WO2015079890A1 - Vehicle lamp and lens body - Google Patents

Vehicle lamp and lens body Download PDF

Info

Publication number
WO2015079890A1
WO2015079890A1 PCT/JP2014/079582 JP2014079582W WO2015079890A1 WO 2015079890 A1 WO2015079890 A1 WO 2015079890A1 JP 2014079582 W JP2014079582 W JP 2014079582W WO 2015079890 A1 WO2015079890 A1 WO 2015079890A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
central
light source
lens portion
distribution pattern
Prior art date
Application number
PCT/JP2014/079582
Other languages
French (fr)
Japanese (ja)
Inventor
嘉昭 中里
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Publication of WO2015079890A1 publication Critical patent/WO2015079890A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures

Definitions

  • the present invention relates to a vehicular lamp and a lens body, and more particularly to a vehicular lamp having a structure in which a light source and a lens body are combined and a lens body used in the vehicular lamp.
  • a light source and a lens body disposed in front of the light source are provided, and a predetermined light distribution pattern is formed by light from the light source that is transmitted through the lens body and irradiated forward.
  • a vehicular lamp configured as described above has been proposed (see, for example, Patent Document 1).
  • FIG. 9 is a longitudinal sectional view of the vehicular lamp 200 described in Patent Document 1
  • FIG. 10A is an example of a light condensing pattern PA formed by the vehicular lamp 200 shown in FIG. 9, and
  • FIG. 10B is an example of a diffusion pattern PB. is there.
  • the vehicular lamp 200 described in Patent Document 1 includes a light source 210, a central lens 220 (convex lens) disposed in front of the light source 210, and an additional disposed so as to surround the central lens 220.
  • a lens 230 is provided.
  • each of the lenses 220 and 230 is configured such that the light from the light source 210 irradiated forward forms the diffusion pattern PB shown in FIG. 10B.
  • the distance between the light source 210 and the central lens 220 is increased to some extent, and a light source image by light emitted from the central lens 220 is obtained. Since it is necessary to make it small, there exists a problem that the further miniaturization (especially further thickness reduction of the reference-axis AX direction) cannot be implement
  • the present invention has been made in view of such circumstances, and in a vehicular lamp including a light source and a lens body arranged in front of the light source, further miniaturization (particularly, compared to a conventional vehicular lamp).
  • the object is to realize further thinning in the reference axis direction.
  • a vehicular lamp includes a light source disposed on a reference axis extending in the vehicle front-rear direction, and a lens body disposed in front of the light source.
  • a predetermined light distribution pattern in which at least a first light distribution pattern and a second light distribution pattern narrower than the first light distribution pattern are superimposed by light from the light source that is transmitted forward through the lens body.
  • the lens body includes a central lens unit disposed on the reference axis and a peripheral lens unit disposed to surround the central lens unit, and the central lens
  • the portion includes a central incident surface formed at a rear end portion of the central lens portion facing the light source, and a central emission surface formed at a front end portion of the central lens portion, from the central incident surface to the Central lens
  • the lens is configured as a lens unit that forms the first light distribution pattern by light from the light source that is incident on the center and exits from the central exit surface
  • the peripheral lens unit is a rear end of the peripheral lens unit A surrounding incident surface formed so as to surround the central lens portion, a surrounding reflecting surface formed so as to surround the surrounding incident surface at a rear end portion of the surrounding lens portion, and a front end portion of the surrounding lens portion.
  • a surrounding emitting surface formed so as to surround the central emitting surface, and is incident on the inside of the surrounding lens unit from the surrounding incident surface and is internally reflected by the surrounding reflecting surface and then emitted from the surrounding emitting surface. It is comprised as a lens part which forms the said 2nd light distribution pattern with the light from the said light source.
  • the vehicular lamp provided with the light source and the lens body arranged in front of the light source is further reduced in size as compared with the conventional vehicular lamp (see, for example, JP 2009-283299 A). (Particularly, further thinning in the reference axis direction) can be realized.
  • the central lens portion is configured as a lens portion that forms a first light distribution pattern (diffusion pattern) wider than the second light distribution pattern by the light emitted from the central lens portion (central emission surface).
  • the distance between the light source and the central lens portion can be shortened as compared with a conventional vehicle lamp (see, for example, JP-A-2009-283299). If the distance between the light source and the central lens unit is shorter than that of a conventional vehicle lamp (see, for example, JP-A-2009-283299), the light source image by the light emitted from the central lens unit becomes large. Since the light source image is suitable for forming a first light distribution pattern (diffusion pattern) wider (diffused) than the second light distribution pattern, there is no inconvenience.
  • the vehicular lamp according to a second aspect of the present invention is the vehicle lamp according to the first aspect, wherein the predetermined light distribution pattern has a left horizontal cutoff line, a right horizontal cutoff line, a left horizontal cutoff line, and a right A light distribution pattern for a passing beam including an oblique cut-off line between a horizontal cut-off line and the central output surface so that light emitted from the central output surface forms a diffusion pattern as the first light distribution pattern
  • the peripheral emission surface is partitioned into a plurality of sector-shaped emission regions by a plurality of boundary lines extending radially from the central emission surface, and the plurality of sector-shaped emission regions are The emission region where one side of the light source image by the emitted light is at an angle of the oblique cutoff line is the state where the one side is along the oblique cutoff line and the front side As the whole of the light source image is arranged below the oblique cutoff line, the surface shape is formed.
  • the oblique cut-off line can be formed by arranging one side along the oblique cut-off line and arranging the entire light source image below the oblique cut-off line.
  • the vehicular lamp according to a third aspect of the present invention is the vehicle lamp according to the third aspect, wherein an emission area other than the emission area in which one side of the light source image is an angle of the oblique cutoff line among the plurality of fan-shaped emission areas.
  • a diffusion pattern in which the emitted light from the emission region includes the upper end edge in a state along the left horizontal cut-off line or the diffusion pattern in a state along the right horizontal cut-off line as the second light distribution pattern.
  • the surface shape is configured to form.
  • the left horizontal cutoff line and the right horizontal cutoff line can be formed.
  • the vehicle lamp according to a fourth aspect of the present invention is the vehicle lamp according to the first aspect, wherein the predetermined light distribution pattern is a traveling beam light distribution pattern, and the central emission surface is emitted light from the central emission surface.
  • the surface shape is configured so that a diffusion pattern is formed as the first light distribution pattern, and the ambient light exit surface has a light condensing pattern as the second light distribution pattern.
  • the surface shape is configured to form
  • the traveling beam light distribution pattern can be formed.
  • a lens body is disposed in front of a light source disposed on a reference axis extending in the vehicle front-rear direction, and controls at least the first light distribution pattern and the first light by controlling light from the light source.
  • the lens body configured to form a predetermined light distribution pattern in which a second light distribution pattern narrower than one light distribution pattern is superimposed
  • the lens body includes a central lens portion disposed on the reference axis and the lens body A peripheral lens portion disposed so as to surround the central lens portion, and the central lens portion includes a central incident surface formed at a rear end portion of the central lens portion facing the light source, and the central lens portion.
  • the peripheral lens unit includes a peripheral incident surface formed to surround the central lens unit at a rear end of the peripheral lens unit, and the peripheral lens unit at the rear end of the peripheral lens unit.
  • a surrounding reflection surface formed so as to surround the entrance surface, and a surrounding exit surface formed so as to surround the central exit surface at a front end portion of the surrounding lens portion, and the surrounding lens portion from the surrounding entrance surface
  • the lens unit is configured as a lens unit that forms the second light distribution pattern by light from the light source that enters the inside and is internally reflected by the surrounding reflecting surface and then exits from the surrounding emitting surface.
  • the vehicular lamp including the light source and the lens body arranged in front of the light source is further reduced in size as compared with the conventional vehicular lamp (see, for example, JP 2009-283299 A). Therefore, it is possible to realize a lens body that can realize a reduction in thickness (particularly, further reduction in thickness in the reference axis direction).
  • the central lens portion is configured as a lens portion that forms a first light distribution pattern (diffusion pattern) wider than the second light distribution pattern by the light emitted from the central lens portion (central emission surface).
  • the distance between the light source and the central lens portion can be shortened as compared with a conventional vehicle lamp (see, for example, JP-A-2009-283299). If the distance between the light source and the central lens unit is shorter than that of a conventional vehicle lamp (see, for example, JP-A-2009-283299), the light source image by the light emitted from the central lens unit becomes large. Since the light source image is suitable for forming a first light distribution pattern (diffusion pattern) wider (diffused) than the second light distribution pattern, there is no inconvenience.
  • a vehicular lamp provided with a light source and a lens body disposed in front of the light source can be further reduced in size (particularly, further reduced in thickness in the reference axis direction) as compared with a conventional vehicular lamp. It becomes possible to do.
  • FIG. 1 is a perspective view of a vehicular lamp 10 according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the vehicular lamp 10.
  • FIG. 3 is an example of a light distribution pattern P Lo for a passing beam formed on a virtual vertical screen (disposed approximately 25 m ahead from the front of the vehicle) facing the front of the vehicle by the vehicular lamp 10.
  • FIG. 4 is a diagram for explaining the light capture angles ⁇ 1 to ⁇ 3 of the lens body 14.
  • FIG. 5 is a front view of the vehicular lamp 10 (including a light source image arranged on a virtual vertical screen by light emitted from the lens body 14).
  • FIG. 6 is an example of each light distribution pattern formed on the virtual vertical screen by the light emitted from the lens body 14.
  • FIG. 7A is a front view of a lens body 14A which is a modified example of the lens body 14, FIG. 7B is a transverse sectional view, FIG. 7C is a longitudinal sectional view, and FIG. The part is a rear view.
  • FIG. 8 is an example of a traveling beam light distribution pattern P Hi formed on a virtual vertical screen (disposed approximately 25 m forward from the front of the vehicle) facing the front of the vehicle by the vehicular lamp 10A.
  • FIG. 9 is a longitudinal sectional view of the vehicular lamp 200 described in Patent Document 1.
  • FIG. 10A is an example of a light collection pattern PA formed by the vehicular lamp 200 shown in FIG.
  • FIG. 10B is an example of the diffusion pattern PB.
  • FIG. 1 is a perspective view of a vehicular lamp 10 according to an embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view
  • FIG. 3 is a virtual vertical screen (approx. 25 m forward from the front of the vehicle) that faces the front of the vehicle by the vehicular lamp 10. This is an example of the light distribution pattern P Lo for the passing beam formed on the upper surface.
  • the vehicular lamp 10 includes a light source 12 disposed on a reference axis AX (also referred to as an optical axis) extending in the vehicle front-rear direction with a light emitting surface 12a facing forward.
  • AX also referred to as an optical axis
  • the lens body 14 disposed in front of the light source 12 (light emitting surface 12a), and the light from the light source 12 (light emitting surface 12a) that passes through the lens body 14 and is irradiated forward is shown in FIG.
  • a light distribution pattern P Lo for a passing beam including a left horizontal cutoff line CL1, a right horizontal cutoff line CL2, and an oblique cutoff line CL3 between the left horizontal cutoff line CL1 and the right horizontal cutoff line CL2 is formed at the upper edge. It is configured as a vehicle headlamp.
  • the light source 12 includes a laser light source 16, a condenser lens 18, a wavelength conversion member 20, a holder 22 for holding them, and the like.
  • the holder 22 is configured by combining a lens holder 22a that holds the condenser lens 18, a ring 22b that is fixed to the lens holder 22a, and a connection flange 22c that is fixed to the ring 22b.
  • the laser light source 16 is a laser light source that emits laser light in a blue region (for example, an emission wavelength of 450 nm), and more specifically, as a can-type semiconductor laser light source packaged including a laser diode (LD element). It is configured.
  • the laser light source 16 may be a laser light source that emits near-ultraviolet light (for example, an emission wavelength of 405 nm) or other laser light.
  • the heat generated by the laser light source 16 is radiated and cooled by the heat sink 24 to which it is fixed.
  • the wavelength conversion member 20 is a wavelength conversion member that receives laser light from the laser light source 16 collected by the condenser lens 18 and converts at least a part of the laser light into light having a wavelength different from that of the laser light.
  • the wavelength conversion member 20 constitutes a rectangular light emitting surface 12a (for example, aspect ratio 1: 2 of vertical 0.4 ⁇ horizontal 0.8 mm).
  • the wavelength conversion member 20 is configured as a plate-like or layer-like phosphor that emits light of three colors of red, green, and blue when excited by laser light in the near ultraviolet region (for example, the emission wavelength is 405 nm). May be.
  • the wavelength conversion member 20 When the laser beam in the blue region is irradiated, the wavelength conversion member 20 emits white light (pseudo white light) due to the color mixture of the laser beam in the blue region and the light emitted by the laser beam in the blue region (yellow light). discharge. On the other hand, when irradiated with near-ultraviolet laser light, the wavelength conversion member 20 emits white light (pseudo-white light) due to a mixture of light emitted from the near-ultraviolet laser light (light of three colors of red, green, and blue). Release.
  • the light source 12 may be a light source including a rectangular light emitting surface, and may be a semiconductor light emitting element such as a white LED (light emitting diode) light source, or may be a light source other than that.
  • a white LED light emitting diode
  • the light source 12 has the light emitting surface 12a facing forward, the lower end edge (long side) of the light emitting surface 12a coincides with a horizontal line orthogonal to the reference axis AX, and the lower end edge (long side) of the light emitting surface 12a is the lens body 14.
  • the lens holder 34 is fixed in a state of being positioned in the vicinity of the reference point F in the optical design.
  • the lens body 14 includes a central lens portion 26 disposed on the reference axis AX, an intermediate lens portion 28 (corresponding to the peripheral lens portion of the present invention) disposed so as to surround the central lens portion 26, and the intermediate lens portion 28.
  • the outer peripheral lens part 30 (corresponding to the peripheral lens part of the present invention), the flange part 32, and the reference point F in the optical design are arranged.
  • the lens body 14 is disposed in front of the light source 12 (light emitting surface 12a) with the flange portion 32 fixed to the lens holder 34.
  • the material of the lens body 14 may be polycarbonate, other transparent resin such as acrylic, or glass.
  • FIG. 4 is a diagram for explaining the light capture angles ⁇ 1 to ⁇ 3 of the lens body 14.
  • the diameter D of the lens body 14 is 32 mm, for example, and the distance LL between the central lens portion 26 (the apex of the central incident surface 26a) and the light source 12 (light emitting surface 12a) is 2.5 mm, for example.
  • the ratio of the diameter D of the lens body 14 to the distance LL between the central lens portion 26 (the apex of the central incident surface 26a) and the light source 12 (light emitting surface 12a) is, for example, 12: 1.
  • the ratio between the diameter LW of the central lens portion 26 and the distance LL between the central lens portion 26 (the apex of the central incident surface 26a) and the light source 12 (light emitting surface 12a) is, for example, 3.4: 1.
  • the light capturing angle ⁇ 1 of the central lens portion 26 is, for example, 0 to 38 degrees
  • the light capturing angle ⁇ 2 of the intermediate lens portion 28 is, for example, 38 to 57 degrees (45 degrees back focus 3.3 (LL ratio)).
  • the light capturing angle ⁇ 3 of the unit 30 is, for example, 57 to 85 degrees (back focus 4.5 (LL ratio) of 71 degrees).
  • the central lens portion 26 includes a central incident surface 26 a formed at the rear end portion of the central lens portion 26 facing the light source 12 (light emitting surface 12 a), and a central emission surface 26 b formed at the front end portion of the central lens portion 26. , Including a lens portion.
  • the central lens unit 26 enters the central lens unit 26 from the central incident surface 26a, and the light RayA from the light source 12 emitted from the central output surface 26b causes the diffusion pattern S-WW (see FIG. 6). It is configured as a lens portion for forming a light distribution pattern. Specifically, the configuration is as follows.
  • the narrow angle direction (e.g., light acceptance angle ⁇ 1: 0 ⁇ 38 ° range) with respect to the optical axis AX 12 of the light source 12 relative intensity is high which is released
  • the surface on which the light RayA is incident on the inside of the central lens portion 26 is formed as a convex surface toward the light source 12 in a circular area around the reference axis AX at the rear end portion of the central lens portion 26 facing the light source 12. ing.
  • the central incident surface 26a has a surface shape so as to convert light RayA from the light source 12 incident on the central lens portion 26 from the central incident surface 26a into light parallel to the reference axis AX. .
  • a light shielding film or a reflective film is applied to a region of the central incident surface 26a to which the laser light from the laser light source 16 collected by the condenser lens 18 is irradiated when the wavelength conversion member 20 is removed from the holder 22. It is desirable to leave. Thereby, the fail safe at the time of the wavelength conversion member 20 drop-off is realizable. Since the distance LL between the central lens unit 26 and the light source 12 (light emitting surface 12a) is short, the light shielding film or the reflective film can be suppressed to a minimum size.
  • the central exit surface 26b is a surface from which the light RayA from the light source 12 that enters the central lens portion 26 is emitted from the central entrance surface 26a, and is formed in a circular region centered on the reference axis AX of the front end portion of the central lens portion 26. Has been.
  • FIG. 5 is a front view of the vehicular lamp 10 (including a light source image arranged on a virtual vertical screen by light emitted from the lens body 14).
  • FIG. 6 is an example of each light distribution pattern formed on the virtual vertical screen by the light emitted from the lens body 14.
  • the central exit surface 26b is a plane orthogonal to the reference axis AX, the light source image L-WW by the emitted light RayA from the central exit surface 26b is as shown in FIG.
  • the central exit surface 26b is not a flat surface, and the outgoing light RayA from the central exit surface 26b is evenly diffused in the horizontal direction, and the diffusion pattern S-WW (see FIG. 6).
  • First light distribution pattern of the present invention The surface shape is configured so as to form an equivalent.
  • the diffusion pattern S-WW has both left and right ends extending to L40 degrees and R40 degrees. This is because the surface shape of the central exit surface 26b is adjusted so that the left and right ends of the diffusion pattern S-WW extend to the vicinity of L40 degrees and R40 degrees. In this way, by adjusting the surface shape of the central emission surface 26b, the degree of horizontal diffusion of the diffusion pattern S-WW can be made desired.
  • the diffusion pattern S-WW is brighter in the area along the horizontal line H than the area below it. This is because the lower end edge (long side) of the light source 12 (light emitting surface 12a) is located near the reference point F in the optical design of the lens body 14, and the entire light source 12 (light emitting surface 12a) is above the reference point F. It is because it is arranged in.
  • Diffusion pattern S-WW is to be formed in the light of bluish towards the optical axis AX 12 direction, thereby improving visibility by peripheral vision.
  • the diffusion pattern S-WW is formed by light that is closer to blue toward the optical axis AX 12 (reference axis AX).
  • the light source 12 is a laser light source 16 that emits blue light and a wavelength conversion that emits yellow light.
  • the light toward the optical axis AX 12 (reference axis AX) direction becomes light near blue due to the difference in the distance of the laser light passing through the wavelength conversion member 20. This is because light traveling in a direction having a larger angle with respect to the optical axis AX 12 (reference axis AX) becomes yellowish light.
  • the intermediate lens portion 28 includes an intermediate incident surface 28 a formed at the rear end portion of the intermediate lens portion 28 so as to surround the central lens portion 26, and an intermediate incident portion at the rear end portion of the intermediate lens portion 28.
  • the lens portion includes an intermediate reflecting surface 28b formed so as to surround the surface 28a and an intermediate emitting surface 28c formed so as to surround the central emitting surface 26b at the front end portion of the intermediate lens portion 28.
  • the intermediate lens unit 28 enters the intermediate lens unit 28 from the intermediate incident surface 28a, is internally reflected (totally reflected) by the intermediate reflecting surface 28b, and then is emitted by the light Ray B from the light source 12 emitted from the intermediate emitting surface 28c.
  • Patterns S-M1a, S-M1b, S-M2, S-M3a, S-M3b, S-M4, S-S1, S-S2, S-S3, S-S4 narrower than the diffusion pattern S-WW (FIG. 6) (Refer to the second light distribution pattern of the present invention).
  • the configuration is as follows.
  • the intermediate reflecting surface 28b is a surface that internally reflects (totally reflects) the light RayB from the light source 12 that enters the intermediate lens portion 28 from the intermediate incident surface 28a toward the intermediate emitting surface 28c, and is the rear end of the intermediate lens portion 28. Is formed so as to surround the intermediate incident surface 28a.
  • the surface shape of the intermediate reflecting surface 28b is configured so as to convert the light RayB from the light source 12 incident on the inside of the intermediate lens portion 28 from the intermediate incident surface 28a into light parallel to the reference axis AX.
  • the intermediate emission surface 28c is a surface from which the reflected light RayB from the intermediate reflection surface 28b is emitted, and is formed at the front end portion of the intermediate lens portion 28 so as to surround the central emission surface 26b.
  • the intermediate exit surface 28c is formed of a plurality of fan-shaped exit areas M1a, M1b, M2, M3a, M3b, M4, by a plurality of boundary lines extending radially from the central lens portion 26 (center exit surface 26b). It is divided into S1, S2, S3, and S4.
  • one side of the light source image by the emitted light RayB is an angle of the oblique cutoff line CL3 (or an angle smaller than that).
  • the emission areas S1, S2, S3, and S4 are arranged near the horizontal line H and the vertical line V.
  • the emission region S1 is arranged in a sector region that is 7.5 ° to 22.5 ° to the right of the vertical line V in front view and above the horizontal line H, and the emission region S3 is in relation to the vertical line V in front view.
  • the emission area S2 is arranged in a fan-shaped area 10 to 30 ° to the right with respect to the vertical line V and below the horizontal line H in the front view, and the emission area S4 is above the horizontal line H in the front view. It is arranged in a sector area 10 to 30 ° to the left with respect to the vertical line V.
  • the emission areas S1, S2, S3, S4 are planes orthogonal to the reference axis AX
  • the light source images L-S1, L-S2, L by the emitted light RayB from the emission areas S1, S2, S3, S4 -S3 and L-S4 are as shown in FIG.
  • the emission areas S1, S2, S3, and S4 are not flat, but light source images L-S1, L-S2, L-S3, and L-S4 by the emitted light RayB from the emission areas S1, S2, S3, and S4.
  • Condensing patterns S-S1, S-S2, S-S3, S-S4, see FIG. 6 each side being along the oblique cut-off line CL3 and the light source images L-S1, L-S2,
  • the surface shape is configured such that the entire L-S3 and L-S4 are arranged below the oblique cutoff line CL3.
  • the light source images L-S1, L-S2, L-S3, and L-S4 (condensation patterns S-S1, S-S2, S-S3, S) with one side along the oblique cut-off line CL3. Since the whole of -S4) is arranged below the oblique cut-off line CL3, the oblique cut-off line CL3 can be formed.
  • the emission areas M1a, M1b, M2, and M4 are planes orthogonal to the reference axis AX, the light source images L-M1a, L-M1b, L by the emission light RayB from the emission areas M1a, M1b, M2, and M4 -M2 and L-M4 are as shown in FIG.
  • the exit areas M1a, M1b, M2, and M4 are not flat, but the emitted light RayB from the exit areas M1a, M1b, M2, and M4 is diffused in the horizontal direction, and the upper edge is along the left horizontal cutoff line CL1.
  • the entire diffusion pattern S-M1a, S-M1b, S-M2, and S-M4 (see FIG. 6, corresponding to the second light distribution pattern of the present invention) is placed below the left horizontal cut-off line CL1.
  • the surface shape is configured (for example, the output light RayB from the output regions M1a, M1b, M2, and M4 is diffused in the horizontal direction in the output regions M1a, M1b, M2, and M4.
  • An optical element such as a prism or lens cut is formed).
  • the upper edge is along the left horizontal cut-off line CL1, and the entire diffusion patterns S-M1a, S-M1b, S-M2, and S-M4 are arranged below the left horizontal cut-off line CL1.
  • the left horizontal cut-off line CL1 can be formed.
  • the diffusion pattern S-M1a has a horizontal dimension of about 30 degrees. This is because the surface shape of the emission region M1a is adjusted so that the horizontal dimension of the diffusion pattern S-M1a is about 30 degrees. In this way, by adjusting the surface shape of the emission region M1a, the horizontal dimension of the diffusion pattern S-M1a can be made desired.
  • the diffusion patterns S-M1b, S-M2, and S-M4 are adjusted so that the horizontal dimension of the diffusion pattern S-M1a is about 30 degrees. In this way, by adjusting the surface shape of the emission region M1a, the horizontal dimension of the diffusion pattern S-M1a can be made desired.
  • the diffusion patterns S-M1b, S-M2, and S-M4 are the diffusion patterns S-M1b, S-M2, and S-M4.
  • the entire diffusion pattern S-M1a is arranged below the left horizontal cut-off line CL1. This is because the inclination of the emission region M1a is adjusted so that the entire diffusion pattern S-M1a is arranged below the left horizontal cutoff line CL1. Thus, by adjusting the inclination of the emission region M1a, the diffusion pattern S-M1a can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion patterns S-M1b, S-M2, and S-M4.
  • the emission areas M3a and M3b are planes orthogonal to the reference axis AX, the light source images L-M3a and L-M3b by the emitted light RayB from the emission areas M3a and M3b are as shown in FIG. Become.
  • the exit areas M3a and M3b are not flat, but the emitted light RayB from the exit areas M3a and M3b is diffused in the horizontal direction, the upper edge is along the right horizontal cut-off line CL2, and the diffusion pattern S-
  • the surface shapes are configured so that the entirety of M3a and S-M3b (see FIG. 6; corresponding to the second light distribution pattern of the present invention) is arranged below the right horizontal cut-off line CL2 (for example, the emission region)
  • Optical elements such as prisms or lens cuts are formed in M3a and M3b so as to diffuse the outgoing light RayB from the outgoing areas M3a and M3b in the horizontal direction.
  • the right horizontal cut-off line CL2 is formed by arranging the diffusion patterns S-M3a and S-M3b below the right horizontal cut-off line CL2 in a state where the upper edge is along the right horizontal cut-off line CL2. can do.
  • the diffusion pattern S-M3a has a horizontal dimension of about 50 degrees. This is because the surface shape of the emission region M3a is adjusted so that the horizontal dimension of the diffusion pattern S-M3a is about 50 degrees. Thus, by adjusting the surface shape of the emission region M3a, the horizontal dimension of the diffusion pattern S-M3a can be set to a desired one. The same applies to the diffusion pattern S-M3b.
  • the entire diffusion pattern S-M3a is arranged below the right horizontal cut-off line CL2. This is because the inclination of the emission region M3a is adjusted so that the entire diffusion pattern S-M3a is arranged below the right horizontal cutoff line CL2. Thus, by adjusting the inclination of the emission region M3a, the diffusion pattern S-M3a can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion pattern S-M3b.
  • the diffusion patterns S-M3a and S-M3b have their left ends extending to the own lane side. Thereby, the light intensity in the road surface front direction can be compensated, and the uniformity of the light distribution can be ensured.
  • the outer peripheral lens portion 30 has an outer peripheral incident surface 30 a formed so as to surround the intermediate lens portion 28 at the rear end portion of the outer peripheral lens portion 30 and an outer peripheral incident portion at the rear end portion of the outer peripheral lens portion 30.
  • the lens unit includes an outer peripheral reflecting surface 30b formed so as to surround the surface 30a, and an outer peripheral emitting surface 30c formed at the front end portion of the outer lens unit 30 so as to surround the intermediate emitting surface 28c.
  • the outer peripheral lens unit 30 enters the outer lens unit 30 from the outer peripheral incident surface 30a, is internally reflected (totally reflected) by the outer peripheral reflective surface 30b, and then is received by the light RayC from the light source 12 emitted from the outer peripheral output surface 30c.
  • Patterns S-E1, S-E2, S-E3, S-E4, S-S1, S-S2, S-S3, S-S4 narrower than the diffusion pattern S-WW (see FIG. 6; second arrangement of the present invention) It is configured as a lens portion that forms a light pattern). Specifically, the configuration is as follows.
  • Outer peripheral incident surface 30a is medium-angle direction with respect to the optical axis AX 12 of the light source 12 (e.g., an optical acceptance angle ⁇ 3: 57 ⁇ 85 ° range) Relative intensity emitted in the weak light RayC outer peripheral lens portion 30 A surface incident on the inside is formed at the rear end portion of the outer peripheral lens portion 30 so as to surround the intermediate lens portion 28.
  • the outer peripheral reflecting surface 30b is a surface that internally reflects (totally reflects) the light RayC from the light source 12 that enters the outer peripheral lens portion 30 from the outer peripheral incident surface 30a toward the outer peripheral emitting surface 30c. Is formed so as to surround the outer peripheral incident surface 30a.
  • the outer peripheral reflection surface 30b is configured to have a surface shape so as to convert the light RayC from the light source 12 that enters the outer peripheral lens unit 30 from the outer peripheral incident surface 30a into light parallel to the reference axis AX.
  • the outer peripheral emission surface 30 c is a surface from which the reflected light RayC from the outer peripheral reflection surface 30 b is emitted, and is formed at the front end portion of the outer peripheral lens portion 30 so as to surround the intermediate emission surface 28 c.
  • the outer peripheral exit surface 30c has a plurality of fan-shaped exit areas E1, E2, E3, E4, S1, S2, and a plurality of boundary lines extending radially from the central lens portion 26 (center exit surface 26b). It is divided into S3 and S4.
  • the emission areas E1 and E2 are planes orthogonal to the reference axis AX, the light source images L-E1 and L-E2 by the emitted light RayC from the emission areas E1 and E2 are as shown in FIG. Become.
  • the emission areas E1 and E2 are not flat, but the emitted light RayC from the emission areas E1 and E2 is diffused in the horizontal direction, the upper edge is along the left horizontal cut-off line CL1, and the diffusion pattern S-
  • the surface shape is configured so that the entirety of E1 and S-E2 (see FIG. 6, corresponding to the second light distribution pattern of the present invention) is arranged below the left horizontal cutoff line CL1 (for example, the emission region)
  • optical elements such as prisms or lens cuts formed so as to diffuse the outgoing light RayC from the outgoing areas E1 and E2 in the horizontal direction are formed).
  • the left horizontal cut-off line CL1 is formed by arranging the diffusion patterns S-E1 and S-E2 below the left horizontal cut-off line CL1 in a state where the upper edge is along the left horizontal cut-off line CL1. can do.
  • the diffusion pattern S-E1 has a horizontal dimension of about 25 degrees. This is because the surface shape of the emission region E1 is adjusted so that the horizontal dimension of the diffusion pattern S-E1 is about 25 degrees. In this way, by adjusting the surface shape of the emission region E1, the horizontal dimension of the diffusion pattern S-E1 can be made desired. The same applies to the diffusion pattern S-2.
  • the entire diffusion pattern S-E1 is arranged below the left horizontal cut-off line CL1. This is because the inclination of the emission region E1 is adjusted so that the entire diffusion pattern S-E1 is arranged below the left horizontal cutoff line CL1. Thus, by adjusting the inclination of the emission area E1, the diffusion pattern S-E1 can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion pattern S-E2.
  • the light source images LE-E3 and L-E4 by the emitted light RayC from the emission areas E3 and E4 are as shown in FIG. Become.
  • the emission areas E3 and E4 are not flat, but the emitted light RayC from the emission areas E3 and E4 is diffused in the horizontal direction, the upper edge is along the right horizontal cutoff line CL2, and the diffusion pattern S-
  • the surface shape is configured so that the entirety of E3 and S-E4 (refer to FIG. 6, corresponding to the second light distribution pattern of the present invention) is arranged below the right horizontal cut-off line CL2 (for example, the emission region) E3 and E4 are formed with optical elements such as prisms or lens cuts configured to diffuse the outgoing light RayC from the outgoing areas E3 and E4 in the horizontal direction).
  • the right horizontal cut-off line CL2 is formed by arranging the diffusion patterns S-E3 and S-E4 below the right horizontal cut-off line CL2 in a state where the upper edge is along the right horizontal cut-off line CL2. can do.
  • the diffusion pattern S-E3 has a horizontal dimension of about 35 degrees. This is because the surface shape of the emission region E3 is adjusted so that the horizontal dimension of the diffusion pattern S-E3 is about 35 degrees. Thus, by adjusting the surface shape of the emission region E3, the horizontal dimension of the diffusion pattern S-E3 can be set to a desired one. The same applies to the diffusion pattern S-E4.
  • the entire diffusion pattern S-E3 is arranged below the right horizontal cut-off line CL2. This is because the inclination of the emission region E3 is adjusted so that the entire diffusion pattern S-E3 is arranged below the right horizontal cutoff line CL2. In this way, by adjusting the inclination of the emission area E3, the diffusion pattern S-E3 can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion pattern S-E4.
  • the diffusion patterns S-E3 and S-E4 have their left ends extending to the own lane side. Thereby, the light intensity in the road surface front direction can be compensated, and the uniformity of the light distribution can be ensured.
  • the light distribution pattern P Lo for passing beam includes the condensing patterns S-S1, S-S2, S-S3, S-S4, diffusion patterns S-M1a, S-M1b, and S- shown in FIG. It is formed as a combined light distribution pattern in which M2, S-M3a, S-M3b, S-M4, S-E1, S-E2, S-E3, S-E4, and S-WW are superimposed.
  • the light distribution pattern P Lo for passing beam includes a left horizontal cutoff line CL1, a right horizontal cutoff line CL2, and an oblique cutoff line CL3 at the upper end edge thereof.
  • the left horizontal cut-off line CL1 has a top edge along the left horizontal cut-off line CL1, and the entire diffusion patterns S-M1a, S-M1b, S-M2, S-M4, S-E1, and S-E2 are left. It is formed by being arranged below the horizontal cut-off line CL1.
  • the right horizontal cut-off line CL2 has the upper edge along the right horizontal cut-off line CL2, and the entire diffusion patterns S-M3a, S-M3b, S-E3, and S-E4 are arranged below the right horizontal cut-off line CL2. Is formed.
  • the oblique cut-off line CL3 is in a state where one side is along the oblique cut-off line CL3 and the light source images L-S1, L-S2, L-S3, and L-S4 (condensing patterns S-S1, S-S2, and S-S3).
  • S-S4 is formed by being arranged below the oblique cut-off line CL3.
  • a light source image (L-WW) by the outgoing light RayA from the central lens portion 26 (central outgoing surface 26b) and a light source image by the outgoing light RayB from the intermediate lens portion 28 (intermediate outgoing surface 28c) L-M1a, L-M1b, L-M2, M3a, M3b, and L-M4), and light source images (LE1, L-E2, and L-) from the outgoing light RayC from the outer peripheral lens portion 30 (outer peripheral outgoing surface 30c).
  • E3, L-E4 are small and bright light source images in this order. This is because the distance L1 (optical path length; see FIG.
  • L2 optical path length; see FIG. 2
  • distance L3 optical path length; see FIG. 2 between the light source 12 (light emitting surface 12a) and the outer lens part 30 (deflection part) are long in this order. It is by becoming.
  • the distances L1, L2, and L3 are exemplified. L1 is 2.5 mm (0 degree direction with respect to the reference axis AX), L2 is 8.25 mm (45 degree direction with respect to the reference axis AX), and L3 is 11.25 mm (reference axis AX). 71 degrees direction).
  • the condensing pattern S-S1, S-S2, S-S3, S-S4, and diffusion patterns S-M1a, S-M1b, S-M2, S-M3a, S-M3b , S-M4, S-E1, S-E2, S-E3, and S-E4 are arranged along the horizontal line H of the diffusion pattern S-WW in addition to being arranged along the cut-off lines CL1, CL2, and CL2.
  • the light distribution pattern P Lo for the passing beam which is relatively bright in the vicinity of the cut-off lines CL1, CL2, and CL2, and has excellent distance visibility, can be formed.
  • a conventional vehicular lamp for example, Japanese Patent Application Laid-Open No. 2009-283299.
  • further miniaturization particularly, further thinning in the reference axis AX direction
  • the central lens unit 26 uses the second light distribution pattern (each of the patterns S-M1a, S-M1b, S-M2, and S-M3a) by the emitted light RayA from the central lens unit 26 (central emission surface 26b).
  • S-M3b, S-M4, S-S1, S-S2, S-S3, and S-S4 (see FIG. 6)) as a lens portion that forms a wider first light distribution pattern (diffusion pattern S-WW) Due to the construction, the distance between the light source 12 (light emitting surface 12a) and the central lens portion 26 can be made shorter than that of a conventional vehicle lamp (see, for example, JP 2009-283299 A). Is.
  • the output from the central lens portion 26 is reduced.
  • the light source image by the light ray RayA becomes large, and this light source image has a second light distribution pattern (each pattern S-M1a, S-M1b, S-M2, S-M3a, S-M3b, S-M4, S-S1, S-S2, S-S3, and S-S4 (see FIG. 6)) are more suitable for forming a wider (diffused) first light distribution pattern (diffusion pattern S-WW). Does not occur.
  • the hot zone (the region near the intersection of the horizontal line H and the vertical line V) and the cutoff lines CL1, CL2, CL3 are converted into an optical system (for example, the intermediate reflection surface 28b, Since the configuration is formed by the outer peripheral reflection surface 30b), it is possible to suppress the formation of color unevenness in the vicinity of the cutoff lines CL1, CL2, and CL3 due to chromatic aberration.
  • the light is refracted at each of the incident surfaces 28a and 30a and the output surfaces 28c and 30c, but there is little color separation because both surfaces are flat.
  • each of the lens portions 26, 28, and 30 may be formed in an elliptical shape or other shapes (see the portion (a) in FIG. 7) when viewed from the front.
  • the present invention is not limited to this. That is, one lens unit (for example, only the intermediate lens unit 28) may be used as the peripheral lens unit of the present invention, or three or more lens units may be used.
  • lens body 14A which is a modified example of the lens body 14 having the above configuration, will be described.
  • FIG. 7A is a front view of a lens body 14A, which is a modification of the lens body 14, FIG. 7B is a transverse sectional view, FIG. 7C is a longitudinal sectional view, and FIG. 7D is a rear view. .
  • a lens portion corresponding to the upper and lower portions of the intermediate lens portion 28 divided into four by a plane crossing in an X shape instead of the lens body 14, a lens portion corresponding to the upper and lower portions of the intermediate lens portion 28 divided into four by a plane crossing in an X shape.
  • a lens body 14A including lens portions 30A corresponding to the left and right portions of the outer peripheral lens portion 30 divided into four by a plane crossing in an X shape may be used.
  • FIG. 8 is an example of a traveling beam light distribution pattern P Hi formed on a virtual vertical screen (disposed approximately 25 m forward from the front of the vehicle) facing the front of the vehicle by the vehicular lamp 10A.
  • the traveling beam light distribution pattern P Hi includes a diffusion pattern P1 (corresponding to the first light distribution pattern of the present invention) and a light collection pattern P2 (corresponding to the second light distribution pattern of the present invention). It is formed as a superimposed synthetic light distribution pattern.
  • the center emission surface 26b is configured to have a surface shape so that the emitted light RayA from the center emission surface 26b forms the diffusion pattern P1, and the ambient emission
  • the surfaces (intermediate exit surface 28c, outer periphery exit surface 30c) have such surface shapes that the emitted light RayB and RayC from the surrounding exit surfaces (intermediate exit surface 28c, outer periphery exit surface 30c) form a condensing pattern P2. Is configured. Other than that, it is the structure similar to the vehicle lamp 10 of the said embodiment.
  • the vehicle lamp 10A of the present modification The effect similar to that of the vehicle lamp 10 of the above-described embodiment can also be obtained by the vehicle lamp 10A of the present modification.
  • the diffusion pattern P1 and the light collection pattern P2 are superimposed as shown in FIG. 8, and as a result, the light collection pattern P2 has a relatively bright far visibility.
  • a traveling beam light distribution pattern P Hi can be formed.
  • the present invention is configured to form the vehicular lamp 10 (vehicle headlamp) and the traveling beam light distribution pattern P Hi that are configured to form the light distribution pattern P Lo for the passing beam.
  • the example applied to the vehicular lamp 10A (vehicle headlamp) has been shown, the present invention is not limited to this, and can of course be applied to a vehicular lamp (for example, a fog lamp). is there.
  • the present invention has been described with reference to an example in which the present invention is applied to a vehicular lamp that forms a light distribution pattern for a passing beam for left-hand traffic (the left-hand side is the own lane and the right-hand side is the opposite lane).
  • the invention can also be applied to a vehicular lamp that forms a light distribution pattern for a passing beam for right-hand traffic (the right lane is the own lane and the left lane is the opposite lane).
  • the vehicular lamp that forms the light distribution pattern for the passing beam for the right-hand traffic (the right-hand side is the own lane and the left-hand side is the opposite lane) It can be configured by reversing the left and right of the vehicular lamp that forms the pattern.

Abstract

The present invention achieves further thickness reduction in the reference axis direction. A vehicle lamp (10, 10A) is provided with: a light source (12) that is disposed on a reference axis extending in the vehicle front-rear direction; and a lens body (14) that is disposed in front of the light source. The lens body (14) includes a center lens section (26) that is disposed on the reference axis, and a peripheral lens section (28) that is disposed to surround the center lens section (26), the center lens section (26) forms a first light distribution pattern (S-WW, P1) by means of light which is inputted to the inside of the center lens section from a center input surface (26a) and outputted from a center output surface (26b), said light having been emitted from the light source (12), and the peripheral lens section (28) forms a second light distribution pattern (S-M1a to S-S4, P2), which is narrower than the first light distribution pattern (S-WW, P1), by means of light which is inputted to the inside of the peripheral lens section from the peripheral input surface (28a), and internally reflected by a peripheral reflection surface (28b), then outputted from a peripheral output surface (28c), said light having been emitted from the light source (12).

Description

車両用灯具及びレンズ体Vehicle lamp and lens body
 本発明は、車両用灯具及びレンズ体に係り、特に、光源とレンズ体とを組み合わせた構造の車両用灯具及びこれに用いられるレンズ体に関する。 The present invention relates to a vehicular lamp and a lens body, and more particularly to a vehicular lamp having a structure in which a light source and a lens body are combined and a lens body used in the vehicular lamp.
 従来、車両用灯具の分野においては、光源と光源の前方に配置されたレンズ体とを備え、レンズ体を透過して前方に照射される光源からの光により、所定配光パターンを形成するように構成された車両用灯具が提案されている(例えば、特許文献1参照)。 Conventionally, in the field of vehicle lamps, a light source and a lens body disposed in front of the light source are provided, and a predetermined light distribution pattern is formed by light from the light source that is transmitted through the lens body and irradiated forward. A vehicular lamp configured as described above has been proposed (see, for example, Patent Document 1).
 図9は特許文献1に記載の車両用灯具200の縦断面図、図10Aは図9に示した車両用灯具200により形成される集光パターンPAの例、図10Bは拡散パターンPBの例である。 9 is a longitudinal sectional view of the vehicular lamp 200 described in Patent Document 1, FIG. 10A is an example of a light condensing pattern PA formed by the vehicular lamp 200 shown in FIG. 9, and FIG. 10B is an example of a diffusion pattern PB. is there.
 図9に示すように、特許文献1に記載の車両用灯具200は、光源210、光源210の前方に配置された中央レンズ220(凸レンズ)、中央レンズ220の周囲を囲むように配置された付加レンズ230を備えている。 As illustrated in FIG. 9, the vehicular lamp 200 described in Patent Document 1 includes a light source 210, a central lens 220 (convex lens) disposed in front of the light source 210, and an additional disposed so as to surround the central lens 220. A lens 230 is provided.
 上記構成の車両用灯具200においては、中央レンズ220を透過して前方に照射される光源210からの光が図10Aに示す集光パターンPAを形成し、付加レンズ230内部で内面反射されて進路を変更された後、前方に照射される光源210からの光が図10Bに示す拡散パターンPBを形成するように、各々のレンズ220、230が構成されている。 In the vehicular lamp 200 having the above-described configuration, light from the light source 210 that is transmitted forward through the central lens 220 forms a condensing pattern PA shown in FIG. Each of the lenses 220 and 230 is configured such that the light from the light source 210 irradiated forward forms the diffusion pattern PB shown in FIG. 10B.
特開2009-283299号公報JP 2009-283299 A
 しかしながら、上記構成の車両用灯具200においては、集光パターンPAを形成するには、光源210と中央レンズ220との間の距離をある程度長くして、中央レンズ220からの出射光による光源像を小さくする必要があるため、車両用灯具200のさらなる小型化(特に、基準軸AX方向のさらなる薄型化)を実現できないという問題がある。 However, in the vehicular lamp 200 having the above-described configuration, in order to form the condensing pattern PA, the distance between the light source 210 and the central lens 220 is increased to some extent, and a light source image by light emitted from the central lens 220 is obtained. Since it is necessary to make it small, there exists a problem that the further miniaturization (especially further thickness reduction of the reference-axis AX direction) cannot be implement | achieved.
 本発明は、このような事情に鑑みてなされたものであり、光源と光源の前方に配置されたレンズ体とを備えた車両用灯具において、従来の車両用灯具と比べ、さらなる小型化(特に、基準軸方向のさらなる薄型化)を実現することを目的とする。 The present invention has been made in view of such circumstances, and in a vehicular lamp including a light source and a lens body arranged in front of the light source, further miniaturization (particularly, compared to a conventional vehicular lamp). The object is to realize further thinning in the reference axis direction.
 上記目的を達成するため、本発明の第1の態様に係る車両用灯具は、車両前後方向に延びる基準軸上に配置された光源と、前記光源の前方に配置されたレンズ体と、を備え、前記レンズ体を透過して前方に照射される前記光源からの光により、少なくとも第1配光パターンと前記第1配光パターンより狭い第2配光パターンとが重畳された所定配光パターンを形成するように構成された車両用灯具において、前記レンズ体は、前記基準軸上に配置された中央レンズ部と当該中央レンズ部を取り囲むように配置された周囲レンズ部とを含み、前記中央レンズ部は、前記光源が対向する前記中央レンズ部の後端部に形成された中央入射面と、前記中央レンズ部の前端部に形成された中央出射面と、を含み、前記中央入射面から前記中央レンズ部内部に入射し、前記中央出射面から出射する前記光源からの光により、前記第1配光パターンを形成するレンズ部として構成されており、前記周囲レンズ部は、前記周囲レンズ部の後端部に前記中央レンズ部を取り囲むように形成された周囲入射面と、前記周囲レンズ部の後端部に前記周囲入射面を取り囲むように形成された周囲反射面と、前記周囲レンズ部の前端部に前記中央出射面を取り囲むように形成された周囲出射面と、を含み、前記周囲入射面から前記周囲レンズ部内部に入射し、前記周囲反射面で内面反射された後、前記周囲出射面から出射する前記光源からの光により、前記第2配光パターンを形成するレンズ部として構成されている。 In order to achieve the above object, a vehicular lamp according to a first aspect of the present invention includes a light source disposed on a reference axis extending in the vehicle front-rear direction, and a lens body disposed in front of the light source. A predetermined light distribution pattern in which at least a first light distribution pattern and a second light distribution pattern narrower than the first light distribution pattern are superimposed by light from the light source that is transmitted forward through the lens body. In the vehicular lamp configured to be formed, the lens body includes a central lens unit disposed on the reference axis and a peripheral lens unit disposed to surround the central lens unit, and the central lens The portion includes a central incident surface formed at a rear end portion of the central lens portion facing the light source, and a central emission surface formed at a front end portion of the central lens portion, from the central incident surface to the Central lens The lens is configured as a lens unit that forms the first light distribution pattern by light from the light source that is incident on the center and exits from the central exit surface, and the peripheral lens unit is a rear end of the peripheral lens unit A surrounding incident surface formed so as to surround the central lens portion, a surrounding reflecting surface formed so as to surround the surrounding incident surface at a rear end portion of the surrounding lens portion, and a front end portion of the surrounding lens portion. A surrounding emitting surface formed so as to surround the central emitting surface, and is incident on the inside of the surrounding lens unit from the surrounding incident surface and is internally reflected by the surrounding reflecting surface and then emitted from the surrounding emitting surface. It is comprised as a lens part which forms the said 2nd light distribution pattern with the light from the said light source.
 第1の態様によれば、光源と光源の前方に配置されたレンズ体とを備えた車両用灯具において、従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、さらなる小型化(特に、基準軸方向のさらなる薄型化)を実現することができる。 According to the first aspect, the vehicular lamp provided with the light source and the lens body arranged in front of the light source is further reduced in size as compared with the conventional vehicular lamp (see, for example, JP 2009-283299 A). (Particularly, further thinning in the reference axis direction) can be realized.
 これは、中央レンズ部が、当該中央レンズ部(中央出射面)からの出射光により、第2配光パターンより広い第1配光パターン(拡散パターン)を形成するレンズ部として構成されているため、光源と中央レンズ部との間の距離を従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、短くすることができることによるものである。なお、光源と中央レンズ部との間の距離を従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、短くすると、中央レンズ部からの出射光による光源像が大きくなるが、この光源像は第2配光パターンより広い(拡散された)第1配光パターン(拡散パターン)を形成するのに適したものとなるため、不都合は生じない。 This is because the central lens portion is configured as a lens portion that forms a first light distribution pattern (diffusion pattern) wider than the second light distribution pattern by the light emitted from the central lens portion (central emission surface). This is because the distance between the light source and the central lens portion can be shortened as compared with a conventional vehicle lamp (see, for example, JP-A-2009-283299). If the distance between the light source and the central lens unit is shorter than that of a conventional vehicle lamp (see, for example, JP-A-2009-283299), the light source image by the light emitted from the central lens unit becomes large. Since the light source image is suitable for forming a first light distribution pattern (diffusion pattern) wider (diffused) than the second light distribution pattern, there is no inconvenience.
 本発明の第2の態様に係る車両用灯具は、第1の態様において、前記所定配光パターンは、その上端縁に、左水平カットオフライン、右水平カットオフライン及び前記左水平カットオフラインと前記右水平カットオフラインとの間の斜めカットオフラインを含むすれ違いビーム用配光パターンであり、前記中央出射面は、当該中央出射面からの出射光が前記第1配光パターンとして拡散パターンを形成するように、その面形状が構成されており、前記周囲出射面は、前記中央出射面から放射状に延びる複数の境界線により複数の扇形の出射領域に区画されており、前記複数の扇形の出射領域のうち出射光による光源像の一辺が前記斜めカットオフラインの角度となる出射領域は、前記一辺が前記斜めカットオフラインに沿った状態でかつ前記光源像の全体が前記斜めカットオフライン以下に配置されるように、その面形状が構成されている。 The vehicular lamp according to a second aspect of the present invention is the vehicle lamp according to the first aspect, wherein the predetermined light distribution pattern has a left horizontal cutoff line, a right horizontal cutoff line, a left horizontal cutoff line, and a right A light distribution pattern for a passing beam including an oblique cut-off line between a horizontal cut-off line and the central output surface so that light emitted from the central output surface forms a diffusion pattern as the first light distribution pattern The peripheral emission surface is partitioned into a plurality of sector-shaped emission regions by a plurality of boundary lines extending radially from the central emission surface, and the plurality of sector-shaped emission regions are The emission region where one side of the light source image by the emitted light is at an angle of the oblique cutoff line is the state where the one side is along the oblique cutoff line and the front side As the whole of the light source image is arranged below the oblique cutoff line, the surface shape is formed.
 第2の態様によれば、一辺が斜めカットオフラインに沿った状態でかつ光源像の全体が斜めカットオフライン以下に配置されることで、斜めカットオフラインを形成することができる。 According to the second aspect, the oblique cut-off line can be formed by arranging one side along the oblique cut-off line and arranging the entire light source image below the oblique cut-off line.
 本発明の第3の態様に係る車両用灯具は、第3の態様において、前記複数の扇形の出射領域のうち前記光源像の一辺が前記斜めカットオフラインの角度となる出射領域以外の出射領域は、当該出射領域からの出射光が前記第2配光パターンとして前記左水平カットオフラインに沿った状態の上端縁を含む拡散パターン又は前記右水平カットオフラインに沿った状態の上端縁を含む拡散パターンを形成するように、その面形状が構成されている。 The vehicular lamp according to a third aspect of the present invention is the vehicle lamp according to the third aspect, wherein an emission area other than the emission area in which one side of the light source image is an angle of the oblique cutoff line among the plurality of fan-shaped emission areas. A diffusion pattern in which the emitted light from the emission region includes the upper end edge in a state along the left horizontal cut-off line or the diffusion pattern in a state along the right horizontal cut-off line as the second light distribution pattern. The surface shape is configured to form.
 第3の態様によれば、左水平カットオフライン及び右水平カットオフラインを形成することができる。 According to the third aspect, the left horizontal cutoff line and the right horizontal cutoff line can be formed.
 本発明の第4の態様に係る車両用灯具は、第1の態様において、前記所定配光パターンは、走行ビーム用配光パターンであり、前記中央出射面は、当該中央出射面からの出射光が前記第1配光パターンとして拡散パターンを形成するように、その面形状が構成されており、前記周囲出射面は、当該周囲出射面からの出射光が前記第2配光パターンとして集光パターンを形成するように、その面形状が構成されている。 The vehicle lamp according to a fourth aspect of the present invention is the vehicle lamp according to the first aspect, wherein the predetermined light distribution pattern is a traveling beam light distribution pattern, and the central emission surface is emitted light from the central emission surface. The surface shape is configured so that a diffusion pattern is formed as the first light distribution pattern, and the ambient light exit surface has a light condensing pattern as the second light distribution pattern. The surface shape is configured to form
 第4の態様によれば、走行ビーム用配光パターンを形成することができる。 According to the fourth aspect, the traveling beam light distribution pattern can be formed.
 本発明の第5の態様に係るレンズ体は、車両前後方向に延びる基準軸上に配置された光源の前方に配置され、前記光源からの光を制御して少なくとも第1配光パターンと前記第1配光パターンより狭い第2配光パターンとが重畳された所定配光パターンを形成するように構成されたレンズ体において、前記レンズ体は、前記基準軸上に配置された中央レンズ部と当該中央レンズ部を取り囲むように配置された周囲レンズ部とを含み、前記中央レンズ部は、前記光源が対向する前記中央レンズ部の後端部に形成された中央入射面と、前記中央レンズ部の前端部に形成された中央出射面と、を含み、前記中央入射面から前記中央レンズ部内部に入射し、前記中央出射面から出射する前記光源からの光により、前記第1配光パターンを形成するレンズ部として構成されており、前記周囲レンズ部は、前記周囲レンズ部の後端部に前記中央レンズ部を取り囲むように形成された周囲入射面と、前記周囲レンズ部の後端部に前記周囲入射面を取り囲むように形成された周囲反射面と、前記周囲レンズ部の前端部に前記中央出射面を取り囲むように形成された周囲出射面と、を含み、前記周囲入射面から前記周囲レンズ部内部に入射し、前記周囲反射面で内面反射された後、前記周囲出射面から出射する前記光源からの光により、前記第2配光パターンを形成するレンズ部として構成されている。 A lens body according to a fifth aspect of the present invention is disposed in front of a light source disposed on a reference axis extending in the vehicle front-rear direction, and controls at least the first light distribution pattern and the first light by controlling light from the light source. In the lens body configured to form a predetermined light distribution pattern in which a second light distribution pattern narrower than one light distribution pattern is superimposed, the lens body includes a central lens portion disposed on the reference axis and the lens body A peripheral lens portion disposed so as to surround the central lens portion, and the central lens portion includes a central incident surface formed at a rear end portion of the central lens portion facing the light source, and the central lens portion. A first light distribution pattern formed by light from the light source that is incident on the inside of the central lens unit from the central incident surface and is emitted from the central outgoing surface. To do The peripheral lens unit includes a peripheral incident surface formed to surround the central lens unit at a rear end of the peripheral lens unit, and the peripheral lens unit at the rear end of the peripheral lens unit. A surrounding reflection surface formed so as to surround the entrance surface, and a surrounding exit surface formed so as to surround the central exit surface at a front end portion of the surrounding lens portion, and the surrounding lens portion from the surrounding entrance surface The lens unit is configured as a lens unit that forms the second light distribution pattern by light from the light source that enters the inside and is internally reflected by the surrounding reflecting surface and then exits from the surrounding emitting surface.
 第5の態様によれば、光源と光源の前方に配置されたレンズ体とを備えた車両用灯具において、従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、さらなる小型化(特に、基準軸方向のさらなる薄型化)を実現することができるレンズ体を実現することができる。 According to the fifth aspect, the vehicular lamp including the light source and the lens body arranged in front of the light source is further reduced in size as compared with the conventional vehicular lamp (see, for example, JP 2009-283299 A). Therefore, it is possible to realize a lens body that can realize a reduction in thickness (particularly, further reduction in thickness in the reference axis direction).
 これは、中央レンズ部が、当該中央レンズ部(中央出射面)からの出射光により、第2配光パターンより広い第1配光パターン(拡散パターン)を形成するレンズ部として構成されているため、光源と中央レンズ部との間の距離を従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、短くすることができることによるものである。なお、光源と中央レンズ部との間の距離を従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、短くすると、中央レンズ部からの出射光による光源像が大きくなるが、この光源像は第2配光パターンより広い(拡散された)第1配光パターン(拡散パターン)を形成するのに適したものとなるため、不都合は生じない。 This is because the central lens portion is configured as a lens portion that forms a first light distribution pattern (diffusion pattern) wider than the second light distribution pattern by the light emitted from the central lens portion (central emission surface). This is because the distance between the light source and the central lens portion can be shortened as compared with a conventional vehicle lamp (see, for example, JP-A-2009-283299). If the distance between the light source and the central lens unit is shorter than that of a conventional vehicle lamp (see, for example, JP-A-2009-283299), the light source image by the light emitted from the central lens unit becomes large. Since the light source image is suitable for forming a first light distribution pattern (diffusion pattern) wider (diffused) than the second light distribution pattern, there is no inconvenience.
 本発明によれば、光源と光源の前方に配置されたレンズ体とを備えた車両用灯具において、従来の車両用灯具と比べ、さらなる小型化(特に、基準軸方向のさらなる薄型化)を実現することが可能となる。 According to the present invention, a vehicular lamp provided with a light source and a lens body disposed in front of the light source can be further reduced in size (particularly, further reduced in thickness in the reference axis direction) as compared with a conventional vehicular lamp. It becomes possible to do.
図1は、本発明の一実施形態である車両用灯具10の斜視図である。FIG. 1 is a perspective view of a vehicular lamp 10 according to an embodiment of the present invention. 図2は、車両用灯具10の縦断面図である。FIG. 2 is a longitudinal sectional view of the vehicular lamp 10. 図3は、車両用灯具10により車両前面に正対した仮想鉛直スクリーン(車両前面から約25m前方に配置されている)上に形成されるすれ違いビーム用配光パターンPLoの例である。FIG. 3 is an example of a light distribution pattern P Lo for a passing beam formed on a virtual vertical screen (disposed approximately 25 m ahead from the front of the vehicle) facing the front of the vehicle by the vehicular lamp 10. 図4は、レンズ体14の光取り込み角θ~θ等を説明するための図である。FIG. 4 is a diagram for explaining the light capture angles θ 1 to θ 3 of the lens body 14. 図5は、車両用灯具10の正面図(レンズ体14からの出射光により、仮想鉛直スクリーン上に配置される光源像を含む)である。FIG. 5 is a front view of the vehicular lamp 10 (including a light source image arranged on a virtual vertical screen by light emitted from the lens body 14). 図6は、レンズ体14からの出射光により、仮想鉛直スクリーン上に形成される各配光パターンの例である。FIG. 6 is an example of each light distribution pattern formed on the virtual vertical screen by the light emitted from the lens body 14. 図7の(a)部はレンズ体14の変形例であるレンズ体14Aの正面図であり、(b)部は横断面図であり、(c)部は縦断面図であり、(d)部は背面図である。7A is a front view of a lens body 14A which is a modified example of the lens body 14, FIG. 7B is a transverse sectional view, FIG. 7C is a longitudinal sectional view, and FIG. The part is a rear view. 図8は、車両用灯具10Aにより車両前面に正対した仮想鉛直スクリーン(車両前面から約25m前方に配置されている)上に形成される走行ビーム用配光パターンPHiの例である。FIG. 8 is an example of a traveling beam light distribution pattern P Hi formed on a virtual vertical screen (disposed approximately 25 m forward from the front of the vehicle) facing the front of the vehicle by the vehicular lamp 10A. 図9は、特許文献1に記載の車両用灯具200の縦断面図である。FIG. 9 is a longitudinal sectional view of the vehicular lamp 200 described in Patent Document 1. As shown in FIG. 図10Aは、図9に示した車両用灯具200により形成される集光パターンPAの例である。FIG. 10A is an example of a light collection pattern PA formed by the vehicular lamp 200 shown in FIG. 図10Bは、拡散パターンPBの例である。FIG. 10B is an example of the diffusion pattern PB.
 以下、本発明の一実施形態である車両用灯具について、図面を参照しながら説明する。 Hereinafter, a vehicular lamp that is an embodiment of the present invention will be described with reference to the drawings.
 図1は本発明の一実施形態である車両用灯具10の斜視図、図2は縦断面図、図3は車両用灯具10により車両前面に正対した仮想鉛直スクリーン(車両前面から約25m前方に配置されている)上に形成されるすれ違いビーム用配光パターンPLoの例である。 1 is a perspective view of a vehicular lamp 10 according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view, and FIG. 3 is a virtual vertical screen (approx. 25 m forward from the front of the vehicle) that faces the front of the vehicle by the vehicular lamp 10. This is an example of the light distribution pattern P Lo for the passing beam formed on the upper surface.
 図1、図2に示すように、車両用灯具10は、車両前後方向に延びる基準軸AX(光軸とも称される)上に発光面12aが前方を向いた状態で配置された光源12と、光源12(発光面12a)の前方に配置されたレンズ体14とを備え、レンズ体14を透過して前方に照射される光源12(発光面12a)からの光により、図3に示すように、その上端縁に、左水平カットオフラインCL1、右水平カットオフラインCL2及び左水平カットオフラインCL1と右水平カットオフラインCL2との間の斜めカットオフラインCL3を含むすれ違いビーム用配光パターンPLoを形成する車両用前照灯として構成されている。 As shown in FIGS. 1 and 2, the vehicular lamp 10 includes a light source 12 disposed on a reference axis AX (also referred to as an optical axis) extending in the vehicle front-rear direction with a light emitting surface 12a facing forward. 3 and the lens body 14 disposed in front of the light source 12 (light emitting surface 12a), and the light from the light source 12 (light emitting surface 12a) that passes through the lens body 14 and is irradiated forward is shown in FIG. In addition, a light distribution pattern P Lo for a passing beam including a left horizontal cutoff line CL1, a right horizontal cutoff line CL2, and an oblique cutoff line CL3 between the left horizontal cutoff line CL1 and the right horizontal cutoff line CL2 is formed at the upper edge. It is configured as a vehicle headlamp.
 光源12は、レーザー光源16、集光レンズ18、波長変換部材20、これらを保持するホルダ22等を備えている。ホルダ22は、集光レンズ18を保持するレンズホルダ22a、レンズホルダ22aに固定されたリング22b、リング22bに固定された接続フランジ22cを組み合わせて構成されている。 The light source 12 includes a laser light source 16, a condenser lens 18, a wavelength conversion member 20, a holder 22 for holding them, and the like. The holder 22 is configured by combining a lens holder 22a that holds the condenser lens 18, a ring 22b that is fixed to the lens holder 22a, and a connection flange 22c that is fixed to the ring 22b.
 レーザー光源16は、青色域(例えば、発光波長が450nm)のレーザー光を放出するレーザー光源で、具体的には、レーザーダイオード(LD素子)を含んでパッケージ化されたキャン型の半導体レーザー光源として構成されている。なお、レーザー光源16は、近紫外域(例えば、発光波長が405nm)又はそれ以外のレーザー光を放出するレーザー光源であってもよい。レーザー光源16で発生する熱は、これが固定されたヒートシンク24で放熱されて冷却される。 The laser light source 16 is a laser light source that emits laser light in a blue region (for example, an emission wavelength of 450 nm), and more specifically, as a can-type semiconductor laser light source packaged including a laser diode (LD element). It is configured. The laser light source 16 may be a laser light source that emits near-ultraviolet light (for example, an emission wavelength of 405 nm) or other laser light. The heat generated by the laser light source 16 is radiated and cooled by the heat sink 24 to which it is fixed.
 波長変換部材20は、集光レンズ18で集光されるレーザー光源16からのレーザー光を受けて当該レーザー光の少なくとも一部をレーザー光と異なる波長の光に変換する波長変換部材で、具体的には、青色域(例えば、発光波長が450nm)のレーザー光によって励起されて黄色光を発光する板状又は層状の蛍光体として構成されている。 The wavelength conversion member 20 is a wavelength conversion member that receives laser light from the laser light source 16 collected by the condenser lens 18 and converts at least a part of the laser light into light having a wavelength different from that of the laser light. Is configured as a plate-like or layered phosphor that emits yellow light when excited by laser light in a blue region (for example, emission wavelength is 450 nm).
 波長変換部材20は、矩形の発光面12a(例えば、縦0.4×横0.8mmのアスペクト比1:2)を構成している。 The wavelength conversion member 20 constitutes a rectangular light emitting surface 12a (for example, aspect ratio 1: 2 of vertical 0.4 × horizontal 0.8 mm).
 なお、波長変換部材20は、近紫外域(例えば、発光波長が405nm)のレーザー光によって励起されて赤、緑、青の3色の光を発光する板状又は層状の蛍光体として構成されていてもよい。 The wavelength conversion member 20 is configured as a plate-like or layer-like phosphor that emits light of three colors of red, green, and blue when excited by laser light in the near ultraviolet region (for example, the emission wavelength is 405 nm). May be.
 青色域のレーザー光が照射された場合、波長変換部材20は、これを透過する青色域のレーザー光と青色域のレーザー光による発光(黄色光)との混色による白色光(疑似白色光)を放出する。一方、近紫外域のレーザー光が照射された場合、波長変換部材20は、近紫外域のレーザー光による発光(赤、緑、青の3色の光)の混色による白色光(疑似白色光)を放出する。 When the laser beam in the blue region is irradiated, the wavelength conversion member 20 emits white light (pseudo white light) due to the color mixture of the laser beam in the blue region and the light emitted by the laser beam in the blue region (yellow light). discharge. On the other hand, when irradiated with near-ultraviolet laser light, the wavelength conversion member 20 emits white light (pseudo-white light) due to a mixture of light emitted from the near-ultraviolet laser light (light of three colors of red, green, and blue). Release.
 なお、光源12は、矩形の発光面を含む光源であればよく、白色LED(light emitting diode)光源等の半導体発光素子であってもよいし、それ以外の光源であってもよい。 The light source 12 may be a light source including a rectangular light emitting surface, and may be a semiconductor light emitting element such as a white LED (light emitting diode) light source, or may be a light source other than that.
 光源12(発光面12a)から放出される光の指向特性はランバーシアンで、I(θ)=I×cosθで表すことができる。これは、光源12(発光面12a)が放出する光の広がりを表している。但し、I(θ)は光源12(発光面12a)の光軸AX12から角度θ傾いた方向の光度を表し、Iは光軸AX12上の光度を表している。光源12(発光面12a)では、光軸AX12上(θ=0)の光度が最大となる。なお、光源12(発光面12a)の光軸AX12は、発光面12aの中心を通り、かつ、発光面12aに対して垂直の方向に延びている。 The directivity of light emitted from the light source 12 (light emitting surface 12a) is Lambertian and can be expressed as I (θ) = I 0 × cos θ. This represents the spread of light emitted from the light source 12 (light emitting surface 12a). However, I (θ) represents the luminous intensity in the direction inclined by the angle θ from the optical axis AX 12 of the light source 12 (light emitting surface 12a), and I 0 represents the luminous intensity on the optical axis AX 12 . In the light source 12 (light-emitting surface 12a), the light intensity of the optical axis AX 12 above (theta = 0) becomes maximum. Incidentally, the optical axis AX 12 of the light source 12 (light-emitting surface 12a) passes through the center of the light emitting surface 12a, and extends in a direction perpendicular to the emitting surface 12a.
 光源12は、発光面12aが前方を向き、発光面12aの下端縁(長辺)が基準軸AXに直交する水平線に一致し、かつ、発光面12aの下端縁(長辺)がレンズ体14の光学設計上の基準点F近傍に位置した状態でレンズホルダ34に固定されている。 The light source 12 has the light emitting surface 12a facing forward, the lower end edge (long side) of the light emitting surface 12a coincides with a horizontal line orthogonal to the reference axis AX, and the lower end edge (long side) of the light emitting surface 12a is the lens body 14. The lens holder 34 is fixed in a state of being positioned in the vicinity of the reference point F in the optical design.
 レンズ体14は、基準軸AX上に配置された中央レンズ部26と、中央レンズ部26を取り囲むように配置された中間レンズ部28(本発明の周囲レンズ部に相当)と、中間レンズ部28を取り囲むように配置された外周レンズ部30(本発明の周囲レンズ部に相当)と、フランジ部32と、光学設計上の基準点Fと、を含んでいる。レンズ体14は、フランジ部32がレンズホルダ34に固定されて、光源12(発光面12a)の前方に配置されている。レンズ体14の材料は、ポリカーボネイトであってもよいし、それ以外のアクリル等の透明樹脂であってもよいし、ガラスであってもよい。 The lens body 14 includes a central lens portion 26 disposed on the reference axis AX, an intermediate lens portion 28 (corresponding to the peripheral lens portion of the present invention) disposed so as to surround the central lens portion 26, and the intermediate lens portion 28. The outer peripheral lens part 30 (corresponding to the peripheral lens part of the present invention), the flange part 32, and the reference point F in the optical design are arranged. The lens body 14 is disposed in front of the light source 12 (light emitting surface 12a) with the flange portion 32 fixed to the lens holder 34. The material of the lens body 14 may be polycarbonate, other transparent resin such as acrylic, or glass.
 図4は、レンズ体14の光取り込み角θ~θ等を説明するための図である。 FIG. 4 is a diagram for explaining the light capture angles θ 1 to θ 3 of the lens body 14.
 図4に示すように、レンズ体14の直径Dは例えば32mm、中央レンズ部26(中央入射面26aの頂点)と光源12(発光面12a)との間の距離LLは例えば2.5mmである。レンズ体14の直径Dと、中央レンズ部26(中央入射面26aの頂点)と光源12(発光面12a)との間の距離LLとの比は例えば12:1である。中央レンズ部26の直径LWと、中央レンズ部26(中央入射面26aの頂点)と光源12(発光面12a)との間の距離LLとの比は例えば3.4:1である。中央レンズ部26の光取り込み角θは例えば0~38度、中間レンズ部28の光取り込み角θは例えば38~57度(45度のバックフォーカス3.3(LL比))、外周レンズ部30の光取り込み角θは例えば57~85度(71度のバックフォーカス4.5(LL比))である。 As shown in FIG. 4, the diameter D of the lens body 14 is 32 mm, for example, and the distance LL between the central lens portion 26 (the apex of the central incident surface 26a) and the light source 12 (light emitting surface 12a) is 2.5 mm, for example. The ratio of the diameter D of the lens body 14 to the distance LL between the central lens portion 26 (the apex of the central incident surface 26a) and the light source 12 (light emitting surface 12a) is, for example, 12: 1. The ratio between the diameter LW of the central lens portion 26 and the distance LL between the central lens portion 26 (the apex of the central incident surface 26a) and the light source 12 (light emitting surface 12a) is, for example, 3.4: 1. The light capturing angle θ 1 of the central lens portion 26 is, for example, 0 to 38 degrees, and the light capturing angle θ 2 of the intermediate lens portion 28 is, for example, 38 to 57 degrees (45 degrees back focus 3.3 (LL ratio)). The light capturing angle θ 3 of the unit 30 is, for example, 57 to 85 degrees (back focus 4.5 (LL ratio) of 71 degrees).
 まず、中央レンズ部26の構成について説明する。 First, the configuration of the central lens unit 26 will be described.
 中央レンズ部26は、光源12(発光面12a)が対向する中央レンズ部26の後端部に形成された中央入射面26aと、中央レンズ部26の前端部に形成された中央出射面26bと、を含むレンズ部である。 The central lens portion 26 includes a central incident surface 26 a formed at the rear end portion of the central lens portion 26 facing the light source 12 (light emitting surface 12 a), and a central emission surface 26 b formed at the front end portion of the central lens portion 26. , Including a lens portion.
 中央レンズ部26は、中央入射面26aから中央レンズ部26内部に入射し、中央出射面26bから出射する光源12からの光RayAにより、拡散パターンS-WW(図6参照。本発明の第1配光パターンに相当)を形成するレンズ部として構成されている。具体的には、次のように構成されている。 The central lens unit 26 enters the central lens unit 26 from the central incident surface 26a, and the light RayA from the light source 12 emitted from the central output surface 26b causes the diffusion pattern S-WW (see FIG. 6). It is configured as a lens portion for forming a light distribution pattern. Specifically, the configuration is as follows.
 中央入射面26aは、図4に示すように、光源12の光軸AX12に対して狭角方向(例えば、光取り込み角θ:0~38度の範囲)に放出される相対強度が強い光RayAが中央レンズ部26内部に入射する面で、光源12が対向する中央レンズ部26の後端部の基準軸AXを中心とする円形領域に、光源12に向かって凸の面として形成されている。 Central incident surface 26a, as shown in FIG. 4, the narrow angle direction (e.g., light acceptance angle θ 1: 0 ~ 38 ° range) with respect to the optical axis AX 12 of the light source 12 relative intensity is high which is released The surface on which the light RayA is incident on the inside of the central lens portion 26 is formed as a convex surface toward the light source 12 in a circular area around the reference axis AX at the rear end portion of the central lens portion 26 facing the light source 12. ing.
 中央入射面26aは、当該中央入射面26aから中央レンズ部26内部に入射する光源12からの光RayAを基準軸AXに対して平行な光に変換するように、その面形状が構成されている。 The central incident surface 26a has a surface shape so as to convert light RayA from the light source 12 incident on the central lens portion 26 from the central incident surface 26a into light parallel to the reference axis AX. .
 中央入射面26aのうち波長変換部材20がホルダ22から脱落した場合に集光レンズ18で集光されたレーザー光源16からのレーザー光が照射される領域には、遮光膜又は反射膜を施しておくのが望ましい。これにより、波長変換部材20脱落時のフェールセーフを実現することができる。中央レンズ部26と光源12(発光面12a)との間の距離LLが短いため、遮光膜又は反射膜を最小限のサイズに抑えることができる。 A light shielding film or a reflective film is applied to a region of the central incident surface 26a to which the laser light from the laser light source 16 collected by the condenser lens 18 is irradiated when the wavelength conversion member 20 is removed from the holder 22. It is desirable to leave. Thereby, the fail safe at the time of the wavelength conversion member 20 drop-off is realizable. Since the distance LL between the central lens unit 26 and the light source 12 (light emitting surface 12a) is short, the light shielding film or the reflective film can be suppressed to a minimum size.
 中央出射面26bは、中央入射面26aから中央レンズ部26内部に入射する光源12からの光RayAが出射する面で、中央レンズ部26の前端部の基準軸AXを中心とする円形領域に形成されている。 The central exit surface 26b is a surface from which the light RayA from the light source 12 that enters the central lens portion 26 is emitted from the central entrance surface 26a, and is formed in a circular region centered on the reference axis AX of the front end portion of the central lens portion 26. Has been.
 次に、中央出射面26bと光源像との関係について説明する。 Next, the relationship between the central exit surface 26b and the light source image will be described.
 図5は、車両用灯具10の正面図(レンズ体14からの出射光により、仮想鉛直スクリーン上に配置される光源像を含む)である。図6は、レンズ体14からの出射光により、仮想鉛直スクリーン上に形成される各配光パターンの例である。 FIG. 5 is a front view of the vehicular lamp 10 (including a light source image arranged on a virtual vertical screen by light emitted from the lens body 14). FIG. 6 is an example of each light distribution pattern formed on the virtual vertical screen by the light emitted from the lens body 14.
 仮に、中央出射面26bが基準軸AXに直交する平面である場合、当該中央出射面26bからの出射光RayAによる光源像L-WWは、図5に示すとおりのものとなる。 If the central exit surface 26b is a plane orthogonal to the reference axis AX, the light source image L-WW by the emitted light RayA from the central exit surface 26b is as shown in FIG.
 実際には、中央出射面26bは平面ではなく当該中央出射面26bからの出射光RayAが水平方向に均等に拡散して、拡散パターンS-WW(図6参照。本発明の第1配光パターンに相当)を形成するように、その面形状が構成されている。 Actually, the central exit surface 26b is not a flat surface, and the outgoing light RayA from the central exit surface 26b is evenly diffused in the horizontal direction, and the diffusion pattern S-WW (see FIG. 6). First light distribution pattern of the present invention The surface shape is configured so as to form an equivalent.
 図6中、拡散パターンS-WWは、その左右両端がL40度、R40度近傍まで延びている。これは、拡散パターンS-WWの左右両端がL40度、R40度近傍まで延びるように、中央出射面26bの面形状が調整されていることによるものである。このように、中央出射面26bの面形状を調整することで、拡散パターンS-WWの水平方向の拡散の程度を、所望のものとすることができる。 In FIG. 6, the diffusion pattern S-WW has both left and right ends extending to L40 degrees and R40 degrees. This is because the surface shape of the central exit surface 26b is adjusted so that the left and right ends of the diffusion pattern S-WW extend to the vicinity of L40 degrees and R40 degrees. In this way, by adjusting the surface shape of the central emission surface 26b, the degree of horizontal diffusion of the diffusion pattern S-WW can be made desired.
 拡散パターンS-WWは、その水平線Hに沿った領域がそれ以下の領域と比べて明るいものとなる。これは、光源12(発光面12a)の下端縁(長辺)がレンズ体14の光学設計上の基準点F近傍に位置しており、光源12(発光面12a)全体が基準点Fより上に配置されていることによるものである。 The diffusion pattern S-WW is brighter in the area along the horizontal line H than the area below it. This is because the lower end edge (long side) of the light source 12 (light emitting surface 12a) is located near the reference point F in the optical design of the lens body 14, and the entire light source 12 (light emitting surface 12a) is above the reference point F. It is because it is arranged in.
 拡散パターンS-WWは、光軸AX12方向へ向かう青色寄りの光で形成されるため、周辺視による視認性が向上する。拡散パターンS-WWが光軸AX12(基準軸AX)方向へ向かう青色寄りの光で形成されるのは、光源12として発光色が青系のレーザー光源16と発光色が黄系の波長変換部材20とを組み合わせた光源を用いた場合、波長変換部材20内を通過するレーザー光の距離差に起因して、光軸AX12(基準軸AX)方向へ向かう光が青色寄りの光となり、光軸AX12(基準軸AX)に対する角度がより大きい方向へ向かう光が黄色寄りの光となることによるものである。 Diffusion pattern S-WW is to be formed in the light of bluish towards the optical axis AX 12 direction, thereby improving visibility by peripheral vision. The diffusion pattern S-WW is formed by light that is closer to blue toward the optical axis AX 12 (reference axis AX). The light source 12 is a laser light source 16 that emits blue light and a wavelength conversion that emits yellow light. When the light source combined with the member 20 is used, the light toward the optical axis AX 12 (reference axis AX) direction becomes light near blue due to the difference in the distance of the laser light passing through the wavelength conversion member 20. This is because light traveling in a direction having a larger angle with respect to the optical axis AX 12 (reference axis AX) becomes yellowish light.
 次に、中間レンズ部28の構成について説明する。 Next, the configuration of the intermediate lens unit 28 will be described.
 中間レンズ部28は、図4に示すように、中間レンズ部28の後端部に中央レンズ部26を取り囲むように形成された中間入射面28aと、中間レンズ部28の後端部に中間入射面28aを取り囲むように形成された中間反射面28bと、中間レンズ部28の前端部に中央出射面26bを取り囲むように形成された中間出射面28cと、を含むレンズ部である。 As shown in FIG. 4, the intermediate lens portion 28 includes an intermediate incident surface 28 a formed at the rear end portion of the intermediate lens portion 28 so as to surround the central lens portion 26, and an intermediate incident portion at the rear end portion of the intermediate lens portion 28. The lens portion includes an intermediate reflecting surface 28b formed so as to surround the surface 28a and an intermediate emitting surface 28c formed so as to surround the central emitting surface 26b at the front end portion of the intermediate lens portion 28.
 中間レンズ部28は、中間入射面28aから中間レンズ部28内部に入射し、中間反射面28bで内面反射(全反射)された後、中間出射面28cから出射する光源12からの光RayBにより、拡散パターンS-WWより狭いパターンS-M1a、S-M1b、S-M2、S-M3a、S-M3b、S-M4、S-S1、S-S2、S-S3、S-S4(図6参照。本発明の第2配光パターンに相当)を形成するレンズ部として構成されている。具体的には、次のように構成されている。 The intermediate lens unit 28 enters the intermediate lens unit 28 from the intermediate incident surface 28a, is internally reflected (totally reflected) by the intermediate reflecting surface 28b, and then is emitted by the light Ray B from the light source 12 emitted from the intermediate emitting surface 28c. Patterns S-M1a, S-M1b, S-M2, S-M3a, S-M3b, S-M4, S-S1, S-S2, S-S3, S-S4 narrower than the diffusion pattern S-WW (FIG. 6) (Refer to the second light distribution pattern of the present invention). Specifically, the configuration is as follows.
 中間入射面28aは、光源12の光軸AX12に対して中角方向(例えば、光取り込み角θ:38~57度の範囲)に放出される相対強度が弱い光RayBが中間レンズ部28内部に入射する面で、中間レンズ部28の後端部に、中央レンズ部26を取り囲むように形成されている。 Intermediate the entrance surface 28a is medium-angle direction with respect to the optical axis AX 12 of the light source 12 (e.g., an optical acceptance angle θ 2: 38 ~ 57 ° range) Relative intensity emitted in the weak light RayB intermediate lens portion 28 A surface incident on the inside is formed at the rear end portion of the intermediate lens portion 28 so as to surround the central lens portion 26.
 中間反射面28bは、中間入射面28aから中間レンズ部28内部に入射する光源12からの光RayBを中間出射面28cに向けて内面反射(全反射)する面で、中間レンズ部28の後端部に、中間入射面28aを取り囲むように形成されている。 The intermediate reflecting surface 28b is a surface that internally reflects (totally reflects) the light RayB from the light source 12 that enters the intermediate lens portion 28 from the intermediate incident surface 28a toward the intermediate emitting surface 28c, and is the rear end of the intermediate lens portion 28. Is formed so as to surround the intermediate incident surface 28a.
 中間反射面28bは、中間入射面28aから中間レンズ部28内部に入射する光源12からの光RayBを基準軸AXに対して平行な光に変換するように、その面形状が構成されている。 The surface shape of the intermediate reflecting surface 28b is configured so as to convert the light RayB from the light source 12 incident on the inside of the intermediate lens portion 28 from the intermediate incident surface 28a into light parallel to the reference axis AX.
 中間出射面28cは、中間反射面28bからの反射光RayBが出射する面で、中間レンズ部28の前端部に、中央出射面26bを取り囲むように形成されている。 The intermediate emission surface 28c is a surface from which the reflected light RayB from the intermediate reflection surface 28b is emitted, and is formed at the front end portion of the intermediate lens portion 28 so as to surround the central emission surface 26b.
 図5に示すように、中間出射面28cは、中央レンズ部26(中央出射面26b)から放射状に延びる複数の境界線により複数の扇形の出射領域M1a、M1b、M2、M3a、M3b、M4、S1、S2、S3、S4に区画されている。 As shown in FIG. 5, the intermediate exit surface 28c is formed of a plurality of fan-shaped exit areas M1a, M1b, M2, M3a, M3b, M4, by a plurality of boundary lines extending radially from the central lens portion 26 (center exit surface 26b). It is divided into S1, S2, S3, and S4.
 複数の扇形の出射領域M1a、M1b、M2、M3a、M3b、M4、S1、S2、S3、S4のうち出射光RayBによる光源像の一辺が斜めカットオフラインCL3の角度(又はそれ以下の角度)となる出射領域S1、S2、S3、S4は、水平線H及び鉛直線V近傍に配置されている。例えば、出射領域S1は正面視で鉛直線Vに対して右、かつ、水平線Hに対して上7.5°~22.5°の扇形領域に配置され、出射領域S3は正面視で鉛直線Vに対して左、かつ、水平線Hに対して下7.5°~22.5°の扇形領域に配置されている。出射領域S2は正面視で水平線Hに対して下、かつ、鉛直線Vに対して右10~30°の扇形領域に配置され、出射領域S4は正面視で水平線Hに対して上、かつ、鉛直線Vに対して左10~30°の扇形領域に配置されている。 Of the plurality of fan-shaped exit areas M1a, M1b, M2, M3a, M3b, M4, S1, S2, S3, and S4, one side of the light source image by the emitted light RayB is an angle of the oblique cutoff line CL3 (or an angle smaller than that). The emission areas S1, S2, S3, and S4 are arranged near the horizontal line H and the vertical line V. For example, the emission region S1 is arranged in a sector region that is 7.5 ° to 22.5 ° to the right of the vertical line V in front view and above the horizontal line H, and the emission region S3 is in relation to the vertical line V in front view. It is arranged in a sector area on the left and 7.5 ° to 22.5 ° below the horizontal line H. The emission area S2 is arranged in a fan-shaped area 10 to 30 ° to the right with respect to the vertical line V and below the horizontal line H in the front view, and the emission area S4 is above the horizontal line H in the front view. It is arranged in a sector area 10 to 30 ° to the left with respect to the vertical line V.
 次に、出射領域S1、S2、S3、S4と光源像との関係について説明する。 Next, the relationship between the emission areas S1, S2, S3, S4 and the light source image will be described.
 仮に、出射領域S1、S2、S3、S4が基準軸AXに直交する平面である場合、当該出射領域S1、S2、S3、S4からの出射光RayBによる光源像L-S1、L-S2、L-S3、L-S4は、図5に示すとおりのものとなる。 If the emission areas S1, S2, S3, S4 are planes orthogonal to the reference axis AX, the light source images L-S1, L-S2, L by the emitted light RayB from the emission areas S1, S2, S3, S4 -S3 and L-S4 are as shown in FIG.
 実際には、出射領域S1、S2、S3、S4は平面ではなく当該出射領域S1、S2、S3、S4からの出射光RayBによる光源像L-S1、L-S2、L-S3、L-S4(集光パターンS-S1、S-S2、S-S3、S-S4。図6参照)が、各々の一辺が斜めカットオフラインCL3に沿った状態でかつ光源像L-S1、L-S2、L-S3、L-S4の全体が斜めカットオフラインCL3以下に配置されるように、その面形状が構成されている。 Actually, the emission areas S1, S2, S3, and S4 are not flat, but light source images L-S1, L-S2, L-S3, and L-S4 by the emitted light RayB from the emission areas S1, S2, S3, and S4. (Condensing patterns S-S1, S-S2, S-S3, S-S4, see FIG. 6), each side being along the oblique cut-off line CL3 and the light source images L-S1, L-S2, The surface shape is configured such that the entire L-S3 and L-S4 are arranged below the oblique cutoff line CL3.
 このように、一辺が斜めカットオフラインCL3に沿った状態でかつ光源像L-S1、L-S2、L-S3、L-S4(集光パターンS-S1、S-S2、S-S3、S-S4)の全体が斜めカットオフラインCL3以下に配置されることで、斜めカットオフラインCL3を形成することができる。 In this way, the light source images L-S1, L-S2, L-S3, and L-S4 (condensation patterns S-S1, S-S2, S-S3, S) with one side along the oblique cut-off line CL3. Since the whole of -S4) is arranged below the oblique cut-off line CL3, the oblique cut-off line CL3 can be formed.
 次に、出射領域M1a、M1b、M2、M4と光源像との関係について説明する。 Next, the relationship between the emission areas M1a, M1b, M2, and M4 and the light source image will be described.
 仮に、出射領域M1a、M1b、M2、M4が基準軸AXに直交する平面である場合、当該出射領域M1a、M1b、M2、M4からの出射光RayBによる光源像L-M1a、L-M1b、L-M2、L-M4は、図5に示すとおりのものとなる。 If the emission areas M1a, M1b, M2, and M4 are planes orthogonal to the reference axis AX, the light source images L-M1a, L-M1b, L by the emission light RayB from the emission areas M1a, M1b, M2, and M4 -M2 and L-M4 are as shown in FIG.
 実際には、出射領域M1a、M1b、M2、M4は平面ではなく当該出射領域M1a、M1b、M2、M4からの出射光RayBが水平方向に拡散して、上端縁が左水平カットオフラインCL1に沿った状態でかつ拡散パターンS-M1a、S-M1b、S-M2、S-M4(図6参照。本発明の第2配光パターンに相当)の全体が左水平カットオフラインCL1以下に配置されるように、その面形状が構成されている(例えば、出射領域M1a、M1b、M2、M4に、当該出射領域M1a、M1b、M2、M4からの出射光RayBを水平方向に拡散させるように構成されたプリズム又はレンズカット等の光学素子が形成されている)。 Actually, the exit areas M1a, M1b, M2, and M4 are not flat, but the emitted light RayB from the exit areas M1a, M1b, M2, and M4 is diffused in the horizontal direction, and the upper edge is along the left horizontal cutoff line CL1. The entire diffusion pattern S-M1a, S-M1b, S-M2, and S-M4 (see FIG. 6, corresponding to the second light distribution pattern of the present invention) is placed below the left horizontal cut-off line CL1. Thus, the surface shape is configured (for example, the output light RayB from the output regions M1a, M1b, M2, and M4 is diffused in the horizontal direction in the output regions M1a, M1b, M2, and M4. An optical element such as a prism or lens cut is formed).
 このように、上端縁が左水平カットオフラインCL1に沿った状態でかつ拡散パターンS-M1a、S-M1b、S-M2、S-M4の全体が左水平カットオフラインCL1以下に配置されることで、左水平カットオフラインCL1を形成することができる。 In this way, the upper edge is along the left horizontal cut-off line CL1, and the entire diffusion patterns S-M1a, S-M1b, S-M2, and S-M4 are arranged below the left horizontal cut-off line CL1. The left horizontal cut-off line CL1 can be formed.
 図6中、拡散パターンS-M1aは、その水平方向寸法が約30度となっている。これは、拡散パターンS-M1aの水平方向寸法が約30度となるように、出射領域M1aの面形状が調整されていることによるものである。このように、出射領域M1aの面形状を調整することで、拡散パターンS-M1aの水平方向寸法を、所望のものとすることができる。拡散パターンS-M1b、S-M2、S-M4についても同様である。 In FIG. 6, the diffusion pattern S-M1a has a horizontal dimension of about 30 degrees. This is because the surface shape of the emission region M1a is adjusted so that the horizontal dimension of the diffusion pattern S-M1a is about 30 degrees. In this way, by adjusting the surface shape of the emission region M1a, the horizontal dimension of the diffusion pattern S-M1a can be made desired. The same applies to the diffusion patterns S-M1b, S-M2, and S-M4.
 図6中、拡散パターンS-M1aは、その全体が左水平カットオフラインCL1以下に配置されている。これは、拡散パターンS-M1aの全体が左水平カットオフラインCL1以下に配置されるように、出射領域M1aの傾きが調整されていることによるものである。このように、出射領域M1aの傾きを調整することで、拡散パターンS-M1aを仮想鉛直スクリーン上の所望の箇所に配置することができる。拡散パターンS-M1b、S-M2、S-M4についても同様である。 In FIG. 6, the entire diffusion pattern S-M1a is arranged below the left horizontal cut-off line CL1. This is because the inclination of the emission region M1a is adjusted so that the entire diffusion pattern S-M1a is arranged below the left horizontal cutoff line CL1. Thus, by adjusting the inclination of the emission region M1a, the diffusion pattern S-M1a can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion patterns S-M1b, S-M2, and S-M4.
 次に、出射領域M3a、M3bと光源像との関係について説明する。 Next, the relationship between the emission areas M3a and M3b and the light source image will be described.
 仮に、出射領域M3a、M3bが基準軸AXに直交する平面である場合、当該出射領域M3a、M3bからの出射光RayBによる光源像L-M3a、L-M3bは、図5に示すとおりのものとなる。 If the emission areas M3a and M3b are planes orthogonal to the reference axis AX, the light source images L-M3a and L-M3b by the emitted light RayB from the emission areas M3a and M3b are as shown in FIG. Become.
 実際には、出射領域M3a、M3bは平面ではなく当該出射領域M3a、M3bからの出射光RayBが水平方向に拡散して、上端縁が右水平カットオフラインCL2に沿った状態でかつ拡散パターンS-M3a、S-M3b(図6参照。本発明の第2配光パターンに相当)の全体が右水平カットオフラインCL2以下に配置されるように、その面形状が構成されている(例えば、出射領域M3a、M3bに、当該出射領域M3a、M3bからの出射光RayBを水平方向に拡散させるように構成されたプリズム又はレンズカット等の光学素子が形成されている)。 Actually, the exit areas M3a and M3b are not flat, but the emitted light RayB from the exit areas M3a and M3b is diffused in the horizontal direction, the upper edge is along the right horizontal cut-off line CL2, and the diffusion pattern S- The surface shapes are configured so that the entirety of M3a and S-M3b (see FIG. 6; corresponding to the second light distribution pattern of the present invention) is arranged below the right horizontal cut-off line CL2 (for example, the emission region) Optical elements such as prisms or lens cuts are formed in M3a and M3b so as to diffuse the outgoing light RayB from the outgoing areas M3a and M3b in the horizontal direction.
 このように、上端縁が右水平カットオフラインCL2に沿った状態でかつ拡散パターンS-M3a、S-M3bの全体が右水平カットオフラインCL2以下に配置されることで、右水平カットオフラインCL2を形成することができる。 Thus, the right horizontal cut-off line CL2 is formed by arranging the diffusion patterns S-M3a and S-M3b below the right horizontal cut-off line CL2 in a state where the upper edge is along the right horizontal cut-off line CL2. can do.
 図6中、拡散パターンS-M3aは、その水平方向寸法が約50度となっている。これは、拡散パターンS-M3aの水平方向寸法が約50度となるように、出射領域M3aの面形状が調整されていることによるものである。このように、出射領域M3aの面形状を調整することで、拡散パターンS-M3aの水平方向寸法を、所望のものとすることができる。拡散パターンS-M3bについても同様である。 In FIG. 6, the diffusion pattern S-M3a has a horizontal dimension of about 50 degrees. This is because the surface shape of the emission region M3a is adjusted so that the horizontal dimension of the diffusion pattern S-M3a is about 50 degrees. Thus, by adjusting the surface shape of the emission region M3a, the horizontal dimension of the diffusion pattern S-M3a can be set to a desired one. The same applies to the diffusion pattern S-M3b.
 図6中、拡散パターンS-M3aは、その全体が右水平カットオフラインCL2以下に配置されている。これは、拡散パターンS-M3aの全体が右水平カットオフラインCL2以下に配置されるように、出射領域M3aの傾きが調整されていることによるものである。このように、出射領域M3aの傾きを調整することで、拡散パターンS-M3aを仮想鉛直スクリーン上の所望の箇所に配置することができる。拡散パターンS-M3bについても同様である。 In FIG. 6, the entire diffusion pattern S-M3a is arranged below the right horizontal cut-off line CL2. This is because the inclination of the emission region M3a is adjusted so that the entire diffusion pattern S-M3a is arranged below the right horizontal cutoff line CL2. Thus, by adjusting the inclination of the emission region M3a, the diffusion pattern S-M3a can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion pattern S-M3b.
 図6中、拡散パターンS-M3a、S-M3bは、その左端部が自車線側にまで延びている。これにより、路面正面方向の光度を補い、配光の均一性を確保することができる。 In FIG. 6, the diffusion patterns S-M3a and S-M3b have their left ends extending to the own lane side. Thereby, the light intensity in the road surface front direction can be compensated, and the uniformity of the light distribution can be ensured.
 次に、外周レンズ部30の構成について説明する。 Next, the configuration of the outer peripheral lens unit 30 will be described.
 外周レンズ部30は、図4に示すように、外周レンズ部30の後端部に中間レンズ部28を取り囲むように形成された外周入射面30aと、外周レンズ部30の後端部に外周入射面30aを取り囲むように形成された外周反射面30bと、外周レンズ部30の前端部に中間出射面28cを取り囲むように形成された外周出射面30cと、を含むレンズ部である。 As shown in FIG. 4, the outer peripheral lens portion 30 has an outer peripheral incident surface 30 a formed so as to surround the intermediate lens portion 28 at the rear end portion of the outer peripheral lens portion 30 and an outer peripheral incident portion at the rear end portion of the outer peripheral lens portion 30. The lens unit includes an outer peripheral reflecting surface 30b formed so as to surround the surface 30a, and an outer peripheral emitting surface 30c formed at the front end portion of the outer lens unit 30 so as to surround the intermediate emitting surface 28c.
 外周レンズ部30は、外周入射面30aから外周レンズ部30内部に入射し、外周反射面30bで内面反射(全反射)された後、外周出射面30cから出射する光源12からの光RayCにより、拡散パターンS-WWより狭いパターンS-E1、S-E2、S-E3、S-E4、S-S1、S-S2、S-S3、S-S4(図6参照。本発明の第2配光パターンに相当)を形成するレンズ部として構成されている。具体的には、次のように構成されている。 The outer peripheral lens unit 30 enters the outer lens unit 30 from the outer peripheral incident surface 30a, is internally reflected (totally reflected) by the outer peripheral reflective surface 30b, and then is received by the light RayC from the light source 12 emitted from the outer peripheral output surface 30c. Patterns S-E1, S-E2, S-E3, S-E4, S-S1, S-S2, S-S3, S-S4 narrower than the diffusion pattern S-WW (see FIG. 6; second arrangement of the present invention) It is configured as a lens portion that forms a light pattern). Specifically, the configuration is as follows.
 外周入射面30aは、光源12の光軸AX12に対して中角方向(例えば、光取り込み角θ:57~85度の範囲)に放出される相対強度が弱い光RayCが外周レンズ部30内部に入射する面で、外周レンズ部30の後端部に、中間レンズ部28を取り囲むように形成されている。 Outer peripheral incident surface 30a is medium-angle direction with respect to the optical axis AX 12 of the light source 12 (e.g., an optical acceptance angle θ 3: 57 ~ 85 ° range) Relative intensity emitted in the weak light RayC outer peripheral lens portion 30 A surface incident on the inside is formed at the rear end portion of the outer peripheral lens portion 30 so as to surround the intermediate lens portion 28.
 外周反射面30bは、外周入射面30aから外周レンズ部30内部に入射する光源12からの光RayCを外周出射面30cに向けて内面反射(全反射)する面で、外周レンズ部30の後端部に、外周入射面30aを取り囲むように形成されている。 The outer peripheral reflecting surface 30b is a surface that internally reflects (totally reflects) the light RayC from the light source 12 that enters the outer peripheral lens portion 30 from the outer peripheral incident surface 30a toward the outer peripheral emitting surface 30c. Is formed so as to surround the outer peripheral incident surface 30a.
 外周反射面30bは、外周入射面30aから外周レンズ部30内部に入射する光源12からの光RayCを基準軸AXに対して平行な光に変換するように、その面形状が構成されている。 The outer peripheral reflection surface 30b is configured to have a surface shape so as to convert the light RayC from the light source 12 that enters the outer peripheral lens unit 30 from the outer peripheral incident surface 30a into light parallel to the reference axis AX.
 外周出射面30cは、外周反射面30bからの反射光RayCが出射する面で、外周レンズ部30の前端部に、中間出射面28cを取り囲むように形成されている。 The outer peripheral emission surface 30 c is a surface from which the reflected light RayC from the outer peripheral reflection surface 30 b is emitted, and is formed at the front end portion of the outer peripheral lens portion 30 so as to surround the intermediate emission surface 28 c.
 図5に示すように、外周出射面30cは、中央レンズ部26(中央出射面26b)から放射状に延びる複数の境界線により複数の扇形の出射領域E1、E2、E3、E4、S1、S2、S3、S4に区画されている。 As shown in FIG. 5, the outer peripheral exit surface 30c has a plurality of fan-shaped exit areas E1, E2, E3, E4, S1, S2, and a plurality of boundary lines extending radially from the central lens portion 26 (center exit surface 26b). It is divided into S3 and S4.
 複数の扇形の出射領域E1、E2、E3、E4、S1、S2、S3、S4のうち出射光RayCによる光源像の一辺が斜めカットオフラインCL3の角度(又はそれ以下の角度)となる出射領域S1、S2、S3、S4は、水平線H及び鉛直線V近傍に配置されている。出射領域S1、S2、S3、S4については既に説明したとおりであるため、ここでの説明は省略する。 Outgoing area S1 in which one side of the light source image by outgoing light RayC is an angle of oblique cut-off line CL3 (or an angle smaller than that) among a plurality of fan-shaped outgoing areas E1, E2, E3, E4, S1, S2, S3, S4. , S2, S3, S4 are arranged in the vicinity of the horizontal line H and the vertical line V. Since the emission areas S1, S2, S3, and S4 have already been described, the description thereof is omitted here.
 次に、出射領域E1、E2と光源像との関係について説明する。 Next, the relationship between the emission areas E1 and E2 and the light source image will be described.
 仮に、出射領域E1、E2が基準軸AXに直交する平面である場合、当該出射領域E1、E2からの出射光RayCによる光源像L-E1、L-E2は、図5に示すとおりのものとなる。 If the emission areas E1 and E2 are planes orthogonal to the reference axis AX, the light source images L-E1 and L-E2 by the emitted light RayC from the emission areas E1 and E2 are as shown in FIG. Become.
 実際には、出射領域E1、E2は平面ではなく当該出射領域E1、E2からの出射光RayCが水平方向に拡散して、上端縁が左水平カットオフラインCL1に沿った状態でかつ拡散パターンS-E1、S-E2(図6参照。本発明の第2配光パターンに相当)の全体が左水平カットオフラインCL1以下に配置されるように、その面形状が構成されている(例えば、出射領域E1、E2に、当該出射領域E1、E2からの出射光RayCを水平方向に拡散させるように構成されたプリズム又はレンズカット等の光学素子が形成されている)。 Actually, the emission areas E1 and E2 are not flat, but the emitted light RayC from the emission areas E1 and E2 is diffused in the horizontal direction, the upper edge is along the left horizontal cut-off line CL1, and the diffusion pattern S- The surface shape is configured so that the entirety of E1 and S-E2 (see FIG. 6, corresponding to the second light distribution pattern of the present invention) is arranged below the left horizontal cutoff line CL1 (for example, the emission region) In E1 and E2, optical elements such as prisms or lens cuts formed so as to diffuse the outgoing light RayC from the outgoing areas E1 and E2 in the horizontal direction are formed).
 このように、上端縁が左水平カットオフラインCL1に沿った状態でかつ拡散パターンS-E1、S-E2の全体が左水平カットオフラインCL1以下に配置されることで、左水平カットオフラインCL1を形成することができる。 In this way, the left horizontal cut-off line CL1 is formed by arranging the diffusion patterns S-E1 and S-E2 below the left horizontal cut-off line CL1 in a state where the upper edge is along the left horizontal cut-off line CL1. can do.
 図6中、拡散パターンS-E1は、その水平方向寸法が約25度となっている。これは、拡散パターンS-E1の水平方向寸法が約25度となるように、出射領域E1の面形状が調整されていることによるものである。このように、出射領域E1の面形状を調整することで、拡散パターンS-E1の水平方向寸法を、所望のものとすることができる。拡散パターンS-2についても同様である。 In FIG. 6, the diffusion pattern S-E1 has a horizontal dimension of about 25 degrees. This is because the surface shape of the emission region E1 is adjusted so that the horizontal dimension of the diffusion pattern S-E1 is about 25 degrees. In this way, by adjusting the surface shape of the emission region E1, the horizontal dimension of the diffusion pattern S-E1 can be made desired. The same applies to the diffusion pattern S-2.
 図6中、拡散パターンS-E1は、その全体が左水平カットオフラインCL1以下に配置されている。これは、拡散パターンS-E1の全体が左水平カットオフラインCL1以下に配置されるように、出射領域E1の傾きが調整されていることによるものである。このように、出射領域E1の傾きを調整することで、拡散パターンS-E1を仮想鉛直スクリーン上の所望の箇所に配置することができる。拡散パターンS-E2についても同様である。 In FIG. 6, the entire diffusion pattern S-E1 is arranged below the left horizontal cut-off line CL1. This is because the inclination of the emission region E1 is adjusted so that the entire diffusion pattern S-E1 is arranged below the left horizontal cutoff line CL1. Thus, by adjusting the inclination of the emission area E1, the diffusion pattern S-E1 can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion pattern S-E2.
 次に、出射領域E3、E4と光源像との関係について説明する。 Next, the relationship between the emission areas E3 and E4 and the light source image will be described.
 仮に、出射領域E3、E4が基準軸AXに直交する平面である場合、当該出射領域E3、E4からの出射光RayCによる光源像L-E3、L-E4は、図5に示すとおりのものとなる。 If the emission areas E3 and E4 are planes orthogonal to the reference axis AX, the light source images LE-E3 and L-E4 by the emitted light RayC from the emission areas E3 and E4 are as shown in FIG. Become.
 実際には、出射領域E3、E4は平面ではなく当該出射領域E3、E4からの出射光RayCが水平方向に拡散して、上端縁が右水平カットオフラインCL2に沿った状態でかつ拡散パターンS-E3、S-E4(図6参照。本発明の第2配光パターンに相当)の全体が右水平カットオフラインCL2以下に配置されるように、その面形状が構成されている(例えば、出射領域E3、E4に、当該出射領域E3、E4からの出射光RayCを水平方向に拡散させるように構成されたプリズム又はレンズカット等の光学素子が形成されている)。 Actually, the emission areas E3 and E4 are not flat, but the emitted light RayC from the emission areas E3 and E4 is diffused in the horizontal direction, the upper edge is along the right horizontal cutoff line CL2, and the diffusion pattern S- The surface shape is configured so that the entirety of E3 and S-E4 (refer to FIG. 6, corresponding to the second light distribution pattern of the present invention) is arranged below the right horizontal cut-off line CL2 (for example, the emission region) E3 and E4 are formed with optical elements such as prisms or lens cuts configured to diffuse the outgoing light RayC from the outgoing areas E3 and E4 in the horizontal direction).
 このように、上端縁が右水平カットオフラインCL2に沿った状態でかつ拡散パターンS-E3、S-E4の全体が右水平カットオフラインCL2以下に配置されることで、右水平カットオフラインCL2を形成することができる。 Thus, the right horizontal cut-off line CL2 is formed by arranging the diffusion patterns S-E3 and S-E4 below the right horizontal cut-off line CL2 in a state where the upper edge is along the right horizontal cut-off line CL2. can do.
 図6中、拡散パターンS-E3は、その水平方向寸法が約35度となっている。これは、拡散パターンS-E3の水平方向寸法が約35度となるように、出射領域E3の面形状が調整されていることによるものである。このように、出射領域E3の面形状を調整することで、拡散パターンS-E3の水平方向寸法を、所望のものとすることができる。拡散パターンS-E4についても同様である。 In FIG. 6, the diffusion pattern S-E3 has a horizontal dimension of about 35 degrees. This is because the surface shape of the emission region E3 is adjusted so that the horizontal dimension of the diffusion pattern S-E3 is about 35 degrees. Thus, by adjusting the surface shape of the emission region E3, the horizontal dimension of the diffusion pattern S-E3 can be set to a desired one. The same applies to the diffusion pattern S-E4.
 図6中、拡散パターンS-E3は、その全体が右水平カットオフラインCL2以下に配置されている。これは、拡散パターンS-E3の全体が右水平カットオフラインCL2以下に配置されるように、出射領域E3の傾きが調整されていることによるものである。このように、出射領域E3の傾きを調整することで、拡散パターンS-E3を仮想鉛直スクリーン上の所望の箇所に配置することができる。拡散パターンS-E4についても同様である。 In FIG. 6, the entire diffusion pattern S-E3 is arranged below the right horizontal cut-off line CL2. This is because the inclination of the emission region E3 is adjusted so that the entire diffusion pattern S-E3 is arranged below the right horizontal cutoff line CL2. In this way, by adjusting the inclination of the emission area E3, the diffusion pattern S-E3 can be arranged at a desired location on the virtual vertical screen. The same applies to the diffusion pattern S-E4.
 図6中、拡散パターンS-E3、S-E4は、その左端部が自車線側にまで延びている。これにより、路面正面方向の光度を補い、配光の均一性を確保することができる。 In FIG. 6, the diffusion patterns S-E3 and S-E4 have their left ends extending to the own lane side. Thereby, the light intensity in the road surface front direction can be compensated, and the uniformity of the light distribution can be ensured.
 すれ違いビーム用配光パターンPLo(図3参照)は、図6に示す集光パターンS-S1、S-S2、S-S3、S-S4、拡散パターンS-M1a、S-M1b、S-M2、S-M3a、S-M3b、S-M4、S-E1、S-E2、S-E3、S-E4、S-WWが重畳された合成配光パターンとして形成される。 The light distribution pattern P Lo for passing beam (see FIG. 3) includes the condensing patterns S-S1, S-S2, S-S3, S-S4, diffusion patterns S-M1a, S-M1b, and S- shown in FIG. It is formed as a combined light distribution pattern in which M2, S-M3a, S-M3b, S-M4, S-E1, S-E2, S-E3, S-E4, and S-WW are superimposed.
 すれ違いビーム用配光パターンPLoは、その上端縁に、左水平カットオフラインCL1、右水平カットオフラインCL2、斜めカットオフラインCL3を含むものとなる。 The light distribution pattern P Lo for passing beam includes a left horizontal cutoff line CL1, a right horizontal cutoff line CL2, and an oblique cutoff line CL3 at the upper end edge thereof.
 左水平カットオフラインCL1は、上端縁が左水平カットオフラインCL1に沿った状態でかつ拡散パターンS-M1a、S-M1b、S-M2、S-M4、S-E1、S-E2の全体が左水平カットオフラインCL1以下に配置されることで形成される。 The left horizontal cut-off line CL1 has a top edge along the left horizontal cut-off line CL1, and the entire diffusion patterns S-M1a, S-M1b, S-M2, S-M4, S-E1, and S-E2 are left. It is formed by being arranged below the horizontal cut-off line CL1.
 右水平カットオフラインCL2は、上端縁が右水平カットオフラインCL2に沿った状態でかつ拡散パターンS-M3a、S-M3b、S-E3、S-E4の全体が右水平カットオフラインCL2以下に配置されることで形成される。 The right horizontal cut-off line CL2 has the upper edge along the right horizontal cut-off line CL2, and the entire diffusion patterns S-M3a, S-M3b, S-E3, and S-E4 are arranged below the right horizontal cut-off line CL2. Is formed.
 斜めカットオフラインCL3は、一辺が斜めカットオフラインCL3に沿った状態でかつ光源像L-S1、L-S2、L-S3、L-S4(集光パターンS-S1、S-S2、S-S3、S-S4)の全体が斜めカットオフラインCL3以下に配置されることで形成される。 The oblique cut-off line CL3 is in a state where one side is along the oblique cut-off line CL3 and the light source images L-S1, L-S2, L-S3, and L-S4 (condensing patterns S-S1, S-S2, and S-S3). , S-S4) is formed by being arranged below the oblique cut-off line CL3.
 図5に示すように、中央レンズ部26(中央出射面26b)からの出射光RayAによる光源像(L-WW)、中間レンズ部28(中間出射面28c)からの出射光RayBによる光源像(L-M1a、L-M1b、L-M2、M3a、M3b、L-M4)、外周レンズ部30(外周出射面30c)からの出射光RayCによる光源像(L-E1、L-E2、L-E3、L-E4)は、この順に、小さく明るい光源像となる。これは、光源12(発光面12a)と中央レンズ部26(偏向部)との間の距離L1(光路長。図2参照)、光源12(発光面12a)と中間レンズ部28(偏向部)との間の距離L2(光路長。図2参照)、光源12(発光面12a)と外周レンズ部30(偏向部)との間の距離L3(光路長。図2参照)が、この順に長くなることによるものである。距離L1、L2、L3を例示すると、L1は2.5mm(基準軸AXに対して0度方向)、L2は8.25mm(基準軸AXに対して45度方向)、L3は11.25mm(基準軸AXに対して71度方向)である。 As shown in FIG. 5, a light source image (L-WW) by the outgoing light RayA from the central lens portion 26 (central outgoing surface 26b) and a light source image by the outgoing light RayB from the intermediate lens portion 28 (intermediate outgoing surface 28c) ( L-M1a, L-M1b, L-M2, M3a, M3b, and L-M4), and light source images (LE1, L-E2, and L-) from the outgoing light RayC from the outer peripheral lens portion 30 (outer peripheral outgoing surface 30c). E3, L-E4) are small and bright light source images in this order. This is because the distance L1 (optical path length; see FIG. 2) between the light source 12 (light emitting surface 12a) and the central lens portion 26 (deflecting portion), the light source 12 (light emitting surface 12a) and the intermediate lens portion 28 (deflecting portion). L2 (optical path length; see FIG. 2), and distance L3 (optical path length; see FIG. 2) between the light source 12 (light emitting surface 12a) and the outer lens part 30 (deflection part) are long in this order. It is by becoming. The distances L1, L2, and L3 are exemplified. L1 is 2.5 mm (0 degree direction with respect to the reference axis AX), L2 is 8.25 mm (45 degree direction with respect to the reference axis AX), and L3 is 11.25 mm (reference axis AX). 71 degrees direction).
 この小さく明るい光源像に基づく、集光パターンS-S1、S-S2、S-S3、S-S4、及び、拡散パターンS-M1a、S-M1b、S-M2、S-M3a、S-M3b、S-M4、S-E1、S-E2、S-E3、S-E4が、カットオフラインCL1、CL2、CL2に沿って配置されることに加えて、拡散パターンS-WWの水平線Hに沿った領域がそれ以下の領域と比べて明るいものとなる結果、カットオフラインCL1、CL2、CL2付近が相対的に明るい遠方視認性に優れたすれ違いビーム用配光パターンPLoを形成することができる。 Based on this small and bright light source image, the condensing pattern S-S1, S-S2, S-S3, S-S4, and diffusion patterns S-M1a, S-M1b, S-M2, S-M3a, S-M3b , S-M4, S-E1, S-E2, S-E3, and S-E4 are arranged along the horizontal line H of the diffusion pattern S-WW in addition to being arranged along the cut-off lines CL1, CL2, and CL2. As a result, the light distribution pattern P Lo for the passing beam, which is relatively bright in the vicinity of the cut-off lines CL1, CL2, and CL2, and has excellent distance visibility, can be formed.
 また、カットオフラインCL1、CL2、CL2近傍から下方に向かうに従ってグラデーション状に暗くなる配光フィーリングに優れたすれ違いビーム用配光パターンPLoを形成することができる。 In addition, it is possible to form a light distribution pattern P Lo for a passing beam excellent in light distribution feeling that becomes darker in gradation as it goes downward from the vicinity of the cutoff lines CL1, CL2, and CL2.
 以上説明したように、本実施形態によれば、光源12と光源12の前方に配置されたレンズ体14とを備えた車両用灯具10において、従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、さらなる小型化(特に、基準軸AX方向のさらなる薄型化)を実現することができる。 As described above, according to this embodiment, in the vehicular lamp 10 including the light source 12 and the lens body 14 disposed in front of the light source 12, a conventional vehicular lamp (for example, Japanese Patent Application Laid-Open No. 2009-283299). Compared to the publication No.), further miniaturization (particularly, further thinning in the reference axis AX direction) can be realized.
 これは、中央レンズ部26が、当該中央レンズ部26(中央出射面26b)からの出射光RayAにより、第2配光パターン(各パターンS-M1a、S-M1b、S-M2、S-M3a、S-M3b、S-M4、S-S1、S-S2、S-S3、S-S4(図6参照))より広い第1配光パターン(拡散パターンS-WW)を形成するレンズ部として構成されているため、光源12(発光面12a)と中央レンズ部26との間の距離を従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、短くすることができることによるものである。なお、光源12(発光面12a)と中央レンズ部26との間の距離を従来の車両用灯具(例えば、特開2009-283299号公報参照)と比べ、短くすると、中央レンズ部26からの出射光RayAによる光源像が大きくなるが、この光源像は第2配光パターン(各パターンS-M1a、S-M1b、S-M2、S-M3a、S-M3b、S-M4、S-S1、S-S2、S-S3、S-S4(図6参照))より広い(拡散された)第1配光パターン(拡散パターンS-WW)を形成するのに適したものとなるため、不都合は生じない。 This is because the central lens unit 26 uses the second light distribution pattern (each of the patterns S-M1a, S-M1b, S-M2, and S-M3a) by the emitted light RayA from the central lens unit 26 (central emission surface 26b). , S-M3b, S-M4, S-S1, S-S2, S-S3, and S-S4 (see FIG. 6)) as a lens portion that forms a wider first light distribution pattern (diffusion pattern S-WW) Due to the construction, the distance between the light source 12 (light emitting surface 12a) and the central lens portion 26 can be made shorter than that of a conventional vehicle lamp (see, for example, JP 2009-283299 A). Is. Note that if the distance between the light source 12 (light emitting surface 12a) and the central lens portion 26 is shorter than that of a conventional vehicle lamp (see, for example, Japanese Patent Application Laid-Open No. 2009-283299), the output from the central lens portion 26 is reduced. The light source image by the light ray RayA becomes large, and this light source image has a second light distribution pattern (each pattern S-M1a, S-M1b, S-M2, S-M3a, S-M3b, S-M4, S-S1, S-S2, S-S3, and S-S4 (see FIG. 6)) are more suitable for forming a wider (diffused) first light distribution pattern (diffusion pattern S-WW). Does not occur.
 また、本実施形態によれば、ホットゾーン(水平線Hと鉛直線Vとの交点近傍の領域)及びカットオフラインCL1、CL2、CL3を、全反射を用いた光学系(例えば、中間反射面28b、外周反射面30b)で形成する構成であるため、色収差に起因してカットオフラインCL1、CL2、CL3付近に色むらが形成されるのを抑制することができる。すなわち、各入射面28a、30a、各出射面28c、30cで屈折はされるが、両面とも平坦な面のため色分離が少ない。 Further, according to the present embodiment, the hot zone (the region near the intersection of the horizontal line H and the vertical line V) and the cutoff lines CL1, CL2, CL3 are converted into an optical system (for example, the intermediate reflection surface 28b, Since the configuration is formed by the outer peripheral reflection surface 30b), it is possible to suppress the formation of color unevenness in the vicinity of the cutoff lines CL1, CL2, and CL3 due to chromatic aberration. In other words, the light is refracted at each of the incident surfaces 28a and 30a and the output surfaces 28c and 30c, but there is little color separation because both surfaces are flat.
 次に、変形例について説明する。 Next, a modified example will be described.
 上記実施形態では、各レンズ部26、28、30が正面視で円形に形成されている(図5参照)例について説明したが、これに限られない。例えば、各レンズ部26、28、30は正面視で楕円形又はそれ以外の形状(図7の(a)部参照)に形成されていてもよい。 In the above embodiment, an example in which the lens portions 26, 28, and 30 are formed in a circular shape when viewed from the front (see FIG. 5) has been described, but the present invention is not limited thereto. For example, each of the lens portions 26, 28, and 30 may be formed in an elliptical shape or other shapes (see the portion (a) in FIG. 7) when viewed from the front.
 また、上記実施形態では、本発明の周囲レンズ部として中間レンズ部28及び外周レンズ部30の二つのレンズ部を用いた例について説明したが、これに限られない。すなわち、本発明の周囲レンズ部として一つのレンズ部(例えば、中間レンズ部28のみ)を用いてもよいし、三つ以上のレンズ部を用いてもよい。 In the above embodiment, an example in which the two lens portions of the intermediate lens portion 28 and the outer peripheral lens portion 30 are used as the peripheral lens portion of the present invention has been described. However, the present invention is not limited to this. That is, one lens unit (for example, only the intermediate lens unit 28) may be used as the peripheral lens unit of the present invention, or three or more lens units may be used.
 次に、上記構成のレンズ体14の変形例であるレンズ体14Aについて説明する。 Next, a lens body 14A, which is a modified example of the lens body 14 having the above configuration, will be described.
 図7の(a)部はレンズ体14の変形例であるレンズ体14Aの正面図、(b)部は横断面図、(c)部は縦断面図、(d)部は背面図である。 7A is a front view of a lens body 14A, which is a modification of the lens body 14, FIG. 7B is a transverse sectional view, FIG. 7C is a longitudinal sectional view, and FIG. 7D is a rear view. .
 図7の(a)部~(d)部に示すように、レンズ体14に代えて、X字状にクロスする平面で四分割された中間レンズ部28のうち上下の部分に相当するレンズ部28Aと同じくX字状にクロスする平面で四分割された外周レンズ部30のうち左右の部分に相当するレンズ部30Aとを含むレンズ体14Aを用いてもよい。 As shown in (a) to (d) of FIG. 7, instead of the lens body 14, a lens portion corresponding to the upper and lower portions of the intermediate lens portion 28 divided into four by a plane crossing in an X shape. Similarly to 28A, a lens body 14A including lens portions 30A corresponding to the left and right portions of the outer peripheral lens portion 30 divided into four by a plane crossing in an X shape may be used.
 次に、上記構成の車両用灯具10の変形例として、走行ビーム用配光パターンを形成するように構成された車両用灯具10Aについて説明する。 Next, as a modification of the vehicular lamp 10 having the above-described configuration, a vehicular lamp 10A configured to form a traveling beam light distribution pattern will be described.
 図8は、車両用灯具10Aにより車両前面に正対した仮想鉛直スクリーン(車両前面から約25m前方に配置されている)上に形成される走行ビーム用配光パターンPHiの例である。 FIG. 8 is an example of a traveling beam light distribution pattern P Hi formed on a virtual vertical screen (disposed approximately 25 m forward from the front of the vehicle) facing the front of the vehicle by the vehicular lamp 10A.
 図8に示すように、走行ビーム用配光パターンPHiは、拡散パターンP1(本発明の第1配光パターンに相当)、集光パターンP2(本発明の第2配光パターンに相当)が重畳された合成配光パターンとして形成される。 As shown in FIG. 8, the traveling beam light distribution pattern P Hi includes a diffusion pattern P1 (corresponding to the first light distribution pattern of the present invention) and a light collection pattern P2 (corresponding to the second light distribution pattern of the present invention). It is formed as a superimposed synthetic light distribution pattern.
 本変形例の車両用灯具10Aと上記実施形態の車両用灯具10とを対比すると、次の点が相違する。 When the vehicular lamp 10A of the present modification is compared with the vehicular lamp 10 of the above embodiment, the following points are different.
 すなわち、本変形例の車両用灯具10Aにおいては、中央出射面26bは、当該中央出射面26bからの出射光RayAが拡散パターンP1を形成するように、その面形状が構成されており、周囲出射面(中間出射面28c、外周出射面30c)は、当該周囲出射面(中間出射面28c、外周出射面30c)からの出射光RayB、RayCが集光パターンP2を形成するように、その面形状が構成されている。それ以外、上記実施形態の車両用灯具10と同様の構成である。 That is, in the vehicular lamp 10A of the present modification, the center emission surface 26b is configured to have a surface shape so that the emitted light RayA from the center emission surface 26b forms the diffusion pattern P1, and the ambient emission The surfaces (intermediate exit surface 28c, outer periphery exit surface 30c) have such surface shapes that the emitted light RayB and RayC from the surrounding exit surfaces (intermediate exit surface 28c, outer periphery exit surface 30c) form a condensing pattern P2. Is configured. Other than that, it is the structure similar to the vehicle lamp 10 of the said embodiment.
 本変形例の車両用灯具10Aによっても、上記実施形態の車両用灯具10と同様の効果を奏することができる。特に、本変形例の車両用灯具10Aによれば、拡散パターンP1と集光パターンP2とが図8に示すように重畳される結果、集光パターンP2が相対的に明るい遠方視認性に優れた走行ビーム用配光パターンPHiを形成することができる。 The effect similar to that of the vehicle lamp 10 of the above-described embodiment can also be obtained by the vehicle lamp 10A of the present modification. In particular, according to the vehicle lamp 10A of the present modification, the diffusion pattern P1 and the light collection pattern P2 are superimposed as shown in FIG. 8, and as a result, the light collection pattern P2 has a relatively bright far visibility. A traveling beam light distribution pattern P Hi can be formed.
 以上、本発明を、すれ違いビーム用配光パターンPLoを形成するように構成された車両用灯具10(車両用前照灯)及び走行ビーム用配光パターンPHiを形成するように構成された車両用灯具10A(車両用前照灯)に適用した例を示したが、これに限らず、車両用前照灯以外の車両用灯具(例えば、フォグランプ)にも適用することができることは勿論である。 As described above, the present invention is configured to form the vehicular lamp 10 (vehicle headlamp) and the traveling beam light distribution pattern P Hi that are configured to form the light distribution pattern P Lo for the passing beam. Although the example applied to the vehicular lamp 10A (vehicle headlamp) has been shown, the present invention is not limited to this, and can of course be applied to a vehicular lamp (for example, a fog lamp). is there.
 以上、本発明を、左側通行(左側が自車線、右側が対向車線)用のすれ違いビーム用配光パターンを形成する車両用灯具に適用した例について説明したが、もちろん、これに限らず、本発明は右側通行(右側が自車線、左側が対向車線)用のすれ違いビーム用配光パターンを形成する車両用灯具に適用することもできる。 The present invention has been described with reference to an example in which the present invention is applied to a vehicular lamp that forms a light distribution pattern for a passing beam for left-hand traffic (the left-hand side is the own lane and the right-hand side is the opposite lane). The invention can also be applied to a vehicular lamp that forms a light distribution pattern for a passing beam for right-hand traffic (the right lane is the own lane and the left lane is the opposite lane).
 右側通行(右側が自車線、左側が対向車線)用のすれ違いビーム用配光パターンを形成する車両用灯具は、上記左側通行(左側が自車線、右側が対向車線)用のすれ違いビーム用配光パターンを形成する車両用灯具の左右を反転させることで構成することができる。 The vehicular lamp that forms the light distribution pattern for the passing beam for the right-hand traffic (the right-hand side is the own lane and the left-hand side is the opposite lane) It can be configured by reversing the left and right of the vehicular lamp that forms the pattern.
 上記実施形態及び各変形例で示した各数値は全て例示であり、これと異なる適宜の数値を用いることができる。 The numerical values shown in the above embodiment and the respective modifications are all examples, and appropriate different numerical values can be used.
 上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することなく他の様々な形で実施することができる。 The above embodiments are merely examples in all respects. The present invention is not construed as being limited to these descriptions. The present invention can be implemented in various other forms without departing from the spirit or main features thereof.
 10、10A…車両用灯具、12…光源、12a…発光面、14、14A…レンズ体、16…レーザー光源、18…集光レンズ、20…波長変換部材、22…ホルダ、22a…レンズホルダ、22b…リング、22c…接続フランジ、24…ヒートシンク、26…中央レンズ部。26a…中央入射面、26b…中央出射面、28…中間レンズ部、28A…レンズ部、28a…中間入射面、28b…中間反射面、28c…中間出射面、30…外周レンズ部、30A…レンズ部、30a…外周入射面、30b…外周反射面、30c…外周出射面、32…フランジ部、34…レンズホルダ DESCRIPTION OF SYMBOLS 10, 10A ... Vehicle lamp, 12 ... Light source, 12a ... Light emission surface, 14, 14A ... Lens body, 16 ... Laser light source, 18 ... Condensing lens, 20 ... Wavelength conversion member, 22 ... Holder, 22a ... Lens holder, 22b ... Ring, 22c ... Connection flange, 24 ... Heat sink, 26 ... Central lens part. 26a ... Central entrance surface, 26b ... Central exit surface, 28 ... Intermediate lens portion, 28A ... Lens portion, 28a ... Intermediate entrance surface, 28b ... Intermediate reflection surface, 28c ... Intermediate exit surface, 30 ... Outer lens portion, 30A ... Lens Part, 30a ... outer peripheral incident surface, 30b ... outer peripheral reflective surface, 30c ... outer peripheral outgoing surface, 32 ... flange portion, 34 ... lens holder

Claims (5)

  1.  車両前後方向に延びる基準軸上に配置された光源と、前記光源の前方に配置されたレンズ体と、を備え、前記レンズ体を透過して前方に照射される前記光源からの光により、少なくとも第1配光パターンと前記第1配光パターンより狭い第2配光パターンとが重畳された所定配光パターンを形成するように構成された車両用灯具において、
     前記レンズ体は、前記基準軸上に配置された中央レンズ部と当該中央レンズ部を取り囲むように配置された周囲レンズ部とを含み、
     前記中央レンズ部は、前記光源が対向する前記中央レンズ部の後端部に形成された中央入射面と、前記中央レンズ部の前端部に形成された中央出射面と、を含み、前記中央入射面から前記中央レンズ部内部に入射し、前記中央出射面から出射する前記光源からの光により、前記第1配光パターンを形成するレンズ部として構成されており、
     前記周囲レンズ部は、前記周囲レンズ部の後端部に前記中央レンズ部を取り囲むように形成された周囲入射面と、前記周囲レンズ部の後端部に前記周囲入射面を取り囲むように形成された周囲反射面と、前記周囲レンズ部の前端部に前記中央出射面を取り囲むように形成された周囲出射面と、を含み、前記周囲入射面から前記周囲レンズ部内部に入射し、前記周囲反射面で内面反射された後、前記周囲出射面から出射する前記光源からの光により、前記第2配光パターンを形成するレンズ部として構成されている車両用灯具。
    A light source disposed on a reference axis extending in the vehicle front-rear direction, and a lens body disposed in front of the light source, and at least by light from the light source transmitted through the lens body and irradiated forward In a vehicle lamp configured to form a predetermined light distribution pattern in which a first light distribution pattern and a second light distribution pattern narrower than the first light distribution pattern are superimposed,
    The lens body includes a central lens portion disposed on the reference axis and a peripheral lens portion disposed so as to surround the central lens portion,
    The central lens portion includes a central incident surface formed at a rear end portion of the central lens portion facing the light source, and a central emission surface formed at a front end portion of the central lens portion, and the central incident surface. It is configured as a lens unit that forms the first light distribution pattern by light from the light source that enters the inside of the central lens unit from a surface and exits from the central exit surface,
    The peripheral lens portion is formed to surround the peripheral incident surface at a rear end portion of the peripheral lens portion so as to surround the central lens portion, and at a rear end portion of the peripheral lens portion. An ambient reflection surface, and a surrounding emission surface formed at the front end portion of the surrounding lens portion so as to surround the central emission surface, and is incident on the inside of the surrounding lens portion from the surrounding incidence surface, and the ambient reflection A vehicular lamp configured as a lens unit that forms the second light distribution pattern by light from the light source emitted from the peripheral emission surface after being internally reflected by a surface.
  2.  前記所定配光パターンは、その上端縁に、左水平カットオフライン、右水平カットオフライン及び前記左水平カットオフラインと前記右水平カットオフラインとの間の斜めカットオフラインを含むすれ違いビーム用配光パターンであり、
     前記中央出射面は、当該中央出射面からの出射光が前記第1配光パターンとして拡散パターンを形成するように、その面形状が構成されており、
     前記周囲出射面は、前記中央出射面から放射状に延びる複数の境界線により複数の扇形の出射領域に区画されており、
     前記複数の扇形の出射領域のうち出射光による光源像の一辺が前記斜めカットオフラインの角度となる出射領域は、前記一辺が前記斜めカットオフラインに沿った状態でかつ前記光源像の全体が前記斜めカットオフライン以下に配置されるように、その面形状が構成されている請求項1に記載の車両用灯具。
    The predetermined light distribution pattern is a light distribution pattern for a passing beam including a left horizontal cutoff line, a right horizontal cutoff line, and an oblique cutoff line between the left horizontal cutoff line and the right horizontal cutoff line at an upper end edge thereof. ,
    The central emission surface is configured to have a surface shape so that light emitted from the central emission surface forms a diffusion pattern as the first light distribution pattern,
    The surrounding emission surface is partitioned into a plurality of fan-shaped emission regions by a plurality of boundary lines extending radially from the central emission surface,
    Out of the plurality of fan-shaped exit areas, an exit area in which one side of the light source image by the emitted light is at an angle of the oblique cutoff line, the one side is along the oblique cutoff line, and the entire light source image is oblique. The vehicular lamp according to claim 1, wherein the surface shape is configured to be arranged below the cut-off line.
  3.  前記複数の扇形の出射領域のうち前記光源像の一辺が前記斜めカットオフラインの角度となる出射領域以外の出射領域は、当該出射領域からの出射光が前記第2配光パターンとして前記左水平カットオフラインに沿った状態の上端縁を含む拡散パターン又は前記右水平カットオフラインに沿った状態の上端縁を含む拡散パターンを形成するように、その面形状が構成されている請求項2に記載の車両用灯具。 Out of the plurality of fan-shaped exit areas, an exit area other than the exit area in which one side of the light source image is at an angle of the oblique cut-off line, the exit light from the exit area is the left horizontal cut as the second light distribution pattern. The vehicle according to claim 2, wherein the surface shape is configured to form a diffusion pattern including an upper end edge in a state along an off-line or a diffusion pattern including an upper end edge in a state along the right horizontal cut-off line. Lamps.
  4.  前記所定配光パターンは、走行ビーム用配光パターンであり、
     前記中央出射面は、当該中央出射面からの出射光が前記第1配光パターンとして拡散パターンを形成するように、その面形状が構成されており、
     前記周囲出射面は、当該周囲出射面からの出射光が前記第2配光パターンとして集光パターンを形成するように、その面形状が構成されている請求項1に記載の車両用灯具。
    The predetermined light distribution pattern is a traveling beam light distribution pattern,
    The central emission surface is configured to have a surface shape so that light emitted from the central emission surface forms a diffusion pattern as the first light distribution pattern,
    2. The vehicular lamp according to claim 1, wherein a surface shape of the ambient light exit surface is configured such that light emitted from the ambient light exit surface forms a condensing pattern as the second light distribution pattern.
  5.  車両前後方向に延びる基準軸上に配置された光源の前方に配置され、前記光源からの光を制御して少なくとも第1配光パターンと前記第1配光パターンより狭い第2配光パターンとが重畳された所定配光パターンを形成するように構成されたレンズ体において、
     前記レンズ体は、前記基準軸上に配置された中央レンズ部と当該中央レンズ部を取り囲むように配置された周囲レンズ部とを含み、
     前記中央レンズ部は、前記光源が対向する前記中央レンズ部の後端部に形成された中央入射面と、前記中央レンズ部の前端部に形成された中央出射面と、を含み、前記中央入射面から前記中央レンズ部内部に入射し、前記中央出射面から出射する前記光源からの光により、前記第1配光パターンを形成するレンズ部として構成されており、
     前記周囲レンズ部は、前記周囲レンズ部の後端部に前記中央レンズ部を取り囲むように形成された周囲入射面と、前記周囲レンズ部の後端部に前記周囲入射面を取り囲むように形成された周囲反射面と、前記周囲レンズ部の前端部に前記中央出射面を取り囲むように形成された周囲出射面と、を含み、前記周囲入射面から前記周囲レンズ部内部に入射し、前記周囲反射面で内面反射された後、前記周囲出射面から出射する前記光源からの光により、前記第2配光パターンを形成するレンズ部として構成されているレンズ体。
    It is arranged in front of a light source arranged on a reference axis extending in the longitudinal direction of the vehicle, and controls at least light from the light source to have at least a first light distribution pattern and a second light distribution pattern narrower than the first light distribution pattern. In a lens body configured to form a superimposed predetermined light distribution pattern,
    The lens body includes a central lens portion disposed on the reference axis and a peripheral lens portion disposed so as to surround the central lens portion,
    The central lens portion includes a central incident surface formed at a rear end portion of the central lens portion facing the light source, and a central emission surface formed at a front end portion of the central lens portion, and the central incident surface. It is configured as a lens unit that forms the first light distribution pattern by light from the light source that enters the inside of the central lens unit from a surface and exits from the central exit surface,
    The peripheral lens portion is formed to surround the peripheral incident surface at a rear end portion of the peripheral lens portion so as to surround the central lens portion, and at a rear end portion of the peripheral lens portion. An ambient reflection surface, and a surrounding emission surface formed at the front end portion of the surrounding lens portion so as to surround the central emission surface, and is incident on the inside of the surrounding lens portion from the surrounding incidence surface, and the ambient reflection A lens body configured as a lens portion that forms the second light distribution pattern by light from the light source emitted from the peripheral emission surface after being internally reflected by a surface.
PCT/JP2014/079582 2013-11-29 2014-11-07 Vehicle lamp and lens body WO2015079890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-247926 2013-11-29
JP2013247926A JP6292376B2 (en) 2013-11-29 2013-11-29 Vehicle lamp and lens body

Publications (1)

Publication Number Publication Date
WO2015079890A1 true WO2015079890A1 (en) 2015-06-04

Family

ID=53198838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079582 WO2015079890A1 (en) 2013-11-29 2014-11-07 Vehicle lamp and lens body

Country Status (2)

Country Link
JP (1) JP6292376B2 (en)
WO (1) WO2015079890A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274593A1 (en) * 2021-06-29 2023-01-05 Psa Automobiles Sa Headlamp module of a vehicle headlamp

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106825A (en) * 2016-12-22 2018-07-05 株式会社小糸製作所 Vehicular lighting fixture
JP7023779B2 (en) * 2018-04-17 2022-02-22 スタンレー電気株式会社 Vehicle lighting
JP7091873B2 (en) * 2018-06-22 2022-06-28 市光工業株式会社 Vehicle lighting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181717A (en) * 2007-01-23 2008-08-07 Koito Mfg Co Ltd Lighting fixture for vehicle
WO2010058663A1 (en) * 2008-11-20 2010-05-27 株式会社小糸製作所 Lighting device for vehicle
JP2010287391A (en) * 2009-06-10 2010-12-24 Koito Mfg Co Ltd Lighting fixture for vehicle equipped with tapered-off inner lens
JP2012018846A (en) * 2010-07-08 2012-01-26 Koito Mfg Co Ltd Lighting lamp fitting for vehicle
JP2013051168A (en) * 2011-08-31 2013-03-14 Ichikoh Ind Ltd Headlamp for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181717A (en) * 2007-01-23 2008-08-07 Koito Mfg Co Ltd Lighting fixture for vehicle
WO2010058663A1 (en) * 2008-11-20 2010-05-27 株式会社小糸製作所 Lighting device for vehicle
JP2010287391A (en) * 2009-06-10 2010-12-24 Koito Mfg Co Ltd Lighting fixture for vehicle equipped with tapered-off inner lens
JP2012018846A (en) * 2010-07-08 2012-01-26 Koito Mfg Co Ltd Lighting lamp fitting for vehicle
JP2013051168A (en) * 2011-08-31 2013-03-14 Ichikoh Ind Ltd Headlamp for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274593A1 (en) * 2021-06-29 2023-01-05 Psa Automobiles Sa Headlamp module of a vehicle headlamp

Also Published As

Publication number Publication date
JP2015106493A (en) 2015-06-08
JP6292376B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6340751B2 (en) Lens body and vehicle lamp
US8439537B2 (en) Lighting fixture
JP6643645B2 (en) Vehicle lighting
JP6016057B2 (en) Vehicle lighting
JP5257747B2 (en) Vehicle headlamp
WO2011027708A1 (en) Vehicle lamp fitting
JP5526453B2 (en) Vehicle headlamp
EP2597735B1 (en) Laser light source device
JP6045834B2 (en) Vehicle headlamp
JP5636756B2 (en) Vehicle lamp unit
JP2010080306A (en) Lighting fixture unit for vehicular headlight
JP5945856B2 (en) Vehicle lamp unit
WO2017056468A1 (en) Light source device and projection device
JP5640306B2 (en) Lamp unit
JP2015005439A (en) Vehicle headlamp and optical fiber bundle used in vehicle headlamp
JP6292376B2 (en) Vehicle lamp and lens body
JP2014211983A (en) Vehicular lighting tool unit
US10281103B2 (en) Body and lighting tool for vehicle
JP6956605B2 (en) Automotive fog lights
US10072812B2 (en) Lens body and vehicle lighting fixture
US10465875B2 (en) Vehicle headlight
JP6119279B2 (en) Vehicle headlamp
JP7023672B2 (en) Vehicle lighting fixtures, control devices and control methods
JP2016150668A (en) Vehicle lamp fitting
US10760758B2 (en) Headlamp, in particular a headlamp for a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865304

Country of ref document: EP

Kind code of ref document: A1