WO2015081476A1 - 基站天线馈电网络 - Google Patents

基站天线馈电网络 Download PDF

Info

Publication number
WO2015081476A1
WO2015081476A1 PCT/CN2013/088354 CN2013088354W WO2015081476A1 WO 2015081476 A1 WO2015081476 A1 WO 2015081476A1 CN 2013088354 W CN2013088354 W CN 2013088354W WO 2015081476 A1 WO2015081476 A1 WO 2015081476A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed network
base station
power
phase
station antenna
Prior art date
Application number
PCT/CN2013/088354
Other languages
English (en)
French (fr)
Inventor
方锋明
Original Assignee
广东通宇通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东通宇通讯股份有限公司 filed Critical 广东通宇通讯股份有限公司
Priority to CN201380004165.XA priority Critical patent/CN103975485B/zh
Priority to PCT/CN2013/088354 priority patent/WO2015081476A1/zh
Priority to EP13898577.5A priority patent/EP2919318B1/en
Priority to US14/503,900 priority patent/US9559429B2/en
Publication of WO2015081476A1 publication Critical patent/WO2015081476A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/183Coaxial phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • H01P3/084Suspended microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • the present invention relates to the field of mobile communications, and more particularly to a feed network applied to an electrical telecommunication base station antenna.
  • a phase shifting device in the conventional art uses a metal conductor rod to move back and forth in a metal conductor tube to change the actual length of the transmission path to achieve the purpose of phase change, but in actual use, a power divider must be added for power. Distribution, and in order to obtain a large phase shift amount, it is generally necessary to increase the volume of the phase shifter, which results in a complicated structure of the feed network, and the electrical performance and consistency of the product also deteriorate.
  • Another prior art isophase differential multi-channel composite phase shifter adopts a microstrip type power splitter and a phase shifter, especially a line length adjustment mechanism of a phase shifter, which has large loss, unstable performance, etc. Obviously insufficient, less used in mass production.
  • the prior art feed network has the disadvantages and problems of complicated structure assembly, large number of solder joints, large power loss, poor consistency, large volume, and high manufacturing cost.
  • the present invention provides a base station antenna feed network, comprising at least two power splitters and at least three phase shifters, wherein at least one of the power splitters is a three-power splitter, and a feed port input connects the one Dividing into the input end of the three-power splitter, one of the outputs of the one-way three-power splitter is used to feed the central unit of the array, and the other two outputs are connected to the phase shifters at the left and the right ends, and the adjacent phase shifters pass through one
  • the two power splitters are cascaded, and the output of the previous phase shifter is connected to the input end of the power splitter.
  • One output end of the power splitter serves as one output end of the entire feed network, and the other output end is connected to the lower end.
  • phase shifter comprising a fixed transmission line and a sliding transmission line
  • the fixed transmission line being a hollow circular metal tube
  • the sliding transmission line being a u-shaped metal rod surface-coated with an insulating layer and inserted in a hollow circular metal tube
  • the phase shifter and the power splitter are all placed in an integrated integrally formed metal cavity structure, and each feeding point is distributed along a longitudinal direction thereof.
  • the present invention distributes the power splitters and phase shifters in a distributed manner, realizes flexible power division ratio design, stable performance, low power loss, and the whole of the phase shifter, the power splitter and the feed network.
  • the structure is further optimized to make the feed network compact, small in size, easy to process, low in cost, easy to achieve wide frequency band, more stable in overall performance and consistency, and flexible combination to increase the number of outputs, which solves the ESC well.
  • the phase shifter is based on the principle of nested coupling of metal tubes, which can achieve good consistency, flexible power division ratio design, stable performance and low power loss.
  • the present invention integrates various functional components in an integrally formed narrow metal cavity, each feed port is distributed along its long side, and functional components are also distributed in the cavity, which overcomes the cumbersome structure and more solder joints.
  • the power loss is large, the feeder network is compact, the size is small, the processing is easy, the cost is reduced, the broadband is easy to implement, and the overall performance and consistency are more stable. Compared with other structures, signal leakage can be avoided and resonance can be avoided. point.
  • the cross-sectional shape of the metal cavity structure is a single rectangle, or a single rectangle on one side, or a double rectangle on the upper and lower sides, or a double rectangle on the upper and lower sides, or a double rectangle on the left and right sides, or an open double rectangle on the left and right sides, or the foregoing two A multi-chamber structure in which two or more types are combined.
  • the flexibility can be combined to increase the number of outputs, which satisfies the requirements of the E-station base station antenna broadband feed network.
  • the power splitter is configured in a branched form for the air strip line.
  • the strip line is flat or circular or square or other geometric shapes and combinations thereof.
  • the single-row feed structure is combined by tiling and/or lamination to form a phase-shifted feed network with more outputs.
  • each phase shifter is the same, and an equal phase change can be achieved.
  • the present invention has the following advantages:
  • the invention discloses a base station antenna feeding network which is compact in structure, stable in performance, flexible in combination and extremely low in loss.
  • the invention distributes the power dividers and phase shifters in a distributed manner, and the phase shifters are based on the principle of nested coupling of metal tubes, achieving good consistency, flexible power division ratio design, stable performance, low power loss,
  • the overall structure of the phase shifter, the power splitter and the feed network is further optimized, and the functional components are assembled in a single elongated metal cavity, and the feed ports are distributed along the long sides thereof, and the functional components are also distributed.
  • the cavity overcomes the shortcomings of the previous structure, more solder joints, and large power loss, making the feed network compact, small in size, easy to process, low in cost, easy to achieve wide frequency band, and more stable overall performance and consistency. Compared with other structures, it can effectively avoid signal leakage, avoid resonance point, and can be flexibly combined to increase the number of output terminals, which satisfies the requirement of the electric power transmission base station antenna broadband feeding network.
  • FIG. 1 is a schematic diagram of a feed network of the present invention
  • 2a-2f are schematic cross-sectional views of an embodiment of the integrally formed metal cavity of the present invention
  • 3a-3b are structural diagrams of a power splitter used in a feed network of the present invention
  • Figure 4 is a structural diagram of a phase shifter used in the feed network of the present invention.
  • Figure 5 is a structural diagram of a feed network according to a first embodiment of the present invention.
  • Figure 6 is a structural diagram of a feed network according to a second embodiment of the present invention.
  • Figure 7 is a structural diagram of a feed network according to a third embodiment of the present invention.
  • FIGS. 8a-8d are schematic diagrams showing a single layer, a double layer, a three layer and a multilayer combination mode of the feed network of the present invention.
  • Figure 9 is a schematic diagram showing the connection of the feed network of the present invention to an antenna unit.
  • the base station antenna feed network of the present invention includes a three-power splitter, and the power input by the feed port is divided into three paths by the one-way three-power splitter, one of which is used to the array center.
  • the unit is fed, and the other two outputs are connected to the phase shifters at the left and right ends.
  • the adjacent phase shifters are cascaded by a splitter and two power splitters, respectively feeding the left and right sides of the array, and the three points in FIG. N phase shifters, N-1 one-two splitters, and N' phase shifters, N' -1 one-two splitters are respectively arranged on both sides of the device.
  • the output of the previous phase shifter is connected to the input of the power splitter.
  • One output of the power splitter acts as one output of the entire feed network and the other output is connected to the input of the next phase shifter.
  • the power ratio can also be set according to requirements.
  • Each phase shifter is the same, except that when the sliding rod moves along the line, the left and right sides of the corresponding output phase are reversed to form a stepped phase distribution, and the control pattern is in the vertical plane.
  • the downtilt angle In the embodiment, each phase shifter is the same, and the phase difference of the difference can be realized.
  • the phase shifter and the power splitter are all disposed in an integrated integrally formed metal cavity structure, and each feeding point is distributed along a longitudinal direction thereof.
  • the functional components are assembled in a well-formed narrow metal cavity, and the feeding ports are distributed along the long sides thereof, and the functional components are also distributed in the cavity, which overcomes the disadvantages of cumbersome structures, more solder joints, and large power loss.
  • the feed network is compact, small in size, easy to process, low in cost, easy to implement in a wide frequency band, and more stable in overall performance and consistency.
  • the cross-sectional shape of the metal cavity structure is a single rectangle (as shown in FIG. 2d), or a single rectangle on one side (as shown in FIG. 2e), or a double rectangle on the upper and lower sides (as shown in FIG. 2a), or upper and lower sides.
  • the opening has a double rectangle, or a left and right double rectangle, or an open double rectangle on the left and right sides, or a multi-chamber structure in which two or more of the foregoing are combined, and the like.
  • the power splitter is configured in a branched form for the air strip line.
  • the stripline is flat or circular or square or other geometric shape and combinations thereof.
  • Figure 3a ⁇ 3b are the central conduction band structure diagram of the air strip line power splitter, where a is the input end, and b, c, and d are the output ends.
  • Figure 3a shows a three-point splitter
  • Figure 3b shows a split-two splitter.
  • FIG. 4 is a structural diagram of a phase shifter for deforming a strip line, wherein 200 and 300 are fixed transmission line hollow round metal tubes, and the movable U-shaped metal rod 100 whose surface is coated with an insulating dielectric layer is A sliding transmission line, which is inserted into the hollow circular metal tubes 2 and 3, adjusts the phase by moving the U-shaped metal rod 100 to change the actual length of the transmission line.
  • the single-row feed structure can be combined by tiling and/or lamination to form a phase-shifted feeder circuit with more outputs.
  • each layer including seven power splitters and eight phase shifters, forming an in-and-out-out feed electronic system (this The description and the drawings only take part of the description), wherein 2-1 is the input power splitter, and the power splitter 2-2 is connected to the phase shifters 3-1 and 3-2, which are all assembled in the metal cavity 1.
  • the signal is input from the 4-a terminal to the input terminal 2-1-a of the splitter 2- 1 using a coaxial cable, and is divided into three 2-lb, 2-lc and 2-ld, wherein 2-1-b connects the coaxial cable 4-c as an output, and 2-1-c connects to the input 3-2-a of the phase shifter 3-2, and after phase shifting, it outputs 3-2 -b is connected to the input 2-2-a of the splitter 2-2, which is divided into two paths, and its output 2-2-b is connected to the coaxial cable 4-e as an output of the feed network, 2-
  • the 2-c path is connected to the input terminal 3-la of the phase shifter 3-1, and after phase shifting, the coaxial cable 4-g is connected as an output via its output terminal 3-1-b.
  • the principle of the other side or the next layer is similar to the foregoing. Thus, when the phase shifting device moves, the phase distribution of the phase difference is obtained at each output of the upper layer or the next layer.
  • 6 is a second embodiment of the second embodiment of the present invention, a two-layer two-in-one feed network, each layer comprising three power dividers and four phase shifters to form an input five-output feed network, wherein 2 -1 is a one-point three-power splitter, and 2-2 is a two-point splitter.
  • the one-two splitter 2-2 is connected to phase shifters 3-1 and 3-2.
  • the signal is input from the coaxial input terminal 4-f, divided into three channels by the power divider 2-1 2-lb, 2-1-c, 2-1-d, 2-1 -b connects the inner conductor of the coaxial line to form an output terminal 4-h,
  • 2- 1-c is connected to the input terminal 3-la of the other phase shifter, and after phase shifting, the output terminal 3-1-b is connected to the input terminal 2-2-a of the power splitter 2-2, which is divided into two paths.
  • 2-2-b is connected to the inner conductor of the coaxial line to form an output port 4-j
  • 2-2-c is connected to the input end of the other phase shifter
  • FIG. 7 is a feeding network of a third embodiment of the present invention, which has the same working principle as the hierarchical structure of the embodiment shown in FIG. 5, except that the two sub-networks are arranged differently. .
  • FIGS. 8a-8d are schematic diagrams showing a single-layer, two-layer, three-layer and multi-layer combination manner of a feed network according to the present invention, and an example of forming a multi-port feed network by a cascade of feed network overlay combinations is given. , you can also increase the number of ports in the feed network by tiling it.
  • FIG. 9 is a schematic diagram of a connection between a feed network and an antenna unit.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本发明提供一种基站天线馈电网络,其包括至少两个功分器和至少三个移相器,其前一移相器的输出端连接到功分器的输入端,功分器的一个输出端作为整个馈电网络的一个输出端,另一路输出端相连到下一移相器的输入端,该移相器包括固定传输线和滑动传输线,所述移相器和功分器均置于一体化整体成型金属腔结构内,各馈电点沿其长边方向分布。本发明实现灵活的功分比设计、性能稳定、较低功率损耗,使馈电网络结构紧凑,尺寸较小,易于加工,成本降低,容易实现宽频带,整体性能和一致性更加稳定,并可灵活组合以增加输出端数。

Description

基站天线馈电网络 技术领域
[0001] 本发明涉及移动通信领域, 尤其是指一种应用于电调基站天线的馈电网络。
背景技术
[0002] 随着移动通信技术的发展, 对基站天线的电性能和机械性能要求也越来越高, 其高性 能和小型化逐渐成为发展趋势, 如更大的电下倾角、 更高的效率、 更宽频带、 更小的体积等, 这对基站天线馈电网络的性能提出了更高的要求。
[0003] 传统技术上的一种移相装置, 采用金属导体棒在金属导体管中前后运动来改变传输路 径的实际长度, 以达到相位改变的目的, 但实际使用时必须外加功分器进行功率分配, 并且 为得到较大的移相量, 一般需要增大移相器的体积, 这样导致馈电网络结构复杂, 产品的电 气性能和一致性也会变差。 另外一种现有技术的等相差分多路复合移相器, 全部采取微带型 的功分器和移相器, 尤其是移相器的线长调节机构, 存在损耗大, 性能不稳定等明显不足, 在产品量产时使用较少。
[0004] 因此, 现有技术的馈电网络存在结构装配繁琐、 焊点较多、 功率损耗大、 一致性差、 体积大、 制造成本高等缺点和问题。
[0005] 所以, 提供一种功分比设计灵活、 结构紧凑、 性能稳定、 工作频带宽、 一致性好、 功 率损耗低、 结构简单、 体积变小、 成本降低、 便于量产的基站天线馈电网络实为必要。
发明内容
[0006] 本发明的目的在于提供一种结构紧凑、 功分比设计灵活、 性能稳定的基站天线馈电网 络。
[0007] 为实现本发明目的, 提供以下技术方案:
本发明提供一种基站天线馈电网络, 其包括至少两个功分器和至少三个移相器, 其中至少一 个所述功分器为一分三功分器, 馈电口输入连接该一分三功分器的输入端, 该一分三功分器 的输出端之一用以对阵列中心单元馈电, 另外两输出端连接到左右两端的移相器, 相邻移相 器通过一分二功分器级联, 其前一移相器的输出端连接到功分器的输入端, 功分器的一个输 出端作为整个馈电网络的一个输出端, 另一路输出端相连到下一移相器的输入端, 该移相器 包括固定传输线和滑动传输线, 该固定传输线为空心圆金属管, 该滑动传输线是表面涂覆绝 缘层并插入在空心圆金属管中的 u形金属杆, 所述移相器和功分器均置于一体化整体成型金 属腔结构内, 各馈电点沿其长边方向分布。 [0008] 本发明将各功分器和移相器分布式级联, 实现灵活的功分比设计、 性能稳定、 较低功 率损耗, 并对移相器和功分器及馈电网络的整体结构进一步优化, 使馈电网络结构紧凑, 尺 寸较小, 易于加工, 成本降低, 容易实现宽频带, 整体性能和一致性更加稳定, 并可灵活组 合以增加输出端数, 很好地解决了电调基站天线宽带馈电网络的需求。 移相器则基于金属管 嵌套耦合的原理, 可实现良好的一致性、 灵活的功分比设计、 性能稳定、 较低功率损耗。
[0009] 本发明将各功能部件装配在一体成型的窄长金属腔内, 各馈电端口沿其长边分布, 功 能组件也分布设置在腔体内, 克服了以往结构繁琐、 焊点较多、 功率损耗大等缺点, 使馈电 网络结构紧凑, 尺寸较小, 易于加工, 成本降低, 容易实现宽频带, 整体性能和一致性更加 稳定, 相比其他结构, 可有效避免信号外泄, 避免谐振点。
[0010] 优选的, 该金属腔结构的截面形状为单矩形, 或一边开口单矩形, 或上下双矩形, 或 上下一边开口双矩形, 或左右双矩形, 或左右一边开路双矩形, 或前述两种或两种以上组合 而成的多腔结构。 可灵活组合以增加输出端数, 很好地解决了电调基站天线宽带馈电网络的 需求。
[0011] 优选的, 该功分器为空气带状线采取分支型形式构成。
[0012] 优选的, 该带状线为扁平形或圆形或方形或其他几何形状及其组合。
[0013] 优选的, 单列馈电结构通过平铺和 /或层叠方式组合, 可以构成更多输出端的移相馈电 网路。
[0014] 优选的, 各移相器都相同, 可以实现等差相位变化。
[0015] 对比现有技术, 本发明具有以下优点:
本发明公开了一种结构紧凑、 性能稳定、 组合灵活和损耗极小的基站天线馈电网络。 本发明 将各功分器和移相器分布式级联, 移相器则基于金属管嵌套耦合的原理, 实现良好的一致性、 灵活的功分比设计、 性能稳定、 较低功率损耗, 并对移相器和功分器及馈电网络的整体结构 进一步优化, 再将各功能部件装配在一体成型的窄长金属腔内, 各馈电端口沿其长边分布, 功能组件也分布设置在腔体内, 克服了以往结构繁琐、 焊点较多、 功率损耗大等缺点, 使馈 电网络结构紧凑, 尺寸较小, 易于加工, 成本降低, 容易实现宽频带, 整体性能和一致性更 加稳定, 相比其他结构, 可有效避免信号外泄, 避免谐振点, 并可灵活组合以增加输出端数, 很好地解决了电调基站天线宽带馈电网络的需求。
附图说明
[0016] 图 1是本发明馈电网络的原理图;
图 2a~2f是本发明一体化成型金属腔实施例的截面形状示意图; 图 3a~3b是本发明馈电网络中所用功分器的结构图;
图 4是本发明馈电网络中所用移相器的结构图;
图 5是本发明第一实施例的馈电网络结构图;
图 6是本发明第二实施例的馈电网络结构图;
图 7是本发明第三实施例的馈电网络结构图;
图 8a~8d是本发明馈电网络的单层、 双层、 三层及多层组合方式示意图;
图 9是本发明馈电网络与天线单元连接的示意图。
具体实施方式
[0017] 请参阅图 1, 本发明基站天线馈电网络包括一分三功分器, 馈电口输入的功率经该一 分三功分器等分为三路, 其中一路用以对阵列中心单元馈电, 另外两输出端连接到左右两端 的移相器, 相邻移相器通过一分二功分器级联, 分别对阵列左右两边单元馈电, 图 1中的一 分三功分器两侧分别设有 N个移相器、 N-1个一分二功分器, 以及 N' 个移相器、 N' -1个 一分二功分器。 前一移相器的输出端连接到功分器的输入端, 功分器的一个输出端作为整个 馈电网络的一个输出端, 另一路输出端相连到下一移相器的输入端。 功分比也可根据要求设 定, 各移相器是相同的, 只是当滑动杆沿线移动时, 左右两边对应输出口相移反向, 以形成 阶梯式相位分布, 控制方向图在垂直面内的下倾角。 实施例中, 各移相器都相同, 可以实现 等差相位变化。
[0018] 所述移相器和功分器均置于一体化整体成型金属腔结构内, 各馈电点沿其长边方向分 布。 将各功能部件装配在一体成型的窄长金属腔内, 各馈电端口沿其长边分布, 功能组件也 分布设置在腔体内, 克服了以往结构繁琐、 焊点较多、 功率损耗大等缺点, 使馈电网络结构 紧凑, 尺寸较小, 易于加工, 成本降低, 容易实现宽频带, 整体性能和一致性更加稳定。
[0019] 请参阅图 2a~2f,该金属腔结构的截面形状为单矩形(如图 2d),或一边开口单矩形(如 图 2e), 或上下双矩形 (如图 2a), 或上下一边开口双矩形, 或左右双矩形, 或左右一边开路 双矩形, 或前述两种或两种以上组合而成的多腔结构, 等等。
[0020] 请参阅图 3a~3b, 该功分器为空气带状线采取分支型形式构成。 该带状线为扁平形或 圆形或方形或其他几何形状及其组合。 图 3a~3b为空气带状线功分器的中心导带结构图, 其 中 a为输入端, b、 c、 d为输出端。 图 3a为一分三功分器, 图 3b为一分二功分器。
[0021] 请参阅图 4, 是一种变形带状线的移相器结构图, 其中 200与 300为固定传输线空心 圆金属管, 表面涂覆了绝缘介质层的可移动 U形金属杆 100为滑动传输线, 其插入到空心圆 金属管 2和 3中, 通过移动 U形金属杆 100以改变传输线的实际长度来调整相位。 [0022] 单列馈电结构通过平铺和 /或层叠方式组合, 可以构成更多输出端的移相馈电网路。
[0023] 图 5是本发明第一个实施例的层叠二入八出的馈电网络, 每层包括七个功分器和八个 移相器, 构成一入九出的馈电子系统 (本说明及附图只取其中一部分说明), 其中 2-1为输入 功分器, 功分器 2-2连接移相器 3-1和 3-2, 它们都装配在金属腔体 1内。 对于上面一层, 采 用同轴电缆将信号从 4-a端输入到功分器 2- 1的输入端 2-1-a,被分成三路 2-l-b、2-l-c和 2-l-d, 其中 2-1-b路连接同轴电缆 4-c作为一个输出端, 而 2-1-c连接到移相器 3-2的输入端 3-2-a, 移相后由其输出 3-2-b连接到功分器 2-2的输入端 2-2-a, 被分为两路, 其输出 2-2-b路连接同 轴电缆 4-e作为馈电网络的一个输出, 2-2-c路连接到移相器 3-1的输入端 3-l-a, 移相后经其 输出端 3-1-b连接同轴电缆 4-g作为一个输出。另一边或下一层的原理与前述类似。这样当移 相装置移动时, 上层或下一层各输出端就获得相位等差变化的相位分布。
[0024] 图 6是本发明的第二个实施例二层二入十出的馈电网络, 每层包括三个功分器和四个 移相器构成一输入五输出馈电子网络, 其中 2-1为输入一分三功分器, 2-2为一分二功分器, 该一分二功分器 2-2连接移相器 3-1和 3-2。对上一层左边馈电子网络,信号从同轴输入端 4-f 输入, 经功分器 2-1分为三路 2-l-b、 2-1-c, 2-1-d, 2-1-b连接同轴线内导体形成输出端 4-h,
2- 1-c连接到另一移相器的输入端 3-l-a,移相后输出端 3-1-b连接到功分器 2-2的输入端 2-2-a, 分为二路, 2-2-b连接到同轴线内导体形成输出端口 4-j, 而 2-2-c连接到另一移相器的输入端
3- 2-a, 经移相, 其输出 3-2-b连接到同轴线内导体形成输出口 4-1。 上层右边及下层的馈电子 网络结构与原理与前面叙述的相似。
[0025] 图 7是本发明的第三个实施例平铺二入十出的馈电网络, 其工作原理与图 5所示实施 例的分层结构相同, 只是两组子网络的排列方式不同。
[0026] 图 8a~8d为本发明馈电网络的单层、 双层、 三层及多层组合方式示意图, 给出了由一 列馈电子网络层叠组合构成更多端口馈电网络的示例, 另外, 还可采取将其平铺的方式进一 步增加馈电网络的端口数。
[0027] 图 9 为馈电网络与天线单元的连接示意图。
[0028] 以上所述仅为本发明的较佳实施例, 本发明的保护范围并不局限于此, 任何基于本发 明技术方案上的等效变换均属于本发明保护范围之内。

Claims

WO 2015/081476 权 利 要 求 书 PCT/CN2013/088354
1. 一种基站天线馈电网络, 其特征在于, 其包括至少两个功分器和至少三个移相器, 其中至 少一个所述功分器为一分三功分器, 馈电口输入连接该一分三功分器的输入端, 该一分三功 分器的输出端之一用以对阵列中心单元馈电, 另外两输出端连接到左右两端的移相器, 相邻 移相器通过一分二功分器级联, 其前一移相器的输出端连接到功分器的输入端, 功分器的一 个输出端作为整个馈电网络的一个输出端, 另一路输出端相连到下一移相器的输入端, 该移 相器包括固定传输线和滑动传输线, 该固定传输线为空心圆金属管, 该滑动传输线是表面涂 覆绝缘层并插入在空心圆金属管中的 u形金属杆, 所述移相器和功分器均置于一体化整体成 型金属腔结构内, 各馈电点沿其长边方向分布。
2. 如权利要求 1所述的基站天线馈电网络,其特征在于,该金属腔结构的截面形状为单矩形, 或一边开口单矩形, 或上下双矩形, 或上下一边开口双矩形, 或左右双矩形, 或左右一边开 路双矩形, 或前述两种或两种以上组合而成的多腔结构。
3. 如权利要求 1或 2所述的基站天线馈电网络, 其特征在于, 该功分器为空气带状线采取分 支型形式构成。
4. 如权利要求 3所述的基站天线馈电网络, 其特征在于, 该带状线为扁平形或圆形或方形或 其他几何形状及其组合。
5. 如权利要求 1或 2所述的基站天线馈电网络, 其特征在于, 单列馈电结构通过平铺和 /或 层叠方式组合, 以构成更多输出端的移相馈电网路。
6. 如权利要求 1或 2所述的基站天线馈电网络, 其特征在于, 各移相器都相同以实现等差相 位变化。
PCT/CN2013/088354 2013-12-02 2013-12-02 基站天线馈电网络 WO2015081476A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380004165.XA CN103975485B (zh) 2013-12-02 2013-12-02 基站天线馈电网络
PCT/CN2013/088354 WO2015081476A1 (zh) 2013-12-02 2013-12-02 基站天线馈电网络
EP13898577.5A EP2919318B1 (en) 2013-12-02 2013-12-02 Base station antenna feed network
US14/503,900 US9559429B2 (en) 2013-12-02 2014-10-01 Feeding network for base station antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088354 WO2015081476A1 (zh) 2013-12-02 2013-12-02 基站天线馈电网络

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/503,900 Continuation US9559429B2 (en) 2013-12-02 2014-10-01 Feeding network for base station antenna

Publications (1)

Publication Number Publication Date
WO2015081476A1 true WO2015081476A1 (zh) 2015-06-11

Family

ID=51243479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088354 WO2015081476A1 (zh) 2013-12-02 2013-12-02 基站天线馈电网络

Country Status (4)

Country Link
US (1) US9559429B2 (zh)
EP (1) EP2919318B1 (zh)
CN (1) CN103975485B (zh)
WO (1) WO2015081476A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203521615U (zh) * 2013-10-28 2014-04-02 华为技术有限公司 基站天线
CN104362438B (zh) * 2014-10-30 2017-04-26 西安欣创电子技术有限公司 一种整体式大扫描角波束合成移相器
CN112054314B (zh) 2015-12-30 2023-12-15 华为技术有限公司 一种阵列天线系统
CN105811109B (zh) * 2016-03-14 2019-01-18 武汉虹信通信技术有限责任公司 一种高增益大下倾角电调天线
CN105762535B (zh) * 2016-04-15 2018-06-29 武汉虹信通信技术有限责任公司 一种双系统独立下倾角调整基站电调天线
US11145978B2 (en) 2016-06-17 2021-10-12 Commscope Technologies Llc Phased array antennas having multi-level phase shifters
CN107181062A (zh) * 2017-04-28 2017-09-19 广州司南天线设计研究所有限公司 一种用于基站天线的空间立体移相器及移相器组件
CN109904597B (zh) 2017-12-11 2020-12-08 华为技术有限公司 一种馈电设备、天线及电子设备
CN107968239A (zh) * 2017-12-29 2018-04-27 京信通信系统(中国)有限公司 移相结构及天线
CN108232379A (zh) * 2017-12-29 2018-06-29 京信通信系统(中国)有限公司 移相结构及天线
CN110474135A (zh) * 2019-08-16 2019-11-19 广东曼克维通信科技有限公司 移相器组件以及基站天线
CN110931921A (zh) * 2019-12-23 2020-03-27 南京阜太通信技术有限公司 一种应用于5g大规模天线阵列的移相器结构
CN111668605B (zh) * 2020-07-02 2021-07-09 中信科移动通信技术股份有限公司 用于高铁沿线的电调天线
CN112366445B (zh) * 2020-10-27 2021-07-27 东莞市振亮精密科技有限公司 一种功分网络、5g天线模块及5g天线模块的装配方法
CN116111343A (zh) * 2021-11-11 2023-05-12 华为技术有限公司 馈电网络、天线装置及通信设备
CN116435759B (zh) * 2023-06-14 2023-10-27 广东盛路通信科技股份有限公司 一种基站天线及其指标调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157767A (zh) * 2011-03-28 2011-08-17 京信通信系统(中国)有限公司 同轴介质移相系统、移相器及移相驱动装置
CN102354775A (zh) * 2011-08-22 2012-02-15 广东通宇通讯股份有限公司 一种移相装置
CN103280621A (zh) * 2013-05-03 2013-09-04 安徽四创电子股份有限公司 五等分功分器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE469215A (zh) * 1944-01-28
US3493898A (en) * 1968-04-01 1970-02-03 Raytheon Co Wideband phase shifter
JPH03166803A (ja) * 1989-11-27 1991-07-18 Kokusai Denshin Denwa Co Ltd <Kdd> 二周波分離給電円偏波用マイクロストリップアンテナ
US5905462A (en) * 1998-03-18 1999-05-18 Lucent Technologies, Inc. Steerable phased-array antenna with series feed network
US7324060B2 (en) * 2005-09-01 2008-01-29 Raytheon Company Power divider having unequal power division and antenna array feed network using such unequal power dividers
CN101707271B (zh) * 2008-12-24 2012-01-25 广东通宇通讯股份有限公司 等相差分多路复合移相器
CN101694897A (zh) * 2009-10-30 2010-04-14 网拓(上海)通信技术有限公司 移相器
US8872719B2 (en) * 2009-11-09 2014-10-28 Linear Signal, Inc. Apparatus, system, and method for integrated modular phased array tile configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157767A (zh) * 2011-03-28 2011-08-17 京信通信系统(中国)有限公司 同轴介质移相系统、移相器及移相驱动装置
CN102354775A (zh) * 2011-08-22 2012-02-15 广东通宇通讯股份有限公司 一种移相装置
CN103280621A (zh) * 2013-05-03 2013-09-04 安徽四创电子股份有限公司 五等分功分器

Also Published As

Publication number Publication date
US20150155609A1 (en) 2015-06-04
EP2919318B1 (en) 2018-09-12
CN103975485B (zh) 2015-11-25
US9559429B2 (en) 2017-01-31
EP2919318A1 (en) 2015-09-16
EP2919318A4 (en) 2016-03-09
CN103975485A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2015081476A1 (zh) 基站天线馈电网络
US9136578B2 (en) Recombinant waveguide power combiner / divider
WO2014117635A1 (zh) 介质移相模块及其移相单元、馈电网络和天线
WO2015135153A1 (zh) 阵列天线
WO2018040837A1 (zh) 移相器和天线
CN207559072U (zh) 一种2×3宽频巴特勒矩阵板、巴特勒矩阵及多波束天线
CN104681896A (zh) 一种多路一体化介质移相器
CN102544675A (zh) 一种双频不等分功分器
CN103493287B (zh) 移相装置
CN204614906U (zh) 一种多路一体化介质移相器
US9941587B2 (en) 3×3 Butler matrix and 5×6 Butler matrix
CN212542636U (zh) 一种应用于5g系统的高性能腔体移相器
CN206364159U (zh) 介质移相器
CN106785249B (zh) 超宽带90°移相网络
Inoue et al. A super-compact dual-band Wilkinson power divider composed of multi-layered CRLH transmission lines
WO2017091944A1 (zh) 微带开关型移相器及应用其的移相模块
CN109713406B (zh) 一种移相单元、移相器及基站天线
US20140285282A1 (en) Power dividing phase shifter
CN103346374B (zh) 一种不等功分波导e-t功分器
Gatti et al. A dual band reconfigurable power divider for WLAN applications
JP3996880B2 (ja) 導波管分岐構造
CN212162049U (zh) 功率分配器及移相器
CN203415686U (zh) 介质移相模块及其移相单元、馈电网络和天线
CN218602719U (zh) 一种Gysel型6路功率分配器
CN214849055U (zh) 相位平衡器及基站天线

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013898577

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE