WO2014065189A1 - Rare earth complex and application for same - Google Patents

Rare earth complex and application for same Download PDF

Info

Publication number
WO2014065189A1
WO2014065189A1 PCT/JP2013/078193 JP2013078193W WO2014065189A1 WO 2014065189 A1 WO2014065189 A1 WO 2014065189A1 JP 2013078193 W JP2013078193 W JP 2013078193W WO 2014065189 A1 WO2014065189 A1 WO 2014065189A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
ligand
earth element
complex
general formula
Prior art date
Application number
PCT/JP2013/078193
Other languages
French (fr)
Japanese (ja)
Inventor
上遠野 正孝
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2014065189A1 publication Critical patent/WO2014065189A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/92Ketonic chelates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/22Radicals substituted by doubly bound hetero atoms, or by two hetero atoms other than halogen singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to rare earth complexes and uses of the complexes.
  • Wind power, solar power, geothermal heat, etc. are attracting attention as clean energy sources that have no emissions that affect the environment.
  • Solar cells capable of directly converting sunlight into electrical energy are a promising source of electrical energy and have been actively put into practical use in recent years.
  • Solar cells photoelectrically convert sunlight into electrical energy using photoelectric conversion materials, but the wavelength of light that can be effectively converted by photoelectric conversion materials is determined for each material, and other wavelengths are effective. It was not available.
  • Crystalline silicon solar cells using crystalline silicon as a photoelectric conversion material have been put into practical use as typical solar cells.
  • crystalline silicon has low sensitivity to ultraviolet rays contained in a large amount of sunlight, and power generation efficiency is low. It was about 10 to 20%.
  • a wavelength conversion type solar cell encapsulating sheet containing a fluorescent material having an absorption wavelength peak at 300 to 450 nm and an ultraviolet absorber is known (see, for example, Patent Document 1).
  • Patent Document 1 by providing the wavelength conversion type solar cell encapsulating sheet on the light receiving surface side of the solar cell, the wavelength of ultraviolet light contained in sunlight is converted, and the power generation efficiency of the solar cell is improved.
  • the purpose of this sheet is to ensure the weather resistance of the sheet by containing an ultraviolet absorber.
  • a fluorescent resin composition comprising an organic rare earth metal complex that emits fluorescence in the wavelength range of 550 to 900 nm and an ethylene-vinyl acetate copolymer is used as a sealant between the front cover and the crystalline silicon cell.
  • a solar cell module has been proposed (see, for example, Patent Document 2). In patent document 2, the power generation efficiency of a solar cell is raised by using the said sealing agent.
  • the present invention has been made in view of the above prior art, and absorbs ultraviolet light to blue light, which can be used as a wavelength conversion sheet used as a constituent member of a solar cell module or the like, or as a sealant.
  • An object of the present invention is to provide a rare earth complex that emits light and has light resistance superior to a conventionally known europium complex, and uses of the complex.
  • the rare earth complex of the present invention is a complex containing at least one kind of rare earth element selected from Pr, Eu, Sm, Tb, Dy, Ho, and Er, and includes the following general formula (A): At least one ligand (a) selected from the group of ligands represented by formula (1) is coordinated with 0.8 to 1.7 per rare earth element, and the rare earth element has the following general formula: At least one ligand (b) selected from the ligand group represented by (B) is coordinated 0.8 to 1.2 per rare earth element, At least one ligand (c) selected from the group of ligands represented by the following general formula (C) is coordinated with 0 to 1.4 per rare earth element, and the rare earth element 1 When the number of ligands (a) per unit is ⁇ and the number
  • X 1 and X 2 are each independently an aromatic ring, a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , — C 2 F 5 , —C 3 F 7 , or —C 4 F 9. )
  • the rare earth complex preferably contains at least one rare earth element selected from Eu, Sm, and Tb.
  • the 2 ⁇ + ⁇ is preferably 3.0.
  • the resin composition of the present invention contains the rare earth complex and a resin.
  • the resin solution of the present invention contains the rare earth complex, a resin and a solvent.
  • the wavelength conversion sheet of this invention consists of the said resin composition.
  • the sealing agent of this invention consists of the said resin composition.
  • mode of the solar cell module of this invention it has at least a photovoltaic cell and the said wavelength conversion sheet,
  • the said wavelength conversion sheet is arrange
  • the solar cell module has at least a solar cell, the sealant, and a front cover, and the sealant is interposed between the solar cell and the front cover. It is characterized by containing.
  • the rare earth complex of the present invention is a complex that absorbs ultraviolet light to blue light and emits light, and has light resistance superior to a conventionally known europium complex. For this reason, the rare earth complex of this invention can be used for the wavelength conversion sheet
  • the rare earth complex of the present invention is a complex containing at least one rare earth element selected from Pr, Eu, Sm, Tb, Dy, Ho, and Er.
  • the rare earth element is represented by the following general formula (A).
  • At least one ligand (c) selected from the ligand group represented by the formula (C) is coordinated 0 to 1.4 per rare earth element, and per one rare earth element
  • At least one ligand (a) selected from the ligand group represented by the general formula (A) is also simply referred to as a ligand (a), and the general formula (B)
  • At least one ligand (b) selected from the represented ligand group is also simply referred to as ligand (b), and at least selected from the ligand group represented by the general formula (C).
  • One type of ligand (c) is also simply referred to as ligand (c).
  • X 1 and X 2 are each independently an aromatic ring, a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , — C 2 F 5 , —C 3 F 7 , or —C 4 F 9. )
  • the rare earth complex of the present invention contains at least one rare earth element selected from Pr, Eu, Sm, Tb, Dy, Ho, and Er as the rare earth element.
  • the wavelength at which the rare earth complex is excited and the emission wavelength are mainly determined by the type of rare earth element.
  • the rare earth element is preferable because it absorbs ultraviolet light to blue light, is excited, and crystal silicon emits light having a wavelength (550 to 1000 nm) having high photoelectric conversion efficiency as fluorescence.
  • the excitation wavelength of Pr is 450 nm
  • the emission wavelength is 600 nm
  • the excitation wavelength of Eu is 330 to 430 nm
  • the emission wavelengths are 570 nm, 580 nm, 620 nm, and 630 nm.
  • Excitation wavelengths are 360 nm and 410 nm, emission wavelengths are 560 nm, 610 nm, and 635 nm, excitation wavelengths of Tb are 200 to 350 nm, emission wavelengths are 490 nm, 550 nm, 590 nm, and 625 nm, and excitation wavelengths of Dy are 200 340 nm, emission wavelength 490 nm, 570 nm, 2400 nm, Ho excitation wavelength 380 nm, emission wavelength 620 nm, 2000 nm, Er excitation wavelength 400 nm, emission wavelength 610 nm, 970 nm, 1500-1600 A m.
  • the rare earth element is preferably at least one rare earth element selected from Eu, Sm and Tb from the viewpoint of wavelength conversion efficiency.
  • the rare earth complex of the present invention usually has 1 to 1000 rare earth elements per molecule, preferably 1 to 100, particularly preferably 1 to 10.
  • the rare earth complex of the present invention has the ligand (a) and the ligand (b), and optionally has a ligand (c).
  • the rare earth complex of the present invention has a ligand (a).
  • the ligand (a) has two diketonate structures that are bidentate ligands in the ligand. That is, the ligand (a) is a bisdiketonate ligand.
  • the present inventors have found that the rare earth complex of the present invention having a bisdiketonate ligand having a specific structure is excellent in light resistance as compared with conventionally known europium complexes. In addition, the rare earth complex of the present invention has sufficient emission characteristics.
  • the present inventors have found that the rare earth complex having the ligand (a) is sufficient when it does not have the ligand (b). It has been found that it does not have light resistance. In addition, the present inventors do not necessarily have excellent luminescent properties even in the case of a rare earth complex having a ligand (b) and a bisdiketonate ligand, but a specific bisdiketonate ligand, that is, a ligand. It has been found that the rare earth complex having (a) is excellent in emission characteristics.
  • X 1 and X 2 possessed by each ligand are each independently an aromatic ring, a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , —C 2 F 5 , —C 3 F 7 , or —C 4 F 9 .
  • X 1 and X 2 may be the same or different, and when a plurality of ligands (a) are present, each X 1 and X 2 may be the same or different.
  • the aromatic ring include a benzene ring, a naphthalene ring, and a biphenyl ring, and a benzene ring and a naphthalene ring are preferable.
  • heteroaromatic ring examples include a thiophene ring, a furan ring, and a pyridine ring, and a thiophene ring is preferable.
  • X 1 and X 2 are preferably a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , and a heteroaromatic ring, —CF 3 is preferably a high fluorescence quantum yield of the complex. Is more preferable from the viewpoint of the rate and emission intensity.
  • the at least one ligand (a) selected from the ligand group represented by the general formula (A) is at least selected from the ligand group represented by the general formula (A ′). It is preferable that it is a kind of ligand from a viewpoint of the light resistance of a complex, and a wavelength conversion characteristic.
  • the rare earth complex of the present invention has a ligand (b).
  • the ligand (b) is a ligand having a bipyridine skeleton or a phenanthroline skeleton, and coordinates to a rare earth element as a bidentate ligand.
  • the rare earth complex of the present invention having the ligand (b) is excellent in light resistance as compared with conventionally known europium complexes.
  • the at least one ligand (b) selected from the ligand group represented by the general formula (B) is at least selected from the ligand group represented by the general formula (B ′).
  • a kind of ligand is preferable from the viewpoints of light emission intensity and light resistance.
  • the rare earth complex of the present invention may have a ligand (c).
  • the ligand (c) has one diketonate structure which is a bidentate ligand in the ligand. That is, the ligand (c) is a diketonate ligand.
  • the present inventors have obtained a rare earth complex having a light resistance higher than that of a conventionally known europium complex even when it has a diketonate ligand having a specific structure. It was found to be excellent in properties.
  • the at least one ligand (c) selected from the ligand group represented by the general formula (C) is at least selected from the ligand group represented by the general formula (C ′).
  • a kind of ligand is preferable from the viewpoints of high fluorescence quantum yield and emission intensity.
  • the ligand (a) is coordinated in an amount of 0.8 to 1.7 per rare earth element. It is preferable that 0.8 to 1.2 or 1.3 to 1.7 of the ligand (a) is coordinated per rare earth element, 0.9 to 1.1, Alternatively, 1.4 to 1.6 coordination is more preferable, and 1.0 or 1.5 coordination is particularly preferable.
  • ligands (b) are coordinated per rare earth element.
  • the ligand (b) is preferably 0.9 to 1.1 coordinated per rare earth element, more preferably 1.0 coordinated.
  • 0 to 1.4 ligands (c) are coordinated per rare earth element.
  • the ligand (c) is preferably coordinated with 0 to 0.4 or 0.6 to 1.4 per rare earth element, and is preferably 0 to 0.2 or 0.8. More preferably, 1.2 to 1.2 are coordinated, and 0 or 1.0 are particularly preferable.
  • 2 ⁇ + ⁇ is 3.0 to 3.4, where ⁇ is the number of ligands (a) per rare earth element and ⁇ is the number of ligands (c). Preferably, it is 3.0 to 3.2, more preferably 3.0 to 3.1, and particularly preferably 3.0.
  • the ligand (a) has two diketonate structures in the ligand, and the ligand (c) has one diketonate structure in the ligand,
  • the 2 ⁇ + ⁇ indicates how many diketonate structures are coordinated with one rare earth element. That is, the rare earth complex of the present invention preferably has 3.0 to 3.4 diketonate structures coordinated to one rare earth element.
  • the rare earth element used in the present invention is trivalent and stably present. Therefore, 3.0 rare earth elements, ligand (a), ligand (b) and coordination can be obtained by coordination of 3.0 diketonate structures. The entire ligand (c) is neutralized in charge and constitutes a stable rare earth complex.
  • the rare earth element, the ligand (a), the ligand (b) and the ligand (c) as a whole are negatively charged.
  • the rare earth complex of the present invention further has a counter cation.
  • Examples of the counter cation include at least one counter cation (d) selected from the group of counter cations represented by the following general formula (D).
  • the rare earth complex of the present invention has a specific rare earth element, a ligand (a), a ligand (b), and optionally a ligand (c), and these are the specific amounts described above. It is characterized by having.
  • the ligand (a) constituting the rare earth complex of the present invention is a bis-diketonate having two diketonate structures, and the two diketonate structures may be coordinated to the same rare earth element or coordinated to different rare earth elements. You may rank.
  • the rare earth complex of the present invention has a bisdiketonate structure, the type of rare earth element, the type of ligand (a), the ligand (b), the type of ligand (c), and the number per rare earth element are Even if it is the same, it can take various structures.
  • the rare earth element is Eu
  • the ligand (a) is a ligand represented by the following general formula (a1), and there are 1.5 of these ligands per Eu
  • the child (b) is phenanthroline
  • one phenanthroline is present per Eu
  • the ligand (c) is not present
  • the 2 ⁇ + ⁇ is 3.0
  • the following general formula ( The rare earth complex represented by I) is conceivable.
  • the rare earth complex of the present invention is not limited to the rare earth complex represented by the general formula (I), and is formed from the same rare earth element, a ligand, and the number of the ligand per rare earth element.
  • rare earth complexes having other steric structures examples of the rare earth complex include a rare earth complex represented by the general formula (II) and a rare earth complex represented by the general formula (III).
  • the obtained rare earth complex is explained using a scheme, but it does not mean that only the rare earth complex represented by the general formula in the scheme was produced.
  • the rare earth complex includes a rare earth complex represented by the general formula, and a rare earth complex having another steric structure formed from the same rare earth element, ligand, and number of the ligand per rare earth element. May contain. In addition, it is difficult to determine these structures exactly as one by a general analysis method and identification method.
  • the method for producing the rare earth complex of the present invention is not particularly limited. For example, it can be produced by the following method.
  • the method for producing a rare earth complex of the present invention includes a compound that forms a ligand (a) by reacting and coordinating with a compound containing a rare earth element, and a compound that forms the ligand (b).
  • the compound containing the rare earth element or the solution of the compound is added to the solution in which the compound that becomes the ligand (c) by reacting and coordinating with the compound containing is present as an optional component, and is reacted.
  • the method of manufacturing a rare earth complex is mentioned.
  • a compound that becomes a ligand (a) and a compound that becomes a ligand (c) are used by coordination with the compound containing the rare earth element.
  • Hydrate may be sufficient as the compound which comprises a ligand (b), and a compound containing rare earth elements.
  • Examples of the compound that becomes the ligand (a) by coordinating to the compound containing the rare earth element include at least one compound selected from the group of compounds represented by the following general formula (A ′′). .
  • Examples of the compound that becomes the ligand (c) by coordinating with the compound containing the rare earth element include at least one compound selected from the group of compounds represented by the following general formula (C ′′). .
  • the at least one compound selected from the compound group represented by the general formula (A ′′) and the at least one compound selected from the compound group represented by the general formula (C ′′) are so-called keto- Depending on the enol tautomerism, there may be a case where a diketone structure is taken, and a case where a structure consisting of a ketone and an enol is taken as shown in the formula, but in the present invention, the two are not particularly distinguished.
  • Examples of the compound constituting the ligand (b) include at least one compound selected from the group of compounds represented by the following general formula (B ′′).
  • the rare earth element-containing compound examples include the rare earth element chlorides, bromides, acetates, oxides, and the like.
  • the compound containing the rare earth element is preferably the chloride or bromide of the rare earth element described above.
  • the method for producing the rare earth complex of the present invention will be described in more detail.
  • a compound that first becomes a ligand (a) by coordination with the compound containing the rare earth element, and a compound containing the rare earth element used as necessary The compound which becomes the ligand (c) by coordinating to is dissolved in a solvent to obtain a solution (i).
  • a base or an aqueous solution thereof is added to the solution (i)
  • a compound constituting the ligand (b) is added to obtain a solution (ii).
  • a compound containing a rare earth element is added to the solution (ii) to obtain the rare earth complex of the present invention as a solid.
  • the rare earth complex of the present invention can be produced by recovering the solid by an arbitrary method and purifying it as necessary.
  • an organic solvent or a mixed solvent of an organic solvent and water is usually used.
  • a polar organic solvent is preferably used, and specific examples thereof include tetrahydrofuran (THF), ethanol, methanol, isopropyl alcohol, dioxane and the like.
  • the base examples include sodium hydroxide and triethylamine.
  • the compound constituting the ligand (b) may be a hydrate.
  • the rare earth complex may be a hydrate as described above.
  • the compound that forms the ligand (a) is coordinated to the compound that forms the ligand (a) by coordinating to the compound containing the rare earth element, the compound constituting the ligand (b), and the compound containing the rare earth element used as necessary.
  • the amount of the compound that becomes the ligand (c) by positioning depends on the amount of the ligand (a), ligand (b), and ligand (c) in the rare earth complex to be obtained. It is possible to select as appropriate.
  • the amount of the base used is usually in the range of a total amount to an excess amount of 2 times mole of the added ligand (a) and 1 time mole of the added ligand (c). Preferably, it is used in the range of a total amount of 1.5 times the total amount of 2 times mole of the added ligand (a) and 1 time mole of the added ligand (c).
  • the said rare earth complex when manufacturing the said rare earth complex by the said method, it is normally performed at room temperature and a normal pressure, However Heating, pressure reduction, pressurization, etc. may be performed as needed.
  • Heating, pressure reduction, pressurization, etc. may be performed as needed.
  • the rare earth complex of the present invention absorbs ultraviolet light to blue light and emits light, it can be used as a light emitting material for various applications. Since the rare earth complex of the present invention is excellent in light resistance, it is preferably used as one of materials that constitute a solar cell module, for example, for applications exposed to light such as sunlight for a long period of time.
  • the resin composition may be obtained by directly mixing or kneading the rare earth complex of the present invention with a resin, or a resin solution containing the rare earth complex of the present invention, a resin and a solvent. After the preparation, the resin composition may be obtained by removing the solvent.
  • the resin is not particularly limited, and examples thereof include polyvinyl acetal such as polyvinyl butyral, acrylic resin, polycarbonate, polystyrene, polyolefin, polyvinyl chloride, epoxy resin, fluororesin, and ethylene-vinyl acetate copolymer.
  • polyvinyl acetal such as polyvinyl butyral, acrylic resin, polycarbonate, polystyrene, polyolefin, polyvinyl chloride, epoxy resin, fluororesin, and ethylene-vinyl acetate copolymer.
  • the resin composition usually contains the rare earth complex of the present invention in an amount of 0.0001 to 30 parts by weight, preferably 0.0005 to 20 parts by weight, more preferably 100 parts by weight of the resin. 0.001 to 10 parts by mass is contained.
  • the resin solution usually contains 0.0001 to 30 parts by mass, preferably 0.0005 to 20 parts by mass, more preferably 0 to 100 parts by mass of the rare earth complex of the present invention. 001 to 10 parts by mass.
  • the resin solution usually contains 100 to 100000 parts by mass, preferably 500 to 50000 parts by mass, and more preferably 1000 to 10000 parts by mass of the solvent with respect to 100 parts by mass of the resin.
  • the resin composition and the resin solution may contain other additives.
  • additives include a plasticizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a dehydrating agent, an adhesion adjusting agent, a silane coupling agent, a pigment, a crosslinkable monomer, and a polymerization initiator.
  • the amount of these additives used varies depending on the application, but is usually in the range of 0.001 to 50 parts by mass with respect to 100 parts by mass of the resin.
  • plasticizer examples include 3GO (triethylene glycol bis (2-ethylhexanoate)).
  • Applications of the rare earth complex of the present invention include a wavelength conversion sheet made of the resin composition and a sealant made of the resin composition.
  • the wavelength conversion sheet of the present invention comprises the resin composition.
  • the wavelength conversion sheet of the present invention absorbs ultraviolet light to blue light, and crystalline silicon can be wavelength-converted to 550 to 1000 nm having high photoelectric conversion efficiency. By arranging the conversion sheet, it is possible to improve the power generation efficiency of the solar cell module.
  • the method for producing the wavelength conversion sheet is not particularly limited, but the method for producing the wavelength conversion sheet by applying the resin solution described above and removing the solvent, melt-kneading the resin composition, and extruding into a sheet form The method of manufacturing a wavelength conversion sheet by doing is mentioned.
  • the thickness of the wavelength conversion sheet of the present invention is usually 10 to 1000 ⁇ m.
  • the sealing agent of this invention consists of the said resin composition.
  • the wavelength conversion sheet of the present invention absorbs ultraviolet light to blue light, and crystalline silicon can be wavelength-converted to 550 to 1000 nm having high photoelectric conversion efficiency. It is possible to improve the power generation efficiency of the solar cell module by containing the above-mentioned sealant.
  • the solar cell module of the present invention uses the wavelength conversion sheet and / or the sealant as one of its constituent members.
  • the solar cell module of the present invention includes at least a solar cell and the wavelength conversion sheet, and the solar cell module in which the wavelength conversion sheet is disposed on the light receiving surface side of the solar cell, or at least a solar cell.
  • Examples of the solar battery module include a cell, the sealing agent, and a front cover, and the sealing agent is contained between the solar battery cell and the front cover.
  • each member such as a solar battery cell, a front cover, and a back cover that constitute the solar battery module of the present invention.
  • members used for solar cell modules such as an antireflection film.
  • TTA-TTA (305 mg, 0.750 mmol) was weighed and dissolved in chloroform (50 ml). Thereto, a methanol solution (5 ml) of europium chloride hexahydrate (183 mg, 0.500 mmol) and a methanol solution (2 ml) of triethylamine (151 mg, 1.50 mmol) were successively added dropwise at room temperature. After stirring for 1 hour, the generated precipitate was centrifuged, washed with chloroform, methanol, water and ether and dried to obtain 260 mg of a pale yellow powder (Eu complex (c2)) (yield 68%).
  • DBM-DBM (1,3-bis (3-phenyl-3-oxopropanoyl) benzene) (94.5 mg, 0.255 mmol) was weighed and dissolved in chloroform (8 ml).
  • TTA-TTA (305 mg, 0.750 mmol) was weighed, and THF / ethanol (15/8 ml) was added and dissolved. Thereto, 1M aqueous sodium hydroxide solution (1.55 ml, 1.55 mmol) was added dropwise at room temperature, followed by ethanol solution (2 ml) of 1,10-phenanthroline monohydrate (99.1 mg, 0.500 mmol). .
  • TTA 4,4,4-trifluoro-1-thienyl-1,3-butanedione
  • TTA-TTA 203 mg, 0.500 mmol
  • 3GO triethylene glycol bis (2-ethylhexanoate)
  • PVB polyvinyl butyral
  • the viscous solution obtained by stirring was spread on a Teflon (registered trademark) plate, and after removing volatile components overnight at room temperature, it was pressed at 120 ° C. and 15 MPa for 3 minutes with a small press machine manufactured by ASONE, about 0.3 mm thick A sheet containing 0.02% by mass of the Eu complex was prepared.
  • the viscous solution obtained by stirring was spread on a Teflon (registered trademark) plate, and after removing volatile components overnight at room temperature, it was pressed at 120 ° C. and 15 MPa for 3 minutes with a small press machine manufactured by ASONE, about 0.3 mm thick A sheet containing 0.2% by mass of the Eu complex was prepared.
  • TTA 4,4,4-trifluoro-1-thienyl-1,3-butanedione
  • TTA 222 mg, 1.00 mmol
  • TFT 406 mg, 1.00 mmol
  • Light resistance was evaluated as the rate of decrease in emission intensity, that is, the magnitude of the inclination. [Evaluation of heat resistance] After heating 10 mg of the powder (Sm complex) at 200 ° C. for 15 minutes, the fluorescence intensity at 605 nm when irradiated with 350 nm light was measured with a Hitachi fluorescence spectrophotometer F-2700. The fluorescence intensity was measured under the same conditions before heating.
  • the viscous solution obtained by stirring was spread on a Teflon (registered trademark) plate, volatile components were removed overnight at room temperature, and then pressed at 120 ° C. and 15 MPa for 3 minutes with a small press machine. Was made.
  • the Sm complexes (3) and (4) obtained in the examples are superior in light resistance and heat resistance as compared to the Sm complex (c5) obtained in the comparative example. Moreover, the current value increased by using the Sm complex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)

Abstract

 The purpose of this invention is to provide a rare earth complex having superior light-resistance compared to europium complexes of the prior art, and to provide an application for said complex. This rare earth complex is a complex containing a rare earth element such as Eu, wherein a ligand (a) selected from a group of ligands represented by general formula (A) is coordinated to the rare earth element in an amount of 0.8-1.7 ligands per atom of rare earth element, a specific ligand (b) having a bipyridine skeleton or a phenanthroline skeleton is coordinated to the rare earth element in a quantity of 0.8-1.2 ligands per atom of the rare earth element, a specific ligand (c) having one diketonate structure in the ligand is coordinated to the rare earth element in a quantity of 0-1.4 ligands per atom of the rare earth element, and if the number of ligands (a) per atom of rare earth element is defined as α, and the number of ligands (c) is defined as γ, 2α + γ falls within the range of 3.0-3.4.

Description

希土類錯体および該錯体の用途Rare earth complex and use of the complex
 本発明は、希土類錯体および該錯体の用途に関する。 The present invention relates to rare earth complexes and uses of the complexes.
 風力、太陽光、地熱などは、環境に影響を与える排出物質のないクリーンなエネルギー源として注目されている。太陽光を、直接電気エネルギーに変換することが可能な太陽電池は、電気エネルギーの有望な供給源であり、近年積極的に実用化されている。 Wind power, solar power, geothermal heat, etc. are attracting attention as clean energy sources that have no emissions that affect the environment. Solar cells capable of directly converting sunlight into electrical energy are a promising source of electrical energy and have been actively put into practical use in recent years.
 太陽電池は、光電変換物質により、太陽光を電気エネルギーに光電変換しているが、光電変換物質が、有効に変換可能な光の波長は、物質ごとに定まっておりそれ以外の波長は有効に利用することができていなかった。 Solar cells photoelectrically convert sunlight into electrical energy using photoelectric conversion materials, but the wavelength of light that can be effectively converted by photoelectric conversion materials is determined for each material, and other wavelengths are effective. It was not available.
 光電変換物質として結晶シリコンを用いた、結晶シリコン太陽電池は、代表的な太陽電池として実用化されているが、結晶シリコンは、太陽光に多く含まれている紫外線に対する感度が低く、発電効率が10~20%程度であった。 Crystalline silicon solar cells using crystalline silicon as a photoelectric conversion material have been put into practical use as typical solar cells. However, crystalline silicon has low sensitivity to ultraviolet rays contained in a large amount of sunlight, and power generation efficiency is low. It was about 10 to 20%.
 結晶シリコン太陽電池の発電効率を向上させるため、紫外線を、結晶シリコンが高い光電変換効率を有する550~1000nmに波長変換することが近年提案されていた。
 例えば、300~450nmに吸収波長ピークを有する蛍光物質および紫外線吸収剤を含む波長変換型太陽電池封止シートが知られている(例えば、特許文献1参照)。特許文献1では、前記波長変換型太陽電池封止シートを、太陽電池セルの受光面側に設けることにより、太陽光に含まれる紫外線を、波長変換し、太陽電池の発電効率を向上させること、該シートに紫外線吸収剤を含有させることにより、該シートの耐候性を確保することを目的としている。
In order to improve the power generation efficiency of crystalline silicon solar cells, it has recently been proposed to convert the wavelength of ultraviolet light to 550 to 1000 nm, where crystalline silicon has high photoelectric conversion efficiency.
For example, a wavelength conversion type solar cell encapsulating sheet containing a fluorescent material having an absorption wavelength peak at 300 to 450 nm and an ultraviolet absorber is known (see, for example, Patent Document 1). In Patent Document 1, by providing the wavelength conversion type solar cell encapsulating sheet on the light receiving surface side of the solar cell, the wavelength of ultraviolet light contained in sunlight is converted, and the power generation efficiency of the solar cell is improved. The purpose of this sheet is to ensure the weather resistance of the sheet by containing an ultraviolet absorber.
 また、550~900nmの波長範囲の蛍光を発する有機系希土類金属錯体およびエチレン‐酢酸ビニル共重合体からなる蛍光性樹脂組成物を、フロントカバーと、結晶シリコンセルとの間の封止剤に用いた太陽電池モジュールが提案されている(例えば、特許文献2参照)。特許文献2では、前記封止剤を用いることにより、太陽電池の発電効率を上昇させている。 Also, a fluorescent resin composition comprising an organic rare earth metal complex that emits fluorescence in the wavelength range of 550 to 900 nm and an ethylene-vinyl acetate copolymer is used as a sealant between the front cover and the crystalline silicon cell. A solar cell module has been proposed (see, for example, Patent Document 2). In patent document 2, the power generation efficiency of a solar cell is raised by using the said sealing agent.
 特許文献1で開示された蛍光物質、および特許文献2で開示された有機系希土類金属錯体は、共に希土類元素としてユーロピウムを用いることが提案されている。
 しかしながら、特許文献1、2で開示されているユーロピウム錯体は、充分な耐光性を有しているとは言い難く、太陽電池に望まれる長期安定性の観点から、改良が望まれていた。
Both the fluorescent substance disclosed in Patent Document 1 and the organic rare earth metal complex disclosed in Patent Document 2 have been proposed to use europium as a rare earth element.
However, the europium complexes disclosed in Patent Documents 1 and 2 cannot be said to have sufficient light resistance, and improvements have been desired from the viewpoint of long-term stability desired for solar cells.
特開2011-210891号公報JP 2011-210891 A 国際公開第2008/047427号パンフレットInternational Publication No. 2008/047427 Pamphlet
 本発明は、上記従来技術を鑑みてされたものであり、太陽電池モジュール等の構成部材として使用される波長変換シートや、封止剤に用いることが可能な、紫外光~青色光を吸収し発光する希土類錯体であって、従来公知のユーロピウム錯体よりも優れた耐光性を有する希土類錯体および該錯体の用途を提供することを目的とする。 The present invention has been made in view of the above prior art, and absorbs ultraviolet light to blue light, which can be used as a wavelength conversion sheet used as a constituent member of a solar cell module or the like, or as a sealant. An object of the present invention is to provide a rare earth complex that emits light and has light resistance superior to a conventionally known europium complex, and uses of the complex.
 本発明者らは上記課題を達成するため鋭意研究を重ねた結果、特定の配位子が配位した希土類錯体は、従来の錯体よりも耐光性に優れることを見出し、本発明を完成させた。
 すなわち、本発明の希土類錯体は、Pr、Eu、Sm、Tb、Dy、Ho、およびErから選択される少なくとも一種の希土類元素を含む錯体であって、前記希土類元素に、下記一般式(A)で表される配位子群から選択される少なくとも一種の配位子(a)が、希土類元素1個あたり0.8~1.7個配位しており、前記希土類元素に、下記一般式(B)で表される配位子群から選択される少なくとも一種の配位子(b)が、希土類元素1個あたり0.8~1.2個配位しており、前記希土類元素に、下記一般式(C)で表される配位子群から選択される少なくとも一種の配位子(c)が、希土類元素1個あたり0~1.4個配位しており、前記希土類元素1個あたりの配位子(a)の個数をα、前記配位子(c)の個数をγとすると、2α+γが3.0~3.4であることを特徴とする。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a rare earth complex coordinated with a specific ligand is superior in light resistance to conventional complexes, and completed the present invention. .
That is, the rare earth complex of the present invention is a complex containing at least one kind of rare earth element selected from Pr, Eu, Sm, Tb, Dy, Ho, and Er, and includes the following general formula (A): At least one ligand (a) selected from the group of ligands represented by formula (1) is coordinated with 0.8 to 1.7 per rare earth element, and the rare earth element has the following general formula: At least one ligand (b) selected from the ligand group represented by (B) is coordinated 0.8 to 1.2 per rare earth element, At least one ligand (c) selected from the group of ligands represented by the following general formula (C) is coordinated with 0 to 1.4 per rare earth element, and the rare earth element 1 When the number of ligands (a) per unit is α and the number of the ligands (c) is γ, 2α Characterized in that γ is 3.0 to 3.4.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(一般式(A)で表される配位子群において、X1およびX2はそれぞれ独立に、芳香環、ヘテロ芳香環、-C(CH33、-CH3、-CF3、-C25、-C37、または-C49である。) (In the ligand group represented by the general formula (A), X 1 and X 2 are each independently an aromatic ring, a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , — C 2 F 5 , —C 3 F 7 , or —C 4 F 9. )
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記希土類錯体は、Eu、SmおよびTbから選択される少なくとも一種の希土類元素を含むことが好ましい。
 前記2α+γが3.0であることが好ましい。
The rare earth complex preferably contains at least one rare earth element selected from Eu, Sm, and Tb.
The 2α + γ is preferably 3.0.
 本発明の樹脂組成物は、前記希土類錯体および樹脂を含む。
 本発明の樹脂溶液は、前記希土類錯体、樹脂および溶剤を含む。
 本発明の波長変換シートは、前記樹脂組成物からなる。
The resin composition of the present invention contains the rare earth complex and a resin.
The resin solution of the present invention contains the rare earth complex, a resin and a solvent.
The wavelength conversion sheet of this invention consists of the said resin composition.
 本発明の封止剤は、前記樹脂組成物からなる。
 本発明の太陽電池モジュールの一態様としては、少なくとも太陽電池セルと、前記波長変換シートとを有し、前記太陽電池セルの受光面側に、前記波長変換シートが配置されることを特徴とする。
The sealing agent of this invention consists of the said resin composition.
As one aspect | mode of the solar cell module of this invention, it has at least a photovoltaic cell and the said wavelength conversion sheet, The said wavelength conversion sheet is arrange | positioned at the light-receiving surface side of the said photovoltaic cell, It is characterized by the above-mentioned. .
 本発明の太陽電池モジュールの別の態様としては、少なくとも太陽電池セルと、前記封止剤と、フロントカバーとを有し、前記太陽電池セルと、フロントカバーとの間に、前記封止剤を含有することを特徴とする。 As another aspect of the solar cell module of the present invention, the solar cell module has at least a solar cell, the sealant, and a front cover, and the sealant is interposed between the solar cell and the front cover. It is characterized by containing.
 本発明の希土類錯体は、紫外光~青色光を吸収し発光する錯体であり、従来公知のユーロピウム錯体よりも優れた耐光性を有している。このため、本発明の希土類錯体は、太陽電池モジュール等の構成部材である波長変換シートや、封止剤に用いることが可能である。 The rare earth complex of the present invention is a complex that absorbs ultraviolet light to blue light and emits light, and has light resistance superior to a conventionally known europium complex. For this reason, the rare earth complex of this invention can be used for the wavelength conversion sheet | seat and sealing agent which are structural members, such as a solar cell module.
 次に本発明について具体的に説明する。
 本発明の希土類錯体は、Pr、Eu、Sm、Tb、Dy、Ho、およびErから選択される少なくとも一種の希土類元素を含む錯体であって、前記希土類元素に、下記一般式(A)で表される配位子群から選択される少なくとも一種の配位子(a)が、希土類元素1個あたり0.8~1.7個配位しており、前記希土類元素に、下記一般式(B)で表される配位子群から選択される少なくとも一種の配位子(b)が、希土類元素1個あたり0.8~1.2個配位しており、前記希土類元素に、下記一般式(C)で表される配位子群から選択される少なくとも一種の配位子(c)が、希土類元素1個あたり0~1.4個配位しており、前記希土類元素1個あたりの配位子(a)の個数をα、前記配位子(c)の個数をγとすると、2α+γが3.0~3.4であることを特徴とする。
Next, the present invention will be specifically described.
The rare earth complex of the present invention is a complex containing at least one rare earth element selected from Pr, Eu, Sm, Tb, Dy, Ho, and Er. The rare earth element is represented by the following general formula (A). At least one ligand (a) selected from the group of ligands coordinated with 0.8 to 1.7 per rare earth element, and the rare earth element has the following general formula (B At least one ligand (b) selected from the group of ligands represented by the following formula: At least one ligand (c) selected from the ligand group represented by the formula (C) is coordinated 0 to 1.4 per rare earth element, and per one rare earth element When the number of the ligands (a) is α and the number of the ligands (c) is γ, 2α + γ is 3. And wherein the ~ 3.4.
 なお、本発明では、一般式(A)で表される配位子群から選択される少なくとも一種の配位子(a)を単に、配位子(a)とも記し、一般式(B)で表される配位子群から選択される少なくとも一種の配位子(b)を単に、配位子(b)とも記し、一般式(C)で表される配位子群から選択される少なくとも一種の配位子(c)を単に、配位子(c)とも記す。 In the present invention, at least one ligand (a) selected from the ligand group represented by the general formula (A) is also simply referred to as a ligand (a), and the general formula (B) At least one ligand (b) selected from the represented ligand group is also simply referred to as ligand (b), and at least selected from the ligand group represented by the general formula (C). One type of ligand (c) is also simply referred to as ligand (c).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(A)で表される配位子群において、X1およびX2はそれぞれ独立に、芳香環、ヘテロ芳香環、-C(CH33、-CH3、-CF3、-C25、-C37、または-C49である。) (In the ligand group represented by the general formula (A), X 1 and X 2 are each independently an aromatic ring, a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , — C 2 F 5 , —C 3 F 7 , or —C 4 F 9. )
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本発明の希土類錯体は、前述のように希土類元素として、Pr、Eu、Sm、Tb、Dy、Ho、およびErから選択される少なくとも一種の希土類元素を含む。
 希土類錯体が励起される波長および発光波長は、主として希土類元素の種類によって決まる。前記希土類元素は、紫外光~青色光を吸収し、励起され、結晶シリコンが高い光電変換効率を有する波長(550~1000nm)を蛍光として発光するため好ましい。
As described above, the rare earth complex of the present invention contains at least one rare earth element selected from Pr, Eu, Sm, Tb, Dy, Ho, and Er as the rare earth element.
The wavelength at which the rare earth complex is excited and the emission wavelength are mainly determined by the type of rare earth element. The rare earth element is preferable because it absorbs ultraviolet light to blue light, is excited, and crystal silicon emits light having a wavelength (550 to 1000 nm) having high photoelectric conversion efficiency as fluorescence.
 具体的にはPrの励起波長は450nmであり、発光波長は600nm、1250~1450nmであり、Euの励起波長は330~430nmであり、発光波長は570nm、580nm、620nm、630nmであり、Smの励起波長は360nm、410nmであり、発光波長は560nm、610nm、635nmであり、Tbの励起波長は200~350nmであり、発光波長は490nm、550nm、590nm、625nmであり、Dyの励起波長は200~340nmであり、発光波長は490nm、570nm、2400nmであり、Hoの励起波長は380nmであり、発光波長は620nm、2000nmであり、Erの励起波長は400nmであり、発光波長は610nm、970nm、1500~1600nmである。 Specifically, the excitation wavelength of Pr is 450 nm, the emission wavelength is 600 nm, 1250 to 1450 nm, the excitation wavelength of Eu is 330 to 430 nm, the emission wavelengths are 570 nm, 580 nm, 620 nm, and 630 nm. Excitation wavelengths are 360 nm and 410 nm, emission wavelengths are 560 nm, 610 nm, and 635 nm, excitation wavelengths of Tb are 200 to 350 nm, emission wavelengths are 490 nm, 550 nm, 590 nm, and 625 nm, and excitation wavelengths of Dy are 200 340 nm, emission wavelength 490 nm, 570 nm, 2400 nm, Ho excitation wavelength 380 nm, emission wavelength 620 nm, 2000 nm, Er excitation wavelength 400 nm, emission wavelength 610 nm, 970 nm, 1500-1600 A m.
 なお、希土類元素としては、Eu、SmおよびTbから選択される少なくとも一種の希土類元素であることが波長変換効率の観点から好ましい。
 また、本発明の希土類錯体は、一分子あたり前記希土類元素を、通常は1~1000個有し、好ましくは1~100個有し、特に好ましくは1~10個有している。
The rare earth element is preferably at least one rare earth element selected from Eu, Sm and Tb from the viewpoint of wavelength conversion efficiency.
The rare earth complex of the present invention usually has 1 to 1000 rare earth elements per molecule, preferably 1 to 100, particularly preferably 1 to 10.
 本発明の希土類錯体は、前記配位子(a)および配位子(b)を有し、任意に配位子(c)を有している。
 本発明の希土類錯体は、配位子(a)を有している。配位子(a)は、該配位子中に二座配位子であるジケトネート構造を二つ有する。すなわち、配位子(a)はビスジケトネート配位子である。本発明者らは、特定構造を有するビスジケトネート配位子を有する本発明の希土類錯体は、従来公知のユーロピウム錯体に比べて、耐光性に優れることを見出した。また、本発明の希土類錯体は充分な発光特性を有している。
The rare earth complex of the present invention has the ligand (a) and the ligand (b), and optionally has a ligand (c).
The rare earth complex of the present invention has a ligand (a). The ligand (a) has two diketonate structures that are bidentate ligands in the ligand. That is, the ligand (a) is a bisdiketonate ligand. The present inventors have found that the rare earth complex of the present invention having a bisdiketonate ligand having a specific structure is excellent in light resistance as compared with conventionally known europium complexes. In addition, the rare earth complex of the present invention has sufficient emission characteristics.
 なお、本発明者らは、希土類錯体の構造について鋭意検討を重ねた結果、配位子(a)を有する希土類錯体であっても、配位子(b)を有さない場合には充分な耐光性を有さないことを見出した。また、本発明者らは、配位子(b)およびビスジケトネート配位子を有する希土類錯体であっても、必ずしも優れた発光特性を有するわけではなく、特定のビスジケトネート配位子、すなわち配位子(a)を有する希土類錯体が、発光特性に優れることを見出した。 In addition, as a result of intensive studies on the structure of the rare earth complex, the present inventors have found that the rare earth complex having the ligand (a) is sufficient when it does not have the ligand (b). It has been found that it does not have light resistance. In addition, the present inventors do not necessarily have excellent luminescent properties even in the case of a rare earth complex having a ligand (b) and a bisdiketonate ligand, but a specific bisdiketonate ligand, that is, a ligand. It has been found that the rare earth complex having (a) is excellent in emission characteristics.
 なお、一般式(A)で表される配位子群において、各配位子が有するX1およびX2はそれぞれ独立に、芳香環、ヘテロ芳香環、-C(CH33、-CH3、-CF3、-C25、-C37、または-C49である。 In the ligand group represented by the general formula (A), X 1 and X 2 possessed by each ligand are each independently an aromatic ring, a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , —C 2 F 5 , —C 3 F 7 , or —C 4 F 9 .
 なお、X1およびX2は、それぞれ同一でも異なっていてもよく、配位子(a)が複数存在する場合には、各X1およびX2は、それぞれ同一でも異なっていてもよい。
 前記芳香環としては、例えばベンゼン環、ナフタレン環、ビフェニル環等が挙げられ、ベンゼン環、ナフタレン環が好ましい。
X 1 and X 2 may be the same or different, and when a plurality of ligands (a) are present, each X 1 and X 2 may be the same or different.
Examples of the aromatic ring include a benzene ring, a naphthalene ring, and a biphenyl ring, and a benzene ring and a naphthalene ring are preferable.
 前記ヘテロ芳香環としては、チオフェン環、フラン環、ピリジン環が挙げられ、チオフェン環が好ましい。
 また、X1およびX2としては、ヘテロ芳香環、-C(CH33、-CH3、-CF3が好ましく、ヘテロ芳香環、-CF3であることが、錯体の高い蛍光量子収率、発光強度の観点からより好ましい。
Examples of the heteroaromatic ring include a thiophene ring, a furan ring, and a pyridine ring, and a thiophene ring is preferable.
X 1 and X 2 are preferably a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , and a heteroaromatic ring, —CF 3 is preferably a high fluorescence quantum yield of the complex. Is more preferable from the viewpoint of the rate and emission intensity.
 また、一般式(A)で表される配位子群から選択される少なくとも一種の配位子(a)としては、一般式(A')で表される配位子群から選択される少なくとも一種の配位子であることが、錯体の耐光性および波長変換特性の観点から好ましい。 The at least one ligand (a) selected from the ligand group represented by the general formula (A) is at least selected from the ligand group represented by the general formula (A ′). It is preferable that it is a kind of ligand from a viewpoint of the light resistance of a complex, and a wavelength conversion characteristic.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(一般式(A')で表される配位子群において、X1およびX2は一般式(A)におけるX1およびX2と同様である。)
 本発明の希土類錯体は、配位子(b)を有している。配位子(b)はビピリジン骨格または、フェナントロリン骨格を有する配位子であり、希土類元素に二座配位子として配位する。配位子(b)を有する本発明の希土類錯体は、従来公知のユーロピウム錯体に比べて、耐光性に優れる。
(In the ligand group represented by the general formula (A '), X 1 and X 2 are the same as X 1 and X 2 in the general formula (A).)
The rare earth complex of the present invention has a ligand (b). The ligand (b) is a ligand having a bipyridine skeleton or a phenanthroline skeleton, and coordinates to a rare earth element as a bidentate ligand. The rare earth complex of the present invention having the ligand (b) is excellent in light resistance as compared with conventionally known europium complexes.
 また、一般式(B)で表される配位子群から選択される少なくとも一種の配位子(b)としては、一般式(B')で表される配位子群から選択される少なくとも一種の配位子であることが、発光強度、耐光性の観点から好ましい。 The at least one ligand (b) selected from the ligand group represented by the general formula (B) is at least selected from the ligand group represented by the general formula (B ′). A kind of ligand is preferable from the viewpoints of light emission intensity and light resistance.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明の希土類錯体は、配位子(c)を有していてもよい。配位子(c)は、該配位子中に二座配位子であるジケトネート構造を一つ有する。すなわち、配位子(c)はジケトネート配位子である。本発明者らは、前述の配位子(a)に加えて、特定構造を有するジケトネート配位子を有する場合であっても、得られる希土類錯体は、従来公知のユーロピウム錯体に比べて、耐光性に優れることを見出した。 The rare earth complex of the present invention may have a ligand (c). The ligand (c) has one diketonate structure which is a bidentate ligand in the ligand. That is, the ligand (c) is a diketonate ligand. In addition to the above-described ligand (a), the present inventors have obtained a rare earth complex having a light resistance higher than that of a conventionally known europium complex even when it has a diketonate ligand having a specific structure. It was found to be excellent in properties.
 また、一般式(C)で表される配位子群から選択される少なくとも一種の配位子(c)としては、一般式(C')で表される配位子群から選択される少なくとも一種の配位子であることが、高い蛍光量子収率および発光強度の観点から好ましい。 The at least one ligand (c) selected from the ligand group represented by the general formula (C) is at least selected from the ligand group represented by the general formula (C ′). A kind of ligand is preferable from the viewpoints of high fluorescence quantum yield and emission intensity.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本発明の希土類錯体は、前記配位子(a)が、希土類元素1個あたり0.8~1.7個配位している。前記配位子(a)が、希土類元素1個あたり0.8~1.2個、または1.3~1.7個配位していることが好ましく、0.9~1.1個、または1.4~1.6個配位していることがより好ましく、1.0個または1.5個配位していることが特に好ましい。 In the rare earth complex of the present invention, the ligand (a) is coordinated in an amount of 0.8 to 1.7 per rare earth element. It is preferable that 0.8 to 1.2 or 1.3 to 1.7 of the ligand (a) is coordinated per rare earth element, 0.9 to 1.1, Alternatively, 1.4 to 1.6 coordination is more preferable, and 1.0 or 1.5 coordination is particularly preferable.
 本発明の希土類錯体は、前記配位子(b)が、希土類元素1個あたり0.8~1.2個配位している。前記配位子(b)が、希土類元素1個あたり0.9~1.1個配位していることが好ましく、1.0個配位していることがより好ましい。 In the rare earth complex of the present invention, 0.8 to 1.2 ligands (b) are coordinated per rare earth element. The ligand (b) is preferably 0.9 to 1.1 coordinated per rare earth element, more preferably 1.0 coordinated.
 本発明の希土類錯体は、配位子(c)が、希土類元素1個あたり0~1.4個配位している。前記配位子(c)が、希土類元素1個あたり0~0.4個、または0.6~1.4個配位していることが好ましく、0~0.2個、または0.8~1.2個配位していることがより好ましく、0個または1.0個配位していることが特に好ましい。 In the rare earth complex of the present invention, 0 to 1.4 ligands (c) are coordinated per rare earth element. The ligand (c) is preferably coordinated with 0 to 0.4 or 0.6 to 1.4 per rare earth element, and is preferably 0 to 0.2 or 0.8. More preferably, 1.2 to 1.2 are coordinated, and 0 or 1.0 are particularly preferable.
 また、本発明の希土類錯体は、前記希土類元素1個あたりの配位子(a)の個数をα、前記配位子(c)の個数をγとすると、2α+γが3.0~3.4であり、好ましくは3.0~3.2であり、より好ましくは3.0~3.1であり、特に好ましくは3.0である。なお、前記配位子(a)は、配位子中にジケトネート構造を二つ有しており、前記配位子(c)は、配位子中にジケトネート構造を一つ有しており、前記2α+γは、希土類元素1個に対して、ジケトネート構造が幾つ配位するかを示す。すなわち、本発明の希土類錯体は、希土類元素1個に対して、ジケトネート構造が3.0~3.4個配位することが好ましい。 In the rare earth complex of the present invention, 2α + γ is 3.0 to 3.4, where α is the number of ligands (a) per rare earth element and γ is the number of ligands (c). Preferably, it is 3.0 to 3.2, more preferably 3.0 to 3.1, and particularly preferably 3.0. The ligand (a) has two diketonate structures in the ligand, and the ligand (c) has one diketonate structure in the ligand, The 2α + γ indicates how many diketonate structures are coordinated with one rare earth element. That is, the rare earth complex of the present invention preferably has 3.0 to 3.4 diketonate structures coordinated to one rare earth element.
 なお、本発明に用いる希土類元素は、3価で安定に存在するため、ジケトネート構造が3.0個配位することにより、希土類元素、配位子(a)、配位子(b)および配位子(c)全体で電荷が中和され安定な希土類錯体を構成する。 The rare earth element used in the present invention is trivalent and stably present. Therefore, 3.0 rare earth elements, ligand (a), ligand (b) and coordination can be obtained by coordination of 3.0 diketonate structures. The entire ligand (c) is neutralized in charge and constitutes a stable rare earth complex.
 一方、ジケトネート構造が3.0個を超えて配位する場合には、希土類元素、配位子(a)、配位子(b)および配位子(c)全体として、負に帯電するため、本発明の希土類錯体には、さらにカウンターカチオンが存在する。 On the other hand, when the diketonate structure is coordinated in excess of 3.0, the rare earth element, the ligand (a), the ligand (b) and the ligand (c) as a whole are negatively charged. The rare earth complex of the present invention further has a counter cation.
 前記カウンターカチオンとしては、例えば以下の一般式(D)で表されるカウンターカチオン群から選択される少なくとも一種のカウンターカチオン(d)が挙げられる。 Examples of the counter cation include at least one counter cation (d) selected from the group of counter cations represented by the following general formula (D).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 なお、本発明の希土類錯体は、特定の希土類元素、配位子(a)、配位子(b)を有し、任意に配位子(c)を有し、これらを前述した特定の量有することを特徴とする。本発明の希土類錯体を構成する配位子(a)は、ジケトネート構造を二つ有するビスジケトネートであり、該二つのジケトネート構造は、同一の希土類元素に配位してもよく、異なる希土類元素に配位してもよい。すなわち、本発明の希土類錯体は、ビスジケトネート構造を有するため、希土類元素の種類、配位子(a)、配位子(b)、配位子(c)の種類および希土類元素一個当たりの個数が同一であっても、様々な構造をとり得る。 In addition, the rare earth complex of the present invention has a specific rare earth element, a ligand (a), a ligand (b), and optionally a ligand (c), and these are the specific amounts described above. It is characterized by having. The ligand (a) constituting the rare earth complex of the present invention is a bis-diketonate having two diketonate structures, and the two diketonate structures may be coordinated to the same rare earth element or coordinated to different rare earth elements. You may rank. That is, since the rare earth complex of the present invention has a bisdiketonate structure, the type of rare earth element, the type of ligand (a), the ligand (b), the type of ligand (c), and the number per rare earth element are Even if it is the same, it can take various structures.
