TWI806361B - 三元反曲內爆洪水導引現地調適嚮往系統 - Google Patents

三元反曲內爆洪水導引現地調適嚮往系統 Download PDF

Info

Publication number
TWI806361B
TWI806361B TW111101791A TW111101791A TWI806361B TW I806361 B TWI806361 B TW I806361B TW 111101791 A TW111101791 A TW 111101791A TW 111101791 A TW111101791 A TW 111101791A TW I806361 B TWI806361 B TW I806361B
Authority
TW
Taiwan
Prior art keywords
arc
adjustment
flood
implosion
guidance
Prior art date
Application number
TW111101791A
Other languages
English (en)
Other versions
TW202331053A (zh
Inventor
邱國維
多拉斯 竇薇娜 克蘭斯頓
Original Assignee
東海大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海大學 filed Critical 東海大學
Priority to TW111101791A priority Critical patent/TWI806361B/zh
Priority to US17/587,826 priority patent/US11866899B2/en
Application granted granted Critical
Publication of TWI806361B publication Critical patent/TWI806361B/zh
Publication of TW202331053A publication Critical patent/TW202331053A/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/046Artificial reefs
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice

Abstract

本發明係揭露一種三元反曲內爆洪水導引現地調適嚮往系統(TRINITY -D20),係具有一調適機構,該調適機構係包括一第一單元及一第二單元,其中,該第一單元具有一呈弧狀之第一弧部,該第二單元具有一呈弧狀之第二弧部,該第一單元與該第二單元係以該第一弧部之曲率中心軸平行於該第二弧部曲率中心軸地彼此以凹弧面相向地交錯,而使該第一弧部之弧形一端介於該第二弧部之弧形兩端之間,且與該第二弧部之凹弧面間相隔有一第一距離,並使該第二弧部之弧形一端介於該第一弧部之弧形兩端之間,且與該第一弧部相隔有一第二距離,藉以由該第一弧部與該第二弧部共同定義出一介於其彼此之間的彎曲通道。

Description

三元反曲內爆洪水導引現地調適嚮往系統
本發明係與承洪技術有關,尤指一種三元反曲內爆洪水導引現地調適嚮往系統(TRINITY-D20)。
按,季節性颶風、或愈發頻繁之極端氣候,通常會帶來過量的降水,倘若排水不及,隨著時間推移而積聚匯流,容易導致洪患發生。其中,針對城市的建構與佈局,對於提供災難性的豪大雨或洪水自由流動或流通的預留空間通常不大,難以有效地宣洩突如其來的洪水。
況且,若城市位於臨海地區,還會因全球暖化導致冰山消融,使得海平面上升,將有可能導致低窪地區淹水、沙灘及海崖嚴重沖蝕、海水鹽分入侵含水層等問題。
此外,洪水會將塑膠垃圾、甚致是將高污染或高危險性的化學產物夾帶進入大海中,除了導致海藻快速生長,還造成海洋污染和酸化。並且,洪水還會帶走地表大量的土壤,使土地貧瘠、植被破壞、生態惡化,終將造成嚴重的土地沙漠化(Desertification)。
特別指出的是,由於聖克里斯多福及尼維斯(Saint Christopher and Nevis)位於加勒比海,基於其地理位置及水文特性,有必要針對前述問題相對應之處置措施,且如能提供常態且持續的水資源管理策略,將有助於根本地減輕或降低災害之發生。
另外,隨著社會經濟的發展,人類開發工程活動增多,已改變了自然生態環境及生物多樣性,尤其是地下水的補給率已大幅下降,況且,地下水資源還有超採、污染等情形,以致可用的地下水正在急速減少。
因此,本發明的主要目的在於提供一種三元反曲內爆洪水導引現地調適嚮往系統(TRINITY-D20),其係能夠引導洪水行進之方向,達到減輕或降低洪水所造成之災害。
緣是,為達成上述目的,本發明所提供之三元反曲內爆洪水導引現地調適嚮往系統(TRINITY-D20),係具有一調適機構,該調適機構係包括一第一單元及一第二單元,其中,該第一單元具有一呈弧狀之第一弧部,該第二單元具有一呈弧狀之第二弧部,該第一單元與該第二單元係以該第一弧部之曲率中心軸平行於該第二弧部曲率中心軸地彼此以凹弧面相向地交錯,而使該第一弧部之弧形一端介於該第二弧部之弧形兩端之間,且與該第二弧部之凹弧面間相隔有一第一距離,並使該第二弧部之弧形一端介於該第一弧部之弧形兩端之間,且與該第一弧部相隔有一第二距離,藉以由該第一弧部與該第二弧部共同定義出一介於其彼此之間的彎曲通道。
在一實施例中,該第一弧部具有複數個第一柱狀體,並且使該些第一柱狀體係彼此間隔開來地排列成該第一弧部所呈之弧狀;該第二弧部具有 複數個第二柱狀體,並使該些第二柱狀體彼此間隔開來地排列成該第二弧部所呈之弧狀。
其中,各該第一柱狀體與各該第二柱狀體在徑向之斷面形狀上係分別呈為四邊型,較佳係呈梯型。
另一方面,本發明所提供的三元反曲內爆洪水導引現地調適嚮往系統(TRINITY-D20),還具有一洪水導引陣列,該洪水導引陣列包含多個前述之該調適機構。
在一實施例中,該些調適機構係以一虛擬之圓心點為中心地等距分設於以該圓心點為圓心的預定半徑範圍內,並呈輻射狀地使各該調適機構的彎曲通道之一端單靠近該圓心點、另端則遠離該圓心點。
在一實施例中,該調適機構單元的數量為三。
進一步來說,該些調適機構的該第二弧部靠近該圓心點之一端,任兩者之間的最小距離為一第三距離。
在一實施例中,該彎曲通道之兩端係分別被定義為一入流端及一出流端,該等調適機構單元係逐個依序排列,且該些調適機構中相鄰的彼此之間,順序在前之調適機構係以該出流端與順序在後之調適機構的該入流端串接連通。
在一實施例中,該些調適機構單元之相鄰彼此之間,順序在前之調適機構單元的該第二弧部位於該出流端之弧形另一端係位於順序在後之調適單元的彎曲通道中,且順序在後之調適單元的該第一弧部之弧形另一端係位於順序在前之調適單元的彎曲通道中,並使順序在前之調適單元的彎曲通道與順序在後之調適單元的彎曲通道的局部互相重疊地相互連通。
在一實施例中,該些調適機構中任兩相鄰的彼此之間的最小距離為一第四距離。
10、10A、10B、10C:調適機構
11:第一單元
12、12B:第一弧部
121、121B、121C:第一端
122:第二端
13:第一柱狀體
14:第二單元
15、15A、15B:第二弧部
151:第一端
152、152A、152B、152C:第二端
16:第二柱狀體
17、17A、17B:彎曲通道
171、171A、172B:入流端
172、172A、172B:出流端
D1:第一距離
D2:第二距離
D5:滯留距離
20A、20B:洪水導引陣列
D3:第三距離
D4:第四距離
30:雨水收集機構
31:本體
311:板體
32:收集部
33:儲水部
331:槽體
332:隔板
333:儲存空間
34:管路
35:排水管
40:橋樑儲水機構
41:柱身
411:內部空間
412:外環區
413:連接區
414:中央區
415:管道
42:分隔部
421:第一分隔件
422:第二分隔件
50:道路空間調整機構
51:身部
52:道路模組
53:板塊
圖1為本發明第一實施例的示意圖。
圖1A為本發明第一實施例就弧部之另一實施態樣示意圖。
圖2為本發明第二實施例的示意圖。
圖3為本發明第三實施例的示意圖。
圖4為本發明第四實施例的示意圖。
圖5A及圖5B係就水收集機構之不同實施態樣的示意圖
圖6A係就橋樑儲水機構的示意圖。
圖6B係有關圖6A於使用情形的示意圖,並表示有兩組橋樑儲水機構。
圖7係就道路空間調整機構的示意圖,並表示位於收納位置之態樣。
圖8係圖7之局部俯視圖。
圖9係圖7之局部側視圖。
圖10係就道路空間調整機構的示意圖,並表示位於展開位置之態樣。
圖11係圖10之局部俯視圖。
圖12係圖11之局部側視圖。
請參閱圖1所示,為本發明之第一實施例中所揭露之三元反曲內爆洪水導引現地調適嚮往系統(TRINITY-D20),主要乃係包括一調適機構10,係設於海岸或河岸,能承接洪水,透過引導洪水行進之方向,同時增加流動路 徑的長度、以及延長其水流流動時間,據以減緩流速及分散流量,以減輕水患的嚴重程度。
其中,該調適機構10是由東海大學建築系邱國維教授首先獨立進行生物機能辨認並完成生物結構仿生設計研發,再交付並指導研究生進行三元反曲現地洪水導引陣列的結構設計測試與機能設計的確認,其型號為TRINITY-D20TM。特別的是,本發明之調適機構10的設計發想係源自於保衛細胞(Guard Cells)利用不同位置且厚薄各異之彈性內壁,因空氣的存在,而使其產生不均勻的膨脹,使得兩者之間具有一滲透壓(Vapor Pressure Difference),以作為氣體交換之用。
具體來說,該調適機構10係包括一第一單元11及一第二單元14,其中,該第一單元11具有一呈弧狀之第一弧部12,並將該第一弧部12的弧形兩端分別定義為一第一端121及一第二端122。在本例中,該第一弧部12具有複數個第一柱狀體13,並且使該些第一柱狀體13係彼此間隔開來地排列成該第一弧部12所呈之弧狀。
該第二單元14具有一呈弧狀之第二弧部15,並將該第二弧部15的弧形兩端分別定義為一第一端151及一第二端152。在本例中,該第二弧部15具有複數個第二柱狀體16,並使該些第二柱狀體16彼此間隔開來地排列成該第二弧部15所呈之弧狀。
其中,各該第一柱狀體13與各該第二柱狀體16在徑向之斷面形狀上係分別呈為四邊型,較佳係呈梯型。並且,該些柱狀體的長、寬、高等尺寸大小、結構形狀、數量及位置關係等,皆可隨其所設置的場域大小或洪水預測水位等來設定。例如,如圖1A所示,每個弧部所包含之該些柱狀體係以陣列的方式排列,該陣列可為N列M排,N、M為自然數,並且該些柱狀體的高度、寬 度(長度)、及該些柱狀體排列的密度,係由外向內朝著弧狀的曲率中心,逐漸遞減,促使流體流經該些柱狀體時,被引導至特定方向。
此外,由於各該弧部所包含之該些柱狀體係彼此相隔開來的,使得各該弧部具有多數空隙,當流體流經各該弧部時,流體可透過該些空隙宣洩而出,有助於流體之疏散。
進一步來說,該調適機構10所設置的土地上還可搭配種植大量喜水植物,除了提高土壤的含水率,還可藉由植物遮蔽陽光,使土壤能保持在適當的溫度,減少土壤中水分的蒸散。
再者,在其他實施例中,該調適機構10設於潮間帶或近海區域,可將水域分割成多個區塊,除了可減緩海岸侵蝕作用,還能為魚類或海洋生物創造棲息地。
此外,該第一弧部12與該第二弧部15的曲率、弧長、厚度、造型等可分別依據實際需求來調整,如本例中之該第一弧部12與該第二弧部15係分別呈C形,而於其他實施態樣,該第一弧部12或該第二弧部15的造型還可為中間部分較厚,並朝兩側漸薄延伸等。
如圖1所示,該第一單元11與該第二單元14係以該第一弧部12之曲率中心軸平行於該第二弧部15曲率中心軸地彼此以凹弧面相向地交錯,而使該第一弧部12之第二端122介於該第二弧部15之弧形兩端(即第一端151及第二端152)之間,且該第一弧部12之第二端122與該第二弧部15之凹弧面間相隔有一第一距離D1,並使該第二弧部15之第一端151介於該第一弧部12之弧形兩端(即第一端121及第二端122)之間,且該第二弧部15之第一端151與該第一弧部12鄰近該第一端121的凹弧面之間的最大距離為一第二距離D2,該第二弧部15之第一端151與該第一弧部12鄰近該第二端122的凹弧面之間的最大距離相隔有為一滯留距離D5。最後,藉由該第一弧部12與該第二弧部15共同定義出一介於 其彼此之間的彎曲通道17,且使該彎曲通道17之兩端則分別被定義為一入流端171及一出流端172。
其中,該第一距離D1、該第二距離D2及該滯留距離D5之間的比例或尺寸大小關係,可隨實際需求調整,且該等距離的大小均分別可決該彎曲通道17相對應部分的寬度。尤其是,該第二距離D2能定義出該入流端171的寬度,以決定入流流量大小。該滯留距離D5可定義該彎曲通道17中由各該弧部相交時所構成的滯留區域之大小,以決定外部流體流經該滯留區域所形成之渦流的大小。
此外,在各該弧部的曲率及大小均相同的前提下,如使該入流端171的寬度等於該出流端172的寬度,該調適機構10可定義成一對稱結構。
根據演算模擬結果,該第一距離D1係介於0.1m至0.5m之間,該第二距離D2為0.5m。
藉由上述構件之組成,本發明之第一實施例主要實施步驟如下:首先,一外部流體係經由該入流端171進入該彎曲通道17,此時流體壓力較高,並具有較高流速,當該彎曲通道17中殘留有另一靜態流體時,該外部流體會與該靜態流體匯流,而一併朝該彎曲通道17的內部方向流動。在本例中,外部流體主要係由水組成之液體。
接著,當該外部流體流經該第一弧部12與該第二弧部15的連接位置時,由於該第二弧部15凹弧面的彎曲方向係與該第一弧部12凹弧面的彎曲方向相反,會使壓力集中於該連接位置上,引起內爆,並使大部分的該外部流體透過該些柱狀體間的空隙宣洩而出,並使壓力驟降。
最後,剩餘的外部流體係沿著該第二弧部15之曲率流動,且其流速逐漸變慢,而緩慢且平靜地於該出流端172流出至一指定區域,或是使剩餘的外部流體滯留靜止於該彎曲通道17中。
另請參閱圖2所示之本發明第二實施例,其與第一實施例的主要差異在於三元反曲內爆洪水導引現地調適嚮往系統(TRINITY-D20)係具有一洪水導引陣列20A,該洪水導引陣列20A包含三個前述之該調適機構10A,其中,該些等調適機構10A係以一虛擬之圓心點為中心地、呈輻射狀等距分設於以該圓心點為圓心的預定半徑範圍內,並使各該調適機構10A的彎曲通道17A之出流端172A靠近該圓心點、其入流端171A則遠離該圓心點。
並且,該些調適機構10A的第二弧部15A之第二端152A的彼此相鄰兩者之間,其最小之距離為一第三距離D3,較佳地,該第三距離D3為0.5m,以使該等調適機構10A之間具有適當的緩衝空間,以達到更佳的流動效果。
再如圖3所示之本發明第三實施例,其與第二實施例的主要差異在於該洪水導引陣列20B包含多個調適機構10B,且該等調適機構10B單元係逐個依序排列,其中,該些調適機構10B中相鄰的彼此之間,順序在前之調適機構10B係以該出流端172B與順序在後之調適機構10B的該入流端171B串接連通。
具體來說,該些調適機構10B單元之相鄰彼此之間,順序在前之調適機構10B單元的該第二弧部15B位於該出流端172B之弧形另一端(即第二端152B)係位於順序在後之調適單元的彎曲通道17B中,且順序在後之調適單元的該第一弧部12B之弧形另一端(即第一端121B)係位於順序在前之調適單元的彎曲通道17B中,並使順序在前之調適單元的彎曲通道17B與順序在後之調適單元的彎曲通道17B的局部互相重疊地相互連通。據此,得以促使該外部流體,於一個接一個地於該等調適機構10B單元的彎曲通道17B中流動,以逐步減緩其流速。
如圖4所示之本發明第四實施例,其與第三實施例的主要差異在於該些調適機構10C中彼此相鄰者,順序在前之調適機構10C的該第二弧部15C之第二端152C與該順序在後之調適機構10C的該第一弧部127C之第一端121C, 兩者之間的最小距離為一第四距離D4,以期達到更佳的流動效果。在本例中,該第四距離D4為0.5m。
此外,本發明還可配合其他水利設施,能於不同氣候條件或狀態下進行水資源管理或水利之運用。其中,該水利設施可為但不限於一雨水收集機構30、一橋樑儲水機構40或一道路空間調整機構50,而該等機構的結構特徵詳列於後。
在圖5A及圖5B所示,該雨水收集機構30係具有一本體31、一收集部32及一儲水部33,其中,該本體31為一建築物型態,其一部分是埋設於地面下,另一部分係建構於地表之上,而該收集部32係設於該建築物頂端,使得該收集部32遠離地面,並使該儲水部33設置於該建築物內部,較佳地,係設於該建築物的地下室、或是地面以下之部分。
具體來說,該收集部32具有多數個弧狀板體311,各該板體311為模塊化嵌套組件,能任意地彼此相互之組裝結合,例如,兩相鄰的板體311之間係以凸弧面朝外的方式相互組接(如圖5A所示),或是一者以凸弧面朝外、另一者以凹弧面朝外的方式連接(如圖5B所示),可分別作為引導排水或集中雨水之作用,同時利用弧狀結構還可增加用來收集雨水的表面積。
再者,該收集部32與該儲水部33之間係透過多數管路34連接,以使該收集部32所收集的雨水能透過該些管路34分配並儲存至該儲水部33中。
該儲水部33具有一槽體331,其槽內由複數隔板332分隔成多個相互連通之儲存空間333,且該些儲存空間333係於該槽體331中由外向內依序排列,該些儲存空間333係分別透過該等管路34以接收該收集部32所收集的雨水,並使位於最外圍的儲存空間333首先接收雨水,當其填滿時,會溢流至下一個儲存空間333中。據此,該雨水收集機構30作為儲水設施,可改善水資源短缺之問題
此外,該儲水部33還連接有一排水管35,當該些儲存空間333均充滿雨水、或是屆於即將滿水位時,可利用該排水管將多餘的雨水排出。
特別的是,該雨水收集機構30的設計發想係源自於鳳梨(Pineapple)葉子的造型。
如圖6A及圖6B所示,該橋樑儲水機構40具有一柱身41及一分隔部42,其中,該柱身41係作為橋樑、路面支撐之用,並依據支撐能力來設計其構形,在本例中,該柱身41呈中空的沙漏造型,而具有一內部空間411。
該分隔部42具有複數第一分隔件421及複數第二分隔件422,其中,各該第一分隔件421分別設於該柱身41內,並將該內部空間411沿該柱身41軸向方向之斷面係分割成二外環區412、一連接區413及二中央區414,各該外環區412分別位於鄰近該柱身41兩側周壁的位置上,且該連接區413係跨設於該柱身41內,其兩端分別連接於各該外環區412,並使該連接區413位於該二中央區414之間。
再者,該些第二分隔件422彼此相分隔地分別設於各該中央區414,使各該中央區414分隔有多數彼此連通且相互平行之管道415。其中,各該管道415之間可為不同之寬窄及長短的設計。
據此,如圖6B所示,係表示有兩組橋樑儲水機構40並列,其中,當外部水體進入該橋樑儲水機構40時,係先填充於該二外環區412其中一者,於其充滿外部水體後,再經由該連接區413流入該二外環區412其中另一者。接著,外部水體再由該連接區413分別流入該些中央區414中,並且,利用各該中央區414中相互層疊之管道415,一層一層地逐漸積聚外部水體,達到水資源分配及儲存之目的。
最後,當其中一組橋樑儲水機構40儲滿水時,可流入另一組橋樑儲水機構40中,以積累儲存更多的水資源。
特別的是,該橋樑儲水機構40的設計發想係源自於樹木中用來輸送水分之木質部(Xylem),其中,當樹木直立且功能正常時,木質部係作為輸送根部所吸收的養分和水之用;但是,當樹木被放倒、橫躺時,多餘的水會滯留在樹幹中並逐漸積聚。
如圖7至圖12所示,該道路空間調整機構50係設於濱海或海岸上,並具有一身部51及一道路模組52,其中,該身部51呈柱狀,用以架設該道路模組52,且該道路模組52包括有多數板塊53,並且根據該些板塊53的組裝態樣區分有一收納位置(如圖7至圖9所示)及一展開位置(如圖10至圖12所示)。
當海潮或洪水超過一預定容量時,該道路模組52將被拆除,使該些板塊53位於該展開位置,以使該道路模組52下方提供更多水體流動之空間;當海潮或洪水已退去時,該些板塊53將重新組裝在一起,而位於該收納位置上。
特別的是,該道路空間調整機構50的設計發想係源自於樹木根部於枯水期與豐水期時水分調節的原理。
以上僅是藉由較佳實例詳細說明本發明,熟知該技術領域者於不脫離本發明精神下,而對於說明書中之實施例所做的任何簡單修改或是變化,均應為本案申請專利範圍所得涵攝者。
10:調適機構
11:第一單元
12:第一弧部
121:第一端
122:第二端
13:第一柱狀體
14:第二單元
15:第二弧部
151:第一端
152:第二端
16:第二柱狀體
17:彎曲通道
171:入流端
172:出流端
D1:第一距離
D2:第二距離
D5:滯留距離

Claims (12)

  1. 一種三元反曲內爆洪水導引現地調適嚮往系統,係具有一調適機構;該調適機構係包括:一第一單元,具有一弧狀之第一弧部;一第二單元,具有一弧狀之第二弧部;其中,該第一單元與該第二單元係以該第一弧部之曲率中心軸平行於該第二弧部曲率中心軸地彼此以凹弧面相向地交錯,而使該第一弧部之弧形一端介於該第二弧部之弧形兩端之間,且與該第二弧部之凹弧面間相隔有一第一距離,並使該第二弧部之弧形一端介於該第一弧部之弧形兩端之間,且與該第一弧部相隔有一第二距離,藉以由該第一弧部與該第二弧部共同定義出一介於其彼此之間的彎曲通道。
  2. 如請求項1所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該第一弧部具有複數個第一柱狀體,並由該些第一柱狀體彼此間隔開來地排列成該第一弧部之弧狀;該第二弧部具有複數個第二柱狀體,並由該些第二柱狀體彼此間隔開來地排列成該第二弧部之弧狀。
  3. 如請求項2所述三元反曲內爆洪水導引現地調適嚮往系統,其中,各該第一柱狀體與各該第二柱狀體在徑向之斷面形狀上係分別呈四邊型。
  4. 如請求項3所述三元反曲內爆洪水導引現地調適嚮往系統,其中,各該第一柱狀體與各該第二柱狀體在徑向之斷面形狀上係分別呈梯型。
  5. 一種三元反曲內爆洪水導引現地調適嚮往系統,具有一洪水導引陣列,包含多個如請求項1、2、3或4所述之調適機構。
  6. 如請求項5所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該些調適機構係以一虛擬之圓心點為中心地以輻射狀等距分設於以該圓心 點為圓心的預定半徑範圍內,並使各該調適機構的彎曲通道之一端靠近該圓心點、另端則遠離該圓心點。
  7. 如請求項6所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該調適機構的數量為三。
  8. 如請求項7所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該些調適機構的該第二弧部靠近該圓心點之一端,任兩者之間的最小距離為一第三距離。
  9. 如請求項8所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該彎曲通道靠近該圓心點的一端定義為一入流端,該彎曲通道遠離該圓心點的另端定義為一出流端。
  10. 如請求項5所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該彎曲通道之兩端分別定義為一入流端及一出流端,該等調適機構係逐個依序排列,且該些調適機構中彼此相鄰者,順序在前之調適機構係以該出流端與順序在後之調適機構的該入流端串接連通。
  11. 如請求項10所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該些調適機構之相鄰彼此之間,順序在前之調適機構的該第二弧部位於該出流端之弧形另一端係位於順序在後之調適單元的彎曲通道之入流端中,且順序在後之調適單元的該第一弧部之弧形另一端係位於順序在前之調適單元的彎曲通道之出流端中,並使順序在前之調適單元的彎曲通道與順序在後之調適單元的彎曲通道的局部互相重疊地相互連通。
  12. 如請求項10所述三元反曲內爆洪水導引現地調適嚮往系統,其中,該些調適機構中任兩相鄰的彼此之間的最小距離為一第四距離。
TW111101791A 2022-01-17 2022-01-17 三元反曲內爆洪水導引現地調適嚮往系統 TWI806361B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111101791A TWI806361B (zh) 2022-01-17 2022-01-17 三元反曲內爆洪水導引現地調適嚮往系統
US17/587,826 US11866899B2 (en) 2022-01-17 2022-01-28 Tailoring yearn system having a tailoring mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111101791A TWI806361B (zh) 2022-01-17 2022-01-17 三元反曲內爆洪水導引現地調適嚮往系統

Publications (2)

Publication Number Publication Date
TWI806361B true TWI806361B (zh) 2023-06-21
TW202331053A TW202331053A (zh) 2023-08-01

Family

ID=87162623

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101791A TWI806361B (zh) 2022-01-17 2022-01-17 三元反曲內爆洪水導引現地調適嚮往系統

Country Status (2)

Country Link
US (1) US11866899B2 (zh)
TW (1) TWI806361B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201038791A (en) * 2009-04-30 2010-11-01 shui-lin Shen Method of preventing flood from destroying embankments of river and ditch
CN106149622A (zh) * 2016-08-30 2016-11-23 程铖 防避泥石流的导流系统及方法
US9915048B2 (en) * 2013-12-04 2018-03-13 Fenghe Yingzao Group, Inc. Method for river/lake level regulation and water conservancy system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US283683A (en) * 1883-08-21 Xway t thomas
US1137049A (en) * 1914-02-02 1915-04-27 Mark A Callahan Beach-forming jetties.
US3908384A (en) * 1973-09-14 1975-09-30 Balekjian Sigrid F Breakwaters for long, short and/or complex water waves
US3913333A (en) * 1973-09-18 1975-10-21 Jr Tom Watson Hubbard Means and apparatus for controlling fluid currents and selectively preserving and modifying topography subjected thereto
US4341489A (en) * 1979-04-30 1982-07-27 Joe Karnas Offshore reef
US4560304A (en) * 1983-07-14 1985-12-24 The Regents Of The University Of California Method and apparatus for impeding sediment deposition in harbors and navigation channels
ES289904Y (es) * 1985-10-28 1986-11-16 Suarez Bores Pedro Dique-espigon,paisaje basaltico columnar
US4804294A (en) * 1986-06-03 1989-02-14 Barthel Ted F Method and means for improved erosion control
US5129756A (en) * 1987-07-24 1992-07-14 Wheeler Jack L Apparatus for and method of coastal erosion control using massive sea block system
US5857805A (en) * 1994-05-05 1999-01-12 Chappell; Derrald H. Flow modification apparatus, system, and method
US5556230A (en) * 1994-10-19 1996-09-17 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Concrete armor unit for the protection of coastal, shore lines and hydraulic structures
US5895174A (en) * 1997-03-03 1999-04-20 Beaver; George M. Beach replenishment system
US6213682B1 (en) * 1999-11-24 2001-04-10 Joe Karnas Offshore reef
WO2007008053A1 (es) * 2005-07-12 2007-01-18 Robie Bonilla Gris Recubrimiento contra socavación y fuerza de arrastre en estructuras
JP2014533330A (ja) * 2011-08-25 2014-12-11 パイルプロ,エルエルシー 防波壁用パイル配列および配列方法
US9151008B1 (en) * 2014-08-22 2015-10-06 Robin G Carstens Wave break device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201038791A (en) * 2009-04-30 2010-11-01 shui-lin Shen Method of preventing flood from destroying embankments of river and ditch
US9915048B2 (en) * 2013-12-04 2018-03-13 Fenghe Yingzao Group, Inc. Method for river/lake level regulation and water conservancy system
CN106149622A (zh) * 2016-08-30 2016-11-23 程铖 防避泥石流的导流系统及方法

Also Published As

Publication number Publication date
US11866899B2 (en) 2024-01-09
TW202331053A (zh) 2023-08-01
US20230228054A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
Kazi A review of the assessment and mitigation of floods in Sindh, Pakistan
CN112695586A (zh) 一种海绵城市水循环系统
Douglas Urban hydrology
Legese et al. Flooding in Ethiopia; causes, impact, and coping mechanism a review
TWI806361B (zh) 三元反曲內爆洪水導引現地調適嚮往系統
Stalenberg et al. Urban flood control on the rivers of Tokyo metropolitan
US20230235522A1 (en) Mitigating flooding in existing coastal plain areas
CN110777880A (zh) 一种利用岩溶洼地蓄水的方法
US7229234B2 (en) Method for preventing and discharging flood
Hrvatin et al. Water resources in Slovenia
Chitale Development of India's river basins
Gotoh et al. Flood control and small-scale reservoirs
Valente Water sensitive urban open spaces: comparing North American best management practices
Čanjevac et al. Surface water resources and their management in Croatia
Carlyle Water in the Red River valley of the North
Teixeira et al. Climatological water balance and characterization of water resources in the municipality of Pentecoste, Ceará
Do Urban landscape planning adapting to flood in Can Tho city, Viet Nam
Charlier Water for the desert—a viewpoint
Nayak Sediment management of the Kosi River basin in Nepal
Ciupa et al. Water Problems in Urban Areas
Agiralioglu Project Transferring Water from Turkey to Cyprus Island
Shinawatra FLOOD AND WATER MANAGEMENT: CASE STUDIES IN THAI HISTORY: WHAT LESSON THAT WE SHOULD LEARN?
Siddiqua Emergence of Water Urbanism for Water Born “Can Tho”
MAN et al. LOWLAND ACCUMULATIONS IN TIMI? COUNTY FOR FLOOD PROTECTION.
Bule Hora et al. Flooding in Ethiopia; Causes, Impact and Coping Mechanisms. A Review