WO2015080618A1 - Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката - Google Patents

Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката Download PDF

Info

Publication number
WO2015080618A1
WO2015080618A1 PCT/RU2014/000540 RU2014000540W WO2015080618A1 WO 2015080618 A1 WO2015080618 A1 WO 2015080618A1 RU 2014000540 W RU2014000540 W RU 2014000540W WO 2015080618 A1 WO2015080618 A1 WO 2015080618A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
hot
aluminum
boron
carbon
Prior art date
Application number
PCT/RU2014/000540
Other languages
English (en)
French (fr)
Inventor
Александр Дмитриевич ВОЛОСКОВ
Original Assignee
Закрытое акционерное общество "Омутнинский металлургический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Омутнинский металлургический завод" filed Critical Закрытое акционерное общество "Омутнинский металлургический завод"
Publication of WO2015080618A1 publication Critical patent/WO2015080618A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising

Definitions

  • the invention relates to ferrous metallurgy, and in particular to the production of alloy structural steel for the manufacture of spring-compressor rods of oil pumps.
  • This steel is the closest to the proposed mechanical properties, composition and purpose and is taken as a prototype.
  • the heating temperature of 870-880 ° C with cooling in air, followed by tempering at a temperature of 650 ° C) has an insufficient level of mechanical properties of the finished product.
  • the task to which the proposed technical solution is directed is to obtain steel for the manufacture of sucker rods with ensuring the operational properties required by the consumer: a minimum yield strength of 720 MPa, a tensile strength of 930-1000 MPa, while maintaining ductility at the level of an analogue.
  • the technical solution of the problem is achieved due to the fact that the proposed medium-carbon structural steel, microalloyed with boron and aluminum, containing in wt.%:
  • nitrogen is not more than 0.008;
  • the carbon content should be at least 0.40%. When exceeding 0.45%, the plastic characteristics drop.
  • Silicon increases oxidation resistance at high temperatures.
  • a minimum manganese content of 0.75% is set to provide hardenability, strength and toughness.
  • a manganese content of more than 1.0% reduces the viscosity of ferrite (decrease in toughness)
  • chromium introduced into steel does not provide a given level of hardenability, strength and toughness.
  • a chromium content of more than 1.1% will cause coarsening of carbide particles and a decrease in toughness.
  • Molybdenum improves nitride formation processes, grinds grain, increases strength and wear resistance, crack resistance of steel.
  • the content in the proposed steel is less than 0.15%, the effect of molybdenum is negligible, and when the content is more than 0.25%, a decrease in toughness and an increase in the cost of steel are manifested.
  • Aluminum is usually added to steel as a deoxidizer. In the presence of nitrogen, aluminum nitride is formed, which prevents grain growth and improves the microstructure of steel, increases strength and toughness.
  • the formation of aluminum nitride increases the solubility of boron and a significant increase in the hardenability of steel.
  • the minimum aluminum content in the proposed steel should be at least 0.02%.
  • a significant increase in aluminum content degrades the surface quality of ingots by surface films and cracks, reduces the fluidity of steel, and can cause difficulties when casting in continuous casting machines. Therefore, to eliminate the negative effect of aluminum on the fluidity of steel, it is necessary to combine deoxidation with aluminum and ferro- or silicocalcium.
  • Smelting of the declared steel grade is carried out at CJSC Omutninsky Metallurgical Plant in a steelmaking unit.
  • steel of the main composition is smelted, containing carbon, manganese, silicon, iron and inevitable impurities; after heating to 1620-1640 ° C, it is released into a steel pouring ladle.
  • Deoxidation of steel by aluminum is carried out at a drain from the steelmaking unit into the ladle, components for deoxidation are introduced into the bottom zone of the ladle at the optimal ratio [Mn] / [Si] ⁇ 3.
  • a sufficiently deep deoxidation of steel by secondary aluminum is carried out to obtain optimal conditions for the ascent of the formed large aluminum oxides. Additionally, oxygen is controlled (not more than 0.001% on the proposed steel grade).
  • furnace slag is removed from the steel pouring ladle.
  • lime-alumina slag is induced by additives of lime and aluminum-containing material.
  • the deoxidized refining “white” slag is obtained, then with the addition of ferroalloys the branded content of the main elements (carbon, manganese, silicon, chromium, molybdenum) is reached.
  • the metal is heated to a temperature guaranteeing a predetermined overheating of the metal above the liquidus steel temperature in the intermediate ladle during casting at a continuous casting machine, taking into account the existing heat losses and subsequent deoxidation and microalloying of aluminum, ferro- or silicocalcium, and boron.
  • Enter boron into steel carry out flux-cored wire using a tribamer after deoxidation with aluminum and then with calcium-containing wire.
  • Casting in the continuous casting machine is carried out with the protection of the metal from secondary oxidation in a "under the level” way. Exposure of the metal surface in the bucket (sparking) is not allowed.
  • the obtained hot-rolled profile is subjected to thermal hardening in the manufacture of a sucker rod based on the consumer-Ochersky engineering plant.
  • thermal hardening in the manufacture of a sucker rod based on the consumer-Ochersky engineering plant.
  • Numbers 4, 5 show the results of the study of samples from the first of the proposed heats, with an aluminum content of 0.0226%, heat-treated according to the initial mode.
  • Numbers 6, 7 show the results of the study of samples from the second of the proposed heats, with an aluminum content of 0.0364%, also heat-strengthened according to the prototype mode. According to the test results, it is seen that steel samples with the proposed chemical composition have higher strength properties at. thermal hardening according to the known mode, with the most significant increase in strength properties observed on samples of the second of the proposed heats (with aluminum 0.0364%).
  • Numbers 8, 9 show the results of the study of samples from the first of the proposed heats, with an aluminum content of 0.0226%, heat-treated according to the proposed regime. The results correspond to the declared steel grade.
  • Numbers 10-13 show the results of the evaluation of samples of the second of the studied swimming trunks, with an aluminum content of 0.0364%, heat-strengthened according to the proposed regime.
  • Numbers 10, 11 correspond to the results obtained with the lower value of the tempering temperature interval (580 ° ⁇ ).
  • Numbers 12, 13 correspond to the results obtained with the upper value of the tempering temperature range (600 ° ⁇ ). Products with the specified parameters satisfied the consumer.
  • the proposed chemical composition and thermal hardening mode allows to obtain steel with an increased tensile strength of 930-1000 MPa and an increased yield strength of at least 720 MPa, while maintaining ductility at the prototype level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к черной металлургии, а именно к производству легированной конструкционной стали для изготовления рессорно-компрессорных штанг нефтяных насосов. Предложена сталь следующего состава в мас.%: углерод - 0,40-0,45; кремний - 0,15-0,30; марганец - 0,75-1,00; сера - не более 0,025; фосфор - не более 0,025; медь - не более 0,30; никель - не более 0,30; хром - 0,80-1,10; молибден - 0,15-0,25; алюминий - 0,02-0,05 бор - 0,00010-0,00025; азот - не более 0,008; железо и примеси - остальное, а также режим термообработки горячекатаного проката, включающий нормализацию при температуре 880C, охлаждение на воздухе и отпуск при температуре 580-600C. Техническим результатом изобретения является получение горячекатаного металлопроката для изготовления насосных штанг с обеспечением требуемых потребителем эксплуатационных свойств: минимальным пределом текучести 720 МПа, пределом прочности 930-1000 МПа, при сохранении пластичности на уровне аналога.

Description

Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката
Изобретение относится к черной металлургии, а именно к производству легированной конструкционной стали для изготовления рессорно-компрессорных штанг нефтяных насосов.
Известна среднеуглеродистая легированная конструкционная сталь 40ХГМ, содержащая, мас.%:
углерод - 0,40-0,45;
кремний - 0,15-0,30;
марганец - 0,75-1,00;
сера - не более 0,025;
фосфор - не более 0,025
медь- не более 0,30;
никель- не более 0,30;
хром- 0,80-1,10;
молибден-0, 15-0,25;
железо и примеси - остальное. [1]
Эта сталь наиболее близка к предлагаемой по механическим свойствам, составу и назначению и взята за прототип.
Указанная сталь после термоупрочнения проката ( нормализации при
температуре нагрева 870-880°С с охлаждением на воздухе, с последующим отпуском при температуре 650°С) имеет недостаточный уровень механических свойств готовых изделий.
Задачей, на которую направлено предлагаемое техническое решение - получение стали для изготовления насосных штанг с обеспечением требуемых потребителем эксплуатационных свойств : минимальным пределом текучести 720 МПа, пределом прочности 930-1000 МПа, при сохранении пластичности на уровне аналога . Техническое решение задачи достигается за счет того, что предлагается среднеуглеродистая конструкционная сталь, микролегированная бором и алюминием, содержащая в мас.%:
углерод - 0,40-0,45
кремний - 0,15-0,30;
марганец - 0,75-1,00;
сера - не более 0,025;
фосфор - не более 0,025;
медь- не более 0,30;
никель- не более 0,30;
хром- 0,80-1,10;
молибден- 0,15-0,25;
алюминий- 0,02 - 0,05;
бор- 0,00010-0,00025;
азот- не более 0,008;
железо и примеси - остальное,
а также режим термообработки горячекатаного проката, включающий
нормализацию при температуре 880°С , охлаждение на воздухе и отпуск при
температуре 580-600°С.
Рассмотрим влияние компонентов на функциональные свойства и структуру предлагаемой стали.
Углерод эффективно влияет на механические свойства стали. Для достижения желаемых функциональных свойств предлагаемой стали содержание углерода должно быть не менее 0,40%. При превышении 0,45% происходит падение пластических характеристик.
Кремний увеличивает сопротивление окислению при высоких температурах. Минимальное содержание марганца 0,75% устанавливается для обеспечения прокаливаемости, прочности и ударной вязкости. Содержание марганца более 1,0 % снижает вязкость феррита (снижение ударной вязкости)
Введение в сталь хрома менее0,8 % не обеспечивает заданный уровень прокаливаемости, прочности и ударной вязкости. Содержание хрома свыше 1,1 % вызовет укрупнение частиц карбидов и снижение ударной вязкости.
Молибден улучшает процессы нитридообразования, измельчает зерно, повышает прочность и износостойкость, трещиноустойчивость стали. При
содержании в предложенной стали менее 0,15% влияние молибдена незначительно, а при содержании более 0,25% проявляется снижение ударной вязкости и удорожание стали.
Алюминий обычно добавляется в сталь как раскислитель. В присутствии азота образуется нитрид алюминия, предотвращающий рост зерна и обеспечивающий улучшение микроструктуры стали, повышение прочности и ударной вязкости.
Образование нитрида алюминия способствует увеличению растворимости бора и существенному повышению прокаливаемости стали. Для эффективной защиты бора от связывания в нитрид бора минимальное содержание алюминия в предложенной стали должно быть не менее 0,02%. Однако значительное повышение содержания алюминия ( более 0,05%) ухудшает качество поверхности слитков по поверхностным пленам и трещинам, снижает жидкотекучесть стали, и может вызвать сложности при разливке на МНЛЗ. Поэтому для исключения негативного влияния алюминия на жидкотекучесть стали необходимо совместное раскисление алюминием и ферро- или силикокальцием.
Бор, даже в небольших количествах, существенно повышает прокаливаемость стали, предел прочности, ударную вязкость. При содержании бора менее 0,0001% его влияние незначительно. При содержании более 0,00025% бор образует легкоплавкую эвтектику, располагающуюся по границам зерен, что снижает прочностные свойства стали при высоких температурах. Азот, соединяясь с нитридообразующими элементами (А1, В) способствует
измельчению зерна и нитридному и карбонитридному упрочнению стали. Увеличение содержания азота свыше указанного предела (при высоком содержании алюминия) приводит к снижению показателей ударной вязкости (в металле образуется
межзеренный излом, проходящий по границам зерен первичного аустенита;
образование такого излома вызвано ослаблением связи между зернами вследствие выделения по их границам включений нитрида алюминия и оно свидетельствует об ухудшении свойств стали).
Практический пример выполнения.
Выплавка заявленной марки стали проводится на ЗАО "Омутнинский металлургический завод" в сталеплавильном агрегате. В СПА выплавляют сталь основного состава, содержащую углерод, марганец, кремний, железо и неизбежные примеси, после нагрева до 1620-1640°С выпускают в сталеразливочный ковш. Раскисление стали алюминием проводят на сливе из сталеплавильного агрегата в ковш, вводят в донную зону ковша компоненты для раскисления при оптимальном соотношении [Mn]/[Si]<3. Проводится достаточно глубокое раскисление стали вторичным алюминием для получения оптимальных условий всплытия образовавшихся крупных оксидов алюминия. Дополнительно контролируется кислород (не более 0,001% на предлагаемой марке стали).
После выпуска плавки из СПА производят удаление печного шлака из сталеразливочного ковша. При внепечной обработке с продувкой металла аргоном наводят известково-глиноземистый шлак присадками извести и ал юмо содержащего материала. Получают раскисленный рафинировочный «белый» шлак, далее присадкой ферросплавов достигают марочного содержания основных элементов (углерод, марганец, кремний, хром, молибден).
Затем нагревают металл до температуры, гарантирующей заданный перегрев металла над температурой ликвидус стали в промежуточном ковше при разливке на МНЛЗ, с учетом существующих тепловых потерь и последующего раскисления и микролегирования алюминием, ферро- или силикокальцием, бором. Ввод бора в сталь осуществляют порошковой проволокой при помощи трайб-аппарата после раскисления алюминий- и затем кальцийсодержащей проволокой.
Разливку на МНЛЗ производят с защитой металла от вторичного окисления способом «под уровень». Оголение поверхности металла в промковше (искрение) не допускают.
В результате разливки получают непрерывно-литую заготовку, которую затем прокатывают в круг диаметром 10,0-40,0 мм на стане горячей прокатки 280-2.
Полученный горячекатаный профиль подвергается термическому упрочнению при изготовлении насосной штанги на базе потребителя-Очерского машиностроительного завода. Для оценки возможностии получения заданного уровня механических свойств готового изделия у потребителя в условиях ЗАО"ОМЗ" проведена термообработка образцов двух плавок с предложенным хим. составом, по скорректированному режиму термообработки, проводимой у потребителя, с последующими испытаниями.
Испытания механических свойств термически обработанных образцов, (обточенных до диаметра 10 мм) проводились на 25-тонной разрывной машине фирмы "QUASAR 250", испытания твердости проводились на твердомере типа ТШ-2М по методу Бриннеля. Ударную вязкость испытывали на маятниковом копере КМ-30. Результаты исследования механических свойств известной и предлагаемой стали, а также ударная вязкость приведены в таблице 2.
Под номерами 1-3 для сравнения приведены показатели механических свойств образцов плавок исходного химического состава с известным режимом термообработки. Они соответствуют требованиям прототипа.
Под номерами 4, 5 приведены результаты исследования образцов от первой из предложенных плавок, с содержанием алюминия 0,0226%, термообработанных по исходному режиму.
Под номерами 6, 7 показаны результаты исследования образцов от второй из предложенных плавок, с содержанием алюминия 0,0364%, также термоупрочненных по режиму прототипа. По результатам испытаний видно, что образцы из стали с предложенным химическим составом имеют более высокие показатели прочностных свойств при . термоупрочнении по известному режиму, при этом наиболее значительное повышение прочностных свойств наблюдается на образцах второй из предложенных плавок (с алюминием 0,0364%).
Под номерами 8, 9 приведены результаты исследования образцов от первой из предложенных плавок, с содержанием алюминия 0,0226%, термообработанных по предлагаемому режиму. Результаты соответствуют заявленной марке стали.
Под номерами 10-13 приведены результаты оценки образцов второй из исследуемых плавок, с содержанием алюминия 0,0364%, термоупрочненных по предлагаемому режиму. Номера 10, 11 соответствуют результатам, полученным при нижнем значении интервала температуры отпуска (580°С). Номера 12, 13 соответствуют результатам, полученным при верхнем значении интервала температуры отпуска (600°С). Продукция с указанными параметрами удовлетворила потребителя.
Поступило предложение о замене марки стали для насосных штанг 40ХГМ на 40ХГМ повышенной прочности, как наиболее удовлетворяющую условиям эксплуатации.
Таким образом, предложенный химический состав и режим термооупрочнения позволяет получить сталь с повышенным пределом прочности 930-1000 МПа и повышенным пределом текучести не менее 720 МПа , с сохранением показателей пластичности на уровне прототипа.
Таблица 1
Сталь С, % Мп, % Si, % Р, % S, % Си, %
1 0,45 0,89 0,18 0,014 0,009 0,24
2 0,44 0,92 0,24 0,014 0,009 0,24
Предлагае 0,43-0,45 0,75-1,00 0,15-0,30 <0,025 <0,025 <0,30 мая
Прототип 0,40-0,45 0,75-1,00 0,15-0,30 <0,025 <0,025 <0,30 Продолжение таблицы 1
Figure imgf000008_0001
Таблица 2
Figure imgf000008_0002
Источники информации:
1. ТУ 14-125-768-2013

Claims

Формула изобретения
1. Среднеуглеродистая конструкционная, легированная сталь, содержащая углерод, кремний, марганец, серу, фосфор медь, никель, хром, молибден, железо, отличающаяся тем, что она дополнительно содержит алюминий, бор, азот при следующем соотношении компонентов, мас.%:
углерод - 0,40-0,45;
кремний - 0,15-0,30;
марганец - 0,75-1,00;
сера - не более 0,025;
фосфор - не более 0,025;
медь- не более 0,30;
никель- не более 0,30;
хром-0,80-1,10;
молибден-0, 15-0,25;
алюминий-0,015 - 0,05
бор- 0,00010-0,00025;
азот- не более 0,008;
железо и примеси - остальное.
2. Способ термоупрочнения горячекатаного проката, включающий нормализацию, охлаждение на воздухе и отпуск, отличающийся тем, что отпуск проводят при температуре 580-600°С .
PCT/RU2014/000540 2013-11-26 2014-08-05 Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката WO2015080618A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013152384 2013-11-26
RU2013152384/02A RU2541255C1 (ru) 2013-11-26 2013-11-26 Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката

Publications (1)

Publication Number Publication Date
WO2015080618A1 true WO2015080618A1 (ru) 2015-06-04

Family

ID=53199436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000540 WO2015080618A1 (ru) 2013-11-26 2014-08-05 Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката

Country Status (2)

Country Link
RU (1) RU2541255C1 (ru)
WO (1) WO2015080618A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112398A (zh) * 2018-08-29 2019-01-01 承德建龙特殊钢有限公司 一种含铬合金棒材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096144A (ja) * 1998-09-22 2000-04-04 Kawasaki Steel Corp 鋼管の製造方法
JP2000094009A (ja) * 1998-09-22 2000-04-04 Kawasaki Steel Corp 鋼管の製造方法
JP2000144329A (ja) * 1998-11-13 2000-05-26 Kawasaki Steel Corp 強度一延性バランスに優れた鋼管
JP2001303130A (ja) * 2000-04-20 2001-10-31 Kawasaki Steel Corp 高延性鋼管の製造方法
RU2244756C1 (ru) * 2004-02-27 2005-01-20 ОАО "Омутнинский металлургический завод" Способ производства стали, сталь и изделия из нее

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3763573B2 (ja) * 2002-11-21 2006-04-05 三菱製鋼株式会社 焼入れ性と耐孔食性を改善したばね用鋼
UA79213C2 (en) * 2003-05-28 2007-05-25 Sumitomo Metal Ind Extended at laying steel pipe for oil-well (variants)
JP5728836B2 (ja) * 2009-06-24 2015-06-03 Jfeスチール株式会社 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管の製造方法
RU2442830C1 (ru) * 2010-10-08 2012-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ производства высокопрочных стальных фабрикатов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096144A (ja) * 1998-09-22 2000-04-04 Kawasaki Steel Corp 鋼管の製造方法
JP2000094009A (ja) * 1998-09-22 2000-04-04 Kawasaki Steel Corp 鋼管の製造方法
JP2000144329A (ja) * 1998-11-13 2000-05-26 Kawasaki Steel Corp 強度一延性バランスに優れた鋼管
JP2001303130A (ja) * 2000-04-20 2001-10-31 Kawasaki Steel Corp 高延性鋼管の製造方法
RU2244756C1 (ru) * 2004-02-27 2005-01-20 ОАО "Омутнинский металлургический завод" Способ производства стали, сталь и изделия из нее

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112398A (zh) * 2018-08-29 2019-01-01 承德建龙特殊钢有限公司 一种含铬合金棒材及其制备方法

Also Published As

Publication number Publication date
RU2541255C1 (ru) 2015-02-10

Similar Documents

Publication Publication Date Title
CA2899570C (en) Thick, tough, high tensile strength steel plate and production method therefor
CA2969200C (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP4551492B2 (ja) 溶接性に優れる引張強さ780MPa以上の高張力厚鋼板およびその製造方法
CA2966476A1 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
JP7226598B2 (ja) 耐摩耗鋼板およびその製造方法
WO2021241606A1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
KR102115277B1 (ko) 강판 및 그 제조 방법
RU2541255C1 (ru) Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката
JP6631702B2 (ja) 低温靭性に優れた高張力鋼板
JP6635100B2 (ja) 肌焼鋼
KR101225330B1 (ko) 피로강도가 우수한 크랭크샤프트용 고강도 쾌삭형 신 비조질강 및 그 제조 방법
JP2021021139A (ja) 耐摩耗鋼板およびその製造方法
RU2336316C2 (ru) Сортовой прокат круглый из борсодержащей стали для холодной объемной штамповки
JP7063419B1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
WO2014088454A1 (ru) Низколегированная конструкционная сталь с повышенной прочностью
JP7063420B1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
RU2484173C1 (ru) Автоматная свинецсодержащая сталь
KR101193780B1 (ko) 고주파 및 파팅라인부 크랙민감도가 저하된 비조질강
RU2479645C1 (ru) Сортовой прокат горячекатаный в прутках, круглый
RU2432412C2 (ru) Чугун и способ его получения
RU2244756C1 (ru) Способ производства стали, сталь и изделия из нее
CN106536775A (zh) 机械结构用轧制棒钢及其制造方法
JP6534240B2 (ja) B含有鋼の連続鋳造鋳片
RU2479646C1 (ru) Сортовой прокат горячекатаный из рессорно-пружинной стали
RU2469105C1 (ru) Круглый сортовой прокат, горячекатаный

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865086

Country of ref document: EP

Kind code of ref document: A1