 例えば、希土類元素がEuであり、配位子(a)が、下記一般式(a1)で表される配位子であり、該配位子がEu1個あたり1.5個存在し、配位子(b)がフェナントロリンであり、フェナントロリンがEu1個あたり1個存在し、配位子(c)が存在せず、前記2α+γが3.0の場合には、典型的には以下の一般式(I)で表される希土類錯体が考えられる。しかし、本発明の希土類錯体としては、一般式(I)で表される希土類錯体に限定されず、同様の希土類元素、配位子、希土類元素1個あたりの該配位子の個数から形成される別の立体構造を有する希土類錯体も含まれる。該希土類錯体としては、例えば一般式(II)で表せる希土類錯体、一般式(III)で表される希土類錯体が挙げられる。 For example, the rare earth element is Eu, the ligand (a) is a ligand represented by the following general formula (a1), and there are 1.5 of these ligands per Eu, When the child (b) is phenanthroline, one phenanthroline is present per Eu, the ligand (c) is not present, and the 2α + γ is 3.0, the following general formula ( The rare earth complex represented by I) is conceivable. However, the rare earth complex of the present invention is not limited to the rare earth complex represented by the general formula (I), and is formed from the same rare earth element, a ligand, and the number of the ligand per rare earth element. Also included are rare earth complexes having other steric structures. Examples of the rare earth complex include a rare earth complex represented by the general formula (II) and a rare earth complex represented by the general formula (III).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 なお、後述する本発明の実施例では、得られる希土類錯体をスキームを用いて説明しているが、該スキーム中の一般式で表される希土類錯体のみを製造したことを意味せず、得られた希土類錯体には、該一般式で表される希土類錯体および、同様の希土類元素、配位子、希土類元素1個あたりの該配位子の個数から形成される別の立体構造を有する希土類錯体を含んでいる可能性がある。なお、これらの構造を正確に一つに決定することは一般的な分析法、同定法では困難である。 In the examples of the present invention to be described later, the obtained rare earth complex is explained using a scheme, but it does not mean that only the rare earth complex represented by the general formula in the scheme was produced. The rare earth complex includes a rare earth complex represented by the general formula, and a rare earth complex having another steric structure formed from the same rare earth element, ligand, and number of the ligand per rare earth element. May contain. In addition, it is difficult to determine these structures exactly as one by a general analysis method and identification method.
 本発明の希土類錯体の製造方法としては、特に限定はないが、例えば以下の方法で製造することができる。本発明の希土類錯体の製造方法としては、希土類元素を含む化合物と反応・配位することにより配位子(a)となる化合物および配位子(b)を構成する化合物が存在し、希土類元素を含む化合物と反応・配位することにより配位子(c)となる化合物が任意成分として存在する溶液に、前記希土類元素を含む化合物または該化合物の溶液を加え、反応させることにより本発明の希土類錯体を製造する方法が挙げられる。 The method for producing the rare earth complex of the present invention is not particularly limited. For example, it can be produced by the following method. The method for producing a rare earth complex of the present invention includes a compound that forms a ligand (a) by reacting and coordinating with a compound containing a rare earth element, and a compound that forms the ligand (b). The compound containing the rare earth element or the solution of the compound is added to the solution in which the compound that becomes the ligand (c) by reacting and coordinating with the compound containing is present as an optional component, and is reacted. The method of manufacturing a rare earth complex is mentioned.
 本発明の希土類錯体の製造方法としては、前記希土類元素を含む化合物に配位することにより、配位子(a)となる化合物、配位子(c)となる化合物が用いられる。
 配位子(b)を構成する化合物、希土類元素を含む化合物としては水和物であってもよい。
In the method for producing a rare earth complex of the present invention, a compound that becomes a ligand (a) and a compound that becomes a ligand (c) are used by coordination with the compound containing the rare earth element.
Hydrate may be sufficient as the compound which comprises a ligand (b), and a compound containing rare earth elements.
 前記希土類元素を含む化合物に配位することにより配位子(a)となる化合物としては、以下の一般式(A'')で表される化合物群から選択される少なくとも一種の化合物が挙げられる。 Examples of the compound that becomes the ligand (a) by coordinating to the compound containing the rare earth element include at least one compound selected from the group of compounds represented by the following general formula (A ″). .
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(一般式(A'')で表される化合物群において、X1およびX2は一般式(A)におけるX1およびX2と同様である。)
 前記希土類元素を含む化合物に配位することにより配位子(c)となる化合物としては、以下の一般式(C'')で表される化合物群から選択される少なくとも一種の化合物が挙げられる。
(In the general formula (A '') with the group of compounds represented, X 1 and X 2 are the same as X 1 and X 2 in the general formula (A).)
Examples of the compound that becomes the ligand (c) by coordinating with the compound containing the rare earth element include at least one compound selected from the group of compounds represented by the following general formula (C ″). .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 なお、一般式(A'')で表される化合物群から選択される少なくとも一種の化合物および一般式(C'')で表される化合物群から選択される少なくとも一種の化合物は、所謂ケト‐エノール互変異性によって、ジケトン構造をとる場合と、式で示したように、ケトンおよびエノールからなる構造をとる場合があるが、本発明では両者を特に区別しないものとする。 The at least one compound selected from the compound group represented by the general formula (A ″) and the at least one compound selected from the compound group represented by the general formula (C ″) are so-called keto- Depending on the enol tautomerism, there may be a case where a diketone structure is taken, and a case where a structure consisting of a ketone and an enol is taken as shown in the formula, but in the present invention, the two are not particularly distinguished.
 前記配位子(b)を構成する化合物としては、以下の一般式(B'')で表される化合物群から選択される少なくとも一種の化合物が挙げられる。 Examples of the compound constituting the ligand (b) include at least one compound selected from the group of compounds represented by the following general formula (B ″).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記希土類元素を含む化合物としては、前述の希土類元素の塩化物、臭化物、酢酸塩、酸化物等が挙げられる。前記希土類元素を含む化合物としては、前述の希土類元素の塩化物、臭化物が好ましい。 Examples of the rare earth element-containing compound include the rare earth element chlorides, bromides, acetates, oxides, and the like. The compound containing the rare earth element is preferably the chloride or bromide of the rare earth element described above.
 以下、本発明の希土類錯体を製造する方法についてより詳細に説明する。
 本発明の希土類錯体を製造する方法の例としては、まず前記希土類元素を含む化合物に配位することにより配位子(a)となる化合物および、必要に応じて用いられる前記希土類元素を含む化合物に配位することにより配位子(c)となる化合物を、溶媒に溶解させ、溶液(i)を得る。次いで、溶液(i)に塩基またはその水溶液を加え、次いで配位子(b)を構成する化合物を加え、溶液(ii)を得る。次いで、溶液(ii)に希土類元素を含む化合物を加え、本発明の希土類錯体を固形物として得る。最後に該固形物を任意の方法で回収、必要に応じて精製することにより本発明の希土類錯体を製造することができる。
Hereinafter, the method for producing the rare earth complex of the present invention will be described in more detail.
As an example of the method for producing the rare earth complex of the present invention, a compound that first becomes a ligand (a) by coordination with the compound containing the rare earth element, and a compound containing the rare earth element used as necessary The compound which becomes the ligand (c) by coordinating to is dissolved in a solvent to obtain a solution (i). Next, a base or an aqueous solution thereof is added to the solution (i), and then a compound constituting the ligand (b) is added to obtain a solution (ii). Next, a compound containing a rare earth element is added to the solution (ii) to obtain the rare earth complex of the present invention as a solid. Finally, the rare earth complex of the present invention can be produced by recovering the solid by an arbitrary method and purifying it as necessary.
 前記溶媒としては通常は有機溶媒または有機溶媒と水との混合溶媒が用いられる。有機溶媒としては、好ましくは極性有機溶媒が用いられ、その具体例としては、テトラヒドロフラン(THF)、エタノール、メタノール、イソプロピルアルコール、ジオキサン等が挙げられる。 As the solvent, an organic solvent or a mixed solvent of an organic solvent and water is usually used. As the organic solvent, a polar organic solvent is preferably used, and specific examples thereof include tetrahydrofuran (THF), ethanol, methanol, isopropyl alcohol, dioxane and the like.
 前記塩基としては水酸化ナトリウム、トリエチルアミン等が挙げられ、前述のように配位子(b)を構成する化合物としては水和物であってもよい。
 前記希土類錯体としては前述のように水和物であってもよい。
Examples of the base include sodium hydroxide and triethylamine. As described above, the compound constituting the ligand (b) may be a hydrate.
The rare earth complex may be a hydrate as described above.
 なお、前記希土類元素を含む化合物に配位することにより配位子(a)となる化合物、配位子(b)を構成する化合物および、必要に応じて用いられる前記希土類元素を含む化合物に配位することにより配位子(c)となる化合物の使用量は、得ようとする希土類錯体中の配位子(a)、配位子(b)、配位子(c)の量に応じて、適宜選択することが可能である。 In addition, it is coordinated to the compound that forms the ligand (a) by coordinating to the compound containing the rare earth element, the compound constituting the ligand (b), and the compound containing the rare earth element used as necessary. The amount of the compound that becomes the ligand (c) by positioning depends on the amount of the ligand (a), ligand (b), and ligand (c) in the rare earth complex to be obtained. It is possible to select as appropriate.
 また、前記塩基の使用量としては、通常は添加した配位子(a)の2倍モルと、添加した配位子(c)の1倍モルとの合計量~過剰量の範囲で用いられ、好ましくは添加した配位子(a)の2倍モルと、添加した配位子(c)の1倍モルとの合計量~合計量の1.5倍量の範囲で用いられる。 The amount of the base used is usually in the range of a total amount to an excess amount of 2 times mole of the added ligand (a) and 1 time mole of the added ligand (c). Preferably, it is used in the range of a total amount of 1.5 times the total amount of 2 times mole of the added ligand (a) and 1 time mole of the added ligand (c).
 なお、前記方法によって、前記希土類錯体を製造する際には、通常は室温、常圧で行われるが、必要に応じて加熱、減圧、加圧等を行ってもよい。
 本発明の希土類錯体の用途について以下説明する。
In addition, when manufacturing the said rare earth complex by the said method, it is normally performed at room temperature and a normal pressure, However Heating, pressure reduction, pressurization, etc. may be performed as needed.
The use of the rare earth complex of the present invention will be described below.
 本発明の希土類錯体は、紫外光~青色光を吸収し発光する錯体であるため、発光性材料として各種用途に用いることができる。本発明の希土類錯体は、耐光性に優れるため、長期間太陽光等の光にさらされる用途、例えば太陽電池モジュールを構成する材料の一つとして用いることが好ましい。 Since the rare earth complex of the present invention absorbs ultraviolet light to blue light and emits light, it can be used as a light emitting material for various applications. Since the rare earth complex of the present invention is excellent in light resistance, it is preferably used as one of materials that constitute a solar cell module, for example, for applications exposed to light such as sunlight for a long period of time.
 本発明の希土類錯体を用いる際には、樹脂との組成物、すなわち本発明の希土類錯体および樹脂を含む樹脂組成物として各種用途に用いてもよい。
 なお、該樹脂組成物の製造方法としては、本発明の希土類錯体を直接樹脂と混合あるいは混練することにより樹脂組成物を得てもよく、本発明の希土類錯体、樹脂および溶剤を含む樹脂溶液を調製した後に、溶剤を除去することにより樹脂組成物を得てもよい。
When using the rare earth complex of this invention, you may use for various uses as a resin composition containing the resin with the resin, ie, the rare earth complex of this invention, and resin.
As a method for producing the resin composition, the resin composition may be obtained by directly mixing or kneading the rare earth complex of the present invention with a resin, or a resin solution containing the rare earth complex of the present invention, a resin and a solvent. After the preparation, the resin composition may be obtained by removing the solvent.
 前記樹脂としては特に限定はないが、ポリビニルブチラール等のポリビニルアセタール、アクリル系樹脂、ポリカーボネート、ポリスチレン、ポリオレフィン、ポリ塩化ビニル、エポキシ樹脂、フッ素樹脂、エチレン-酢酸ビニル共重合体等が挙げられる。 The resin is not particularly limited, and examples thereof include polyvinyl acetal such as polyvinyl butyral, acrylic resin, polycarbonate, polystyrene, polyolefin, polyvinyl chloride, epoxy resin, fluororesin, and ethylene-vinyl acetate copolymer.
 また、前記溶剤としては、クロロホルム、塩化メチレン、トルエン、THF、エタノール等が挙げられる。
 なお、前記樹脂組成物は、本発明の希土類錯体を、樹脂100質量部に対して、通常は0.0001~30質量部含有し、好ましくは0.0005~20質量部含有し、より好ましくは0.001~10質量部含有する。
Examples of the solvent include chloroform, methylene chloride, toluene, THF, ethanol and the like.
The resin composition usually contains the rare earth complex of the present invention in an amount of 0.0001 to 30 parts by weight, preferably 0.0005 to 20 parts by weight, more preferably 100 parts by weight of the resin. 0.001 to 10 parts by mass is contained.
 また、前記樹脂溶液は、本発明の希土類錯体を、樹脂100質量部に対して、通常は0.0001~30質量部含有し、好ましくは0.0005~20質量部含有し、より好ましくは0.001~10質量部含有する。また、前記樹脂溶液は、溶剤を、樹脂100質量部に対して、通常は100~100000質量部含有し、好ましくは500~50000質量部含有し、より好ましくは1000~10000質量部含有する。 The resin solution usually contains 0.0001 to 30 parts by mass, preferably 0.0005 to 20 parts by mass, more preferably 0 to 100 parts by mass of the rare earth complex of the present invention. 001 to 10 parts by mass. The resin solution usually contains 100 to 100000 parts by mass, preferably 500 to 50000 parts by mass, and more preferably 1000 to 10000 parts by mass of the solvent with respect to 100 parts by mass of the resin.
 また、前記樹脂組成物や樹脂溶液には、他の添加剤が含まれていてもよい。他の添加剤としては、例えば可塑剤、酸化防止剤、紫外線吸収剤、光安定剤、脱水剤、接着力調整剤、シランカップリング剤、顔料、架橋性モノマー、重合開始剤等が挙げられる。これらの添加剤の使用量としては、用途によっても異なるが通常は樹脂100質量部に対して0.001~50質量部の範囲で用いられる。 Further, the resin composition and the resin solution may contain other additives. Examples of other additives include a plasticizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a dehydrating agent, an adhesion adjusting agent, a silane coupling agent, a pigment, a crosslinkable monomer, and a polymerization initiator. The amount of these additives used varies depending on the application, but is usually in the range of 0.001 to 50 parts by mass with respect to 100 parts by mass of the resin.
 前記可塑剤としては、例えば、3GO(トリエチレングリコールビス(2-エチルヘキサノエート))が挙げられる。
 本発明の希土類錯体の用途としては、前記樹脂組成物からなる波長変換シート、前記樹脂組成物からなる封止剤が挙げられる。
Examples of the plasticizer include 3GO (triethylene glycol bis (2-ethylhexanoate)).
Applications of the rare earth complex of the present invention include a wavelength conversion sheet made of the resin composition and a sealant made of the resin composition.
 本発明の波長変換シートは、前記樹脂組成物からなる。本発明の波長変換シートは、紫外光~青色光を吸収し、結晶シリコンが高い光電変換効率を有する550~1000nmに波長変換することが可能であるため、太陽電池セルの受光面側に該波長変換シートを配置させることにより、太陽電池モジュールの発電効率を向上させることが可能である。 The wavelength conversion sheet of the present invention comprises the resin composition. The wavelength conversion sheet of the present invention absorbs ultraviolet light to blue light, and crystalline silicon can be wavelength-converted to 550 to 1000 nm having high photoelectric conversion efficiency. By arranging the conversion sheet, it is possible to improve the power generation efficiency of the solar cell module.
 波長変換シートの製造方法としては特に限定はないが、前述の樹脂溶液を塗工し、溶剤を除去することにより波長変換シートを製造する方法、樹脂組成物を溶融混練し、シート状に押出成形することにより波長変換シートを製造する方法が挙げられる。 The method for producing the wavelength conversion sheet is not particularly limited, but the method for producing the wavelength conversion sheet by applying the resin solution described above and removing the solvent, melt-kneading the resin composition, and extruding into a sheet form The method of manufacturing a wavelength conversion sheet by doing is mentioned.
 本発明の波長変換シートの厚さとしては、通常は10~1000μmである。
 本発明の封止剤は、前記樹脂組成物からなる。本発明の波長変換シートは、紫外光~青色光を吸収し、結晶シリコンが高い光電変換効率を有する550~1000nmに波長変換することが可能であるため、太陽電池セルと、フロントカバーとの間に前記封止剤を含有させることにより、太陽電池モジュールの発電効率を向上させることが可能である。
The thickness of the wavelength conversion sheet of the present invention is usually 10 to 1000 μm.
The sealing agent of this invention consists of the said resin composition. The wavelength conversion sheet of the present invention absorbs ultraviolet light to blue light, and crystalline silicon can be wavelength-converted to 550 to 1000 nm having high photoelectric conversion efficiency. It is possible to improve the power generation efficiency of the solar cell module by containing the above-mentioned sealant.
 本発明の太陽電池モジュールとしては、前記波長変換シートおよび/または前記封止剤をその構成部材の一つとして用いる。本発明の太陽電池モジュールとしては、少なくとも太陽電池セルと、前記波長変換シートとを有し、前記太陽電池セルの受光面側に、前記波長変換シートが配置される太陽電池モジュールや、少なくとも太陽電池セルと、前記封止剤と、フロントカバーとを有し、前記太陽電池セルと、フロントカバーとの間に、前記封止剤を含有する太陽電池モジュールが挙げられる。 The solar cell module of the present invention uses the wavelength conversion sheet and / or the sealant as one of its constituent members. The solar cell module of the present invention includes at least a solar cell and the wavelength conversion sheet, and the solar cell module in which the wavelength conversion sheet is disposed on the light receiving surface side of the solar cell, or at least a solar cell. Examples of the solar battery module include a cell, the sealing agent, and a front cover, and the sealing agent is contained between the solar battery cell and the front cover.
 本発明の太陽電池モジュールを構成する太陽電池セル、フロントカバー、バックカバー等の各部材については、従来公知のものを用いることができる。また、反射防止膜等の太陽電池モジュールに用いる部材として公知のものを適宜用いることができる。 Conventionally known members can be used for each member such as a solar battery cell, a front cover, and a back cover that constitute the solar battery module of the present invention. Moreover, a well-known thing can be used suitably as members used for solar cell modules, such as an antireflection film.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 〔製造例1〕
 (4,4,5,5-Tetrafluoro-3,8-dihydroxy-1,8-dithiophen-2-yl-octa-2,7-diene-1,6-dione(TTA-TTA)の合成)
EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.
[Production Example 1]
(Synthesis of 4,4,5,5-Tetrafluor-3,8-dihydroxy-1,8-dithiophen-2-yl-octa-2,7-diene-1,6-dione (TTA-TTA))
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 100mlのナスフラスコに、ナトリウムメトキシド(1.30g、24.2mmol)、エーテル(15ml)を量り取り氷浴中で攪拌した。そこへ、テトラフルオロコハク酸ジメチル(2.50g、11.5mmol)、2-アセチルチオフェン(1.45g、11.5mmol)の混合溶液をゆっくりと滴下した。0℃で20分間攪拌後、2-アセチルチオフェン(1.45g、11.5mmol)のエーテル溶液を滴下し、室温に昇温して一晩攪拌した。反応後、エーテルを減圧留去し、水(30ml)を加え酢酸で酸性とした後、不溶物を濾別した(桐山濾紙No.5C)。得られた固体を水、エタノールにて順次洗浄、乾燥して、目的物(TTA-TTA)を淡黄色粉末として3.14g得た(収率67%)。 In a 100 ml eggplant flask, sodium methoxide (1.30 g, 24.2 mmol) and ether (15 ml) were weighed and stirred in an ice bath. A mixed solution of dimethyl tetrafluorosuccinate (2.50 g, 11.5 mmol) and 2-acetylthiophene (1.45 g, 11.5 mmol) was slowly added dropwise thereto. After stirring at 0 ° C. for 20 minutes, an ether solution of 2-acetylthiophene (1.45 g, 11.5 mmol) was added dropwise, and the mixture was warmed to room temperature and stirred overnight. After the reaction, ether was distilled off under reduced pressure, water (30 ml) was added and the mixture was acidified with acetic acid, and the insoluble material was filtered off (Kiriyama filter paper No. 5C). The obtained solid was washed successively with water and ethanol and dried to obtain 3.14 g of the target product (TTA-TTA) as a pale yellow powder (yield 67%).
 得られた目的物の1H-NMRスペクトルを、NMR測定装置(Avance400、BRUKER製)を用いて測定した。
 1H-NMR(400MHz、CDCl3):7.84(dd,J=4.0,1.2Hz,2H), 7.74(dd,J=4.8,1.2Hz,2H), 7.20(dd,J=4.8,4.0Hz,2H), 6.51(s,2H).
 〔比較例1〕
 (Eu(TTA)3Phen(Eu錯体(c1))の合成)
The 1H-NMR spectrum of the obtained target product was measured using an NMR measuring apparatus (Avance 400, manufactured by BRUKER).
1H-NMR (400 MHz, CDCl3): 7.84 (dd, J = 4.0, 1.2 Hz, 2H), 7.74 (dd, J = 4.8, 1.2 Hz, 2H), 7.20 (Dd, J = 4.8, 4.0 Hz, 2H), 6.51 (s, 2H).
[Comparative Example 1]
(Synthesis of Eu (TTA) 3Phen (Eu complex (c1)))
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 500mlのナスフラスコに、4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン(TTA;2.00g,9.00mmol)を量り取りエタノール(70ml)に溶解した。そこへ、室温にて1M 水酸化ナトリウム水溶液(11ml,11mmol,3.9当量)、1,10-フェナントロリン一水和物(668mg,3.37mmol)のエタノール溶液(70ml)を順次加えた。1時間攪拌した後、塩化ユウロピウム六水和物(1.03g,2.81mmol)の水溶液(30ml)をゆっくりと滴下し、沈殿物を生成させた。これを濾別(桐山濾紙No.5C)し、エタノールにて洗浄、乾燥後、目的物を白色粉末として2.26g得た(収率81%)。 In a 500 ml eggplant flask, 4,4,4-trifluoro-1-thienyl-1,3-butanedione (TTA; 2.00 g, 9.00 mmol) was weighed and dissolved in ethanol (70 ml). Thereto, a 1M aqueous sodium hydroxide solution (11 ml, 11 mmol, 3.9 equivalents) and an ethanol solution (70 ml) of 1,10-phenanthroline monohydrate (668 mg, 3.37 mmol) were sequentially added at room temperature. After stirring for 1 hour, an aqueous solution (30 ml) of europium chloride hexahydrate (1.03 g, 2.81 mmol) was slowly added dropwise to form a precipitate. This was filtered off (Kiriyama filter paper No. 5C), washed with ethanol and dried to obtain 2.26 g of the desired product as a white powder (yield 81%).
 得られた目的物の1H-NMRスペクトルを、NMR測定装置(Avance400、BRUKER製)を用いて測定した。
 1H-NMR(400MHz、CDCl3):10.28(bs,2H), 10.19(d,J=7.8Hz,2H), 9.54(s,2H), 8.51(d,J=7.9Hz,2Hz), 6.96(d,J=4.9Hz,3H), 6.50(t,J=4.0Hz,3H), 6.18(s,3H), 3.08(s,3H).
 〔比較例2〕
 (Eu錯体(c2)の合成)
The 1 H-NMR spectrum of the obtained target product was measured using an NMR measuring apparatus (Avance 400, manufactured by BRUKER).
1 H-NMR (400 MHz, CDCl 3 ): 10.28 (bs, 2H), 10.19 (d, J = 7.8 Hz, 2H), 9.54 (s, 2H), 8.51 (d, J = 7.9 Hz, 2 Hz), 6.96 (d, J = 4.9 Hz, 3H), 6.50 (t, J = 4.0 Hz, 3H), 6.18 (s, 3H), 08 (s, 3H).
[Comparative Example 2]
(Synthesis of Eu complex (c2))
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 200mlのナスフラスコに、TTA-TTA(305mg、0.750mmol)を量り取り、クロロホルム(50ml)で溶解させた。
 そこへ、室温にて塩化ユウロピウム六水和物(183mg、0.500mmol)のメタノール溶液(5ml)、トリエチルアミン(151mg、1.50mmol)のメタノール溶液(2ml)を順次滴下した。1時間攪拌した後、生成した沈殿物を遠心分離し、クロロホルム、メタノール、水、エーテルにて洗浄、乾燥後、淡黄色粉末(Eu錯体(c2))を260mg得た(収率68%)。
In a 200 ml eggplant flask, TTA-TTA (305 mg, 0.750 mmol) was weighed and dissolved in chloroform (50 ml).
Thereto, a methanol solution (5 ml) of europium chloride hexahydrate (183 mg, 0.500 mmol) and a methanol solution (2 ml) of triethylamine (151 mg, 1.50 mmol) were successively added dropwise at room temperature. After stirring for 1 hour, the generated precipitate was centrifuged, washed with chloroform, methanol, water and ether and dried to obtain 260 mg of a pale yellow powder (Eu complex (c2)) (yield 68%).
 〔比較例3〕
 (Eu錯体(c3)の合成)
[Comparative Example 3]
(Synthesis of Eu complex (c3))
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 50mlのナスフラスコに、DBM-DBM(1,3-ビス(3-フェニル-3-オキソプロパノイル)ベンゼン)(94.5mg、0.255mmol)を量り取り、クロロホルム(8ml)で溶解させた。 In a 50 ml eggplant flask, DBM-DBM (1,3-bis (3-phenyl-3-oxopropanoyl) benzene) (94.5 mg, 0.255 mmol) was weighed and dissolved in chloroform (8 ml).
 そこへ、室温にて塩化ユウロピウム六水和物(62.3mg、0.170mmol)のメタノール溶液(2ml)、トリエチルアミン(52mg、0.51mmol)のメタノール溶液(2ml)を順次滴下した。1時間攪拌した後、生成した沈殿物を濾別(桐山濾紙No.5C)し、クロロホルム、メタノール、水、エーテルにて洗浄、乾燥後、黄色固体(Eu錯体(c3))を84.2mg得た(収率70%)。 Thereto, a methanol solution (2 ml) of europium chloride hexahydrate (62.3 mg, 0.170 mmol) and a methanol solution (2 ml) of triethylamine (52 mg, 0.51 mmol) were successively added dropwise at room temperature. After stirring for 1 hour, the produced precipitate was filtered off (Kiriyama filter paper No. 5C), washed with chloroform, methanol, water and ether, dried, and then 84.2 mg of yellow solid (Eu complex (c3)) was obtained. (Yield 70%).
 なお、Eu錯体(c3)を用いて、後述の耐光性評価の項で記載した0.2%Eu錯体含有PVBシートを作製したが、該シートでは紫外光を照射しても発光がほとんどなかった。 In addition, using the Eu complex (c3), a 0.2% Eu complex-containing PVB sheet described in the section of light resistance evaluation described later was produced, but the sheet did not emit light even when irradiated with ultraviolet light. .
 〔比較例4〕
 (Eu錯体(c4)の合成)
[Comparative Example 4]
(Synthesis of Eu complex (c4))
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 50mlのナスフラスコに、DBM-DBM(94.5mg、0.255mmol)を量り取り、THF/エタノール/水(10/5/5ml)を加えた。
 そこへ、室温にて1M 水酸化ナトリウム水溶液(0.51ml、0.51mmol)、続いて1,10-フェナントロリン一水和物(33.7mg、0.170mmol)のエタノール溶液(2ml)を加え溶解させた。
DBM-DBM (94.5 mg, 0.255 mmol) was weighed into a 50 ml eggplant flask and THF / ethanol / water (10/5/5 ml) was added.
Thereto, 1M aqueous sodium hydroxide solution (0.51 ml, 0.51 mmol) was added at room temperature, followed by ethanol solution (2 ml) of 1,10-phenanthroline monohydrate (33.7 mg, 0.170 mmol) and dissolved. I let you.
 1時間攪拌した後、塩化ユウロピウム六水和物(62.3mg、0.170mmol)の水溶液(2ml)をゆっくりと滴下し、沈殿物を生成させた。これを遠心分離し、水、エタノールにて洗浄、乾燥後、淡黄色粉末(Eu錯体(c4))を105mg得た(収率70%)。 After stirring for 1 hour, an aqueous solution (2 ml) of europium chloride hexahydrate (62.3 mg, 0.170 mmol) was slowly added dropwise to produce a precipitate. This was centrifuged, washed with water and ethanol, dried, and 105 mg of a pale yellow powder (Eu complex (c4)) was obtained (yield 70%).
 なお、Eu錯体(c4)を用いて、後述の耐光性評価の項で記載した0.2%Eu錯体含有PVBシートを作製したが、該シートでは紫外光を照射しても発光がほとんどなかった。 In addition, using the Eu complex (c4), a 0.2% Eu complex-containing PVB sheet described in the later section of light resistance evaluation was produced, but the sheet did not emit light even when irradiated with ultraviolet light. .
 〔実施例1〕
 (Eu錯体(1)の合成)
[Example 1]
(Synthesis of Eu complex (1))
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 50mlのナスフラスコに、TTA-TTA(305mg、0.750mmol)を量り取り、THF/エタノール(15/8ml)を加え溶解させた。
 そこへ、室温にて1M 水酸化ナトリウム水溶液(1.55ml、1.55mmol)、続いて1,10-フェナントロリン一水和物(99.1mg、0.500mmol)のエタノール溶液(2ml)を滴下した。
To a 50 ml eggplant flask, TTA-TTA (305 mg, 0.750 mmol) was weighed, and THF / ethanol (15/8 ml) was added and dissolved.
Thereto, 1M aqueous sodium hydroxide solution (1.55 ml, 1.55 mmol) was added dropwise at room temperature, followed by ethanol solution (2 ml) of 1,10-phenanthroline monohydrate (99.1 mg, 0.500 mmol). .
 10分間攪拌した後、塩化ユウロピウム六水和物(183mg、0.500mmol)の水溶液(2ml)をゆっくりと滴下し、沈殿物を生成させた。水を添加後、沈殿物を遠心分離し、エタノールにて洗浄、乾燥後、白色粉末(Eu錯体(1))を298mg得た(収率63%)。 After stirring for 10 minutes, an aqueous solution (2 ml) of europium chloride hexahydrate (183 mg, 0.500 mmol) was slowly added dropwise to produce a precipitate. After adding water, the precipitate was centrifuged, washed with ethanol and dried to obtain 298 mg of white powder (Eu complex (1)) (yield 63%).
 〔実施例2〕
 (Eu錯体(2)の合成)
[Example 2]
(Synthesis of Eu complex (2))
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 50mlのナスフラスコに、TTA(4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン)(111mg、0.500mmol)とTTA-TTA(203mg、0.500mmol)を量り取り、THF/エタノール(8/10ml)に溶解させた。 In a 50 ml eggplant flask, TTA (4,4,4-trifluoro-1-thienyl-1,3-butanedione) (111 mg, 0.500 mmol) and TTA-TTA (203 mg, 0.500 mmol) were weighed and THF was added. / Ethanol (8/10 ml).
 そこへ、室温にて1M 水酸化ナトリウム水溶液(1.6ml、1.6mmol)、続いて1,10-フェナントロリン一水和物(99.1mg、0.500mmol)のエタノール溶液(2ml)を加えた。 Thereto, 1M aqueous sodium hydroxide solution (1.6 ml, 1.6 mmol) was added at room temperature, followed by ethanol solution (2 ml) of 1,10-phenanthroline monohydrate (99.1 mg, 0.500 mmol). .
 10分間攪拌した後、塩化ユウロピウム六水和物(183mg、0.500mmol)の水溶液(2ml)をゆっくりと滴下し、沈殿物を生成させた。水を添加後、沈殿物を遠心分離し、エタノールにて洗浄、乾燥後、白色粉末(Eu錯体(2))を323mg得た(収率68%)。 After stirring for 10 minutes, an aqueous solution (2 ml) of europium chloride hexahydrate (183 mg, 0.500 mmol) was slowly added dropwise to produce a precipitate. After adding water, the precipitate was centrifuged, washed with ethanol, and dried to obtain 323 mg of white powder (Eu complex (2)) (yield 68%).
 前記実施例、比較例で得たEu錯体について、以下の試験を行った。
 〔太陽電池の電流値測定〕
 (0.02%Eu錯体含有PVBシートの作製)
 300mlビーカーに、実施例、比較例で得たEu錯体(1.3mg)を量り取り、280gのクロロホルムで溶解した。
The following tests were conducted on the Eu complexes obtained in the examples and comparative examples.
[Measurement of current value of solar cell]
(Preparation of 0.02% Eu complex-containing PVB sheet)
In a 300 ml beaker, the Eu complex (1.3 mg) obtained in Examples and Comparative Examples was weighed and dissolved in 280 g of chloroform.
 そこへ、3GO(トリエチレングリコールビス(2-エチルヘキサノエート))(2.43g)、PVB(ポリビニルブチラール)(6.38g)を順次添加して室温で30分間攪拌した。 Thereto, 3GO (triethylene glycol bis (2-ethylhexanoate)) (2.43 g) and PVB (polyvinyl butyral) (6.38 g) were sequentially added and stirred at room temperature for 30 minutes.
 撹拌により得られた粘性溶液をテフロン(登録商標)板上に広げ、室温で一晩揮発成分を除去した後、アズワン製小型プレス機にて120℃15MPaで3分間プレスし、約0.3mm厚のEu錯体を0.02質量%含有するシートを作製した。 The viscous solution obtained by stirring was spread on a Teflon (registered trademark) plate, and after removing volatile components overnight at room temperature, it was pressed at 120 ° C. and 15 MPa for 3 minutes with a small press machine manufactured by ASONE, about 0.3 mm thick A sheet containing 0.02% by mass of the Eu complex was prepared.
 (電流値測定)
 上記シートを結晶Si太陽電池(UCHIDA製;出力1.5V、400mA)上に密着させ、300Wソーラーシミュレーター(Newport製ORIEL ブランド;240W出力、キセノンランプ、AM1.5Directフィルター)を用いて、擬似太陽光を照射した時の電流値をデジタルマルチメーターを使用して測定した。シート(波長変換膜)貼付時と無貼付時の電流値の差を測定し、貼付時の電流値から無貼付時の電流値を引いたものを電流上昇値とした。
(Current value measurement)
Using the 300W solar simulator (NEWPORT ORIEL brand; 240W output, xenon lamp, AM1.5Direct filter), a pseudo-sunlight is brought into close contact with a crystalline Si solar cell (UCHIDA; output 1.5V, 400 mA). Was measured using a digital multimeter. The difference between the current value when the sheet (wavelength conversion film) was applied and when the sheet was not applied was measured, and the current increase value was obtained by subtracting the current value when the sheet was not applied from the current value when the sheet was applied.
 〔耐光性評価〕
 (0.2%Eu錯体含有PVBシートの作製)
 300mlビーカーに、実施例、比較例で得たEu錯体(12.8mg)を量り取り、280gのクロロホルムで溶解した。そこへ、3GO(2.43g)、PVB(6.38g)を順次添加して室温で30分間攪拌した。
(Light resistance evaluation)
(Preparation of PVB sheet containing 0.2% Eu complex)
In a 300 ml beaker, the Eu complex (12.8 mg) obtained in Examples and Comparative Examples was weighed and dissolved in 280 g of chloroform. Thereto, 3GO (2.43 g) and PVB (6.38 g) were sequentially added and stirred at room temperature for 30 minutes.
 撹拌により得られた粘性溶液をテフロン(登録商標)板上に広げ、室温で一晩揮発成分を除去した後、アズワン製小型プレス機にて120℃15MPaで3分間プレスし、約0.3mm厚のEu錯体を0.2質量%含有するシートを作製した。 The viscous solution obtained by stirring was spread on a Teflon (registered trademark) plate, and after removing volatile components overnight at room temperature, it was pressed at 120 ° C. and 15 MPa for 3 minutes with a small press machine manufactured by ASONE, about 0.3 mm thick A sheet containing 0.2% by mass of the Eu complex was prepared.
 (耐光性試験)
 上記シートを2枚のスライドガラスで挟んだ合わせガラスサンプルを作製し、スーパーキセノンウェザーメーター SX75(スガ試験機株式会社製;照射強度:180W/m2、ブラックパネル温度63℃)を用い、紫外光照射を行った。紫外光照射前、紫外光照射から24時間後、および48時間後に上記シートに、BLAK-RAYランプ(MODEL UVL-21)で366nmの紫外光を照射した時の615nmの発光強度を、スペクトロマルチチャンネルフォトディテクター(大塚電子製;Photal、MCPD-100,MCPD-3000)にて測定した。
(Light resistance test)
A laminated glass sample in which the above sheet is sandwiched between two slide glasses is prepared, and ultraviolet light is used using Super Xenon Weather Meter SX75 (manufactured by Suga Test Instruments Co., Ltd .; irradiation intensity: 180 W / m 2 , black panel temperature 63 ° C.) Irradiation was performed. Before irradiating with ultraviolet light, 24 hours and 48 hours after irradiation with ultraviolet light, the above-mentioned sheet was irradiated with 366 nm ultraviolet light with a BLAK-RAY lamp (MODEL UVL-21). Measurement was performed with a photodetector (manufactured by Otsuka Electronics; Photo, MCPD-100, MCPD-3000).
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 〔比較例5〕
 (Sm錯体(c5)の合成)
[Comparative Example 5]
(Synthesis of Sm complex (c5))
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 500mlのナスフラスコに、4,4,4-トリフルオロ-1-チエニル-1,3-ブタンジオン(TTA;711mg,3.20mmol)を量り取り、エタノール(20ml)に溶解した。 In a 500 ml eggplant flask, 4,4,4-trifluoro-1-thienyl-1,3-butanedione (TTA; 711 mg, 3.20 mmol) was weighed and dissolved in ethanol (20 ml).
 そこへ、室温にて1M水酸化ナトリウム水溶液(3.9ml,3.9mmol)、1,10-フェナントロリン一水和物(238mg,1.20mmol)のエタノール溶液(7ml)を順次加えた。 Thereto, a 1M aqueous sodium hydroxide solution (3.9 ml, 3.9 mmol) and an ethanol solution (7 ml) of 1,10-phenanthroline monohydrate (238 mg, 1.20 mmol) were sequentially added at room temperature.
 10分間攪拌した後、塩化サマリウム六水和物(365mg,1.00mmol)の水溶液(4ml)をゆっくりと滴下し、沈殿物を生成させた。水を添加後、沈殿物を遠心分離し、エタノールにて洗浄、乾燥後、白色粉末を944mg得た(収率95%)。 After stirring for 10 minutes, an aqueous solution (4 ml) of samarium chloride hexahydrate (365 mg, 1.00 mmol) was slowly added dropwise to produce a precipitate. After adding water, the precipitate was centrifuged, washed with ethanol, and dried to obtain 944 mg of white powder (yield 95%).
 得られた目的物の1H-NMRスペクトルを、NMR測定装置(Avance400、BRUKER製)を用いて測定した。
 1H-NMR(400MHz,CDCl3):9.19(br,2H), 8.09(d,J=8.0Hz,2H), 7.77(d,J=3.6Hz,3H), 7.58(m,2H), 7.52(s,2H), 7.47(d,J=4.8Hz,3H), 7.30(s,3H), 7.07(t,J=4.0Hz,3H).
 〔実施例3〕
 (Sm錯体(3)の合成)
The 1 H-NMR spectrum of the obtained target product was measured using an NMR measuring apparatus (Avance 400, manufactured by BRUKER).
1 H-NMR (400 MHz, CDCl3): 9.19 (br, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 3.6 Hz, 3H), 7 .58 (m, 2H), 7.52 (s, 2H), 7.47 (d, J = 4.8 Hz, 3H), 7.30 (s, 3H), 7.07 (t, J = 4) .0Hz, 3H).
Example 3
(Synthesis of Sm complex (3))
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 100mlのナスフラスコに、TFT(305mg,0.750mmol)を量り取り、THF/エタノール(15/15ml)を加え溶解させた。
 そこへ、室温にて1M水酸化ナトリウム水溶液(1.55ml,1.55mmol)、続いて1,10-フェナントロリン一水和物(99.1mg,0.500mmol)のエタノール溶液(2ml)を滴下した。
In a 100 ml eggplant flask, TFT (305 mg, 0.750 mmol) was weighed and THF / ethanol (15/15 ml) was added and dissolved.
Thereto, a 1M aqueous sodium hydroxide solution (1.55 ml, 1.55 mmol) was added dropwise at room temperature, followed by an ethanol solution (2 ml) of 1,10-phenanthroline monohydrate (99.1 mg, 0.500 mmol). .
 10分間攪拌した後、塩化サマリウム六水和物(183mg,0.500mmol)の水溶液(2ml)をゆっくりと滴下し、沈殿物を生成させた。水を添加後、沈殿物を遠心分離し、エタノールにて洗浄、乾燥後、白色粉末を284mg得た(収率61%)。 After stirring for 10 minutes, an aqueous solution (2 ml) of samarium chloride hexahydrate (183 mg, 0.500 mmol) was slowly added dropwise to form a precipitate. After adding water, the precipitate was centrifuged, washed with ethanol and dried to obtain 284 mg of white powder (yield 61%).
 〔実施例4〕
 (Sm錯体(4)の合成)
Example 4
(Synthesis of Sm complex (4))
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 100mlのナスフラスコに、TTA(222mg,1.00mmol)とTFT(406mg,1.00mmol)を量り取り、THF/エタノール(16/20ml)に溶解させた。 In a 100 ml eggplant flask, TTA (222 mg, 1.00 mmol) and TFT (406 mg, 1.00 mmol) were weighed and dissolved in THF / ethanol (16/20 ml).
 そこへ、室温にて1M水酸化ナトリウム水溶液(3.1ml,3.10mmol)、続いて1,10-フェナントロリン一水和物(198mg,1.00mmol)のエタノール溶液(2ml)を加えた。 Thereto, a 1M aqueous sodium hydroxide solution (3.1 ml, 3.10 mmol) was added at room temperature, followed by an ethanol solution (2 ml) of 1,10-phenanthroline monohydrate (198 mg, 1.00 mmol).
 10分間攪拌した後、塩化サマリウム六水和物(365mg,1.00mmol)の水溶液(2ml)をゆっくりと滴下し、沈殿物を生成させた。水を添加後、沈殿物を遠心分離し、エタノールにて洗浄、乾燥後、白色粉末を927mg得た(収率97%)。 After stirring for 10 minutes, an aqueous solution (2 ml) of samarium chloride hexahydrate (365 mg, 1.00 mmol) was slowly added dropwise to produce a precipitate. After adding water, the precipitate was centrifuged, washed with ethanol and dried to obtain 927 mg of white powder (yield 97%).
 前記実施例、比較例で得たSm錯体について、以下の試験を行った。
 〔耐光性の評価〕
 粉末(Sm錯体)に、350nmの光を照射した際の、610nmにおける発光強度を、日立蛍光分光光度計F-2700にて10分間測定し、初期の発光強度と10分後の発光強度を結ぶ直線の傾きを求めた。
The following tests were conducted on the Sm complexes obtained in the examples and comparative examples.
[Evaluation of light resistance]
When the powder (Sm complex) is irradiated with 350 nm light, the emission intensity at 610 nm is measured with Hitachi fluorescence spectrophotometer F-2700 for 10 minutes, and the initial emission intensity and the emission intensity after 10 minutes are connected. The slope of the straight line was obtained.
 耐光性を発光強度の低下率、すなわち、傾きの大きさとして、評価した。
 〔耐熱性の評価〕
 粉末(Sm錯体)10mgを200℃15分加熱した後、350nmの光を照射した際の605nmの蛍光強度を日立蛍光分光光度計F-2700にて測定した。加熱前も同条件で蛍光強度を測定した。
Light resistance was evaluated as the rate of decrease in emission intensity, that is, the magnitude of the inclination.
[Evaluation of heat resistance]
After heating 10 mg of the powder (Sm complex) at 200 ° C. for 15 minutes, the fluorescence intensity at 605 nm when irradiated with 350 nm light was measured with a Hitachi fluorescence spectrophotometer F-2700. The fluorescence intensity was measured under the same conditions before heating.
 耐熱性を加熱前後の強度低下の有無として、評価した。
 〔太陽電池の電流値測定〕
 (0.2%Sm錯体含有PVBシートの作製)
 300mlビーカーに、実施例、比較例で得たSm錯体(12.8mg)を量り取り、280gのクロロホルムで溶解(超音波分散)した。
The heat resistance was evaluated as the presence or absence of strength reduction before and after heating.
[Measurement of current value of solar cell]
(Preparation of PVB sheet containing 0.2% Sm complex)
In a 300 ml beaker, the Sm complexes (12.8 mg) obtained in Examples and Comparative Examples were weighed and dissolved in 280 g of chloroform (ultrasonic dispersion).
 そこへ、3GO(2.43g)、PVB(6.38g)を順次添加して室温で30分間攪拌した。
 撹拌により得られた粘性溶液をテフロン(登録商標)板上に広げ、室温で一晩揮発成分を除去した後、小型プレス機にて120℃15MPaで3分間プレスし、約0.3mm厚のSm錯体を0.2質量%含有するシートを作製した。
Thereto, 3GO (2.43 g) and PVB (6.38 g) were sequentially added and stirred at room temperature for 30 minutes.
The viscous solution obtained by stirring was spread on a Teflon (registered trademark) plate, volatile components were removed overnight at room temperature, and then pressed at 120 ° C. and 15 MPa for 3 minutes with a small press machine. A sheet containing 0.2% by mass of the complex was produced.
 (PVBシートの作製)
 280gのクロロホルムに、3GO(2.43g)、PVB(6.38g)を順次添加して室温で30分間攪拌した。
(Preparation of PVB sheet)
To 280 g of chloroform, 3GO (2.43 g) and PVB (6.38 g) were sequentially added and stirred at room temperature for 30 minutes.
 撹拌により得られた粘性溶液をテフロン(登録商標)板上に広げ、室温で一晩揮発成分を除去した後、小型プレス機にて120℃15MPaで3分間プレスし、約0.3mm厚のシートを作製した。 The viscous solution obtained by stirring was spread on a Teflon (registered trademark) plate, volatile components were removed overnight at room temperature, and then pressed at 120 ° C. and 15 MPa for 3 minutes with a small press machine. Was made.
 (電流値測定)
 上記シートを結晶Si太陽電池(UCHIDA製;出力1.5V、400mA)上に密着させ、300Wソーラーシミュレーター(Newport製ORIEL ブランド;240W出力、キセノンランプ、AM1.5Directフィルター)を用いて、擬似太陽光を照射した時の電流値をデジタルマルチメーターを使用して測定した。シート(波長変換膜)(0.2%Sm錯体含有PVBシートまたはPVBシート)貼付時の電流値を測定した。
(Current value measurement)
Using the 300W solar simulator (NEWPORT ORIEL brand; 240W output, xenon lamp, AM1.5Direct filter), a pseudo-sunlight is brought into close contact with a crystalline Si solar cell (UCHIDA; output 1.5V, 400 mA). Was measured using a digital multimeter. The electric current value at the time of sticking a sheet (wavelength conversion film) (PVB sheet or PVB sheet containing 0.2% Sm complex) was measured.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 実施例で得られたSm錯体(3)、(4)は、比較例で得られたSm錯体(c5)と比べて、耐光性、耐熱性に優れる。また、Sm錯体を用いることで電流値が上昇した。 The Sm complexes (3) and (4) obtained in the examples are superior in light resistance and heat resistance as compared to the Sm complex (c5) obtained in the comparative example. Moreover, the current value increased by using the Sm complex.

Claims (9)

  1.  Pr、Eu、Sm、Tb、Dy、Ho、およびErから選択される少なくとも一種の希土類元素を含む錯体であって、
     前記希土類元素に、下記一般式(A)で表される配位子群から選択される少なくとも一種の配位子(a)が、希土類元素1個あたり0.8~1.7個配位しており、
     前記希土類元素に、下記一般式(B)で表される配位子群から選択される少なくとも一種の配位子(b)が、希土類元素1個あたり0.8~1.2個配位しており、
     前記希土類元素に、下記一般式(C)で表される配位子群から選択される少なくとも一種の配位子(c)が、希土類元素1個あたり0~1.4個配位しており、
     前記希土類元素1個あたりの配位子(a)の個数をα、前記配位子(c)の個数をγとすると、2α+γが3.0~3.4であることを特徴とする希土類錯体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(A)で表される配位子群において、X1およびX2はそれぞれ独立に、芳香環、ヘテロ芳香環、-C(CH33、-CH3、-CF3、-C25、-C37、または-C49である。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    A complex comprising at least one rare earth element selected from Pr, Eu, Sm, Tb, Dy, Ho, and Er,
    At least one ligand (a) selected from the ligand group represented by the following general formula (A) is coordinated with the rare earth element in an amount of 0.8 to 1.7 per rare earth element. And
    At least one ligand (b) selected from the ligand group represented by the following general formula (B) is coordinated with 0.8 to 1.2 of the rare earth element per rare earth element. And
    At least one ligand (c) selected from the ligand group represented by the following general formula (C) is coordinated to the rare earth element in an amount of 0 to 1.4 per rare earth element. ,
    Rare earth complex characterized in that 2α + γ is 3.0 to 3.4, where α is the number of ligands (a) per rare earth element and γ is the number of ligands (c). .
    Figure JPOXMLDOC01-appb-C000001
    (In the ligand group represented by the general formula (A), X 1 and X 2 are each independently an aromatic ring, a heteroaromatic ring, —C (CH 3 ) 3 , —CH 3 , —CF 3 , — C 2 F 5 , —C 3 F 7 , or —C 4 F 9. )
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  2.  Eu、SmおよびTbから選択される少なくとも一種の希土類元素を含む請求項1に記載の希土類錯体。 The rare earth complex according to claim 1, comprising at least one rare earth element selected from Eu, Sm and Tb.
  3.  前記2α+γが3.0である請求項1または2に記載の希土類錯体。 The rare earth complex according to claim 1 or 2, wherein 2α + γ is 3.0.
  4.  請求項1~3のいずれか一項に記載の希土類錯体および樹脂を含む樹脂組成物。 A resin composition comprising the rare earth complex according to any one of claims 1 to 3 and a resin.
  5.  請求項1~3のいずれか一項に記載の希土類錯体、樹脂および溶剤を含む樹脂溶液。 A resin solution comprising the rare earth complex according to any one of claims 1 to 3, a resin and a solvent.
  6.  請求項4に記載の樹脂組成物からなる波長変換シート。 A wavelength conversion sheet comprising the resin composition according to claim 4.
  7.  請求項4に記載の樹脂組成物からなる封止剤。 A sealant comprising the resin composition according to claim 4.
  8.  少なくとも太陽電池セルと、請求項6に記載の波長変換シートとを有し、
     前記太陽電池セルの受光面側に、前記波長変換シートが配置されることを特徴とする太陽電池モジュール。
    Having at least solar cells and the wavelength conversion sheet according to claim 6;
    The solar cell module, wherein the wavelength conversion sheet is disposed on a light receiving surface side of the solar cell.
  9.  少なくとも太陽電池セルと、請求項7に記載の封止剤と、フロントカバーとを有し、
     前記太陽電池セルと、フロントカバーとの間に、前記封止剤を含有することを特徴とする太陽電池モジュール。
    At least a solar battery cell, the sealant according to claim 7, and a front cover,
    The solar cell module comprising the sealing agent between the solar cell and a front cover.
PCT/JP2013/078193 2012-10-24 2013-10-17 Rare earth complex and application for same WO2014065189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-234911 2012-10-24
JP2012234911 2012-10-24

Publications (1)

Publication Number Publication Date
WO2014065189A1 true WO2014065189A1 (en) 2014-05-01

Family

ID=50544569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078193 WO2014065189A1 (en) 2012-10-24 2013-10-17 Rare earth complex and application for same

Country Status (1)

Country Link
WO (1) WO2014065189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079181A (en) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 Light conversion material, light conversion film, and light emitting element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094128A (en) * 1999-09-22 2001-04-06 Sharp Corp Solar cell module and method for fabricating the same
JP2007291063A (en) * 2006-03-27 2007-11-08 Ushio Chemix Kk 10-dentate rare earth complex and 9-dentate rare earth complex
WO2008047427A1 (en) * 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Fluorescent resin composition and solar battery module using the same
WO2011040391A1 (en) * 2009-09-29 2011-04-07 日立化成工業株式会社 Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module
WO2011126118A1 (en) * 2010-04-09 2011-10-13 日立化成工業株式会社 Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same
JP2011210891A (en) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd Wavelength-converting solar cell sealing sheet, and solar cell module
WO2012077485A1 (en) * 2010-12-06 2012-06-14 日立化成工業株式会社 Spherical phosphor, sealing material for wavelength-conversion-type solar batteries, solar battery module, and process for manufacture of those

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094128A (en) * 1999-09-22 2001-04-06 Sharp Corp Solar cell module and method for fabricating the same
JP2007291063A (en) * 2006-03-27 2007-11-08 Ushio Chemix Kk 10-dentate rare earth complex and 9-dentate rare earth complex
WO2008047427A1 (en) * 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Fluorescent resin composition and solar battery module using the same
WO2011040391A1 (en) * 2009-09-29 2011-04-07 日立化成工業株式会社 Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module
JP2011210891A (en) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd Wavelength-converting solar cell sealing sheet, and solar cell module
WO2011126118A1 (en) * 2010-04-09 2011-10-13 日立化成工業株式会社 Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same
WO2012077485A1 (en) * 2010-12-06 2012-06-14 日立化成工業株式会社 Spherical phosphor, sealing material for wavelength-conversion-type solar batteries, solar battery module, and process for manufacture of those

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079181A (en) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 Light conversion material, light conversion film, and light emitting element

Similar Documents

Publication Publication Date Title
JP6488277B2 (en) Wavelength conversion film having multiple light stable organic chromophores
CN104937072B (en) Diketopyrrolo-pyrrole (DPP) base sensitizer for electrochemical appliance or electrooptical device
Cabau et al. Light soaking effects on charge recombination and device performance in dye sensitized solar cells based on indoline–cyclopentadithiophene chromophores
JP2014508132A (en) Wavelength-converting perylene diester chromophore and luminescent film
WO2015023574A1 (en) Luminescent solar concentrator utilizing organic photostable chromophore compounds
Wu et al. Highly emissive carbon dots/organosilicon composites for efficient and stable luminescent solar concentrators
Wang et al. Highly luminescent and stable organic–inorganic hybrid films for transparent luminescent solar concentrators
Li et al. Low-loss, high-transparency luminescent solar concentrators with a bioinspired self-cleaning surface
JP2014185286A (en) Chromophore having benzotriazole structure and wavelength conversion light-emitting medium using the same
Gao et al. Free radical-resistant carbon dots for bulky luminescent solar concentrators with high optical efficiency
CN103274965B (en) Transferred material and preparation method thereof, purposes under wavelength
TWI474536B (en) Photosensitive porphyrin dyes for dye-sensitized solar cells
CN103275132B (en) Containing organic solar battery material and the synthetic method thereof of triphenylamine-thiophene-structure
WO2014065189A1 (en) Rare earth complex and application for same
WO2014065190A1 (en) Rare earth complex and application for same
CN109369726B (en) Preparation and application of binuclear cyclometalated platinum (III) complex near-infrared luminescent material
CN102719237A (en) Zn(II) complex luminescent material and its preparation method
WO2016152524A1 (en) Europium complex salt and use thereof
CN104910897A (en) Cu3I2 cationic cuprous cluster compound green phosphor material
WO2015079813A1 (en) Wavelength conversion sheet for solar cell module and solar cell module
US20130042916A1 (en) Novel porphyrin complex and use thereof
JP6815700B2 (en) A bistriazine compound, a method for producing the same, and a wavelength conversion light emitting film using the same.
JP5569090B2 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell
KR101508564B1 (en) Derivatives of squaraine, dye for dye-sensitized solar cells and dye-sensitized solar cells
CN115884975A (en) Photonic upconversion compositions, films, methods of converting visible light to ultraviolet light, and compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP