WO2015079813A1 - Wavelength conversion sheet for solar cell module and solar cell module - Google Patents

Wavelength conversion sheet for solar cell module and solar cell module Download PDF

Info

Publication number
WO2015079813A1
WO2015079813A1 PCT/JP2014/077201 JP2014077201W WO2015079813A1 WO 2015079813 A1 WO2015079813 A1 WO 2015079813A1 JP 2014077201 W JP2014077201 W JP 2014077201W WO 2015079813 A1 WO2015079813 A1 WO 2015079813A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solar cell
wavelength conversion
cell module
conversion sheet
Prior art date
Application number
PCT/JP2014/077201
Other languages
French (fr)
Japanese (ja)
Inventor
上遠野 正孝
明子 若松
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2015079813A1 publication Critical patent/WO2015079813A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a wavelength conversion sheet for a solar cell module and a solar cell module.
  • Wind power, solar power, geothermal heat, etc. are attracting attention as clean energy sources that have no emissions that affect the environment.
  • Solar cells capable of directly converting sunlight into electrical energy are a promising source of electrical energy and have been actively put into practical use in recent years.
  • Solar cells photoelectrically convert sunlight into electrical energy using a photoelectric conversion material, but the wavelength of light that can be effectively converted by the photoelectric conversion material is determined for each material, and other wavelengths are used effectively. I could't.
  • Crystalline silicon solar cells using crystalline silicon as a photoelectric conversion material have been put into practical use as typical solar cells.
  • crystalline silicon has low sensitivity to ultraviolet rays contained in a large amount of sunlight, and power generation efficiency is low. It was about 10 to 20%.
  • a wavelength conversion type solar cell encapsulating sheet containing a fluorescent material having an absorption wavelength peak at 300 to 450 nm and an ultraviolet absorber is known (see, for example, Patent Document 1).
  • Patent Document 1 by providing the wavelength conversion type solar cell encapsulating sheet on the light receiving surface side of the solar cell, the wavelength of ultraviolet light contained in sunlight is converted, and the power generation efficiency of the solar cell is improved.
  • the purpose of this sheet is to ensure the weather resistance of the sheet by containing an ultraviolet absorber.
  • a fluorescent resin composition comprising an organic rare earth metal complex that emits fluorescence in the wavelength range of 550 to 900 nm and an ethylene-vinyl acetate copolymer is used as a sealant between the front cover and the crystalline silicon cell.
  • a solar cell module has been proposed (see, for example, Patent Document 2). In patent document 2, the power generation efficiency of a solar cell is raised by using the said sealing agent.
  • the present invention has been made in view of the above-described prior art, and compared with the conventional wavelength conversion sheet for solar cell modules, the wavelength conversion for solar cell modules is excellent in balance between light resistance and improvement in power generation efficiency of solar cells.
  • the purpose is to provide a sheet.
  • a wavelength conversion sheet for a solar cell module formed from a compound having a salt structure composed of a specific europium anion and a counter cation and a resin is a conventional one.
  • the present invention was completed by finding out that it has better light resistance than the wavelength conversion sheet for solar cell modules.
  • the wavelength conversion sheet for a solar cell module of the present invention is formed from a compound having a salt structure composed of a europium anion coordinated by four anionic ligands and a counter cation, and a resin.
  • the anionic ligand is preferably a bidentate ligand, more preferably a ligand represented by the following general formula (I), and specifically represented by the following general formula (II). It is preferable that it is at least 1 type of ligand selected from the ligand group made.
  • R 1 and R 2 are each independently an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.
  • the counter cation is preferably a cation containing at least one hetero atom selected from a nitrogen atom and a phosphorus atom, and is a cation represented by any one of the following general formulas (III) to (V). More preferred.
  • Z represents a nitrogen atom or a phosphorus atom.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 And R 11 each independently represents a hydrogen atom, an alkyl group, an alkoxyalkyl group, an aralkyl group or an aryl group, and may be bonded to each other to form a ring.
  • the solar cell module of the present invention includes at least a solar cell and the wavelength conversion sheet, and the wavelength conversion sheet is disposed on a light receiving surface side of the solar cell.
  • the wavelength conversion sheet for a solar cell module of the present invention is superior to the conventional wavelength conversion sheet for a solar cell module in terms of a balance between light resistance and improvement in power generation efficiency of the solar cell.
  • the wavelength conversion sheet for a solar cell module of the present invention is characterized in that it is formed from a compound having a salt structure composed of a europium anion coordinated by four anionic ligands and a counter cation, and a resin.
  • a compound having a salt structure composed of a europium anion coordinated by four anionic ligands and a counter cation is also referred to as an Eu complex.
  • the wavelength at which a rare earth complex is excited and the emission wavelength are mainly determined by the type of rare earth element.
  • the excitation wavelength is usually 330 to 430 nm
  • the emission wavelengths are 570 nm, 580 nm, 620 nm, and 630 nm.
  • the europium anion constituting the Eu complex is formed by coordination of four anion ligands to the europium atom.
  • the four anionic ligands may be the same or different.
  • the anionic ligand may be a monodentate ligand or a bidentate ligand, but a bidentate ligand that is excellent in light resistance and fluorescence quantum yield when a wavelength conversion sheet is formed is preferable.
  • a bidentate ligand that is excellent in light resistance and fluorescence quantum yield when a wavelength conversion sheet is formed is preferable.
  • it is preferable from a viewpoint of the light resistance of a wavelength conversion sheet, a fluorescence quantum yield, and manufacturing cost that it is a ligand represented with the following general formula (I).
  • the ligand represented by the following general formula (I) is used as the anionic ligand
  • the Eu complex used in the present invention is represented by the following general formula (X).
  • R 1 and R 2 are each independently an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.
  • R 1, R 2 is the same as R 1, R 2 in formula (I), A + is a counter cation.
  • R 1 and R 2 may be the same or different.
  • Examples of the optionally substituted alkyl group include an alkyl group and an alkyl group substituted with at least one hydrogen atom.
  • Examples of the alkyl group usually include straight-chain, branched or cyclic alkyl groups having 1 to 10 carbon atoms, such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s- Butyl group, t-butyl group, n-pentyl group, 1-methylbutyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2 , 2-dimethylbutyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, cyclohexyl group, n-heptyl group, methylcyclohexyl group, n-oct
  • alkyl group substituted with at least one hydrogen atom examples include trifluoromethyl group (—CF 3 ), perfluoroethyl group (—C 2 F 5 ), perfluoropropyl group (—C 3 F 7 ), perfluoro Butyl group (—C 4 F 9 ), perfluorohexyl group (—C 6 F 15 ), perfluoroheptyl group (—C 7 F 17 ), perfluorooctyl group (—C 8 F 19 ), perfluorododecyl group Fluorine such as (—C 12 F 27 ), fluoromethyl group, difluoromethyl group, fluoroethyl group, difluororoethyl group, trifluoroethyl group, tetrafluoroethyl group, hexafluoro-i-propyl group, trifluoromethylcyclohexyl group C1-C12 linear, branched or cyclic fluorinated al
  • the aryl group which may be substituted includes an aryl group and an aryl group in which at least one hydrogen atom is substituted.
  • the aryl group is a group having a structure in which one hydrogen atom bonded to a monocyclic or polycyclic aromatic hydrocarbon ring is removed.
  • the aryl group and the aryl group substituted with at least one hydrogen atom may be monocyclic or polycyclic, specifically, phenyl group, tolyl group, xylyl group, mesityl group, 2,3,4-trimethyl. Phenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,5-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethyl Phenyl group, 2-ethylphenyl group, propylphenyl group, butylphenyl group, hexylphenyl group, cyclohexylphenyl group, octylphenyl group, 1-naphthyl group, 2-naphthyl group, 2-methyl-1-naphthyl group, 3- Methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl-1-naphthy
  • Aryl groups substituted with atoms aryl groups substituted with halogenated alkyl groups such as trifluoromethylphenyl group, N, N-dimethylaminophenyl group, N, N-diethylaminophenyl group, N-phenyl-N-methylaminophenyl Group, N-tolyl-N-ethylaminophenyl group, N-chloropheny -N-monosubstituted amino substituted aryl groups such as N-cyclohexylaminophenyl group, N, N-ditolylaminophenyl group, N, N-disubstituted aminoaryl group, methylthiophenyl group, ethylthiophenyl group, methylthionaphthyl group
  • An alkylthioaryl group such as phenylthiophenyl group, an arylthioaryl group, and the like, and a phenyl group
  • Examples of the optionally substituted heteroaryl group include a heteroaryl group and a heteroaryl group in which at least one hydrogen atom is substituted.
  • the heteroaryl group is a group having a structure in which one hydrogen atom bonded to a ring of a monocyclic or polycyclic heterocyclic aromatic compound is removed.
  • the heteroaryl group and the heteroaryl group substituted with at least one hydrogen atom may be monocyclic or polycyclic. Specifically, thienyl group, furanyl group, thianthnyl group, pyranyl group, isobenzofuranyl group, chromenyl group, xanthenyl group, phenoxanthinyl group, 2H-pyrrolyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, isothiazolyl group , Thiazolyl group, benzoisothiazolyl group, benzothiazolyl group, isoxazolyl group, oxazolyl group, benzisoxazolyl group, benzoxazolyl group, pyridinyl group, pyrazinyl group, pyrimidinyl group, indolyl group, isoindodolyl group, quinonyl Group, isoquinonyl group, oxadiazolyl
  • the anion ligand is at least one ligand selected from the ligand group represented by the following general formula (II), from the viewpoint of the light resistance and wavelength conversion characteristics of the wavelength conversion sheet. preferable.
  • the counter cation constituting the Eu complex may be any cation that can cancel the charge of the negatively charged europium anion, but at least one heteroatom selected from a nitrogen atom and a phosphorus atom may be used. It is preferable that it is a cation containing from a viewpoint of the availability of a raw material and manufacturing cost.
  • the counter cation is preferably a cation represented by any one of the following general formulas (III) to (V).
  • Z represents a nitrogen atom or a phosphorus atom.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 And R 11 each independently represents a hydrogen atom, an alkyl group, an alkoxyalkyl group, an aralkyl group or an aryl group, and may be bonded to each other to form a ring.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, n-pentyl group, 1-methylbutyl group and 2-methylbutyl group.
  • 3-methylbutyl group 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, cyclohexyl group, Carbon number such as n-heptyl group, methylcyclohexyl group, n-octyl group, 2-ethylhexyl group, ethylcyclohexyl group, dimethylcyclohexyl group, n-nonyl group, 3,5,5-trimethylhexyl group, n-decyl group, etc. 1-10 linear, branched or cyclic alkyl groups are preferred, methyl group, ethyl group, n-propyl group, n-butyl group, n-hexyl group More preferable.
  • alkoxyalkyl group examples include methoxymethyl group, ethoxymethyl group, methoxyethyl group, ethoxyethyl group, n-propoxyethyl group, i-propoxyethyl group, n-butoxyethyl group, i-butoxyethyl group, t-butoxy group.
  • the aralkyl group an aralkyl group having 7 to 12 carbon atoms is usually mentioned.
  • the aralkyl group is a group having a structure in which one of hydrogen atoms of an alkyl group is substituted with an aryl group.
  • aralkyl group examples include a benzyl group, a phenethyl group (—C 2 H 4 —C 6 H 5 ), a tolylmethyl group, a methoxyphenylmethyl group, a naphthylmethyl group, and a naphthylethyl group, and a benzyl group and a phenethyl group are preferable. .
  • aryl group usually include aryl groups having 6 to 10 carbon atoms.
  • Specific examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a mesityl group, a 1-naphthyl group, a 2-naphthyl group, and the like, and a phenyl group is preferable.
  • the counter cation is preferably at least one cation selected from the cation group represented by the following general formula (VI) from the viewpoint of light resistance and wavelength conversion characteristics of the wavelength conversion sheet.
  • Eu complex used for this invention what is marketed may be used and what was manufactured may be used.
  • the production method of the Eu complex used in the present invention is not particularly limited, and for example, it can be produced by the following method.
  • a method for producing an Eu complex used in the present invention in a solution in which a compound that becomes an anion ligand by reacting and coordinating with a compound containing an Eu element and a compound that becomes a counter cation by reacting are present, Examples include a method of producing the Eu complex by adding a compound containing a europium (Eu) element or a solution of the compound and reacting the compound.
  • Eu europium
  • a compound containing an Eu element As a method for producing the Eu complex, a compound containing an Eu element, a compound that becomes an anionic ligand by reacting and coordinating with a compound containing an Eu element, and a compound that becomes a counter cation by reacting with it are used.
  • Examples of the compound containing Eu element include chlorides, bromides, acetates, oxides, and hydrates of europium.
  • the compound containing the Eu element the aforementioned europium chloride, bromide, and hydrates thereof are preferable.
  • the compound that becomes an anionic ligand by reacting and coordinating with the compound containing the Eu element there is no particular limitation on the compound that becomes an anionic ligand by reacting and coordinating with the compound containing the Eu element.
  • the anion ligand is a ligand represented by the general formula (I)
  • the following general compounds can be used as the anion ligand by reacting and coordinating with a compound containing an Eu element.
  • a compound represented by the formula (I ′) and when the anion ligand is at least one ligand selected from the ligand group represented by the general formula (II) And at least one compound selected from the group of compounds represented by the following general formula (II ′).
  • R 1, R 2 are the same as R 1, R 2 in formula (I).
  • the compound represented by the general formula (I ′) and at least one compound selected from the group of compounds represented by the general formula (II ′) have a diketone structure by so-called keto-enol tautomerism. As shown in the formula, there are cases where a structure consisting of a ketone and an enol is taken, but in the present invention, the two are not particularly distinguished.
  • the compound represented by the general formula (I ′) takes a diketone structure
  • it can be represented by the general formula (I ′′) as follows. That is, not distinguishing a diketone structure from a structure comprising a ketone and an enol means not distinguishing a compound represented by the general formula (I ′) from a compound represented by the general formula (I ′′). To do.
  • R 1, R 2 are the same as R 1, R 2 in formula (I).
  • the compound that becomes a counter cation by the reaction is not particularly limited.
  • the compound that becomes a counter cation by reacting is preferably a compound of the aforementioned counter cation and an anion.
  • the anion include halide ions such as Cl ⁇ , Br ⁇ and I ⁇ , hydroxide ions (OH ⁇ ) and the like.
  • the method for producing the Eu complex used in the present invention will be described in more detail.
  • a method for producing the Eu complex first, a compound that becomes an anionic ligand by reacting and coordinating with a compound containing the Eu element is dissolved in a solvent to obtain a solution (i). Next, a compound that becomes a counter cation by reacting with the solution (i) is added, and then a base or an aqueous solution thereof is added to obtain a solution (ii). Next, a compound containing an Eu element or an aqueous solution thereof is added to the solution (ii) to obtain the Eu complex used in the present invention as a solid. Finally, the Eu complex used in the present invention can be produced by recovering the solid by an arbitrary method and purifying it as necessary.
  • an organic solvent or a mixed solvent of an organic solvent and water is usually used.
  • a polar organic solvent is preferably used, and specific examples thereof include tetrahydrofuran (THF), ethanol, methanol, isopropyl alcohol, dioxane and the like.
  • the base examples include sodium hydroxide and triethylamine.
  • the amount of the compound that becomes an anion ligand by reacting and coordinating with the compound containing Eu element is usually 2 to 10 mol, preferably 3 to 1 mol per mol of the compound containing Eu element. The amount is 8 mol, more preferably 4 to 6 mol.
  • the amount of the compound that becomes a counter cation by reacting is usually 0.5 to 3 mol, preferably 0.8 to 2 mol, more preferably 1 to 1 mol with respect to 1 mol of the compound containing Eu element. 1.5 moles.
  • the amount of the base used is usually 2 to 10 mol, preferably 3 to 8 mol, more preferably 4 to 6 mol, per 1 mol of the compound containing Eu element.
  • the amount of the base used is usually 2 to 10 mol, preferably 3 to 8 mol, more preferably 4 to 6 mol, per 1 mol of the compound containing Eu element.
  • the wavelength conversion sheet for a solar cell module of the present invention is formed from the above Eu complex and resin.
  • resins conventionally used for wavelength conversion sheets for solar cell modules can be used without limitation.
  • the resin include polyvinyl acetal such as polyvinyl butyral, acrylic resin, polycarbonate, polystyrene, polyolefin, polyvinyl chloride, epoxy resin, fluororesin, ionomer resin, and ethylene-vinyl acetate copolymer.
  • the resin preferably has a melt flow rate (MFR) (190 ° C., load 2.16 kg) of 0.1 to 60 g / 10 minutes, more preferably 0.5 to 45 g / 10 minutes.
  • MFR melt flow rate
  • the resin used in the present invention may be cross-linked when manufacturing a wavelength conversion sheet for a solar cell module.
  • the wavelength conversion sheet for a solar cell module of the present invention is formed from the above Eu complex and resin.
  • the Eu complex used in the present invention is excellent in the balance between light resistance and improvement in power generation efficiency of a solar cell, and therefore can be used as a wavelength conversion sheet used in a solar cell module exposed to sunlight for a long period of time.
  • the wavelength conversion sheet for a solar cell module used in the present invention may be produced by molding a resin composition obtained by directly mixing or kneading the above-described Eu complex and a resin into a sheet shape. After preparing a resin solution containing an Eu complex, a resin and a solvent, a resin composition may be obtained by removing the solvent, and the resin composition may be formed into a sheet shape. You may manufacture by shape
  • the solvent examples include chloroform, methylene chloride, toluene, THF, ethanol, N, N-dimethylformamide and the like.
  • the Eu complex is usually contained in an amount of 0.00001 to 30 parts by mass with respect to 100 parts by mass of the resin.
  • the content is from 0001 to 20 parts by mass, and more preferably from 0.001 to 10 parts by mass.
  • the resin solution usually contains 100 to 10,000 parts by mass, preferably 500 to 8000 parts by mass, more preferably 100 parts by mass of the solvent. Contains 1000 to 5000 parts by weight.
  • the wavelength conversion sheet for a solar cell module of the present invention may be formed from other components in addition to the Eu complex and the resin.
  • Other components include, for example, a crosslinking agent, a crosslinking aid, a plasticizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a dehydrating agent, an adhesion modifier, a silane coupling agent, a pigment, a polymerization initiator, A flame retardant, a dispersing agent, etc. are mentioned.
  • the amount of these additives used varies depending on the application, but is usually in the range of 0.001 to 50 parts by mass with respect to 100 parts by mass of the resin.
  • crosslinking agent examples include t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl isopropyl carbonate, t-butyl peroxyacetate, t-butyl.
  • crosslinking aid examples include triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and the like.
  • the addition amount is not particularly limited, but it is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the total of the resin and the Eu complex.
  • plasticizer examples include 3GO (triethylene glycol bis (2-ethylhexanoate)).
  • silane coupling agent examples include vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxy).
  • the addition amount is not particularly limited, but it is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the total of the resin and the Eu complex.
  • Examples of the light stabilizer include dimethyl succinate-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1,3 , 3-Tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2, 6,6-tetramethyl-4-piperidyl) imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2,6, 6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) separate, 2- (3,5 -Di-tert-4-hydroxybenze Bis-2-n-butylmalon
  • the wavelength conversion sheet for solar cell module of the present invention contains an Eu complex, it can absorb ultraviolet light to blue light and can be wavelength-converted to 550 to 1000 nm in which crystalline silicon has high photoelectric conversion efficiency. By arranging the wavelength conversion sheet on the light receiving surface side of the solar battery cell, the power generation efficiency of the solar battery module can be improved.
  • the wavelength conversion sheet for solar cell modules of the present invention can be particularly suitably used as a wavelength conversion sheet for solar cell modules in which the photoelectric conversion substance is crystalline silicon.
  • the thickness of the wavelength conversion sheet for a solar cell module of the present invention is usually 1 to 1000 ⁇ m.
  • the size of the solar cell module wavelength conversion sheet is appropriately determined depending on the size of the solar cell module, but is usually 100 to 50000 cm 2 .
  • the solar cell module of the present invention uses the solar cell module wavelength conversion sheet as one of its constituent members.
  • a solar cell module of this invention it has at least a photovoltaic cell and the said wavelength conversion sheet for solar cell modules, and the said wavelength conversion sheet is arrange
  • each member such as a solar battery cell, a front cover, and a back cover sealing material constituting the solar battery module of the present invention.
  • a well-known thing can be used suitably as members used for solar cell modules, such as an antireflection film.
  • the A1 used was ER-120 manufactured by Mitsui Chemicals, and the Eu (TTA) 3 Phen manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • the 1 H-NMR spectrum of the obtained target product was measured using an NMR measuring apparatus (Avance 400, manufactured by BRUKER).
  • TTA 4,4,4-trifluoro-1-thienyl-1,3-butanedione
  • ethanol 5 ml
  • tetrabutylphosphonium bromide 373 mg, 1.10 mmol
  • 1M aqueous sodium hydroxide solution 4.2 ml, 4.2 mmol
  • europium chloride hexahydrate 366 mg, 1 .00 mmol
  • aqueous solution 2 ml
  • the 1 H-NMR spectrum of the obtained target product was measured using an NMR measuring apparatus (Avance 400, manufactured by BRUKER).
  • TTA 4,4,4-trifluoro-1-thienyl-1,3-butanedione
  • ethanol 5 ml
  • dimethylbutylimidazolium chloride 208 mg, 1.10 mmol
  • 1M aqueous sodium hydroxide solution 4.2 ml, 4.2 mmol
  • europium chloride hexahydrate 366 mg, 1.00 mmol
  • Examples and comparative examples (Sheet preparation method 1) 100 parts by weight of thermoplastic resin and 0.2 parts by weight of Eu complex are put into a mini roll (manufactured by Kodaira Seisakusho) and kneaded at 60 ° C., and then 0.6 parts by weight of a crosslinking agent and 0.6 parts by weight of a crosslinking aid. Then, 0.3 parts by mass of a silane coupling agent was added and kneaded. The obtained sheet was pressed at 100 ° C. for 4 minutes using a 200 ⁇ m-thick mold to obtain a wavelength conversion sheet 1 for a solar cell module having a uniform thickness.
  • thermoplastic resin manufactured by Mitsui DuPont Polychemical Co., Ltd.
  • Eu complexes In Examples 1 to 6, Eu complexes A1 to A6, respectively, and in Comparative Example 1, Eu (TTA) 3 Phen Crosslinking agent: t-butylperoxy-2-ethylhexyl monocarbonate Crosslinking aid: triallyl isocyanurate Silane coupling agent: ⁇ -methacryloxypropyltrimethoxysilane
  • thermoplastic resin 100 parts by mass of a thermoplastic resin was added to 2500 parts by mass of toluene, and the resin was completely dissolved at 70 ° C. over 30 minutes while stirring.
  • the Eu complex was weighed to 0.2 parts by weight, dissolved in 2.5 parts by weight of N, N-dimethylformamide, and then added dropwise to the resin while co-washing with toluene.
  • the solution was poured into a PTFE vat to volatilize the solvent, and then the vat was vacuum dried at 70 ° C. for 3 hours.
  • the obtained sheet was recovered from the bat and pressed at 100 ° C. for 4 minutes using a 200 ⁇ m-thick mold to obtain a wavelength conversion sheet 2 for a solar cell module having a uniform thickness.
  • thermoplastic resin and Eu complex is as follows.
  • Thermoplastic resin manufactured by Mitsui DuPont Polychemical Co., Ltd. (Evaflex V523, ethylene vinyl acetate copolymer, vinyl acetate content: 33%, MFR: 14 g / 10 min (190 ° C., load 2.16 kg))
  • Eu complexes In Examples 1 to 6, Eu complexes A1 to A6, respectively, and in Comparative Example 1, Eu (TTA) 3 Phen
  • the wavelength conversion sheet 1 for solar cell modules was laminated
  • the initial fluorescence intensity of the sample for durability test was measured with a spectrofluorometer (manufactured by Hitachi High-Tech), and the retention rate of fluorescence intensity when light degradation was promoted by an acceleration test was evaluated as an initial value of 100.
  • the acceleration test was performed by using a super xenon weather meter (manufactured by Suga Test Instruments) and leaving the sample for durability test at a temperature of 65 ° C., a humidity of 50% RH, and an irradiation illuminance of 180 W / m 2 for 50, 100, and 150 hours. It went by.
  • the solar cell module wavelength conversion sheet 2 is brought into close contact with a solar battery cell installed under a 300 W solar simulator (manufactured by Newport Stratford), irradiated with light for 10 minutes, and then the current value is measured by a solar battery analyzer (manufactured by PROVA). It was measured.
  • a value obtained by subtracting a current value measured without using the solar cell module wavelength conversion sheet 2 from the measured current value was defined as a current increase value.
  • Table 1 shows the measurement results of light resistance and current value.

Abstract

 The purpose of the present invention is to provide a wavelength conversion sheet for a solar cell module having superior balance between light resistance and improvement in power generation efficiency of a solar cell compared to conventional wavelength conversion sheets for solar cell modules. This wavelength conversion sheet for a solar cell module is formed of a resin and a compound having a salt structure comprising a europium anion having four coordinated anion ligands and a counter cation. Preferably the anion ligands are bidentate ligands, and the counter cation includes at least one heteroatom selected from among a nitrogen atom and a phosphorus atom.

Description

太陽電池モジュール用波長変換シートおよび太陽電池モジュールWavelength conversion sheet for solar cell module and solar cell module
 本発明は、太陽電池モジュール用波長変換シートおよび太陽電池モジュールに関する。 The present invention relates to a wavelength conversion sheet for a solar cell module and a solar cell module.
 風力、太陽光、地熱などは、環境に影響を与える排出物質のないクリーンなエネルギー源として注目されている。太陽光を、直接電気エネルギーに変換することが可能な太陽電池は、電気エネルギーの有望な供給源であり、近年積極的に実用化されている。 Wind power, solar power, geothermal heat, etc. are attracting attention as clean energy sources that have no emissions that affect the environment. Solar cells capable of directly converting sunlight into electrical energy are a promising source of electrical energy and have been actively put into practical use in recent years.
 太陽電池は、光電変換物質により、太陽光を電気エネルギーに光電変換しているが、光電変換物質が有効に変換可能な光の波長は、物質ごとに定まっておりそれ以外の波長は有効に利用することができていなかった。 Solar cells photoelectrically convert sunlight into electrical energy using a photoelectric conversion material, but the wavelength of light that can be effectively converted by the photoelectric conversion material is determined for each material, and other wavelengths are used effectively. I couldn't.
 光電変換物質として結晶シリコンを用いた、結晶シリコン太陽電池は、代表的な太陽電池として実用化されているが、結晶シリコンは、太陽光に多く含まれている紫外線に対する感度が低く、発電効率が10~20%程度であった。 Crystalline silicon solar cells using crystalline silicon as a photoelectric conversion material have been put into practical use as typical solar cells. However, crystalline silicon has low sensitivity to ultraviolet rays contained in a large amount of sunlight, and power generation efficiency is low. It was about 10 to 20%.
 結晶シリコン太陽電池の発電効率を向上させるため、紫外線を、結晶シリコンが高い光電変換効率を有する550~1000nmに波長変換することが近年提案されていた。
 例えば、300~450nmに吸収波長ピークを有する蛍光物質および紫外線吸収剤を含む波長変換型太陽電池封止シートが知られている(例えば、特許文献1参照)。特許文献1では、前記波長変換型太陽電池封止シートを、太陽電池セルの受光面側に設けることにより、太陽光に含まれる紫外線を、波長変換し、太陽電池の発電効率を向上させること、該シートに紫外線吸収剤を含有させることにより、該シートの耐候性を確保することを目的としている。
In order to improve the power generation efficiency of crystalline silicon solar cells, it has recently been proposed to convert the wavelength of ultraviolet light to 550 to 1000 nm, where crystalline silicon has high photoelectric conversion efficiency.
For example, a wavelength conversion type solar cell encapsulating sheet containing a fluorescent material having an absorption wavelength peak at 300 to 450 nm and an ultraviolet absorber is known (see, for example, Patent Document 1). In Patent Document 1, by providing the wavelength conversion type solar cell encapsulating sheet on the light receiving surface side of the solar cell, the wavelength of ultraviolet light contained in sunlight is converted, and the power generation efficiency of the solar cell is improved. The purpose of this sheet is to ensure the weather resistance of the sheet by containing an ultraviolet absorber.
 また、550~900nmの波長範囲の蛍光を発する有機系希土類金属錯体およびエチレン‐酢酸ビニル共重合体からなる蛍光性樹脂組成物を、フロントカバーと、結晶シリコンセルとの間の封止剤に用いた太陽電池モジュールが提案されている(例えば、特許文献2参照)。特許文献2では、前記封止剤を用いることにより、太陽電池の発電効率を上昇させている。 Also, a fluorescent resin composition comprising an organic rare earth metal complex that emits fluorescence in the wavelength range of 550 to 900 nm and an ethylene-vinyl acetate copolymer is used as a sealant between the front cover and the crystalline silicon cell. A solar cell module has been proposed (see, for example, Patent Document 2). In patent document 2, the power generation efficiency of a solar cell is raised by using the said sealing agent.
 特許文献1で開示された蛍光物質、および特許文献2で開示された有機系希土類金属錯体は、共に希土類元素としてユーロピウムを用いることが提案されている。
 しかしながら、特許文献1、2で開示されているユーロピウム錯体は、充分な耐光性を有しているとは言い難く、太陽電池に望まれる長期安定性の観点から、改良が望まれていた。
Both the fluorescent substance disclosed in Patent Document 1 and the organic rare earth metal complex disclosed in Patent Document 2 have been proposed to use europium as a rare earth element.
However, the europium complexes disclosed in Patent Documents 1 and 2 cannot be said to have sufficient light resistance, and improvements have been desired from the viewpoint of long-term stability desired for solar cells.
特開2011-210891号公報JP 2011-210891 A 国際公開第2008/047427号パンフレットInternational Publication No. 2008/047427 Pamphlet
 本発明は、上記従来技術を鑑みてされたものであり、従来の太陽電池モジュール用波長変換シートと比べ、耐光性と、太陽電池の発電効率の向上とのバランスに優れる太陽電池モジュール用波長変換シートを提供することを目的とする。 The present invention has been made in view of the above-described prior art, and compared with the conventional wavelength conversion sheet for solar cell modules, the wavelength conversion for solar cell modules is excellent in balance between light resistance and improvement in power generation efficiency of solar cells. The purpose is to provide a sheet.
 本発明者らは上記課題を達成するため鋭意研究を重ねた結果、特定のユーロピウムアニオンとカウンターカチオンとからなる塩構造を有する化合物および樹脂から形成される太陽電池モジュール用波長変換シートは、従来の太陽電池モジュール用波長変換シートよりも耐光性に優れることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a wavelength conversion sheet for a solar cell module formed from a compound having a salt structure composed of a specific europium anion and a counter cation and a resin is a conventional one. The present invention was completed by finding out that it has better light resistance than the wavelength conversion sheet for solar cell modules.
 すなわち、本発明の太陽電池モジュール用波長変換シートは、4個のアニオン配位子が配位したユーロピウムアニオンとカウンターカチオンとからなる塩構造を有する化合物および樹脂から形成される。 That is, the wavelength conversion sheet for a solar cell module of the present invention is formed from a compound having a salt structure composed of a europium anion coordinated by four anionic ligands and a counter cation, and a resin.
 前記アニオン配位子が2座配位子であることが好ましく、下記一般式(I)で表される配位子であることがより好ましく、具体的には、下記一般式(II)で表される配位子群から選択される少なくとも一種の配位子であることが好ましい。 The anionic ligand is preferably a bidentate ligand, more preferably a ligand represented by the following general formula (I), and specifically represented by the following general formula (II). It is preferable that it is at least 1 type of ligand selected from the ligand group made.
Figure JPOXMLDOC01-appb-C000004
 (式(I)中、R1、R2は、それぞれ独立に、置換されていてもよいアルキル基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基である。)
Figure JPOXMLDOC01-appb-C000004
(In formula (I), R 1 and R 2 are each independently an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.)
Figure JPOXMLDOC01-appb-C000005
 前記カウンターカチオンが、窒素原子およびリン原子から選択される少なくとも一種のヘテロ原子を含むカチオンであることが好ましく、下記一般式(III)~(V)のいずれかで表されるカチオンであることがより好ましい。
Figure JPOXMLDOC01-appb-C000005
The counter cation is preferably a cation containing at least one hetero atom selected from a nitrogen atom and a phosphorus atom, and is a cation represented by any one of the following general formulas (III) to (V). More preferred.
Figure JPOXMLDOC01-appb-C000006
 (式(III)中、Zは窒素原子またはリン原子であり、式(III)~(V)中、R3、R4、R5、R6、R7、R8、R9、R10およびR11は、それぞれ独立に、水素原子、アルキル基、アルコキシアルキル基、アラルキル基またはアリール基であり、互いに結合して環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (III), Z represents a nitrogen atom or a phosphorus atom. In the formulas (III) to (V), R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 And R 11 each independently represents a hydrogen atom, an alkyl group, an alkoxyalkyl group, an aralkyl group or an aryl group, and may be bonded to each other to form a ring.
 本発明の太陽電池モジュールは、少なくとも太陽電池セルと、前記波長変換シートとを有し、前記太陽電池セルの受光面側に、前記波長変換シートが配置されることを特徴とする。 The solar cell module of the present invention includes at least a solar cell and the wavelength conversion sheet, and the wavelength conversion sheet is disposed on a light receiving surface side of the solar cell.
 本発明の太陽電池モジュール用波長変換シートは、従来の太陽電池モジュール用波長変換シートよりも、耐光性と、太陽電池の発電効率の向上とのバランスに優れている。 The wavelength conversion sheet for a solar cell module of the present invention is superior to the conventional wavelength conversion sheet for a solar cell module in terms of a balance between light resistance and improvement in power generation efficiency of the solar cell.
 次に本発明について具体的に説明する。
本発明の太陽電池モジュール用波長変換シートは、4個のアニオン配位子が配位したユーロピウムアニオンとカウンターカチオンとからなる塩構造を有する化合物および樹脂から形成されることを特徴とする。
 以下の記載においては、4個のアニオン配位子が配位したユーロピウムアニオンとカウンターカチオンとからなる塩構造を有する化合物を、Eu錯体とも記す。
Next, the present invention will be specifically described.
The wavelength conversion sheet for a solar cell module of the present invention is characterized in that it is formed from a compound having a salt structure composed of a europium anion coordinated by four anionic ligands and a counter cation, and a resin.
In the following description, a compound having a salt structure composed of a europium anion coordinated by four anionic ligands and a counter cation is also referred to as an Eu complex.
 [Eu錯体]
 本発明では、4個のアニオン配位子が配位したユーロピウムアニオンとカウンターカチオンとからなる塩構造を有する化合物(Eu錯体)が用いられる。
[Eu complex]
In the present invention, a compound (Eu complex) having a salt structure composed of a europium anion coordinated by four anionic ligands and a counter cation is used.
 一般に希土類錯体が励起される波長および発光波長は、主として希土類元素の種類によって決まる。Eu錯体では通常励起波長は330~430nmであり、発光波長は570nm、580nm、620nm、630nmである。 Generally, the wavelength at which a rare earth complex is excited and the emission wavelength are mainly determined by the type of rare earth element. In the Eu complex, the excitation wavelength is usually 330 to 430 nm, and the emission wavelengths are 570 nm, 580 nm, 620 nm, and 630 nm.
 Eu錯体を構成する前記ユーロピウムアニオンは、ユーロピウム原子に4個のアニオン配位子が配位することにより形成される。また、前記4個のアニオン配位子は、それぞれ同一の配位子でも異なる配位子でもよい。 The europium anion constituting the Eu complex is formed by coordination of four anion ligands to the europium atom. The four anionic ligands may be the same or different.
 前記アニオン配位子としては、1座配位子でも2座配位子でもよいが、波長変換シートを形成した際により耐光性および蛍光量子収率に優れる2座配位子が好ましい。
 また、前記アニオン配位子としては、下記一般式(I)で表される配位子であることが、波長変換シートの耐光性、蛍光量子収率および製造コストの観点から好ましい。また、前記アニオン配位子として、下記一般式(I)で表される配位子を用いた場合には、本発明に用いられるEu錯体は、下記一般式(X)で表される。
The anionic ligand may be a monodentate ligand or a bidentate ligand, but a bidentate ligand that is excellent in light resistance and fluorescence quantum yield when a wavelength conversion sheet is formed is preferable.
Moreover, as said anion ligand, it is preferable from a viewpoint of the light resistance of a wavelength conversion sheet, a fluorescence quantum yield, and manufacturing cost that it is a ligand represented with the following general formula (I). Moreover, when the ligand represented by the following general formula (I) is used as the anionic ligand, the Eu complex used in the present invention is represented by the following general formula (X).
Figure JPOXMLDOC01-appb-C000007
 (式(I)中、R1、R2は、それぞれ独立に、置換されていてもよいアルキル基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基である。)
Figure JPOXMLDOC01-appb-C000007
(In formula (I), R 1 and R 2 are each independently an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.)
Figure JPOXMLDOC01-appb-C000008
 (式(X)中、R1、R2は、式(I)におけるR1、R2と同様であり、A+は、カウンターカチオンである。)
 なお、R1、R2は、それぞれ同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000008
(In the formula (X), R 1, R 2 is the same as R 1, R 2 in formula (I), A + is a counter cation.)
R 1 and R 2 may be the same or different.
 前記置換されていてもよいアルキル基としては、アルキル基、少なくとも一つの水素原子が置換されたアルキル基が挙げられる。
 前記アルキル基としては通常、炭素数が1~10の直鎖、分岐または環状のアルキル基が挙げられ、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチルブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルプロピル基、2-エチルプロピル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、メチルシクロヘキシル基、n-オクチル基、2-エチルヘキシル基、エチルシクロヘキシル基、ジメチルシクロヘキシル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基が好ましく、メチル基、t-ブチル基がより好ましい。
Examples of the optionally substituted alkyl group include an alkyl group and an alkyl group substituted with at least one hydrogen atom.
Examples of the alkyl group usually include straight-chain, branched or cyclic alkyl groups having 1 to 10 carbon atoms, such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s- Butyl group, t-butyl group, n-pentyl group, 1-methylbutyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2 , 2-dimethylbutyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, cyclohexyl group, n-heptyl group, methylcyclohexyl group, n-octyl group, 2-ethylhexyl group, ethylcyclohexyl group, A dimethylcyclohexyl group, an n-nonyl group, a 3,5,5-trimethylhexyl group, and an n-decyl group are preferable, and a methyl group and a t-butyl group are more preferable. Arbitrariness.
 少なくとも一つの水素原子が置換されたアルキル基としては、トリフルオロメチル基(-CF3)、パーフルオロエチル基(-C25)、パーフルオロプロピル基(-C37)、パーフルオロブチル基(-C49)、パーフルオロヘキシル基(-C615)、パーフルオロヘプチル基(-C717)、パーフルオロオクチル基(-C819)、パーフルオロドデシル基(-C1227)、フルオロメチル基、ジフルオロメチル基、フルオロエチル基、ジフルオロロエチル基、トリフルオロエチル基、テトラフロロエチル基、ヘキサフロロ-i-プロピル基、トリフロロメチルシクロヘキシル基等のフッ素原子が1~27個置換した炭素数1~12の直鎖、分岐または環状のフッ素化アルキル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基、n-プロポキシエチル基、i-プロポキシエチル基、n-ブトキシエチル基、i-ブトキシエチル基、t-ブトキシエチル基、n-ヘキシルオキシエチル基、シクロヘキシルオキシエチル基、2-メトキシプロピル基、メトキシ-i-プロピル基、2-エトキシプロピル基、エトキシ-i-プロピル基、2-プロポキシプロピル基、2-プロポキシ-i-プロピル基、2-(2-メトキシエトキシ)エチル基、2-(2-エトキシエトキシ)エチル基等の炭素数1~10の直鎖、分岐または環状のアルコキシアルキル基、メチルチオメチル基、エチルチオメチル基、メチルチオエチル基、エチルチオエチル基、n-プロピルチオエチル基、i-プロピルチオエチル基、n-ブチルチオエチル基、i-ブチルチオエチル基、t-ブチルチオエチル基、n-ヘキシルチオエチル基、シクロヘキシルチオエチル基、2-メチルチオプロピル基、メチルチオ-i-プロピル基、2-エチルチオプロピル基、エチルチオ-i-プロピル基、2-プロピルチオプロピル基、プロピルチオ-i-プロピル基、2-(2-メチルチオエトキシ)エチル基、エチルチオエチルチオエチル基等の炭素数1~10の直鎖、分岐または環状のアルキルチオアルキル基、N-メチルアミノメチル基、N-メチルアミノエチル基、N-エチルアミノメチル基、N-エチルアミノエチル基、N,N-ジメチルアミノメチル基、N,N-ジエチルアミノメチル基、N,N-ジメチルアミノエチル基、N,N-ジエチルアミノエチル基等の炭素数1~10の直鎖、分岐または環状のN-アルキルアミノアルキル基、N,N-ジアルキルアミノアルキル基、ベンジル基、フェネチル基、トリルメチル基、ナフチルメチル基、ナフチルエチル基等のアラルキル基が挙げられ、トリフルオロメチル基(-CF3)、パーフルオロエチル基(-C25)、パーフルオロプロピル基(-C37)、パーフルオロブチル基(-C49)が好ましい。 Examples of the alkyl group substituted with at least one hydrogen atom include trifluoromethyl group (—CF 3 ), perfluoroethyl group (—C 2 F 5 ), perfluoropropyl group (—C 3 F 7 ), perfluoro Butyl group (—C 4 F 9 ), perfluorohexyl group (—C 6 F 15 ), perfluoroheptyl group (—C 7 F 17 ), perfluorooctyl group (—C 8 F 19 ), perfluorododecyl group Fluorine such as (—C 12 F 27 ), fluoromethyl group, difluoromethyl group, fluoroethyl group, difluororoethyl group, trifluoroethyl group, tetrafluoroethyl group, hexafluoro-i-propyl group, trifluoromethylcyclohexyl group C1-C12 linear, branched or cyclic fluorinated alkyl group substituted with 1-27 atoms, methoxymethyl group, ethoxymethyl group Methoxyethyl group, ethoxyethyl group, n-propoxyethyl group, i-propoxyethyl group, n-butoxyethyl group, i-butoxyethyl group, t-butoxyethyl group, n-hexyloxyethyl group, cyclohexyloxyethyl group, 2-methoxypropyl group, methoxy-i-propyl group, 2-ethoxypropyl group, ethoxy-i-propyl group, 2-propoxypropyl group, 2-propoxy-i-propyl group, 2- (2-methoxyethoxy) ethyl A straight-chain, branched or cyclic alkoxyalkyl group having 1 to 10 carbon atoms such as 2- (2-ethoxyethoxy) ethyl group, methylthiomethyl group, ethylthiomethyl group, methylthioethyl group, ethylthioethyl group, n -Propylthioethyl group, i-propylthioethyl group, n-butylthioethyl group, i-butyl Tilthioethyl group, t-butylthioethyl group, n-hexylthioethyl group, cyclohexylthioethyl group, 2-methylthiopropyl group, methylthio-i-propyl group, 2-ethylthiopropyl group, ethylthio-i-propyl group, 2 A linear, branched or cyclic alkylthioalkyl group having 1 to 10 carbon atoms, such as -propylthiopropyl group, propylthio-i-propyl group, 2- (2-methylthioethoxy) ethyl group, ethylthioethylthioethyl group, N -Methylaminomethyl group, N-methylaminoethyl group, N-ethylaminomethyl group, N-ethylaminoethyl group, N, N-dimethylaminomethyl group, N, N-diethylaminomethyl group, N, N-dimethylamino Linear, branched or cyclic having 1 to 10 carbon atoms such as ethyl group and N, N-diethylaminoethyl group N- alkylaminoalkyl group, N, N- dialkylaminoalkyl group, a benzyl group, phenethyl group, tolylmethyl group, naphthylmethyl group, an aralkyl group such as a naphthylethyl group, a trifluoromethyl group (-CF 3), A perfluoroethyl group (—C 2 F 5 ), a perfluoropropyl group (—C 3 F 7 ), and a perfluorobutyl group (—C 4 F 9 ) are preferable.
 前記置換されていてもよいアリール基としては、アリール基、少なくとも一つの水素原子が置換されたアリール基が挙げられる。なお、アリール基とは、単環式または多環式の芳香族炭化水素の環に結合した水素原子が1つ除去された構造を有する基である。 The aryl group which may be substituted includes an aryl group and an aryl group in which at least one hydrogen atom is substituted. The aryl group is a group having a structure in which one hydrogen atom bonded to a monocyclic or polycyclic aromatic hydrocarbon ring is removed.
 前記アリール基、少なくとも一つの水素原子が置換されたアリール基としては、単環でも多環でもよく、具体的には、フェニル基、トリル基、キシリル基、メシチル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,5-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2-エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ヘキシルフェニル基、シクロヘキシルフェニル基、オクチルフェニル基、1-ナフチル基、2-ナフチル基、2-メチル-1-ナフチル基、3-メチル-1-ナフチル基、4-メチル-1-ナフチル基、5-メチル-1-ナフチル基、6-メチル-1-ナフチル基、7-メチル-1-ナフチル基、8-メチル-1-ナフチル基、1-メチル-2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基、5-メチル-2-ナフチル基、6-メチル-2-ナフチル基、7-メチル-2-ナフチル基、8-メチル-2-ナフチル基、2-エチル-1-ナフチル基、アンスラニル基等の炭素数1~10の直鎖、分岐又は環状のアルキル基が置換したアリール基、3-メトキシフェニル基、4-メトキシフェニル基、2,3-ジメトキシフェニル基、2,4-ジメトキシフェニル基、2,5-ジメトキシフェニル基、2,6-ジメトキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3,6-ジメトキシフェニル基、2,3,4-トリメトキシフェニル基、2,3,5-トリメトキシフェニル基、2,3,6-トリメトキシフェニル基、2,4,5-トリメトキシフェニル基、2,4,6-トリメトキシフェニル基、3,4,5-トリメトキシフェニル基、2-エトキシフェニル基、プロポキシフェニル基、ブトキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、オクチルオキシフェニル基、2-メトキシ-1-ナフチル基、3-メトキシ-1-ナフチル基、4-メトキシ-1-ナフチル基、5-メトキシ-1-ナフチル基、6-メトキシ-1-ナフチル基、7-メトキシ-1-ナフチル基、8-メトキシ-1-ナフチル基、1-メトキシ-2-ナフチル基、3-メトキシ-2-ナフチル基、4-メトキシ-2-ナフチル基、5-メトキシ-2-ナフチル基、6-メトキシ-2-ナフチル基、7-メトキシ-2-ナフチル基、8-メトキシ-2-ナフチル基、2-エトキシ-1-ナフチル基等の炭素数1~10の直鎖、分岐又は環状のアルコキシ基が置換したアリール基、クロロフェニル基、ジクロロフェニル基、トリクロロフェニル基、ブロモフェニル基、ジブロモフェニル基、ヨードフェニル基、フロロフェニル基、ジフロロフェニル基、トリフロロフェニル基、テトラフロロフェニル基、ペンタフロロフェニル基等のハロゲン原子が置換したアリール基、トリフロロメチルフェニル基等のハロゲン化アルキル基が置換したアリール基、N,N-ジメチルアミノフェニル基、N,N-ジエチルアミノフェニル基、N-フェニル-N-メチルアミノフェニル基、N-トリル-N-エチルアミノフェニル基、N-クロロフェニル-N-シクロヘキシルアミノフェニル基、N,N-ジトリルアミノフェニル基等のN-モノ置換アミノ置換アリール基、N,N-ジ置換アミノアリール基、メチルチオフェニル基、エチルチオフェニル基、メチルチオナフチル基、フェニルチオフェニル基等のアルキルチオアリール基、アリールチオアリール基等が挙げられ、フェニル基、1-ナフチル基、2-ナフチル基が好ましい。 The aryl group and the aryl group substituted with at least one hydrogen atom may be monocyclic or polycyclic, specifically, phenyl group, tolyl group, xylyl group, mesityl group, 2,3,4-trimethyl. Phenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,5-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethyl Phenyl group, 2-ethylphenyl group, propylphenyl group, butylphenyl group, hexylphenyl group, cyclohexylphenyl group, octylphenyl group, 1-naphthyl group, 2-naphthyl group, 2-methyl-1-naphthyl group, 3- Methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl-1-naphthyl group, 6-methyl-1-naphthyl group, 7-methyl 1-naphthyl group, 8-methyl-1-naphthyl group, 1-methyl-2-naphthyl group, 3-methyl-2-naphthyl group, 4-methyl-2-naphthyl group, 5-methyl-2-naphthyl group, 1- to 10-carbon straight-chain, branched such as 6-methyl-2-naphthyl group, 7-methyl-2-naphthyl group, 8-methyl-2-naphthyl group, 2-ethyl-1-naphthyl group, anthranyl group Or an aryl group substituted with a cyclic alkyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2,3-dimethoxyphenyl group, 2,4-dimethoxyphenyl group, 2,5-dimethoxyphenyl group, 2,6 -Dimethoxyphenyl group, 3,4-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 3,6-dimethoxyphenyl group, 2,3,4-trimethoxyphenyl group, 2,3,5-tri Toxiphenyl group, 2,3,6-trimethoxyphenyl group, 2,4,5-trimethoxyphenyl group, 2,4,6-trimethoxyphenyl group, 3,4,5-trimethoxyphenyl group, 2- Ethoxyphenyl group, propoxyphenyl group, butoxyphenyl group, hexyloxyphenyl group, cyclohexyloxyphenyl group, octyloxyphenyl group, 2-methoxy-1-naphthyl group, 3-methoxy-1-naphthyl group, 4-methoxy-1 -Naphthyl group, 5-methoxy-1-naphthyl group, 6-methoxy-1-naphthyl group, 7-methoxy-1-naphthyl group, 8-methoxy-1-naphthyl group, 1-methoxy-2-naphthyl group, 3 -Methoxy-2-naphthyl group, 4-methoxy-2-naphthyl group, 5-methoxy-2-naphthyl group, 6-methoxy-2-naphthyl group Aryl substituted with a linear, branched or cyclic alkoxy group having 1 to 10 carbon atoms, such as an alkyl group, a 7-methoxy-2-naphthyl group, an 8-methoxy-2-naphthyl group, and a 2-ethoxy-1-naphthyl group Group, chlorophenyl group, dichlorophenyl group, trichlorophenyl group, bromophenyl group, dibromophenyl group, iodophenyl group, fluorophenyl group, difluorophenyl group, trifluorophenyl group, tetrafluorophenyl group, pentafluorophenyl group, etc. Aryl groups substituted with atoms, aryl groups substituted with halogenated alkyl groups such as trifluoromethylphenyl group, N, N-dimethylaminophenyl group, N, N-diethylaminophenyl group, N-phenyl-N-methylaminophenyl Group, N-tolyl-N-ethylaminophenyl group, N-chloropheny -N-monosubstituted amino substituted aryl groups such as N-cyclohexylaminophenyl group, N, N-ditolylaminophenyl group, N, N-disubstituted aminoaryl group, methylthiophenyl group, ethylthiophenyl group, methylthionaphthyl group An alkylthioaryl group such as phenylthiophenyl group, an arylthioaryl group, and the like, and a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable.
 前記置換されていてもよいヘテロアリール基としては、ヘテロアリール基、少なくとも一つの水素原子が置換されたヘテロアリール基が挙げられる。なお、ヘテロアリール基とは、単環式または多環式の複素環式芳香族化合物の環に結合した水素原子が1つ除去された構造を有する基である。 Examples of the optionally substituted heteroaryl group include a heteroaryl group and a heteroaryl group in which at least one hydrogen atom is substituted. The heteroaryl group is a group having a structure in which one hydrogen atom bonded to a ring of a monocyclic or polycyclic heterocyclic aromatic compound is removed.
 前記ヘテロアリール基、少なくとも一つの水素原子が置換されたヘテロアリール基としては、単環でも多環でもよい。具体的には、チエニル基、フラニル基、チアンスニル基、ピラニル基、イソベンゾフラニル基、クロメニル基、キサンテニル基、フェノキサンチニル基、2H-ピローリル基、ピローリル基、イミダゾリル基、ピラゾリル基、イソチアゾリル基、チアゾリル基、ベンゾイソチアゾリル基、ベンゾチアゾリル基、イソオキサゾリル基、オキサゾリル基、ベンゾイソオキサゾリル基、ベンゾオキサゾリル基、ピリジニル基、ピラジニル基、ピリミジニル基、インドーリル基、イソインドーリル基、キノニル基、イソキノニル基、オキサジアゾリル基、チアジアゾリル基およびそのアルキル基置換体、アリール基置換体、アルコキシ基置換体、アリールオキシ基置換体、ハロゲン原子置換体、アルコキシカルボニル基置換体、ニトリル基置換体等が挙げられ、チエニル基、フラニル基、ピリジニル基が好ましい。 The heteroaryl group and the heteroaryl group substituted with at least one hydrogen atom may be monocyclic or polycyclic. Specifically, thienyl group, furanyl group, thianthnyl group, pyranyl group, isobenzofuranyl group, chromenyl group, xanthenyl group, phenoxanthinyl group, 2H-pyrrolyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, isothiazolyl group , Thiazolyl group, benzoisothiazolyl group, benzothiazolyl group, isoxazolyl group, oxazolyl group, benzisoxazolyl group, benzoxazolyl group, pyridinyl group, pyrazinyl group, pyrimidinyl group, indolyl group, isoindodolyl group, quinonyl Group, isoquinonyl group, oxadiazolyl group, thiadiazolyl group and its alkyl group substituted product, aryl group substituted product, alkoxy group substituted product, aryloxy group substituted product, halogen atom substituted product, alkoxycarbonyl group substituted product, nitrile group substituted product, etc. Gerare, thienyl group, furanyl group, a pyridinyl group.
 前記アニオン配位子としては、下記一般式(II)で表される配位子群から選択される少なくとも一種の配位子であることが、波長変換シートの耐光性および波長変換特性の観点から好ましい。 The anion ligand is at least one ligand selected from the ligand group represented by the following general formula (II), from the viewpoint of the light resistance and wavelength conversion characteristics of the wavelength conversion sheet. preferable.
Figure JPOXMLDOC01-appb-C000009
 前記Eu錯体を構成する前記カウンターカチオンとしては、負に帯電しているユーロピウムアニオンの電荷を打ち消すことが可能なカチオンであればよいが、窒素原子およびリン原子から選択される少なくとも一種のヘテロ原子を含むカチオンであることが原料の入手容易さ、製造コストの観点から好ましい。
Figure JPOXMLDOC01-appb-C000009
The counter cation constituting the Eu complex may be any cation that can cancel the charge of the negatively charged europium anion, but at least one heteroatom selected from a nitrogen atom and a phosphorus atom may be used. It is preferable that it is a cation containing from a viewpoint of the availability of a raw material and manufacturing cost.
 また、前記カウンターカチオンとしては、下記一般式(III)~(V)のいずれかで表されるカチオンであることが好ましい。 The counter cation is preferably a cation represented by any one of the following general formulas (III) to (V).
Figure JPOXMLDOC01-appb-C000010
 (式(III)中、Zは窒素原子またはリン原子であり、式(III)~(V)中、R3、R4、R5、R6、R7、R8、R9、R10およびR11は、それぞれ独立に、水素原子、アルキル基、アルコキシアルキル基、アラルキル基またはアリール基であり、互いに結合して環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000010
(In the formula (III), Z represents a nitrogen atom or a phosphorus atom. In the formulas (III) to (V), R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 And R 11 each independently represents a hydrogen atom, an alkyl group, an alkoxyalkyl group, an aralkyl group or an aryl group, and may be bonded to each other to form a ring.
 前記アルキル基としてはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルプロピル基、2-エチルプロピル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、メチルシクロヘキシル基、n-オクチル基、2-エチルヘキシル基、エチルシクロヘキシル基、ジメチルシクロヘキシル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基等の炭素数1~10の直鎖、分岐または環状のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基がより好ましい。 Examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, n-pentyl group, 1-methylbutyl group and 2-methylbutyl group. 3-methylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylpropyl group, 2-ethylpropyl group, n-hexyl group, cyclohexyl group, Carbon number such as n-heptyl group, methylcyclohexyl group, n-octyl group, 2-ethylhexyl group, ethylcyclohexyl group, dimethylcyclohexyl group, n-nonyl group, 3,5,5-trimethylhexyl group, n-decyl group, etc. 1-10 linear, branched or cyclic alkyl groups are preferred, methyl group, ethyl group, n-propyl group, n-butyl group, n-hexyl group More preferable.
 前記アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基、n-プロポキシエチル基、i-プロポキシエチル基、n-ブトキシエチル基、i-ブトキシエチル基、t-ブトキシエチル基、n-ヘキシルオキシエチル基、シクロヘキシルオキシエチル基、2-メトキシプロピル基、メトキシ-i-プロピル基、2-エトキシプロピル基、エトキシ-i-プロピル基、2-プロポキシプロピル基、プロポキシ-i-プロピル基、メトキシエトキシエチル基、エトキシエトキシエチル基等の炭素数1~10の直鎖、分岐または環状のアルコキシアルキル基が好ましく、メトキシメチル基、メトキシエチル基、メトキシエトキシエチル基、2-メトキシプロピル基、エトキシエトキシエチル基がより好ましい。 Examples of the alkoxyalkyl group include methoxymethyl group, ethoxymethyl group, methoxyethyl group, ethoxyethyl group, n-propoxyethyl group, i-propoxyethyl group, n-butoxyethyl group, i-butoxyethyl group, t-butoxy group. Ethyl group, n-hexyloxyethyl group, cyclohexyloxyethyl group, 2-methoxypropyl group, methoxy-i-propyl group, 2-ethoxypropyl group, ethoxy-i-propyl group, 2-propoxypropyl group, propoxy-i -Linear, branched or cyclic alkoxyalkyl groups having 1 to 10 carbon atoms such as propyl group, methoxyethoxyethyl group, ethoxyethoxyethyl group, etc. are preferable, methoxymethyl group, methoxyethyl group, methoxyethoxyethyl group, 2-methoxy Propyl group, ethoxyethoxyethyl It is more preferable.
 前記アラルキル基としては通常、炭素数が7~12のアラルキル基が挙げられる。なお、アラルキル基とは、アルキル基の水素原子の一つがアリール基で置換された構造を有する基である。 As the aralkyl group, an aralkyl group having 7 to 12 carbon atoms is usually mentioned. The aralkyl group is a group having a structure in which one of hydrogen atoms of an alkyl group is substituted with an aryl group.
 前記アラルキル基としては、ベンジル基、フェネチル基(-C24-C65)、トリルメチル基、メトキシフェニルメチル基、ナフチルメチル基、ナフチルエチル基が挙げられ、ベンジル基、フェネチル基が好ましい。 Examples of the aralkyl group include a benzyl group, a phenethyl group (—C 2 H 4 —C 6 H 5 ), a tolylmethyl group, a methoxyphenylmethyl group, a naphthylmethyl group, and a naphthylethyl group, and a benzyl group and a phenethyl group are preferable. .
 前記アリール基としては、通常は炭素数が6~10のアリール基が挙げられる。アリール基としては、具体的には、フェニル基、トリル基、キシリル基、メシチル基、1-ナフチル基、2-ナフチル基等が挙げられ、フェニル基が好ましい。 Examples of the aryl group usually include aryl groups having 6 to 10 carbon atoms. Specific examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a mesityl group, a 1-naphthyl group, a 2-naphthyl group, and the like, and a phenyl group is preferable.
 前記カウンターカチオンとしては、としては、下記一般式(VI)で表されるカチオン群から選択される少なくとも一種のカチオンであることが、波長変換シートの耐光性および波長変換特性の観点から好ましい。 The counter cation is preferably at least one cation selected from the cation group represented by the following general formula (VI) from the viewpoint of light resistance and wavelength conversion characteristics of the wavelength conversion sheet.
Figure JPOXMLDOC01-appb-C000011
 本発明に用いられるEu錯体としては、市販されているものを用いてもよく、製造したものを用いてもよい。
Figure JPOXMLDOC01-appb-C000011
As Eu complex used for this invention, what is marketed may be used and what was manufactured may be used.
 本発明に用いられるEu錯体の製造方法としては、特に限定はないが、例えば以下の方法で製造することができる。本発明に用いられるEu錯体の製造方法としては、Eu元素を含む化合物と反応・配位することによりアニオン配位子となる化合物、および反応することによりカウンターカチオンとなる化合物が存在する溶液に、ユーロピウム(Eu)元素を含む化合物または該化合物の溶液を加え、反応させることにより、前記Eu錯体を製造する方法が挙げられる。 The production method of the Eu complex used in the present invention is not particularly limited, and for example, it can be produced by the following method. As a method for producing an Eu complex used in the present invention, in a solution in which a compound that becomes an anion ligand by reacting and coordinating with a compound containing an Eu element and a compound that becomes a counter cation by reacting are present, Examples include a method of producing the Eu complex by adding a compound containing a europium (Eu) element or a solution of the compound and reacting the compound.
 前記Eu錯体の製造方法としては、Eu元素を含む化合物、Eu元素を含む化合物と反応・配位することによりアニオン配位子となる化合物、および反応することによりカウンターカチオンとなる化合物が用いられる。 As a method for producing the Eu complex, a compound containing an Eu element, a compound that becomes an anionic ligand by reacting and coordinating with a compound containing an Eu element, and a compound that becomes a counter cation by reacting with it are used.
 前記Eu元素を含む化合物としては、例えば、ユーロピウムの塩化物、臭化物、酢酸塩、酸化物、これらの水和物等が挙げられる。前記Eu元素を含む化合物としては、前述のユーロピウムの塩化物、臭化物、これらの水和物が好ましい。 Examples of the compound containing Eu element include chlorides, bromides, acetates, oxides, and hydrates of europium. As the compound containing the Eu element, the aforementioned europium chloride, bromide, and hydrates thereof are preferable.
 前記Eu元素を含む化合物と反応・配位することによりアニオン配位子となる化合物としては、特に限定はない。前記アニオン配位子が、前記一般式(I)で表される配位子である場合には、Eu元素を含む化合物と反応・配位することによりアニオン配位子となる化合物としては下記一般式(I')で表される化合物が挙げられ、前記アニオン配位子が、前記一般式(II)で表される配位子群から選択される少なくとも一種の配位子である場合には、下記一般式(II')で表される化合物群から選択される少なくとも一種の化合物が挙げられる。 There is no particular limitation on the compound that becomes an anionic ligand by reacting and coordinating with the compound containing the Eu element. In the case where the anion ligand is a ligand represented by the general formula (I), the following general compounds can be used as the anion ligand by reacting and coordinating with a compound containing an Eu element. A compound represented by the formula (I ′), and when the anion ligand is at least one ligand selected from the ligand group represented by the general formula (II) And at least one compound selected from the group of compounds represented by the following general formula (II ′).
Figure JPOXMLDOC01-appb-C000012
 (式(I')中、R1、R2は、式(I)におけるR1、R2と同様である。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (I '), R 1, R 2 are the same as R 1, R 2 in formula (I).)
Figure JPOXMLDOC01-appb-C000013
 なお、前記一般式(I')で表される化合物、および前記一般式(II')で表される化合物群から選択される少なくとも一種の化合物は、所謂ケト‐エノール互変異性によって、ジケトン構造をとる場合と、式で示したように、ケトンおよびエノールからなる構造をとる場合があるが、本発明では両者を特に区別しないものとする。
Figure JPOXMLDOC01-appb-C000013
The compound represented by the general formula (I ′) and at least one compound selected from the group of compounds represented by the general formula (II ′) have a diketone structure by so-called keto-enol tautomerism. As shown in the formula, there are cases where a structure consisting of a ketone and an enol is taken, but in the present invention, the two are not particularly distinguished.
 なお、前記一般式(I')で表される化合物が、ジケトン構造をとった場合を例示すると以下のように一般式(I'')で表すことができる。すなわち、ジケトン構造と、ケトンおよびエノールからなる構造を区別しないとは、一般式(I')で表される化合物と、一般式(I'')で表される化合物とを区別しないことを意味する。 In addition, when the compound represented by the general formula (I ′) takes a diketone structure, it can be represented by the general formula (I ″) as follows. That is, not distinguishing a diketone structure from a structure comprising a ketone and an enol means not distinguishing a compound represented by the general formula (I ′) from a compound represented by the general formula (I ″). To do.
Figure JPOXMLDOC01-appb-C000014
 (式(I'')中、R1、R2は、式(I)におけるR1、R2と同様である。)
Figure JPOXMLDOC01-appb-C000014
(In the formula (I ''), R 1, R 2 are the same as R 1, R 2 in formula (I).)
 前記反応することによりカウンターカチオンとなる化合物としては、特に限定はない。反応することによりカウンターカチオンとなる化合物としては、前述のカウンターカチオンと、アニオンとの化合物であることが好ましい。該アニオンとしては、Cl-、Br-、I-等のハロゲン化物イオン、水酸化物イオン(OH-)等が挙げられる。 The compound that becomes a counter cation by the reaction is not particularly limited. The compound that becomes a counter cation by reacting is preferably a compound of the aforementioned counter cation and an anion. Examples of the anion include halide ions such as Cl , Br and I , hydroxide ions (OH ) and the like.
 以下、本発明に用いられるEu錯体を製造する方法についてより詳細に説明する。
 前記Eu錯体を製造する方法の例としては、まず前記Eu元素を含む化合物と反応・配位することによりアニオン配位子となる化合物を、溶媒に溶解させ、溶液(i)を得る。次いで、溶液(i)に反応することによりカウンターカチオンとなる化合物を加え、次いで塩基またはその水溶液を加え、溶液(ii)を得る。次いで、溶液(ii)にEu元素を含む化合物またはその水溶液を加え、本発明に用いるEu錯体を固形物として得る。最後に該固形物を任意の方法で回収、必要に応じて精製することにより本発明に用いるEu錯体を製造することができる。
Hereinafter, the method for producing the Eu complex used in the present invention will be described in more detail.
As an example of a method for producing the Eu complex, first, a compound that becomes an anionic ligand by reacting and coordinating with a compound containing the Eu element is dissolved in a solvent to obtain a solution (i). Next, a compound that becomes a counter cation by reacting with the solution (i) is added, and then a base or an aqueous solution thereof is added to obtain a solution (ii). Next, a compound containing an Eu element or an aqueous solution thereof is added to the solution (ii) to obtain the Eu complex used in the present invention as a solid. Finally, the Eu complex used in the present invention can be produced by recovering the solid by an arbitrary method and purifying it as necessary.
 前記溶媒としては通常は有機溶媒または有機溶媒と水との混合溶媒が用いられる。有機溶媒としては、好ましくは極性有機溶媒が用いられ、その具体例としては、テトラヒドロフラン(THF)、エタノール、メタノール、イソプロピルアルコール、ジオキサン等が挙げられる。 As the solvent, an organic solvent or a mixed solvent of an organic solvent and water is usually used. As the organic solvent, a polar organic solvent is preferably used, and specific examples thereof include tetrahydrofuran (THF), ethanol, methanol, isopropyl alcohol, dioxane and the like.
 前記塩基としては例えば、水酸化ナトリウム、トリエチルアミン等が挙げられる。
 なお、前記Eu元素を含む化合物と反応・配位することによりアニオン配位子となる化合物の使用量は、通常はEu元素を含む化合物1モルに対して、2~10モル、好ましくは3~8モル、より好ましくは4~6モルである。
Examples of the base include sodium hydroxide and triethylamine.
The amount of the compound that becomes an anion ligand by reacting and coordinating with the compound containing Eu element is usually 2 to 10 mol, preferably 3 to 1 mol per mol of the compound containing Eu element. The amount is 8 mol, more preferably 4 to 6 mol.
 また、反応することによりカウンターカチオンとなる化合物の使用量は、通常はEu元素を含む化合物1モルに対して、0.5~3モル、好ましくは0.8~2モル、より好ましくは1~1.5モルである。 The amount of the compound that becomes a counter cation by reacting is usually 0.5 to 3 mol, preferably 0.8 to 2 mol, more preferably 1 to 1 mol with respect to 1 mol of the compound containing Eu element. 1.5 moles.
 また、前記塩基の使用量としては、通常はEu元素を含む化合物1モルに対して、2~10モル、好ましくは3~8モル、より好ましくは4~6モルである。
 なお、前記方法によって、前記Eu錯体を製造する際には、通常は室温、常圧で行われるが、必要に応じて加熱、減圧、加圧等を行ってもよい。
The amount of the base used is usually 2 to 10 mol, preferably 3 to 8 mol, more preferably 4 to 6 mol, per 1 mol of the compound containing Eu element.
In addition, when manufacturing the said Eu complex by the said method, although it is normally performed at room temperature and a normal pressure, you may perform a heating, pressure reduction, pressurization, etc. as needed.
 [樹脂]
 本発明の太陽電池モジュール用波長変換シートは、上述のEu錯体および樹脂から形成される。
[resin]
The wavelength conversion sheet for a solar cell module of the present invention is formed from the above Eu complex and resin.
 前記樹脂としては、太陽電池モジュール用波長変換シートに従来から用いられてきた樹脂を制限なく用いることが可能である。前記樹脂としては例えば、ポリビニルブチラール等のポリビニルアセタール、アクリル系樹脂、ポリカーボネート、ポリスチレン、ポリオレフィン、ポリ塩化ビニル、エポキシ樹脂、フッ素樹脂、アイオノマー樹脂、エチレン-酢酸ビニル共重合体等が挙げられる。 As the resin, resins conventionally used for wavelength conversion sheets for solar cell modules can be used without limitation. Examples of the resin include polyvinyl acetal such as polyvinyl butyral, acrylic resin, polycarbonate, polystyrene, polyolefin, polyvinyl chloride, epoxy resin, fluororesin, ionomer resin, and ethylene-vinyl acetate copolymer.
 前記樹脂としては、メルトフローレート(MFR)(190℃、荷重2.16kg)が、好ましくは0.1~60g/10分であり、より好ましくは0.5~45g/10分である。
 また、本発明に用いられる樹脂は、太陽電池モジュール用波長変換シートを製造する際に架橋されてもよい。
The resin preferably has a melt flow rate (MFR) (190 ° C., load 2.16 kg) of 0.1 to 60 g / 10 minutes, more preferably 0.5 to 45 g / 10 minutes.
Moreover, the resin used in the present invention may be cross-linked when manufacturing a wavelength conversion sheet for a solar cell module.
 [太陽電池モジュール用波長変換シート]
 本発明の太陽電池モジュール用波長変換シートは、上述のEu錯体および樹脂から形成される。
[Wavelength conversion sheet for solar cell module]
The wavelength conversion sheet for a solar cell module of the present invention is formed from the above Eu complex and resin.
 本発明に用いるEu錯体は、耐光性と、太陽電池の発電効率の向上とのバランスに優れるため、長期間太陽光にさらされる太陽電池モジュールに用いられる波長変換シートとして用いることができる。 The Eu complex used in the present invention is excellent in the balance between light resistance and improvement in power generation efficiency of a solar cell, and therefore can be used as a wavelength conversion sheet used in a solar cell module exposed to sunlight for a long period of time.
 本発明に用いられる太陽電池モジュール用波長変換シートは、上述のEu錯体および樹脂を直接混合あるいは混練することにより得られた樹脂組成物をシート状に成形することにより製造してもよく、上述のEu錯体、樹脂および溶剤を含む樹脂溶液を調製した後に、溶剤を除去することにより樹脂組成物を得て、該樹脂組成物をシート状に成形することにより製造してもよく、前記樹脂溶液から溶剤を除去するのと同時に、シート状に成形することにより製造してもよい。 The wavelength conversion sheet for a solar cell module used in the present invention may be produced by molding a resin composition obtained by directly mixing or kneading the above-described Eu complex and a resin into a sheet shape. After preparing a resin solution containing an Eu complex, a resin and a solvent, a resin composition may be obtained by removing the solvent, and the resin composition may be formed into a sheet shape. You may manufacture by shape | molding in a sheet form simultaneously with removing a solvent.
 また、太陽電池モジュール用波長変換シートを製造する過程で、必要に応じてプレス成型等を行ってもよい。
 また、太陽電池モジュール用波長変換シートを製造する過程で、前記樹脂の架橋を行う場合には、架橋に必要な加熱等を行ってもよい。
Moreover, you may perform press molding etc. as needed in the process of manufacturing the wavelength conversion sheet for solar cell modules.
In addition, when the resin is crosslinked in the process of manufacturing the solar cell module wavelength conversion sheet, heating necessary for crosslinking may be performed.
 前記溶剤としては、クロロホルム、塩化メチレン、トルエン、THF、エタノール、N,N-ジメチルホルムアミド等が挙げられる。
 本発明の太陽電池モジュール用波長変換シートを構成する樹脂とEu錯体との割合としてはEu錯体を、樹脂100質量部に対して、通常は0.00001~30質量部含有し、好ましくは0.0001~20質量部含有し、より好ましくは0.001~10質量部含有する。
Examples of the solvent include chloroform, methylene chloride, toluene, THF, ethanol, N, N-dimethylformamide and the like.
As a ratio of the resin and the Eu complex constituting the wavelength conversion sheet for the solar cell module of the present invention, the Eu complex is usually contained in an amount of 0.00001 to 30 parts by mass with respect to 100 parts by mass of the resin. The content is from 0001 to 20 parts by mass, and more preferably from 0.001 to 10 parts by mass.
 また、前記樹脂溶液を調製する場合には前記樹脂溶液は、溶剤を、樹脂100質量部に対して、通常は100~10000質量部含有し、好ましくは500~8000質量部含有し、より好ましくは1000~5000質量部含有する。 In the case of preparing the resin solution, the resin solution usually contains 100 to 10,000 parts by mass, preferably 500 to 8000 parts by mass, more preferably 100 parts by mass of the solvent. Contains 1000 to 5000 parts by weight.
 また本発明の太陽電池モジュール用波長変換シートは、Eu錯体および樹脂に加えて、他の成分から形成されていてもよい。他の成分としては、例えば、架橋剤、架橋助剤、可塑剤、酸化防止剤、紫外線吸収剤、光安定剤、脱水剤、接着力調整剤、シランカップリング剤、顔料、重合開始剤、難燃剤、分散剤等が挙げられる。これらの添加剤の使用量としては、用途によっても異なるが通常は樹脂100質量部に対して0.001~50質量部の範囲で用いられる。 The wavelength conversion sheet for a solar cell module of the present invention may be formed from other components in addition to the Eu complex and the resin. Other components include, for example, a crosslinking agent, a crosslinking aid, a plasticizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a dehydrating agent, an adhesion modifier, a silane coupling agent, a pigment, a polymerization initiator, A flame retardant, a dispersing agent, etc. are mentioned. The amount of these additives used varies depending on the application, but is usually in the range of 0.001 to 50 parts by mass with respect to 100 parts by mass of the resin.
 前記架橋剤としては、例えば、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキシルイソプロピルカーボネート、t-ブチルパーオキシアセテート、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、メチルエチルケトンパーオキサイド、2,5-ジメチルヘキシル-2,5-ジパーオキシベンゾエート、t-ブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジベンゾイルパーオキサイド、p-クロルベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、エチル-3,3-ジ(t-ブチルパーオキシ)ブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイド、1,1-ジ(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、2,2-ジ(t-ブチルパーオキシ)ブタン等が挙げられる。添加量は特に限定されないが、樹脂と、Eu錯体との合計100重量部に対して、0.05~3重量部用いるのが好ましい。 Examples of the crosslinking agent include t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl isopropyl carbonate, t-butyl peroxyacetate, t-butyl. Cumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) Hexyne-3,2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1- Di (t-butylperoxy) cyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1, -Di (t-amylperoxy) cyclohexane, 2,2-di (t-butylperoxy) butane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-diperoxybenzoate, t-butyl hydroper Oxide, p-menthane hydroperoxide, dibenzoyl peroxide, p-chlorobenzoyl peroxide, t-butylperoxyisobutyrate, n-butyl-4,4-di (t-butylperoxy) valerate, ethyl- 3,3-di (t-butylperoxy) butyrate, hydroxyheptyl peroxide, dichlorohexanone peroxide, 1,1-di (t-butylperoxy) 3,3,5-trimethylcyclohexane, n-butyl-4 , 4-Di (t-butylperoxy) valerate, 2,2 Di (t-butylperoxy) butane, and the like. The addition amount is not particularly limited, but it is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the total of the resin and the Eu complex.
 前記架橋助剤としては、例えば、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等が挙げられる。添加量は特に限定されないが、樹脂と、Eu錯体との合計100重量部に対して、0.05~3重量部用いるのが好ましい。 Examples of the crosslinking aid include triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and the like. The addition amount is not particularly limited, but it is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the total of the resin and the Eu complex.
 前記可塑剤としては、例えば、3GO(トリエチレングリコールビス(2-エチルヘキサノエート))が挙げられる。
 前記シランカップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等が挙げられる。添加量は特に限定されないが、樹脂と、Eu錯体との合計100重量部に対して、0.05~3重量部用いるのが好ましい。
Examples of the plasticizer include 3GO (triethylene glycol bis (2-ethylhexanoate)).
Examples of the silane coupling agent include vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxy). (Cyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ- Examples include aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-chloropropyltrimethoxysilane. The addition amount is not particularly limited, but it is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the total of the resin and the Eu complex.
 前記光安定剤としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、N,N'-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セパレート、2-(3,5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)などが挙げられる。光安定剤の添加量は特に限定されないが、樹脂と、Eu錯体との合計100重量部に対して、0.01~3重量部用いるのが好ましい。 Examples of the light stabilizer include dimethyl succinate-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,3 , 3-Tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2, 6,6-tetramethyl-4-piperidyl) imino}], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2,6, 6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) separate, 2- (3,5 -Di-tert-4-hydroxybenze Bis-2-n-butylmalonate (1,2,2,6,6-pentamethyl-4-piperidyl) and the like. The addition amount of the light stabilizer is not particularly limited, but is preferably 0.01 to 3 parts by weight based on 100 parts by weight of the total of the resin and the Eu complex.
 本発明の太陽電池モジュール用波長変換シートは、Eu錯体を含有するため、紫外光~青色光を吸収し、結晶シリコンが高い光電変換効率を有する550~1000nmに波長変換することが可能であり、太陽電池セルの受光面側に該波長変換シートを配置させることにより、太陽電池モジュールの発電効率を向上させることが可能である。本発明の太陽電池モジュール用波長変換シートは、光電変換物質が結晶シリコンである太陽電池モジュール用の波長変換シートとして、特に好適に用いることができる。 Since the wavelength conversion sheet for solar cell module of the present invention contains an Eu complex, it can absorb ultraviolet light to blue light and can be wavelength-converted to 550 to 1000 nm in which crystalline silicon has high photoelectric conversion efficiency. By arranging the wavelength conversion sheet on the light receiving surface side of the solar battery cell, the power generation efficiency of the solar battery module can be improved. The wavelength conversion sheet for solar cell modules of the present invention can be particularly suitably used as a wavelength conversion sheet for solar cell modules in which the photoelectric conversion substance is crystalline silicon.
 本発明の太陽電池モジュール用波長変換シートの厚さとしては、通常は1~1000μmである。
 また、太陽電池モジュール用波長変換シートのサイズとしては、太陽電池モジュールのサイズによって、適宜決定されるが、通常は100~50000cm2である。
The thickness of the wavelength conversion sheet for a solar cell module of the present invention is usually 1 to 1000 μm.
The size of the solar cell module wavelength conversion sheet is appropriately determined depending on the size of the solar cell module, but is usually 100 to 50000 cm 2 .
 本発明の太陽電池モジュールとしては、前記太陽電池モジュール用波長変換シートをその構成部材の一つとして用いる。本発明の太陽電池モジュールとしては、少なくとも太陽電池セルと、前記太陽電池モジュール用波長変換シートとを有し、前記太陽電池セルの受光面側に、前記波長変換シートが配置される。また、反射光、散乱光を利用することを目的として、太陽電池セル裏面側に使用してもよい。 The solar cell module of the present invention uses the solar cell module wavelength conversion sheet as one of its constituent members. As a solar cell module of this invention, it has at least a photovoltaic cell and the said wavelength conversion sheet for solar cell modules, and the said wavelength conversion sheet is arrange | positioned at the light-receiving surface side of the said photovoltaic cell. Moreover, you may use for the photovoltaic cell back surface side for the purpose of utilizing reflected light and scattered light.
 本発明の太陽電池モジュールを構成する太陽電池セル、フロントカバー、バックカバー封止材等の各部材については、従来公知のものを用いることができる。また、反射防止膜等の太陽電池モジュールに用いる部材として公知のものを適宜用いることができる。 Conventionally known materials can be used for each member such as a solar battery cell, a front cover, and a back cover sealing material constituting the solar battery module of the present invention. Moreover, a well-known thing can be used suitably as members used for solar cell modules, such as an antireflection film.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 各実施例では、下記Eu錯体を用いた。
EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.
In each example, the following Eu complex was used.
Figure JPOXMLDOC01-appb-C000015
 比較例では、下記式(Y)で表される錯体(Eu(TTA)3Phen)を用いた。
Figure JPOXMLDOC01-appb-C000015
In the comparative example, a complex (Eu (TTA) 3 Phen) represented by the following formula (Y) was used.
Figure JPOXMLDOC01-appb-C000016
 上記A1は三井化学株式会社製ER-120を用い、上記Eu(TTA)3Phenは、東京化成工業株式会社製のものを用いた。
Figure JPOXMLDOC01-appb-C000016
The A1 used was ER-120 manufactured by Mitsui Chemicals, and the Eu (TTA) 3 Phen manufactured by Tokyo Chemical Industry Co., Ltd. was used.
 〔製造例1〕
 (A2の合成)
[Production Example 1]
(Synthesis of A2)
Figure JPOXMLDOC01-appb-C000017
 50mlのナスフラスコに、4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン(TTA;1.33g,6.00mmol)を量り取りエタノール(9ml)に溶解した。そこへ、室温にて1-メチル-3-ヘキシルイミダゾリウムブロマイド(371mg,1.50mmol)、1M 水酸化ナトリウム水溶液(6ml,6mmol)を順次加えた。その後、50℃の油浴にフラスコを移し、塩化ユウロピウム六水和物(366mg,1.00mmol)の水溶液(2ml)をゆっくりと滴下し、沈殿物を生成させた。これを室温に戻しデカンテーションした後、沈殿物を濾別し(桐山濾紙No.5C)、水で洗浄した。得られた粉末をエタノールにて再結晶し乾燥後、目的物(A2)を白色粉末として862mg得た(収率71%)。
Figure JPOXMLDOC01-appb-C000017
In a 50 ml eggplant flask, 4,4,4-trifluoro-1-thienyl-1,3-butanedione (TTA; 1.33 g, 6.00 mmol) was weighed and dissolved in ethanol (9 ml). Thereto, 1-methyl-3-hexylimidazolium bromide (371 mg, 1.50 mmol) and 1M aqueous sodium hydroxide solution (6 ml, 6 mmol) were sequentially added at room temperature. Thereafter, the flask was transferred to an oil bath at 50 ° C., and an aqueous solution (2 ml) of europium chloride hexahydrate (366 mg, 1.00 mmol) was slowly added dropwise to produce a precipitate. After returning to room temperature and decanting, the precipitate was filtered off (Kiriyama filter paper No. 5C) and washed with water. The obtained powder was recrystallized from ethanol and dried to obtain 862 mg of the desired product (A2) as a white powder (yield 71%).
 得られた目的物の1H-NMRスペクトルを、NMR測定装置(Avance400、BRUKER製)を用いて測定した。
 1H-NMR(400MHz,CDCl3):9.73(s,1H), 9.65(s,3H), 9.20(s,1H), 7.29(m,5H), 7.22(d,J=3.1Hz,4H), 6.96(dd,J=4.9,3.1Hz,4H), 4.01(s,4H), 3.55(m,2H), 2.23(m,2H),  1.60(m,4H), 1.43(m,2H), 0.87(t,J=7.3Hz,3H).
The 1 H-NMR spectrum of the obtained target product was measured using an NMR measuring apparatus (Avance 400, manufactured by BRUKER).
1 H-NMR (400 MHz, CDCl 3 ): 9.73 (s, 1H), 9.65 (s, 3H), 9.20 (s, 1H), 7.29 (m, 5H), 7.22 (D, J = 3.1 Hz, 4H), 6.96 (dd, J = 4.9, 3.1 Hz, 4H), 4.01 (s, 4H), 3.55 (m, 2H), 2 .23 (m, 2H), 1.60 (m, 4H), 1.43 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H).
 〔製造例2〕
 (A3の合成)
[Production Example 2]
(Synthesis of A3)
Figure JPOXMLDOC01-appb-C000018
 25mlのナスフラスコに、4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン(TTA;933mg,4.20mmol)を量り取りエタノール(5ml)に溶解した。そこへ、室温にてテトラブチルホスホニウムブロマイド(373mg,1.10mmol)、1M 水酸化ナトリウム水溶液(4.2ml,4.2mmol)を順次加え、溶解確認後、塩化ユウロピウム六水和物(366mg,1.00mmol)の水溶液(2ml)をゆっくりと滴下した。30分撹拌後、反応液に水を加え、生じた沈殿物を遠心分離し、エタノールで洗浄した。湿った固体を80℃で2時間真空乾燥し、目的物(A3)を白色粉末として827mg得た(収率65%)。
Figure JPOXMLDOC01-appb-C000018
In a 25 ml eggplant flask, 4,4,4-trifluoro-1-thienyl-1,3-butanedione (TTA; 933 mg, 4.20 mmol) was weighed and dissolved in ethanol (5 ml). Thereto, tetrabutylphosphonium bromide (373 mg, 1.10 mmol), 1M aqueous sodium hydroxide solution (4.2 ml, 4.2 mmol) were sequentially added at room temperature. After dissolution was confirmed, europium chloride hexahydrate (366 mg, 1 .00 mmol) aqueous solution (2 ml) was slowly added dropwise. After stirring for 30 minutes, water was added to the reaction solution, and the resulting precipitate was centrifuged and washed with ethanol. The wet solid was vacuum-dried at 80 ° C. for 2 hours to obtain 827 mg of the target product (A3) as a white powder (yield 65%).
 得られた目的物の1H-NMRスペクトルを、NMR測定装置(Avance400、BRUKER製)を用いて測定した。
 1H-NMR(400MHz,CDCl3):7.18(m,8H), 7.00(d,J=4.8Hz,4H), 6.87(m,4H), 6.66(d,J=4.0Hz,4H), 3.99(s,4H), 3.66(m,8H), 2.23(q,J=7.2Hz,8H), 1.47(t,J=7.2Hz,12H).
The 1 H-NMR spectrum of the obtained target product was measured using an NMR measuring apparatus (Avance 400, manufactured by BRUKER).
1 H-NMR (400 MHz, CDCl 3 ): 7.18 (m, 8H), 7.00 (d, J = 4.8 Hz, 4H), 6.87 (m, 4H), 6.66 (d, J = 4.0 Hz, 4H), 3.99 (s, 4H), 3.66 (m, 8H), 2.23 (q, J = 7.2 Hz, 8H), 1.47 (t, J = 7.2 Hz, 12H).
 〔製造例3〕
 (A4の合成)
[Production Example 3]
(Synthesis of A4)
Figure JPOXMLDOC01-appb-C000019
 25mlのナスフラスコに、4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン(TTA;933mg,4.20mmol)を量り取りエタノール(5ml)に溶解した。そこへ、室温にてブチルピリジニウムブロマイド(238mg,1.10mmol)、1M 水酸化ナトリウム水溶液(4.2ml,4.2mmol)を順次加え、溶解確認後、塩化ユウロピウム六水和物(366mg,1.00mmol)の水溶液(2ml)をゆっくりと滴下した。30分撹拌後、反応液に水を加え、生じた沈殿物を遠心分離し、エタノールで洗浄した。湿った固体を80℃で2時間真空乾燥し、目的物(A4)を白色粉末として659mg得た(収率56%)。
Figure JPOXMLDOC01-appb-C000019
In a 25 ml eggplant flask, 4,4,4-trifluoro-1-thienyl-1,3-butanedione (TTA; 933 mg, 4.20 mmol) was weighed and dissolved in ethanol (5 ml). Thereto, butylpyridinium bromide (238 mg, 1.10 mmol) and 1M aqueous sodium hydroxide solution (4.2 ml, 4.2 mmol) were sequentially added at room temperature. After confirmation of dissolution, europium chloride hexahydrate (366 mg, 1.10). 00 mmol) aqueous solution (2 ml) was slowly added dropwise. After stirring for 30 minutes, water was added to the reaction solution, and the resulting precipitate was centrifuged and washed with ethanol. The wet solid was vacuum dried at 80 ° C. for 2 hours to obtain 659 mg of the target product (A4) as a white powder (yield 56%).
 〔製造例4〕
 (A5の合成)
[Production Example 4]
(Synthesis of A5)
Figure JPOXMLDOC01-appb-C000020
 25mlのナスフラスコに、4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン(TTA;933mg,4.20mmol)を量り取りエタノール(5ml)に溶解した。そこへ、室温にてブチルメチルピロリジニウムブロマイド(238mg,1.10mmol)、1M 水酸化ナトリウム水溶液(4.2ml,4.2mmol)を順次加え、溶解確認後、塩化ユウロピウム六水和物(366mg,1.00mmol)の水溶液(2ml)をゆっくりと滴下した。30分撹拌後、反応液に水を加え、生じた沈殿物を遠心分離し、エタノールで洗浄した。湿った固体を80℃で2時間真空乾燥し、目的物(A5)を白色粉末として745mg得た(収率63%)。
Figure JPOXMLDOC01-appb-C000020
In a 25 ml eggplant flask, 4,4,4-trifluoro-1-thienyl-1,3-butanedione (TTA; 933 mg, 4.20 mmol) was weighed and dissolved in ethanol (5 ml). Thereto, butylmethylpyrrolidinium bromide (238 mg, 1.10 mmol) and 1M aqueous sodium hydroxide solution (4.2 ml, 4.2 mmol) were sequentially added at room temperature. After dissolution was confirmed, europium chloride hexahydrate (366 mg) , 1.00 mmol) aqueous solution (2 ml) was slowly added dropwise. After stirring for 30 minutes, water was added to the reaction solution, and the resulting precipitate was centrifuged and washed with ethanol. The wet solid was vacuum dried at 80 ° C. for 2 hours to obtain 745 mg of the target product (A5) as a white powder (yield 63%).
 〔製造例5〕
 (A6の合成)
[Production Example 5]
(Synthesis of A6)
Figure JPOXMLDOC01-appb-C000021
 25mlのナスフラスコに、4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン(TTA;933mg,4.20mmol)を量り取りエタノール(5ml)に溶解した。そこへ、室温にてジメチルブチルイミダゾリウムクロライド(208mg,1.10mmol)、1M 水酸化ナトリウム水溶液(4.2ml,4.2mmol)を順次加え、溶解確認後、塩化ユウロピウム六水和物(366mg,1.00mmol)の水溶液(2ml)をゆっくりと滴下した。30分撹拌後、反応液に水を加え、生じた沈殿物を遠心分離し、エタノールで洗浄した。湿った固体を80℃で2時間真空乾燥し、目的物(A6)を白色粉末として666mg得た(収率56%)。
Figure JPOXMLDOC01-appb-C000021
In a 25 ml eggplant flask, 4,4,4-trifluoro-1-thienyl-1,3-butanedione (TTA; 933 mg, 4.20 mmol) was weighed and dissolved in ethanol (5 ml). Thereto, dimethylbutylimidazolium chloride (208 mg, 1.10 mmol) and 1M aqueous sodium hydroxide solution (4.2 ml, 4.2 mmol) were sequentially added at room temperature. After dissolution was confirmed, europium chloride hexahydrate (366 mg, 1.00 mmol) of an aqueous solution (2 ml) was slowly added dropwise. After stirring for 30 minutes, water was added to the reaction solution, and the resulting precipitate was centrifuged and washed with ethanol. The wet solid was vacuum dried at 80 ° C. for 2 hours to obtain 666 mg of the target product (A6) as a white powder (yield 56%).
 〔実施例、比較例〕
 (シート作製法1)
 熱可塑性樹脂100質量部とEu錯体0.2質量部をミニロール(小平製作所製)に投入し、60℃で混練した後、さらに架橋剤0.6質量部、架橋助剤0.6質量部、シランカップリング剤0.3質量部を加え混練した。得られたシートを、200μm厚の型枠を使用して100℃で4分プレスして、均一な厚みの太陽電池モジュール用波長変換シート1を得た。
Examples and comparative examples
(Sheet preparation method 1)
100 parts by weight of thermoplastic resin and 0.2 parts by weight of Eu complex are put into a mini roll (manufactured by Kodaira Seisakusho) and kneaded at 60 ° C., and then 0.6 parts by weight of a crosslinking agent and 0.6 parts by weight of a crosslinking aid. Then, 0.3 parts by mass of a silane coupling agent was added and kneaded. The obtained sheet was pressed at 100 ° C. for 4 minutes using a 200 μm-thick mold to obtain a wavelength conversion sheet 1 for a solar cell module having a uniform thickness.
 なお、熱可塑性樹脂、Eu錯体、架橋剤、架橋助剤、シランカップリング剤の種類は下記の通りである。
 熱可塑性樹脂:三井・デュポンポリケミカル社製(エバフレックスV523、エチレン酢酸ビニル共重合体、酢酸ビニル含有量:33%、MFR:14g/10min(190℃、荷重2.16kg))
 Eu錯体:実施例1~6では、それぞれEu錯体A1~A6、比較例1ではEu(TTA)3Phen
 架橋剤:t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート
 架橋助剤:トリアリルイソシアヌレート
 シランカップリング剤:γ-メタクリロキシプロピルトリメトキシシラン
In addition, the kind of thermoplastic resin, Eu complex, a crosslinking agent, a crosslinking adjuvant, and a silane coupling agent is as follows.
Thermoplastic resin: manufactured by Mitsui DuPont Polychemical Co., Ltd. (Evaflex V523, ethylene vinyl acetate copolymer, vinyl acetate content: 33%, MFR: 14 g / 10 min (190 ° C., load 2.16 kg))
Eu complexes: In Examples 1 to 6, Eu complexes A1 to A6, respectively, and in Comparative Example 1, Eu (TTA) 3 Phen
Crosslinking agent: t-butylperoxy-2-ethylhexyl monocarbonate Crosslinking aid: triallyl isocyanurate Silane coupling agent: γ-methacryloxypropyltrimethoxysilane
 (シート作製法2)
 トルエン2500質量部に熱可塑性樹脂100質量部を加え、撹拌しながら70℃で30分かけて樹脂を完全に溶解した。0.2質量部となるようEu錯体を秤量して、N,N-ジメチルホルムアミド2.5質量部に溶解させた後、トルエンで共洗いしながら樹脂中に全量滴下した。その溶液をPTFEのバット内に流し入れ溶剤を揮発させた後、バットごと70℃で3時間真空乾燥した。得られたシートをバットから回収して、200μm厚の型枠を使用して100℃で4分プレスして、均一な厚みの太陽電池モジュール用波長変換シート2を得た。
(Sheet preparation method 2)
100 parts by mass of a thermoplastic resin was added to 2500 parts by mass of toluene, and the resin was completely dissolved at 70 ° C. over 30 minutes while stirring. The Eu complex was weighed to 0.2 parts by weight, dissolved in 2.5 parts by weight of N, N-dimethylformamide, and then added dropwise to the resin while co-washing with toluene. The solution was poured into a PTFE vat to volatilize the solvent, and then the vat was vacuum dried at 70 ° C. for 3 hours. The obtained sheet was recovered from the bat and pressed at 100 ° C. for 4 minutes using a 200 μm-thick mold to obtain a wavelength conversion sheet 2 for a solar cell module having a uniform thickness.
 なお、熱可塑性樹脂、Eu錯体の種類は下記の通りである。
 熱可塑性樹脂:三井・デュポンポリケミカル社製(エバフレックスV523、エチレン酢酸ビニル共重合体、酢酸ビニル含有量:33%、MFR:14g/10min(190℃、荷重2.16kg))
 Eu錯体:実施例1~6では、それぞれEu錯体A1~A6、比較例1ではEu(TTA)3Phen
In addition, the kind of thermoplastic resin and Eu complex is as follows.
Thermoplastic resin: manufactured by Mitsui DuPont Polychemical Co., Ltd. (Evaflex V523, ethylene vinyl acetate copolymer, vinyl acetate content: 33%, MFR: 14 g / 10 min (190 ° C., load 2.16 kg))
Eu complexes: In Examples 1 to 6, Eu complexes A1 to A6, respectively, and in Comparative Example 1, Eu (TTA) 3 Phen
 (耐光性評価法)
 太陽電池モジュール用波長変換シート1を透明基板(ガラス、厚さ1.5mm)で挟んで積層した。その後、真空ラミネーターによる真空下で、150℃、5分間加熱、15分間加熱圧着して、封止材を架橋させ、耐久性試験用サンプルを作製した。この耐久性試験用サンプルの初期蛍光強度を分光蛍光光度計(日立ハイテク製)により測定し、加速試験により光劣化を促進させた際の蛍光強度の保持率を初期値100として評価した。
(Light resistance evaluation method)
The wavelength conversion sheet 1 for solar cell modules was laminated | stacked on both sides of the transparent substrate (glass, thickness 1.5mm). Then, under a vacuum with a vacuum laminator, 150 ° C., 5 minutes of heating, and 15 minutes of thermocompression bonding were carried out to crosslink the sealing material, thereby preparing a sample for durability test. The initial fluorescence intensity of the sample for durability test was measured with a spectrofluorometer (manufactured by Hitachi High-Tech), and the retention rate of fluorescence intensity when light degradation was promoted by an acceleration test was evaluated as an initial value of 100.
 加速試験は、スーパーキセノンウェザーメーター(スガ試験機製)により、耐久性試験用サンプルを温度65℃、湿度50%RH、照射照度180W/m2の環境下、50、100、150時間静置の条件により行った。 The acceleration test was performed by using a super xenon weather meter (manufactured by Suga Test Instruments) and leaving the sample for durability test at a temperature of 65 ° C., a humidity of 50% RH, and an irradiation illuminance of 180 W / m 2 for 50, 100, and 150 hours. It went by.
 (電流値評価法)
 300Wソーラーシミュレーター(Newport Stratford製)下に設置した太陽電池セル上に、太陽電池モジュール用波長変換シート2を密着させ、10分間光を照射した後、電流値を太陽電池分析計(PROVA製)により測定した。
(Current value evaluation method)
The solar cell module wavelength conversion sheet 2 is brought into close contact with a solar battery cell installed under a 300 W solar simulator (manufactured by Newport Stratford), irradiated with light for 10 minutes, and then the current value is measured by a solar battery analyzer (manufactured by PROVA). It was measured.
 測定された電流値から、太陽電池モジュール用波長変換シート2を用いずに測定した電流値を引いた値を電流上昇値とした。
 耐光性および電流値の測定結果を表1に示す。
A value obtained by subtracting a current value measured without using the solar cell module wavelength conversion sheet 2 from the measured current value was defined as a current increase value.
Table 1 shows the measurement results of light resistance and current value.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

Claims (7)

  1.  4個のアニオン配位子が配位したユーロピウムアニオンとカウンターカチオンとからなる塩構造を有する化合物および樹脂から形成される太陽電池モジュール用波長変換シート。 A wavelength conversion sheet for a solar cell module formed from a compound having a salt structure consisting of a europium anion coordinated by four anionic ligands and a counter cation, and a resin.
  2.  前記アニオン配位子が2座配位子である請求項1に記載の太陽電池モジュール用波長変換シート。 The wavelength conversion sheet for a solar cell module according to claim 1, wherein the anion ligand is a bidentate ligand.
  3.  前記アニオン配位子が、下記一般式(I)で表される配位子である請求項1に記載の太陽電池モジュール用波長変換シート。
    Figure JPOXMLDOC01-appb-C000001
     (式(I)中、R1、R2は、それぞれ独立に、置換されていてもよいアルキル基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基である。)
    The wavelength conversion sheet for a solar cell module according to claim 1, wherein the anion ligand is a ligand represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I), R 1 and R 2 are each independently an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.)
  4.  前記アニオン配位子が、下記一般式(II)で表される配位子群から選択される少なくとも一種の配位子である請求項1に記載の太陽電池モジュール用波長変換シート。
    Figure JPOXMLDOC01-appb-C000002
    The wavelength conversion sheet for a solar cell module according to claim 1, wherein the anion ligand is at least one ligand selected from a ligand group represented by the following general formula (II).
    Figure JPOXMLDOC01-appb-C000002
  5.  前記カウンターカチオンが、窒素原子およびリン原子から選択される少なくとも一種のヘテロ原子を含むカチオンである請求項1~4のいずれか一項に記載の太陽電池モジュール用波長変換シート。 The wavelength conversion sheet for a solar cell module according to any one of claims 1 to 4, wherein the counter cation is a cation containing at least one hetero atom selected from a nitrogen atom and a phosphorus atom.
  6.  前記カウンターカチオンが、下記一般式(III)~(V)のいずれかで表されるカチオンである請求項1~4のいずれか一項に記載の太陽電池モジュール用波長変換シート。
    Figure JPOXMLDOC01-appb-C000003
     (式(III)中、Zは窒素原子またはリン原子であり、式(III)~(V)中、R3、R4、R5、R6、R7、R8、R9、R10およびR11は、それぞれ独立に、水素原子、アルキル基、アルコキシアルキル基、アラルキル基またはアリール基であり、互いに結合して環を形成していてもよい。)
    The wavelength conversion sheet for a solar cell module according to any one of claims 1 to 4, wherein the counter cation is a cation represented by any one of the following general formulas (III) to (V).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (III), Z represents a nitrogen atom or a phosphorus atom. In the formulas (III) to (V), R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 And R 11 each independently represents a hydrogen atom, an alkyl group, an alkoxyalkyl group, an aralkyl group or an aryl group, and may be bonded to each other to form a ring.
  7.  少なくとも太陽電池セルと、請求項1~6のいずれか一項に記載の波長変換シートとを有し、
     前記太陽電池セルの受光面側に、前記波長変換シートが配置されることを特徴とする太陽電池モジュール。
    Having at least solar cells and the wavelength conversion sheet according to any one of claims 1 to 6,
    The solar cell module, wherein the wavelength conversion sheet is disposed on a light receiving surface side of the solar cell.
PCT/JP2014/077201 2013-11-28 2014-10-10 Wavelength conversion sheet for solar cell module and solar cell module WO2015079813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013246159 2013-11-28
JP2013-246159 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015079813A1 true WO2015079813A1 (en) 2015-06-04

Family

ID=53198766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077201 WO2015079813A1 (en) 2013-11-28 2014-10-10 Wavelength conversion sheet for solar cell module and solar cell module

Country Status (1)

Country Link
WO (1) WO2015079813A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111914A (en) * 2018-07-25 2019-01-01 合肥工业大学 A kind of ultraviolet enhanced film of rare earth compounding
JPWO2018181328A1 (en) * 2017-03-29 2020-02-13 積水化学工業株式会社 Laser light detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191884A (en) * 1987-02-03 1988-08-09 Mitsui Toatsu Chem Inc Luminescent resin composition
JPS646085A (en) * 1987-06-30 1989-01-10 Mitsui Toatsu Chemicals Luminescent compound and ink composition and resin composition containing same
JPS6426583A (en) * 1987-07-21 1989-01-27 Mitsui Toatsu Chemicals Luminescent compound and ink composition and polymer composition containing said compound
JPH07202243A (en) * 1993-12-28 1995-08-04 Bridgestone Corp Solar cell module
WO2008047427A1 (en) * 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Fluorescent resin composition and solar battery module using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191884A (en) * 1987-02-03 1988-08-09 Mitsui Toatsu Chem Inc Luminescent resin composition
JPS646085A (en) * 1987-06-30 1989-01-10 Mitsui Toatsu Chemicals Luminescent compound and ink composition and resin composition containing same
JPS6426583A (en) * 1987-07-21 1989-01-27 Mitsui Toatsu Chemicals Luminescent compound and ink composition and polymer composition containing said compound
JPH07202243A (en) * 1993-12-28 1995-08-04 Bridgestone Corp Solar cell module
WO2008047427A1 (en) * 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Fluorescent resin composition and solar battery module using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181328A1 (en) * 2017-03-29 2020-02-13 積水化学工業株式会社 Laser light detector
EP3604246A4 (en) * 2017-03-29 2020-11-25 Sekisui Chemical Co., Ltd. Laser light detection tool
CN109111914A (en) * 2018-07-25 2019-01-01 合肥工业大学 A kind of ultraviolet enhanced film of rare earth compounding
CN109111914B (en) * 2018-07-25 2021-06-01 合肥工业大学 Rare earth complex ultraviolet-enhanced film

Similar Documents

Publication Publication Date Title
JP5361387B2 (en) Fluorescent resin composition and solar cell module using the same
JP6488277B2 (en) Wavelength conversion film having multiple light stable organic chromophores
CN102977554B (en) Epoxy/organosilicon co-curing composite material for LED packaging and preparation method
JP2006269373A (en) Dye-sensitized solar cell
WO2015168439A1 (en) Inorganic oxide coated fluorescent chromophores for use in highly photostable wavelength conversion films
CN117025208B (en) Composite light conversion powder, preparation method thereof and light conversion adhesive film
Kataoka et al. Drastically improved durability and efficiency of silicon solar cells using hyper-stable lanthanide coordination polymer beads
WO2016112200A1 (en) Thermal regulating wavelength conversion films incorporating phase change materials
WO2016152524A1 (en) Europium complex salt and use thereof
JP2013133447A (en) Phosphor composite material
TWI731941B (en) Ion capture agent for solar cell, and solar cell encapsulant composition containing it, and solar cell module
Dai et al. Tuning solar absorption spectra via carbon quantum dots/VAE composite layer and efficiency enhancement for crystalline Si solar module
WO2015079813A1 (en) Wavelength conversion sheet for solar cell module and solar cell module
CN103739926A (en) Fluorescent EVA (ethylene-vinyl acetate) glue film
CN104362205B (en) A kind of preparation method of solar cell backboard based on modified fluoropolymer
WO2016006380A1 (en) Europium (iii) complex and use thereof
KR101587829B1 (en) Dye sensitized sola cell and dye compond used therefin
EP3352185B1 (en) Photoelectric conversion element, dye-sensitized solar cell, dye composition, and oxide semiconductor electrode
Song et al. Synthesis and characterization of polymer electrolytes containing phenothiazine-based click polymers for dye-sensitized solar cell applications
CN104479678A (en) Preparation method of fluorescent powder for wavelength conversion and solar battery assembly and preparation method thereof
WO2014065189A1 (en) Rare earth complex and application for same
JPWO2014065190A1 (en) Rare earth complex and use of the complex
JP2015207648A (en) solar cell module
KR101508564B1 (en) Derivatives of squaraine, dye for dye-sensitized solar cells and dye-sensitized solar cells
JP2015207572A (en) solar cell module and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP