长方体结构,左右侧面设置沿长方体高度方向的与第一构件相配合的T型榫接槽,左右侧面设置蜂窝状孔。
  19. 如权利要求18所述的混凝土预制组件,其中,还包括第六构件,所述第六构件整体呈长方体结构,在所述第二构件、第三构件、第四构件和第五构件的上下侧面设置凹槽,在装配时将所述第六构件置于所述凹槽中用于上下层结构之间的连接,增加上下层结构连接稳定性。
  20. 如权利要求18所述的混凝土预制组件,其中,还包括弧形的第三构件,用在河岸为弧形处。
  21. 如权利要求18所述的混凝土预制组件,其中,所述第二构件上设置两组T型榫接槽,其中第一组T型榫接槽被设置为连通第二构件的上底面和下底面,左右侧面各设置一个;第二组T型榫接槽被设置为连通第二构件的前侧斜面和下底面,左右侧面各设置一个。
PCT/CN2013/088523 2013-12-04 2013-12-04 一种调节江河湖水位的方法和水利系统 WO2015081516A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201711378572.3A CN107964917B (zh) 2013-12-04 2013-12-04 一种水利系统
PCT/CN2013/088523 WO2015081516A1 (zh) 2013-12-04 2013-12-04 一种调节江河湖水位的方法和水利系统
CN201380079603.9A CN105531424A (zh) 2013-12-04 2013-12-04 一种调节江河湖水位的方法和水利系统
US15/039,757 US9915048B2 (en) 2013-12-04 2013-12-04 Method for river/lake level regulation and water conservancy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088523 WO2015081516A1 (zh) 2013-12-04 2013-12-04 一种调节江河湖水位的方法和水利系统

Publications (1)

Publication Number Publication Date
WO2015081516A1 true WO2015081516A1 (zh) 2015-06-11

Family

ID=53272744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088523 WO2015081516A1 (zh) 2013-12-04 2013-12-04 一种调节江河湖水位的方法和水利系统

Country Status (3)

Country Link
US (1) US9915048B2 (zh)
CN (2) CN105531424A (zh)
WO (1) WO2015081516A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884406A (zh) * 2017-04-17 2017-06-23 中国水利水电科学研究院 一种用于火核电厂的排水消泡系统和方法
CN110984086A (zh) * 2020-01-20 2020-04-10 文贵华 河流自然清洁系统
CN111321711A (zh) * 2020-03-06 2020-06-23 中国电建集团华东勘测设计研究院有限公司 一种不对称拱坝的系统性泄洪消能布置方法和结构
CN113931287A (zh) * 2021-10-26 2022-01-14 中冶天工集团有限公司 一种海绵湖体的雨水调蓄结构及其排放控制工艺

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174544B (zh) * 2017-02-22 2020-10-27 嘉兴福良纺织科技有限公司 一种利用海浪营造的间歇式喷泉
CN110055924A (zh) * 2018-01-19 2019-07-26 陶星月 干旱半干旱区域,雨水、雪融化水、水资源及时截流,科学储存和利用
CN108328742B (zh) * 2018-03-23 2024-03-19 浙江绿维环境股份有限公司 一种河流生态系统
JP7066651B2 (ja) * 2018-04-02 2022-05-13 Jfeスチール株式会社 防潮堤の補強構造
CN109117588B (zh) * 2018-09-11 2021-06-01 水利部交通运输部国家能源局南京水利科学研究院 船闸输水阀门段廊道顶高程的确定方法
CN111021303B (zh) * 2018-10-10 2021-06-29 宁夏崛兴建设工程有限公司 一种多功能堤坝防水安全水利机械装置
CN109914333B (zh) * 2019-03-18 2021-01-29 张鑫 一种水库的综合调度方法
CN109898474B (zh) * 2019-03-18 2021-01-29 张鑫 一种多库区水库
JP7362520B2 (ja) * 2020-03-09 2023-10-17 三菱重工業株式会社 流路制御システム、流路制御方法及びプログラム
CN112281746A (zh) * 2020-10-20 2021-01-29 浙江世润建创科技发展有限公司 新型防洪堤结构及其施工方法
CN112726488A (zh) * 2020-12-07 2021-04-30 福建省水利水电勘测设计研究院 一种保障城市湖泊水质安全的河湖有限连通方法
CN114150628B (zh) * 2021-11-08 2023-07-18 中水珠江规划勘测设计有限公司 堆石坝坝顶溢洪道泄槽及其施工方法
TWI806361B (zh) * 2022-01-17 2023-06-21 東海大學 三元反曲內爆洪水導引現地調適嚮往系統
CN114351640B (zh) * 2022-01-27 2022-09-16 中交上海航道勘察设计研究院有限公司 一种改善既有滨海平原地区内涝的方法
CN115030265B (zh) * 2022-06-13 2023-06-06 上海市城市建设设计研究总院(集团)有限公司 用于快速取水的生态溢水坝
CN116623595B (zh) * 2023-07-17 2023-10-24 成都市市政工程设计研究院有限公司 一种基于水动力系统构建城市内湖本底的物理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293199A (ja) * 2003-03-27 2004-10-21 Jfe Engineering Kk 水位制御方法および水位制御支援方法
CN101045585A (zh) * 2007-04-04 2007-10-03 中国环境科学研究院 一种河流面源污染的旁置生物净化方法
CN101831875A (zh) * 2010-06-09 2010-09-15 中交第一公路勘察设计研究院有限公司 预应力混凝土圆柱式空心桥墩预制拼装工艺
CN102329000A (zh) * 2011-06-08 2012-01-25 山东建筑大学 串联式河道水质改善和水资源调蓄方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1376889A (en) * 1919-11-24 1921-05-03 James B Kirby Lake or pond
US3779385A (en) * 1971-11-30 1973-12-18 Atomic Energy Commission Apparatus for removing oil and other floating contaminants from a moving body of water
US5795106A (en) * 1996-04-01 1998-08-18 Herd; Ian M. Retaining wall system and method of construction thereof
KR100554946B1 (ko) * 2003-10-31 2006-04-05 홍건영 보강토 옹벽
CN101092815A (zh) * 2006-06-19 2007-12-26 张国成 江河一侧的水电站降低江河水位的系统
US7708494B2 (en) * 2006-10-26 2010-05-04 Mclaughlin Consulting Company Water diversion system and method having hydraulic chute, screen assembly and wedge wire screen
US7866919B2 (en) * 2007-04-12 2011-01-11 Natural Energy Resources Company System and method for controlling water flow between multiple reservoirs of a renewable water and energy system
CN101319492B (zh) * 2007-06-06 2010-05-19 湖南大学 尼龙柔性引流水坝
RO125317A2 (ro) * 2008-11-25 2010-03-30 Mihai Tonu Procedeu de supraînălţare diguri
US20140056645A1 (en) * 2010-07-28 2014-02-27 Richard C. Hogan Flood Control Method
US8877048B1 (en) * 2011-09-02 2014-11-04 Samuel Owings Cascading system of floodway stormwater containment basins
CN102444630A (zh) * 2011-12-09 2012-05-09 胡伟 防洪涝、抗旱虹吸管道装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293199A (ja) * 2003-03-27 2004-10-21 Jfe Engineering Kk 水位制御方法および水位制御支援方法
CN101045585A (zh) * 2007-04-04 2007-10-03 中国环境科学研究院 一种河流面源污染的旁置生物净化方法
CN101831875A (zh) * 2010-06-09 2010-09-15 中交第一公路勘察设计研究院有限公司 预应力混凝土圆柱式空心桥墩预制拼装工艺
CN102329000A (zh) * 2011-06-08 2012-01-25 山东建筑大学 串联式河道水质改善和水资源调蓄方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884406A (zh) * 2017-04-17 2017-06-23 中国水利水电科学研究院 一种用于火核电厂的排水消泡系统和方法
CN106884406B (zh) * 2017-04-17 2019-04-02 中国水利水电科学研究院 一种用于火核电厂的排水消泡系统和方法
CN110984086A (zh) * 2020-01-20 2020-04-10 文贵华 河流自然清洁系统
CN110984086B (zh) * 2020-01-20 2024-06-07 文贵华 河流自然清洁系统
CN111321711A (zh) * 2020-03-06 2020-06-23 中国电建集团华东勘测设计研究院有限公司 一种不对称拱坝的系统性泄洪消能布置方法和结构
CN111321711B (zh) * 2020-03-06 2021-09-03 中国电建集团华东勘测设计研究院有限公司 一种不对称拱坝的系统性泄洪消能布置方法和结构
CN113931287A (zh) * 2021-10-26 2022-01-14 中冶天工集团有限公司 一种海绵湖体的雨水调蓄结构及其排放控制工艺

Also Published As

Publication number Publication date
CN107964917A (zh) 2018-04-27
US9915048B2 (en) 2018-03-13
US20170002532A1 (en) 2017-01-05
CN105531424A (zh) 2016-04-27
CN107964917B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2015081516A1 (zh) 一种调节江河湖水位的方法和水利系统
CN104088219B (zh) 一种水电工程施工临时跨河桥结构及施工方法
CN113136845A (zh) 洄游式生态鱼道及施工方法
CN104060585A (zh) 浮塞式检修闸门
CN116464004A (zh) 一种泄洪渠与鱼道联合系统
CN216515069U (zh) 一种多孔水闸与跨河桥梁分离式连接结构
CN201986589U (zh) 中层取水防钉螺拦网
CN112195880B (zh) 适用于高陡狭窄地形的坝后式厂房全鱼道系统及施工方法
CN109469099A (zh) 装配式地下管廊
CN215253004U (zh) 一种应用于圆形电缆隧道的新型步道
CN205530651U (zh) 附建式雨水泵房结构
CN202323893U (zh) 一种可密集建造的水利发电站
CN210002345U (zh) 一种深层取水系统
CN202559325U (zh) 一种水体内循环船闸
CN114592485B (zh) 适于黄土高原水土保持的拼装板式坝
CN213571498U (zh) 一种节段预制拼装桥梁
CN212641397U (zh) 一种用于泵闸粗格拦污栅布置结构
CN110144861A (zh) 一种多沙河流水利发电站的排沙结构及方法
CN213538833U (zh) 一种带有观光交通廊道的景观坝
CN219637845U (zh) 一种泄洪渠与鱼道联合系统
CN213390037U (zh) 适用于高陡狭窄地形的坝后式厂房全鱼道系统
CN214737774U (zh) 一种兼顾交通、观赏的景观宽顶堰
CN214401888U (zh) 一种用于防洪河道的综合管沟结构
CN212000923U (zh) 一种薄壁连拱景观坝
CN213538823U (zh) 一种新型生态蓄水系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079603.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898767

Country of ref document: EP

Kind code of ref document: A1