WO2015081465A1 - 一种室内定位系统及方法 - Google Patents

一种室内定位系统及方法 Download PDF

Info

Publication number
WO2015081465A1
WO2015081465A1 PCT/CN2013/088297 CN2013088297W WO2015081465A1 WO 2015081465 A1 WO2015081465 A1 WO 2015081465A1 CN 2013088297 W CN2013088297 W CN 2013088297W WO 2015081465 A1 WO2015081465 A1 WO 2015081465A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
measuring device
position measuring
signal transmitting
indoor
Prior art date
Application number
PCT/CN2013/088297
Other languages
English (en)
French (fr)
Inventor
杭大明
陆明宇
Original Assignee
深圳市华颖泰科电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华颖泰科电子技术有限公司 filed Critical 深圳市华颖泰科电子技术有限公司
Priority to PCT/CN2013/088297 priority Critical patent/WO2015081465A1/zh
Publication of WO2015081465A1 publication Critical patent/WO2015081465A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • G01S5/02524Creating or updating the radio-map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction

Definitions

  • the invention belongs to the field of positioning, and in particular relates to an indoor positioning system and method.
  • GPS Global Positioning
  • System or Global Positioning System
  • Most of the existing location-based services can only be used outdoors.
  • the base station can be considered as an "indoor satellite", and an “indoor GPS system” can be realized by cooperation of a plurality of base stations.
  • the indoor positioning is implemented in the same manner as the outdoor positioning system, the cost is high and it is difficult to be widely applied. Therefore, how to achieve the preset positioning accuracy with the lowest possible cost is the biggest problem of indoor positioning.
  • the purpose of calibration is to eliminate system errors and ensure positioning accuracy. If a base station is replaced or moved, all base stations need to be recalibrated after the replacement or movement is completed. If there is a major change in the indoor environment, the calibration work needs to be repeated. Even if there is no major change in the indoor environment, regular calibration (for example, once a month) can eliminate drift errors and maintain positioning accuracy.
  • An object of the present invention is to provide an indoor positioning system and method, which aim to solve the problem that the prior art is inconvenient to calibrate during positioning and calibration, and the calibration cost is high.
  • the embodiment of the present invention is implemented in this manner, and provides an indoor positioning method applied to an indoor positioning system, where the indoor positioning system includes a preset number of base stations, and the preset number of base stations are connected to each other through a cable, and are installed in the indoor pre-
  • the location is characterized in that the method comprises:
  • the method includes a calibration step that includes:
  • the position measuring device measures the current position of the position measuring device every preset time, and transmits the measured position information to the wireless signal transmitting device;
  • the wireless signal transmitting device generates a positioning signal when receiving the measured position information, and wirelessly transmits the positioning signal and the position information to the preset number of base stations;
  • the preset number of base stations receive and associate the positioning signal and the location information transmitted by the wireless signal transmitting device, and then establish a database to store the received positioning signal and the location information and the relationship between the two.
  • the positioning signal transmitting device on the object to be tested wirelessly transmits a positioning signal from a certain location in the room to the base station; the base station receives the positioning signal, and compares the received positioning signal with a database established during calibration. Right; then the position of the object to be tested is obtained by analyzing the comparison results.
  • the position measuring device is an inertial navigator.
  • the position measuring device and the wireless signal transmitting device are placed on a cart to move indoors.
  • the position information measured by the position measuring device is three-dimensional coordinate information.
  • the invention also provides an indoor positioning system, the system comprising:
  • the preset number of base stations are connected to each other by a cable, and are installed in a preset position in the room;
  • a position measuring device for measuring a current position of the position measuring device and transmitting the measured position information
  • a wireless signal transmitting device coupled to the position measuring device and receiving the measured position information by the position measuring device
  • the position measuring device and the wireless signal transmitting device move together indoors and traverse the indoor space, and the position measuring device measures the current position of the position measuring device every preset time during the moving process, And transmitting the measured position information to the wireless signal transmitting device, after receiving the position information measured by the position measuring device, generating a positioning signal, and transmitting the positioning signal and the position information in a wireless manner Up to the preset number of base stations, the preset number of base stations receive and associate positioning signals and location information transmitted by the wireless signal transmitting device, and then establish a database to store the received positioning signals and location information, and the relationship between the two .
  • the positioning signal transmitting device on the object to be tested wirelessly transmits a positioning signal from a certain position in the room to the base station; the base station receives the positioning signal, and compares the received positioning signal with the database established during calibration. Right; then the position of the object to be tested is obtained by analyzing the comparison results.
  • the position measuring device is an inertial navigator.
  • the position measuring device and the wireless signal transmitting device are placed on a cart to move indoors.
  • the position information measured by the position measuring device is three-dimensional coordinate information.
  • the current position is measured in real time by a position measuring device, and the current position information and the positioning signal generated by the wireless signal transmitting device are sent to the base station for storage through a wireless signal transmitting device, thereby completing the calibration quickly and conveniently. And the calibration cost is low.
  • FIG. 1 is a system architecture diagram of an indoor positioning system in a calibration step according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a calibration step applied to the indoor positioning system according to an embodiment of the present invention
  • FIG. 3 is a system architecture diagram of an indoor positioning system in a positioning step according to an embodiment of the invention.
  • FIG. 1 is a system architecture diagram of an indoor positioning system in a calibration step according to an embodiment of the invention.
  • the indoor positioning system 1 includes a preset number of base stations 10, a position measuring device 11, and a wireless signal transmitting device 12.
  • the preset number of base stations 10 are connected to each other by a cable and installed at a preset position in the room.
  • the position measuring device 11 is for measuring the current position of the position measuring device 11 and transmitting the measured position information.
  • the wireless signal transmitting device 12 is connected to the position measuring device 11 for receiving position information measured by the position measuring device 11.
  • the position information measured by the position measuring device 11 is three-dimensional coordinate information
  • the position measuring device 11 is an inertial navigator.
  • a three-dimensional coordinate system may also be manually constructed indoors to measure the current position of the position measuring device 11, or by using a laser to measure the three-dimensional position.
  • the position measuring device 11 and the wireless signal transmitting device 12 are placed on a cart 13 to move indoors.
  • FIG. 2 is a flowchart of a calibration step applied to the indoor positioning system according to an embodiment of the present invention, the calibration method includes:
  • step S201 the position measuring device 11 and the wireless signal transmitting device 12 are moved indoors to traverse the indoor space, and the position measuring device 11 and the wireless signal transmitting device 12 are connected to each other.
  • Step S202 during the moving process, the position measuring device 11 measures the current position of the position measuring device 11 every predetermined time, and transmits the measured position information to the wireless signal transmitting device 12.
  • the preset time is in real time, that is, the position measuring device 11 measures the current position of the position measuring device 11 in real time.
  • the preset time may be set according to actual conditions.
  • step S203 the wireless signal transmitting device 12 generates a positioning signal when the measured position information is received, and wirelessly transmits the positioning signal and the position information to the preset number of base stations 10.
  • Step S204 the preset number of base stations 10 receive and associate the positioning signal and the location information transmitted by the wireless signal transmitting device 12, and then establish a database to store the received positioning signal and location information and the relationship between the two.
  • each base station 10 is "training data". If the wireless signal transmitting apparatus 12 sends a signal to the base station 10 at a total of N positions, the training data of each base station 10 includes N items. Each item of data contains a location information and a location signal corresponding to the location information.
  • inertial navigator to measure position information is the most efficient, that is, the most time and cost.
  • Inertial navigation can record position information in real time, so the car can move at high speed throughout the traversal process, so that calibration can be completed in a short time.
  • the object to be tested (not shown) has a positioning signal transmitting device 14, and the object to be tested may be an object or a person, and the position of the object to be tested may be obtained by the positioning step.
  • the positioning signal transmitting device 14 wirelessly transmits a positioning signal, and after receiving the positioning signal, the base station 10 compares the received positioning signal with a database established during calibration; and then obtains the position of the object to be tested by analyzing the comparison result. .
  • the positioning signal in the positioning step must satisfy the same protocol as the positioning signal in the calibration step.
  • the positioning signal transmitting device 14 in the positioning step and the wireless signal transmitting device 12 in the calibration step employ the same circuit design and the same antenna design.

Abstract

本发明提供一种室内定位系统及方法,该方法包括一校准步骤。在校准步骤中,在室内移动互相有线连接的一位置测量装置一无线信号发射装置;在移动过程中,该位置测量装置每隔一预设时间测量该位置测量装置当前的位置,并将所测量的位置信息发送至该无线信号发射装置;该无线信号发射装置在接收到所测量的位置信息时,产生一定位信号,并将该定位信号及该位置信息以无线的方式发送至所述预设数量的基站;所述预设数量的基站接收并关联无线信号发射装置发射的定位信号及位置信息,然后建立一个数据库存储所接收的定位信号及位置信息以及两者的关联关系。使用本发明,可以在保证预设的室内定位精度下,大幅降低室内定位校准的成本。

Description

一种室内定位系统及方法
本发明属于定位领域,尤其涉及一种室内定位系统及方法。
基于位置信息的服务已经得到广泛的应用,其中大众最为熟知的是利用GPS(Global Positioning System,即全球定位系统)对车辆导航。在现有的基于位置信息的服务中,绝大部分只能应用于室外。
当前,如果希望在室内实现长时间(比如几年)的定位追踪服务,一般需要在室内安装一系列基站。基站可以被认为是“室内卫星”,通过多个基站协作,则可以实现“室内GPS系统”。但若以室外定位系统同样的方式实现室内定位,则成本很高,很难广泛应用,所以如何利用尽量低的成本达到预先设定的定位精度,是室内定位的最大问题。
在基站初装完毕后,需要经过校准才能投入使用,校准的目的是消除系统误差从而保证定位精度。如果某个基站被更换或被移动,则在更换或移动完成以后,所有的基站需要被重新校准。如果室内环境发生重大变化,校准工作也需要重新进行。即算室内环境没有重大的变化,定期的校准(例如一个月一次)可以消除漂移误差,从而保持定位精度。
然而,经常性的校准工作需要花费巨大的时间和代价,为避免经常性的校准,在某些室内定位方案中,一些校准器件被永久性地安装在室内的某些固定位置。由于可靠的校准需要大量的校准器件尽可能遍布整个室内空间,所以,永久性地大范围地安装校准器件在实际使用中会带来很大不便。
本发明实施例的目的在于提供一种室内定位系统及方法,旨在解决现有技术在定位校准时,不方便校准,且校准成本高的问题。
本发明实施例是这样实现的,提供一种应用于室内定位系统的室内定位方法,该室内定位系统包括预设数量的基站,这些预设数量的基站互相通过电缆连接,且被安装于室内预设的位置,其特征在于,该方法包括:
该方法包括一校准步骤,该校准步骤包括:
在室内移动一位置测量装置及一无线信号发射装置,以遍历室内空间,该位置测量装置与该无线信号发射装置互相连接;
在移动过程中,该位置测量装置每隔一预设时间测量该位置测量装置当前的位置,并将所测量的位置信息发送至该无线信号发射装置;
该无线信号发射装置在接收到所测量的位置信息时,产生一定位信号,并将该定位信号及该位置信息以无线的方式发送至所述预设数量的基站;
所述预设数量的基站接收并关联无线信号发射装置发射的定位信号及位置信息,然后建立一个数据库存储所接收的定位信号及位置信息以及两者的关联关系。
优选地,在定位步骤中,待测物体上的定位信号发射装置以无线的方式从室内某一位置向基站发射定位信号;基站接收定位信号,将接收到的定位信号与校准时建立的数据库比对;然后通过分析比对结果得到待测物体的位置。
优选地,该位置测量装置为惯性导航仪。
优选地,该位置测量装置及无线信号发射装置被放置在一小车上在室内移动。
优选地,该位置测量装置所测量的位置信息为三维坐标信息。
本发明还提供一种室内定位系统,该系统包括:
预设数量的基站,该预设数量的基站之间通过电缆互相连接,且被安装于室内预设的位置;
位置测量装置,用于测量该位置测量装置当前的位置,并传输所测量的位置信息;
无线信号发射装置,与位置测量装置连接,并接收由位置测量装置将所测量的位置信息;
其中,在校准时,该位置测量装置及该无线信号发射装置一起在室内移动,且遍历室内空间,在移动的过程中该位置测量装置每隔一预设时间测量该位置测量装置当前的位置,并传输所测量的位置信息至无线信号发射装置,该无线信号发射装置在接收到由位置测量装置测量的位置信息后,产生一定位信号,并将该定位信号及该位置信息以无线的方式发送至所述预设数量的基站,所述预设数量的基站接收并关联无线信号发射装置发射的定位信号及位置信息,然后建立一个数据库存储所接收的定位信号及位置信息以及两者的关联关系。
优选地,在定位过程中,待测物体上的定位信号发射装置以无线的方式从室内某一位置向基站发射定位信号;基站接收定位信号,将接收到的定位信号与校准时建立的数据库比对;然后通过分析比对结果得到待测物体的位置。
优选地,该位置测量装置为惯性导航仪。
优选地,该位置测量装置及无线信号发射装置被放置在一小车上在室内移动。
优选地,该位置测量装置所测量的位置信息为三维坐标信息。
本发明实施例在校准阶段,通过一个位置测量装置实时测量当前位置,并通过一无线信号发射装置将当前位置信息及该无线信号发射装置产生的定位信号发送至基站存储,从而快速方便的完成校准,且校准成本低。
图1为本发明一实施例中的一种室内定位系统在校准步骤的系统架构图;
图2为本发明一实施例中应用于该室内定位系统的在校准步骤的流程图;
图3为本发明一实施例中的一种室内定位系统在定位步骤的系统架构图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述:
如图1所示为本发明一实施例中的一种室内定位系统在校准步骤的系统架构图。该室内定位系统1包括预设数量的基站10、位置测量装置11、无线信号发射装置12。该预设数量的基站10之间通过电缆互相连接,且被安装于室内预设的位置。该位置测量装置11用于测量该位置测量装置11当前的位置,并传输所测量的位置信息。该无线信号发射装置12与位置测量装置11连接,用于接收由位置测量装置11所测量的位置信息。
本实施方式中,该位置测量装置11所测量的位置信息为三维坐标信息,该位置测量装置11为惯性导航仪。在其他实施方式中,也可以用手工方式在室内构筑一个三维坐标系来测量位置测量装置11当前的位置,或者通过使用激光来测量三维位置。另外该位置测量装置11及无线信号发射装置12被放置在一小车13上在室内移动。
如图2所示为本发明一实施例中应用于该室内定位系统的在校准步骤的流程图,该校准方法包括:
步骤S201,在室内移动该位置测量装置11及该无线信号发射装置12,以遍历室内空间,该位置测量装置11与该无线信号发射装置12互相连接。
步骤S202,在移动过程中,该位置测量装置11每隔一预设时间测量该位置测量装置11当前的位置,并将所测量的位置信息发送至该无线信号发射装置12。
本实施例中,该预设时间为实时,即位置测量装置11实时测量该位置测量装置11当前的位置,在其他实施方式中,该预设时间可以根据实际情况进行设置。
步骤S203,该无线信号发射装置12在接收到所测量的位置信息时,产生一定位信号,并将该定位信号及该位置信息以无线的方式发送至所述预设数量的基站10。
步骤S204,所述预设数量的基站10接收并关联无线信号发射装置12发射的定位信号及位置信息,然后建立一个数据库存储所接收的定位信号及位置信息以及两者的关联关系。
上述方法用于校准步骤,每个基站10接收到的数据是“训练数据”。如果无线信号发射装置12一共在N个位置上向基站10发出信号,那么每一个基站10的训练数据包括N项。每一项数据包含一个位置信息及与该位置信息对应的定位信号。
另外在实际使用中,采用惯性导航仪测量位置信息是最有效率的,即最节省时间和成本。惯性导航可以实时地记录位置信息,所以整个遍历过程中小车可以高速不停地移动,从而可以在短时间里完成校准工作。
该系统在定位步骤中,待测物体(图未示)上有一定位信号发射装置14,待测物体可以是物件或人员,可以通过定位步骤获取待测物体在室内的位置,在定位时,该定位信号发射装置14以无线的方式发出一定位信号,该基站10接收到定位信号后,将接收到的定位信号与校准时建立的数据库比对;然后通过分析比对结果得到待测物体的位置。
定位步骤中的定位信号必须和校准步骤中的定位信号满足同样的协议。定位步骤中的定位信号发射装置14和校准步骤中的无线信号发射装置12采用同样的电路设计和同样的天线设计。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种应用于室内定位系统的室内定位方法,该室内定位系统包括预设数量的基站,这些预设数量的基站通过电缆互相连接,且被安装于室内预设的位置,其特征在于,该方法包括一校准步骤,该校准步骤包括:
    在室内移动一位置测量装置及一无线信号发射装置,以遍历室内空间,该位置测量装置与该无线信号发射装置互相连接;
    在移动过程中,该位置测量装置每隔一预设时间测量该位置测量装置当前的位置,并将所测量的位置信息发送至该无线信号发射装置;
    该无线信号发射装置在接收到所测量的位置信息时,产生一定位信号,并将该定位信号及该位置信息以无线的方式发送至所述预设数量的基站;
    所述预设数量的基站接收并关联无线信号发射装置发射的定位信号及位置信息,然后建立一个数据库存储所接收的定位信号及位置信息以及两者的关联关系。
  2. 如权利要求1所述的应用于室内定位系统的室内定位方法,其特征在于,还包括一定位步骤,一待测物体上的定位信号发射装置以无线的方式从室内某一位置向基站发射定位信号;基站接收定位信号,并将接收到的定位信号与校准时建立的数据库比对;通过分析比对结果得到待测物体的位置。
  3. 如权利要求1所述的应用于室内定位系统的室内定位方法,其特征在于,该位置测量装置为惯性导航仪。
  4. 如权利要求1所述的应用于室内定位系统的室内定位方法,其特征在于,该位置测量装置及无线信号发射装置被放置在一小车上在室内移动。
  5. 如权利要求1所述的应用于室内定位系统的室内定位方法,其特征在于,该位置测量装置所测量的位置信息为三维坐标信息。
  6. 一种室内定位系统,其特征在于,该系统包括:
    预设数量的基站,该预设数量的基站之间通过电缆连接,且被安装于室内预设的位置;
    位置测量装置,用于测量该位置测量装置当前的位置,并传输所测量的位置信息;
    无线信号发射装置,与位置测量装置连接,并接收由位置测量装置测量的位置信息;
    其中,该位置测量装置及该无线信号发射装置一起在室内移动,且遍历室内空间,在移动的过程中该位置测量装置每隔一预设时间测量该位置测量装置当前的位置,并传输所测量的位置信息至无线信号发射装置,该无线信号发射装置在接收到由位置测量装置测量的位置信息后,产生一定位信号,并将该定位信号及该位置信息以无线的方式发送至所述预设数量的基站,所述预设数量的基站接收并关联无线信号发射装置发射的定位信号及位置信息,然后建立一个数据库存储所接收的定位信号及位置信息以及两者的关联关系。
  7. 如权利要求6所述的室内定位系统,其特征在于,还包括定位信号发射装置,该定位信号发射装置安装于一待测物体上,在定位时,定位信号发射装置以无线的方式从室内某一位置向基站发射定位信号;基站接收定位信号,并将接收到的定位信号与校准时建立的数据库比对;通过分析比对结果得到待测物体的位置。
  8. 如权利要求6所述的室内定位系统,其特征在于,该位置测量装置为惯性导航仪。
  9. 如权利要求6所述的室内定位系统,其特征在于,该位置测量装置及无线信号发射装置被放置在一小车上在室内移动。
  10. 如权利要求6所述的室内定位系统,其特征在于,该位置测量装置所测量的位置信息为三维坐标信息。
PCT/CN2013/088297 2013-12-02 2013-12-02 一种室内定位系统及方法 WO2015081465A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088297 WO2015081465A1 (zh) 2013-12-02 2013-12-02 一种室内定位系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088297 WO2015081465A1 (zh) 2013-12-02 2013-12-02 一种室内定位系统及方法

Publications (1)

Publication Number Publication Date
WO2015081465A1 true WO2015081465A1 (zh) 2015-06-11

Family

ID=53272708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088297 WO2015081465A1 (zh) 2013-12-02 2013-12-02 一种室内定位系统及方法

Country Status (1)

Country Link
WO (1) WO2015081465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055073A (zh) * 2019-12-27 2021-06-29 中国科学院沈阳自动化研究所 一种数据采集及定位精度测量系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484777A (zh) * 2005-12-15 2009-07-15 天宝导航有限公司 在缺少精确gps数据时获得准确测量数据的管理行进系统和方法
CN101526609A (zh) * 2009-03-27 2009-09-09 电子科技大学 一种基于无线信道频域幅度响应的匹配定位方法
CN102740350A (zh) * 2011-12-28 2012-10-17 华为技术有限公司 一种室内定位方法、设备及系统
CN102790945A (zh) * 2011-05-19 2012-11-21 索尼公司 无线通信设备、信息处理设备、通信系统、和位置确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484777A (zh) * 2005-12-15 2009-07-15 天宝导航有限公司 在缺少精确gps数据时获得准确测量数据的管理行进系统和方法
CN101526609A (zh) * 2009-03-27 2009-09-09 电子科技大学 一种基于无线信道频域幅度响应的匹配定位方法
CN102790945A (zh) * 2011-05-19 2012-11-21 索尼公司 无线通信设备、信息处理设备、通信系统、和位置确定方法
CN102740350A (zh) * 2011-12-28 2012-10-17 华为技术有限公司 一种室内定位方法、设备及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055073A (zh) * 2019-12-27 2021-06-29 中国科学院沈阳自动化研究所 一种数据采集及定位精度测量系统及方法
CN113055073B (zh) * 2019-12-27 2023-06-20 中国科学院沈阳自动化研究所 一种数据采集及定位精度测量系统及方法

Similar Documents

Publication Publication Date Title
CN101846736B (zh) 室内精确定位系统和方法
Dong et al. Evaluation of the reliability of RSSI for indoor localization
CN104837200B (zh) 一种基于方位定向的定位监听装置及室内定位系统
CN103202075B (zh) 定位
US20180306897A1 (en) Positioning method based on time difference of arrival, user equipment, and network device
CN106550451B (zh) 一种多用户超宽带室内定位系统
JP5999895B2 (ja) 無線端末機の位置測定方法
CN103813448A (zh) 一种基于rssi的室内定位方法
US20100322077A1 (en) Environment analysis system and method for indoor wireless location
CA2795529A1 (en) Network location and synchronization of peer sensor stations in a wireless geolocation network
WO2016171387A1 (ko) 위치 정보 제공 장치 및 노드 네트워크
CN103685428B (zh) 终端定位方法及装置
CN106255064A (zh) 一种定位误差检测方法及装置
CN201805551U (zh) 室内精确定位系统
CN109936837B (zh) 一种基于蓝牙的室内定位方法及系统
CN103543434A (zh) 室内定位系统、手机及定位方法
CN107135484A (zh) 一种应用于剧场和图书馆的室内定位装置
TWI414805B (zh) 具定位功能的無線網路接入設備及定位方法
KR101754535B1 (ko) Ble 기반 위치 측량을 위한 rssi 신호 보정 시스템 및 방법
CN106705931A (zh) 一种自动获取基站天线方位角的方法、装置及系统
CN109253660A (zh) 一种弹丸落点坐标声震波探测系统及探测方法
CN103454661A (zh) 一种基于gps与测距测角技术的定位系统
WO2015081465A1 (zh) 一种室内定位系统及方法
CN104994580B (zh) 一种室内定位方法
CN112799108A (zh) 一种应用于卫星通讯模式的卫星方向定位方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.10.16)

122 Ep: pct application non-entry in european phase

Ref document number: 13898617

Country of ref document: EP

Kind code of ref document: A1