JP2001303130A - 高延性鋼管の製造方法 - Google Patents

高延性鋼管の製造方法

Info

Publication number
JP2001303130A
JP2001303130A JP2000119296A JP2000119296A JP2001303130A JP 2001303130 A JP2001303130 A JP 2001303130A JP 2000119296 A JP2000119296 A JP 2000119296A JP 2000119296 A JP2000119296 A JP 2000119296A JP 2001303130 A JP2001303130 A JP 2001303130A
Authority
JP
Japan
Prior art keywords
less
ductility
rolling
steel
steel tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000119296A
Other languages
English (en)
Inventor
Takaaki Toyooka
高明 豊岡
Masanori Nishimori
正徳 西森
Yoshikazu Kawabata
良和 河端
Akira Yorifuji
章 依藤
Motoaki Itaya
元晶 板谷
Yoshitomo Okabe
能知 岡部
Masatoshi Araya
昌利 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000119296A priority Critical patent/JP2001303130A/ja
Publication of JP2001303130A publication Critical patent/JP2001303130A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】 【課 題】 鋼管を構成する鋼の組織において、第2相
組織(ベイナイト、セメンタイト)の微細分散化、およ
び延性向上に有利な集合組織の発達を可能とし、鋼管に
優れた延性を付与しうる高延性鋼管の製造方法を提供す
る。 【解決手段】 C:0.01〜0.60%、Si:0.01〜2.0 %、
Mn:0.01〜3.0 %、Al:0.005 〜0.10%を含有し、ある
いはさらにCu:1%以下、Ni:1%以下、Cr:2%以
下、Mo:1%以下、Nb:0.1 %以下、V:0.5 %以下、
Ti:0.2 %以下、B:0.005 %以下、REM :0.02%以
下、Ca:0.01%以下のうちから選ばれた1種または2種
を含有する鋼管を、縮径率20%以上、圧延終了温度 800
℃以下で縮径圧延した後、600 〜850 ℃に保持もしくは
再加熱する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高延性鋼管の製造
方法に関し、詳しくは、縮径圧延された鋼管に優れた延
性を付与できる高延性鋼管の製造方法に関する。
【0002】
【従来の技術】鋼管の延性向上のための従来技術として
は、(1)P、S等の延性を害する不純物の低減、
(2)鋼管をA3変態点以上のオーステナイト温度域に加
熱した後に徐冷する焼準熱処理(ノルマライジング)、
あるいはパーライト組織主体の高C鋼においては、
(3)球状焼きなまし熱処理、などがよく知られてい
る。
【0003】しかしながら、(1)ではコストの増加を
招く上に、近年ではその技術レベルが高まった結果、こ
の方法による現状以上の延性向上効果はあまり期待でき
ない。(2)はその原理として、鋼の変態を利用するも
のであり、造管工程に導入された歪みの除去の効果はあ
るものの、本発明により可能となった、第2相組織(ベ
イナイト、セメンタイト)の微細分散化、および、延性
向上に有利な集合組織の発達による本質的な効果を有し
ない。したがってその効果には限界がある。
【0004】(3)は、その効果を発現させるためには
数〜数十時間以上の長時間熱処理を必要とし、鋼管製造
工程としてその時間的および経済的負荷が非常に大き
く、近年商業的にその要求が高まっている短納期対応の
製品製造を不可能とする上、製品価格の高騰を招く。
【0005】
【発明が解決しようとする課題】本発明の目的は、上記
した問題を有利に解決し、鋼管を構成する鋼の組織にお
いて、第2相組織(ベイナイト、セメンタイト)の微細
分散化、および延性向上に有利な集合組織の発達を可能
とし、鋼管に優れた延性を付与しうる高延性鋼管の製造
方法を提供することにある。
【0006】
【課題を解決するための手段】本発明者らは、上記した
課題を達成するために、鋭意研究した結果、組成を限定
した鋼管に、圧延終了後 800℃以下で、20%以上の縮径
圧延を施した後に 600〜 850℃に保持または再加熱する
ことにより、従来では粗大なコロニー状に析出分布して
いた第2相組織(セメンタイト、ベイナイト)が粒状に
微細分散し、さらに延性に有利な集合組織が発達し、延
性が極めて向上することを見出して本発明をなした。
【0007】上記したように、第2相の微細分散化は、
従来の球状焼なまし処理においては数〜数十時間以上の
長時間を必要としていたが、本発明においては20%以上
の縮径圧延加工の効果により極めて容易である。1例と
して、表1に示す組成の電縫鋼管に縮径率62%、圧延終
了温度 680℃の縮径圧延を施した後、本発明範囲内の70
0℃に再加熱、15分間保持した鋼管(本発明例;a)
と、同縮径圧延後に本発明範囲外の 900℃に再加熱した
鋼管(比較例;b)および素材熱延鋼板(比較例;c)
のミクロ組織写真を図1に示す。本発明例では第2相が
著しく微細に分散している。
【0008】
【表1】
【0009】さらに、集合組織の形成においても、図2
に示すように、鋼管の縮径圧延においては、板圧延の場
合とは異なる方向に圧延されるため、従来薄鋼板におい
て行われている集合組織制御では得られない集合組織が
得られ、特に曲げ加工等が行われる鋼管において要求さ
れる、鋼管長手方向の延性を向上する。なお、縮径圧延
後の 600〜 850℃の保持または再加熱は、集合組織発達
のための焼鈍処理であり、従来の焼準処理とはもちろん
のこと、いわゆる焼もどし処理とも全く技術思想的に異
なるものであることを注記しておく。
【0010】本発明は、このような知見に基づき、従来
の圧延や熱処理とはその技術思想が本質的に異なる新規
な技術で構成されたものである。すなわち、本発明は、
質量%で、C:0.01〜0.60%、Si:0.01〜2.0 %、Mn:
0.01〜3.0 %、Al:0.005 〜0.10%を含有し、あるいは
さらに、Cu:1%以下、Ni:1%以下、Cr:2%以下、
Mo:1%以下のうちから選ばれた1種または2種以上、
および/または、Nb:0.1 %以下、V:0.5 %以下、T
i:0.2 %以下、B:0.005 %以下のうちから選ばれた
1種または2種以上、および/または、REM :0.02%以
下、Ca:0.01%以下のうちから選ばれた1種または2種
を含有し、残部Feおよび不可避的不純物からなる組成を
有する鋼管を、縮径率20%以上、圧延終了温度 800℃以
下で縮径圧延した後、600 〜850 ℃に保持もしくは再加
熱することを特徴とする高延性鋼管の製造方法である。
【0011】
【発明の実施の形態】本発明では、特定の化学組成(以
下単に「組成」ともいう)になる鋼管を圧延素材(素
管)として用いるが、この素管を製造する手段(造管
法)は特に限定されない。冷間または熱間での高周波電
流を利用した電気抵抗溶接法(素管名称:電縫管、熱間
の場合は熱間電縫管)、オープン管両エッジ部を固相圧
接温度域に加熱し圧接する固相圧接法(素管名称:固相
圧接管)、鍛接法(素管名称:鍛接管)、およびマンネ
スマン式穿孔圧延法(素管名称:継目無管)等いずれの
造管法も好ましく用いうる。
【0012】次に、素管の組成の限定理由を説明する。 C:0.01〜0.60% Cは、基地中に固溶しあるいは炭化物として析出し、鋼
の強度を増加させる元素であり、また、硬質な第2相
(または第2組織)として析出したセメンタイト、パー
ライト、ベイナイト、マルテンサイトが高強度化と延性
向上に寄与する。所望の強度を確保し、第2相として析
出したセメンタイト等による延性向上の効果を得るため
には、Cは、0.01%以上、より好ましくは0.04%以上の
含有を必要とするが、0.60%を超えて含有すると延性が
劣化する。このため、Cは0.01〜0.60%の範囲に限定し
た。
【0013】Si:0.01〜2.0 % Siは、脱酸剤として作用するとともに、基地中に固溶し
鋼の強度を増加させる。この効果は、0.01%以上、好ま
しくは0.1 %以上の含有で認められるが、2.0%を超え
る含有は延性を劣化させる。このことから、Siは0.01〜
2.0 %の範囲に限定した。なお、好ましくは、強度延性
バランスの点から0.10〜1.5 %の範囲である。
【0014】Mn:0.01〜3.0 % Mnは、鋼の強度を増加させる元素であり第2相としての
セメンタイトの微細析出、あるいはマルテンサイト、ベ
イナイトの析出を促進させる。このような効果は、0.01
%以上の含有で認められるが、3.0 %を超える含有は延
性を劣化させる。このため、Mnは0.01〜3.0 %の範囲に
限定した。なお、強度延性バランスの観点から、Mnは0.
2 〜1.3 %の範囲が好ましく、より好ましくは0.6 〜1.
3 %の範囲である。
【0015】Al:0.005 〜0.10% Alは、結晶粒を微細化する作用を有している。これによ
り、素材鋼管段階における第2相組織の分散を微細分散
とし、本発明の効果をより大きくする。このためには少
なくとも0.005 %以上の含有を必要とするが、0.10%を
超えると酸化物系介在物両が増加し清浄度が劣化する。
このため、Alは0.001 〜0.10%の範囲に限定した。な
お、好ましくは0.015 〜0.06%である。
【0016】上記した基本組成に加えて、次に述べる合
金元素群を単独あるいは複合して添加してもよい。Cu:
1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下
のうちから選ばれる1種または2種以上Cu、Ni、Cr、Mo
はいずれも強度を増加させる元素であり、必要に応じ1
種または2種以上を添加できる。これら元素は、変態点
を低下させ、フェライト粒あるいは第2相組織を微細化
する効果を有している。しかし、Cuは多量添加すると熱
間加工性が劣化するため1%を上限とした。Niは強度増
加とともに靭性をも改善するが1%を超えて添加しても
コスト高に比して効果が飽和してくるため、1%を上限
とした。Cr、Moは多量添加すると溶接性、延性が劣化す
るうえコスト高となるため、それぞれ2%、1%を上限
とした。なお、好ましくはCu:0.1 〜0.6%、Ni:0.1
〜0.7 %、Cr:0.1 〜1.5 %、Mo:0.05〜0.5 %であ
る。
【0017】Nb:0.1 %以下、V:0.5 %以下、Ti:0.
2 %以下、B:0.005 %以下のうちから選ばれる1種ま
たは2種以上 Nb、V、Ti、Bは、炭化物、窒化物または炭窒化物とし
て析出し、結晶粒の微細化ひいては第2相組織の微細分
散化に寄与するとともに、高強度化に寄与する元素であ
り、特に高温に加熱される接合部を有する鋼管では、接
合時の加熱過程での粒微細化の効果に加え、冷却過程で
のフェライトの析出核として作用し、接合部の硬化を防
止する効果もあり、必要に応じ1種または2種以上添加
できる。しかし多量添加すると、溶接性、靭性とも劣化
するため、Nbは0.1 %、Vは0.5%、Tiは0.2 %、Bは
0.005 %をそれぞれ上限とした。なお、好ましくはNb:
0.005 〜0.05%、V:0.05〜0.1 %、Ti:0.005 〜0.10
%、B:0.0005〜0.002 %である。
【0018】REM :0.02%以下、Ca:0.01%以下のうち
から選ばれる1種または2種以上 REM 、Caは、いずれも介在物の形状を調整し、加工性を
向上させる作用を有しており、さらに、硫化物、酸化
物、または酸硫化物として析出し、接合部を有する鋼管
での接合部の硬化を防止する作用をも有し、必要に応じ
1種以上添加できる。しかし、REM が0.02%を超え、あ
るいは、Caが0.01%を超えると介在物が多くなりすぎ清
浄度が低下し、延性が劣化するので、REM は0.02%、Ca
は0.01%をそれぞれ上限とした。なお、REM が0.004 %
未満、Caが0.001 %未満では前記作用による効果が少な
いため、REM :0.004 %以上、Ca:0.001 %以上とする
のが好ましい。
【0019】上記成分元素以外の組成部分(残部)は、
Feおよび不可避的不純物からなる。不可避的不純物とし
ては、N:0.010 %以下、O:0.006 %以下、P:0.02
5 %以下、S:0.020 %以下が許容される。 N:0.010 %以下 Nは、Alと結合して結晶粒を微細化ひいては第2相組織
を微細化するに効果ある量、0.010 %までは許容できる
が、それ以上の含有は延性を劣化させるため、0.010 %
以下に低減するのが好ましい。より好ましくは、0.002
〜0.006 %である。
【0020】O:0.006 %以下 Oは、酸化物として清浄度を劣化させるため、できるだ
け低減するのが好ましいが、0.006 %までは許容でき
る。 P:0.025 %以下 Pは、粒界に偏析し、靭性を劣化させるため、できるだ
け低減するのが好ましいが、0.025 %までは許容でき
る。
【0021】S:0.020 %以下 Sは、硫化物を増加し清浄度を劣化させるため、できる
だけ低減するのが好ましいが、0.020 %までは許容でき
る。次に、本発明の製造方法について説明する。上記し
た組成を有する素材鋼管を、縮径率20%以上、圧延終了
温度 800℃以下で縮径圧延する。
【0022】縮径率が20%未満では、第2相の微細分散
化が不十分となるうえ、圧延集合組織の形成も不十分と
なり、その後の工程による集合組織の発達がなされなく
なる。圧延終了温度が 800℃超では、加工終了段階にお
いてオーステナイトが主体の組織となっており、圧延終
了後に変態が生じるため、第2相が再析出し、微細分散
化の効果がなくなるうえ、やはり圧延集合組織が形成さ
れなくなる。
【0023】ついで、 600〜 850℃に保持もしくは再加
熱する。これにより、縮径圧延時に導入された歪みを駆
動力とした回復または再結晶により集合組織が発達し、
鋼管の延性を向上する。600℃未満では集合組織の発達
が不十分で延性向上効果が小さく、 850℃超では再変態
が生じて集合組織を消してしまううえ、第2相も再析出
により粗大コロニー化してしまい、延性向上効果がなく
なる。
【0024】600〜 850℃に保持もしくは再加熱した後
は、常法に従って冷却すればよい。この冷却は空冷でも
水冷でもよい。なお、本発明では、縮径圧延は潤滑下で
の圧延とするのが好適である。縮径圧延を潤滑下での圧
延(潤滑圧延)とすることにより、厚み方向の歪み分布
が均一となり、第2相の微細分散化効果や集合組織形成
効果を厚み方向に均一にすることができる。無潤滑圧延
を行うとせん断効果により材料表層部にのみ圧延歪みが
集中し、厚み方向に不均一な組織(集合組織すなわち結
晶方位も含む)が形成されてしまう。
【0025】また、縮径圧延方法は、特に限定するもの
ではないが、レデューサと称される複数の孔型圧延機を
タンデムに配列した装置を用いた方法が好適である。
【0026】
【実施例】表2に示す組成になるA〜D鋼の熱延鋼板を
電縫溶接により素材鋼管(φ 146mm×T 2.9mm(φ:外
径、T:肉厚、以下同じ)に加工(造管)し、これら素
管を、表3に示す条件でそれぞれ縮径圧延、熱処理を施
し製品管とした。縮径圧延ではタンデム配置の3ロール
式レデューサを使用した。
【0027】表3には、製造条件と併せて、その製品管
の機械的特性を示している。引張試験は、鋼管長手方向
にJIS 12号A試験片(円弧型試験片、平行部幅19mm、標
点間距離50mm)を採取して実施した。なお、結晶方位す
なわち集合組織制御による延性(=加工性)向上の指標
の一つとしてr値(=試験片幅方向歪/肉厚方向歪)も
示している。r値は、引張試験片に歪みゲージを貼り付
けることにより、長手方向引張歪み7〜8%の範囲内で
測定した。もちろんこの範囲内は一様伸びの範囲内であ
った。
【0028】
【表2】
【0029】
【表3】
【0030】No.1およびNo.9は縮径圧延もその後の
焼鈍もない従来の電縫鋼管である。No.2、No.10、N
o.17およびNo.23は縮径圧延後の焼鈍処理をしていな
い。No.8およびNo.16は縮径圧延後の焼鈍処理の温度
が本発明範囲外である。No.22およびNo.28は縮径圧延
の圧延終了温度が本発明範囲外である。以上の比較例
は、同鋼種の本発明例に比較して、伸びおよびr値が低
くなっており、本発明の効果が著しいことがわかる。
【0031】
【発明の効果】本発明によれば、鋼組織を母相中に第2
相組織(ベイナイト、セメンタイト)が微細分散しかつ
集合組織の発達したものに改善でき、格段に高い延性を
有する鋼管の製造が可能となるという優れた効果を奏す
る。
【図面の簡単な説明】
【図1】本発明例(a)と比較例(b,c)のミクロ組
織を比較して示す光学顕微鏡写真である。
【図2】管圧延(a)と板圧延(b)の加工様式の相違
を示す説明図である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 (72)発明者 河端 良和 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 依藤 章 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 板谷 元晶 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 岡部 能知 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 荒谷 昌利 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 Fターム(参考) 4K032 AA02 AA04 AA05 AA06 AA08 AA11 AA12 AA14 AA16 AA17 AA19 AA22 AA23 AA31 AA32 AA35 AA36 AA40 BA03 CC02 CC03 CF02 CF03 4K042 AA06 AA24 BA05 CA02 CA03 CA05 CA06 CA08 CA09 CA10 CA12 CA13 CA14 DA06 DC02 DE02 DE03

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 質量%で、 C:0.01〜0.60%、 Si:0.01〜2.0 %、 Mn:0.01〜3.0 %、 Al:0.005 〜0.10% を含有し、残部Feおよび不可避的不純物からなる組成を
    有する鋼管を、縮径率20%以上、圧延終了温度 800℃以
    下で縮径圧延した後、600 〜850 ℃に保持もしくは再加
    熱することを特徴とする高延性鋼管の製造方法。
  2. 【請求項2】 前記組成に加えて、さらに下記A〜C群
    のうちから選ばれた1種または2種以上を含有すること
    を特徴とする請求項1に記載の高延性鋼管の製造方法。 記 質量%で、 A群: Cu:1%以下、Ni:1%以下、Cr:2%以下、
    Mo:1%以下の群 B群: Nb:0.1 %以下、V:0.5 %以下、Ti:0.2 %
    以下、B:0.005 %以下の群 C群: REM :0.02%以下、Ca:0.01%以下の群
JP2000119296A 2000-04-20 2000-04-20 高延性鋼管の製造方法 Pending JP2001303130A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000119296A JP2001303130A (ja) 2000-04-20 2000-04-20 高延性鋼管の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000119296A JP2001303130A (ja) 2000-04-20 2000-04-20 高延性鋼管の製造方法

Publications (1)

Publication Number Publication Date
JP2001303130A true JP2001303130A (ja) 2001-10-31

Family

ID=18630304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119296A Pending JP2001303130A (ja) 2000-04-20 2000-04-20 高延性鋼管の製造方法

Country Status (1)

Country Link
JP (1) JP2001303130A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057098A1 (ja) * 2004-11-26 2006-06-01 Jfe Steel Corporation 電磁特性に優れた鋼管およびその製造方法
WO2015080618A1 (ru) * 2013-11-26 2015-06-04 Закрытое акционерное общество "Омутнинский металлургический завод" Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката
CN109628837A (zh) * 2019-01-02 2019-04-16 北京科技大学 一种超细贝氏体型桥梁缆索钢及其制备方法
CN111961976A (zh) * 2020-09-02 2020-11-20 衡阳华菱钢管有限公司 钢材、制备方法及其应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057098A1 (ja) * 2004-11-26 2006-06-01 Jfe Steel Corporation 電磁特性に優れた鋼管およびその製造方法
EP1816225A1 (en) * 2004-11-26 2007-08-08 JFE Steel Corporation Steel pipe having excellent electromagnetic properties and process for producing the same
EP1816225A4 (en) * 2004-11-26 2009-03-25 Jfe Steel Corp STEEL TUBE WITH OUTSTANDING ELECTROMAGNETIC PROPERTIES AND METHOD OF MANUFACTURING THEREOF
US7942984B2 (en) 2004-11-26 2011-05-17 Jfe Steel Corporation Steel pipe with good magnetic properties and method of producing the same
WO2015080618A1 (ru) * 2013-11-26 2015-06-04 Закрытое акционерное общество "Омутнинский металлургический завод" Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката
CN109628837A (zh) * 2019-01-02 2019-04-16 北京科技大学 一种超细贝氏体型桥梁缆索钢及其制备方法
CN109628837B (zh) * 2019-01-02 2020-11-13 北京科技大学 一种超细贝氏体型桥梁缆索钢及其制备方法
CN111961976A (zh) * 2020-09-02 2020-11-20 衡阳华菱钢管有限公司 钢材、制备方法及其应用
CN111961976B (zh) * 2020-09-02 2022-01-04 衡阳华菱钢管有限公司 钢材、制备方法及其应用

Similar Documents

Publication Publication Date Title
US6290789B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
EP1473376B1 (en) High strength steel plate and method for production thereof
JP4305681B2 (ja) 継目無鋼管の製造方法
EP3085800B1 (en) Electric resistance welded steel pipe
EP2221392A1 (en) Steel pile having excellent enlarging properties, and method for production thereof
WO2017039012A1 (ja) ばね用鋼線およびばね
JP2001355046A (ja) 自動車ドア補強用鋼管とその製造方法
EP2238271A1 (en) Wire rods having superior strength and ductility for drawing and method for manufacturing the same
JP2001271134A (ja) 耐硫化物応力割れ性と靱性に優れた低合金鋼材
JP5181775B2 (ja) 曲げ加工性および低温靭性に優れる高張力鋼材ならびにその製造方法
WO2001096624A1 (fr) Tuyau en acier a haute teneur en carbone, possedant d'excellentes aptitudes au formage a froid et a la trempe a haute frequence, et procede de production associe
JPWO2007023873A1 (ja) 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法
WO2015151468A1 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
JP3375554B2 (ja) 強度一延性バランスに優れた鋼管
US11028456B2 (en) Electric resistance welded steel pipe for torsion beam
JP5668547B2 (ja) 継目無鋼管の製造方法
EP3330398B1 (en) Steel pipe for line pipe and method for manufacturing same
JP2018150585A (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP2002038242A (ja) 二次加工性に優れた自動車構造部材用ステンレス鋼管
JP2004204263A (ja) 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材とその製造方法
JP4140419B2 (ja) 複合二次加工性に優れた高張力鋼管の製造方法
JP4288441B2 (ja) 靭性、延性、溶接性に優れた高張力継目無鋼管およびその製造方法
JP2001303130A (ja) 高延性鋼管の製造方法
JP2000096143A (ja) 鋼管の製造方法
JP2001247931A (ja) 非調質高強度継目無し鋼管およびその製造方法