WO2015079507A1 - 発光材及びその製造方法 - Google Patents

発光材及びその製造方法 Download PDF

Info

Publication number
WO2015079507A1
WO2015079507A1 PCT/JP2013/081830 JP2013081830W WO2015079507A1 WO 2015079507 A1 WO2015079507 A1 WO 2015079507A1 JP 2013081830 W JP2013081830 W JP 2013081830W WO 2015079507 A1 WO2015079507 A1 WO 2015079507A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor particles
aqueous dispersion
emitting material
light
silicon compound
Prior art date
Application number
PCT/JP2013/081830
Other languages
English (en)
French (fr)
Inventor
敏彦 澤田
Original Assignee
株式会社ルミネッサス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルミネッサス filed Critical 株式会社ルミネッサス
Priority to PCT/JP2013/081830 priority Critical patent/WO2015079507A1/ja
Publication of WO2015079507A1 publication Critical patent/WO2015079507A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media

Definitions

  • the present invention relates to a light emitting material that absorbs light energy and emits fluorescence, and a method for manufacturing the same.
  • a phosphor that absorbs light energy and emits fluorescence is known. Since the phosphor emits light even when no electric power is supplied from the outside, the phosphor is often used for, for example, a night safety sign, clothes, ornaments, and the like. There are many other uses for phosphors.
  • conventional phosphors have problems in terms of water resistance, heat resistance, ease of processing, and the like. That is, the phosphor is generally weak against water. When the phosphor is exposed to moisture, it is hydrolyzed and its characteristics deteriorate. Further, when the phosphor is heated at a high temperature, the luminance is remarkably lowered. Therefore, for example, it is difficult to manufacture a molded product by mixing a phosphor with a high-temperature resin. Furthermore, since the phosphor has a large number of irregularities on the surface, the resistance is large and it is difficult to use it as a coating material.
  • Patent Document 1 a method of coating the phosphor with thin film silica has been proposed.
  • Patent Document 1 a silica coating is formed on the surface of a phosphor by bringing the phosphor into contact with an alkaline composition for forming a silica coating. As a result, the water resistance of the phosphor is improved.
  • Patent Document 2 particles are immersed in heated deionized water, and alkali metal silicate and mineral acid are added to the aqueous solution. Then, the pH of the aqueous solution is alternately changed between alkaline and acidic, and a silica film is formed on the surfaces of the particles.
  • JP 2003-261869 A Japanese translation of PCT publication No. 7-506081
  • an object of the present invention is to provide a light-emitting material having high luminance and improved manufacturing method and water resistance, heat resistance, and handleability.
  • the light-emitting material according to the present invention comprises strontium, and the surface of phosphor particles having a particle size in the range of 15 to 50 ⁇ m is coated with a silicon compound film.
  • the method for producing a luminescent material according to the present invention comprises the steps of classifying phosphor particles containing strontium so that the particle diameter of the phosphor particles is in a range of 15 to 50 ⁇ m, and water in which the phosphor particles are introduced into water. Preparing a dispersion, heating the aqueous dispersion to 50 to 90 ° C., and adding an alkali silicate and an inorganic acid or a silane compound to the aqueous dispersion while maintaining the aqueous dispersion in a neutral state; And stirring, and drying the aqueous dispersion to obtain a luminescent material in which the surface of the phosphor particles is coated with a silicon compound film.
  • the present invention it is possible to provide a light-emitting material having high luminance and improved manufacturing method, with improved water resistance, heat resistance, and handleability.
  • the luminous body according to the present invention is obtained by coating the surface of phosphor particles containing strontium and having a particle size in the range of 15 to 50 ⁇ m with a silicon compound film. With such a configuration, a light emitting material having high luminance with improved water resistance, heat resistance, and handleability is obtained.
  • Examples of the phosphor particles containing strontium include strontium aluminate particles.
  • Examples of strontium aluminate include SrAl 2 O 4 : Eu, Dy and Sr 4 Al 14 O 25 : Eu, Dy.
  • the particle diameter of the phosphor particles only needs to be in the range of 15 to 50 ⁇ m.
  • phosphor particles having a particle diameter of 15 to 50 ⁇ m, 15 to 25 ⁇ m, 25 to 35 ⁇ m, or 35 to 50 ⁇ m are used. be able to.
  • a small amount of phosphor having a particle diameter outside the range of 15 to 50 ⁇ m may be included.
  • the particle diameter of the phosphor particles of 95% by number or more should be in the range of 15 to 50 ⁇ m.
  • the light-emitting material according to the present invention contains almost no impurities or phosphor particles having a small particle diameter, so that the light emitted from the phosphor has a low probability of irregular reflection, and as a result, has high brightness.
  • the larger the particle size the longer the light emission time because the amount of light energy accumulated in the phosphor particles increases, but the light emitting material becomes rough, which makes the handling inconvenient. Therefore, the particle size of the phosphor particles forming the light emitting material is preferably in the range of 15 to 50 ⁇ m.
  • the surface of the phosphor particles is covered with a silicon compound film.
  • a silicon compound film By covering the surface of the phosphor particles with a silicon compound film, water resistance is improved and heat resistance is also improved.
  • the irregularities on the surface of the phosphor particles are reduced by the coating of the silicon compound film, the viscous resistance is lowered, and the handleability is improved.
  • the coating material can be stretched and the usability is improved.
  • by filling the light-emitting material with less surface irregularities into the molding machine and performing the molding process it is possible to avoid a situation where the molding machine is worn or damaged by the light-emitting material.
  • the entire surface of the phosphor particle is coated with a silicon compound film, but a portion of the surface of the phosphor particle may not be coated with the silicon compound film.
  • the ratio of the silicon compound film to the phosphor particles is preferably 3 to 15% by weight, more preferably 5 to 12% by weight, for example, 10% by weight.
  • silica (SiO 2 ) or a silane compound is preferable.
  • the silane compound include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy Propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoe
  • the film thickness of the silicon compound film coated on the surface of the phosphor particles may be appropriately set according to the intended water resistance, heat resistance, and handleability, but the average film thickness is 0.05 to 0. 0.5 ⁇ m is preferable, and 0.2 to 0.4 ⁇ m is more preferable.
  • the average film thickness of the silicon compound film is increased, the phosphor particles are sufficiently covered with the silicon compound film, so that the water resistance and heat resistance of the light emitting material are further improved.
  • the average film thickness of the silicon compound film is reduced, the phosphor particles easily absorb external light, and light from the phosphor particles is easily emitted to the outside through the coating of the silicon compound film. improves.
  • the average film thickness of the silicon compound film coated on the surface of the phosphor particles can be calculated from the particle diameter of the obtained light emitting material and the particle diameter of the phosphor particles used.
  • FIG. 1 A configuration example of an apparatus for producing a light emitting material according to the present invention is shown in FIG. 1 includes a control device 12, a treatment tank 14, a stirrer 16, a heater 18, and titration devices 20a and 20b.
  • the control device 12 is a device that controls the agitator 16, the heater 18, and the titration devices 20a and 20b.
  • the processing tank 14 is a tank for storing the aqueous dispersion 22 into which the phosphor particles are charged.
  • a lid 24 for sealing is attached to the upper part of the processing tank 14.
  • the stirrer 16 includes a motor 26, a shaft 28, and a stirring blade 30.
  • a motor 26 is connected to the upper end portion of the shaft 28.
  • a stirring blade 30 is connected to the lower end of the shaft 28.
  • the stirring blade 30 is disposed in the aqueous dispersion 22.
  • the heater 18 is a heating unit that heats and maintains the aqueous dispersion 22 at a predetermined temperature.
  • the heater 18 is disposed at the bottom of the processing tank 14.
  • the titration apparatus 20a is an apparatus that drops a predetermined amount of alkali silicate to the aqueous dispersion 22 through the pipe 32a at a predetermined speed.
  • the titration apparatus 20b is an apparatus that drops a predetermined amount of inorganic acid onto the aqueous dispersion 22 at a predetermined speed via the pipe 32b.
  • phosphor particles containing strontium are classified, and the particle size of the phosphor particles is adjusted to a range of 15 to 50 ⁇ m.
  • Classification means to arrange particles in a predetermined range of particle diameters. Specifically, the particles are separated according to the size of the particle diameter using fluid force or a sieve. By this classification, it is preferable that the particle diameters of the phosphors are made uniform within a range of, for example, 15 to 50 ⁇ m, 15 to 25 ⁇ m, 25 to 35 ⁇ m, or 35 to 50 ⁇ m.
  • the method for removing irregularities include a method using a ball mill and a method using baking with an acid.
  • an aqueous dispersion in which phosphor particles are introduced into water is prepared, and the aqueous dispersion is heated to 50 to 90 ° C.
  • water is put into the treatment tank 14 and the water is heated to 50 to 90 ° C. by the heater 18 controlled by the control device 12.
  • the temperature of water is preferably 55 to 70 ° C., and can be set to 60 ° C., for example.
  • control device 12 drives the motor 26.
  • the stirring blade 30 connected to the lower end portion of the shaft 28 is rotated by the motor 26.
  • the aqueous dispersion 22 to which the phosphor particles are added is stirred by the stirring blade 30.
  • an alkali silicate and an inorganic acid are added to the aqueous dispersion and stirred.
  • the production apparatus 10 controls the titration apparatuses 20a and 20b, and the alkali silicate is dropped from the titration apparatus 20a to the aqueous dispersion 22, and the inorganic acid is dropped from the titration apparatus 20b to the aqueous dispersion 22.
  • the silicate alkali for example, sodium silicate can be used.
  • the inorganic acid for example, at least one acid selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid can be used.
  • a silane compound such as a silane coupling agent may be added instead of the alkali silicate and the inorganic acid.
  • the control device 12 controls the titration devices 20a and 20b to adjust the dropping amounts of the alkali silicate and the inorganic acid. That is, the surface of the phosphor particles is covered with the silicon compound film in a state where the aqueous dispersion 22 is maintained neutral. Therefore, the phosphor particles are not attacked by alkali or acid while the surface is covered with the silicon compound film. As a result, the generated light emitting material can emit light with high brightness without deteriorating the light emission characteristics of the phosphor particles.
  • the aqueous dispersion 22 is stirred for a predetermined time by the stirring blade 30. At this time, the temperature of the aqueous dispersion 22 is preferably maintained at 50 to 90 ° C. by the heater 18. The temperature of the aqueous dispersion 22 is preferably 55 to 70 ° C., and can be set to 60 ° C., for example. Thereafter, the control device 12 stops the rotation of the motor 26, and the dropping of the alkali silicate and the inorganic acid by the titration devices 20a and 20b is finished.
  • the film thickness of the silicon compound film can be controlled by adjusting the dropping speed and dropping time of the alkali silicate and inorganic acid dropped in the aqueous dispersion 22. Furthermore, after removing the irregularities present on the surface of the phosphor particles, the surface of the phosphor particles is sufficiently densely covered with a thinner silicon compound film by covering the surface with a silicon compound film. Can do. Therefore, the phosphor particles are secured with water resistance by a thinner silicon compound film, and high luminance is obtained.
  • the aqueous dispersion is dried to obtain a light emitting material in which the surface of the phosphor particles is coated with a silicon compound film.
  • the light-emitting material according to the present invention is obtained by taking out the aqueous dispersion 22 and drying it to remove water.
  • phosphor particles having a composition of Sr 4 Al 14 O 25 : Eu, Dy (manufactured by Ryohin Co., Ltd., trade name: Crite Bright) are crushed by a pulverizer, and then the phosphor particles are collected using a ball mill. Surface irregularities were removed. The phosphor particles were sieved and classified into phosphor particles having a particle size ranging from 15 to 50 ⁇ m.
  • ⁇ Hydrolysis test> The hydrolysis test of the luminescent material obtained in the examples was performed. Specifically, 5 g of the luminescent material was immersed in 50 mL of water, and the pH of the water every elapsed day was measured. As comparative examples, phosphor particles having a composition of Sr 4 Al 14 O 25 : Eu, Dy used in the examples (Comparative Example 1), and phosphor particles having a composition of SrAl 2 O 4 : Eu, Dy A similar test was performed using (manufactured by Nemoto Special Chemical Co., Ltd., trade name: Luminova) (Comparative Example 2) as the luminescent material.
  • the horizontal axis indicates the number of days that the luminescent material has been immersed in water
  • the vertical axis indicates the pH value of the water in which the luminescent material is immersed.
  • the pH of water remained at 7 even after 30 days had passed after the luminescent material obtained in the example was immersed in water
  • Comparative Examples 1 and 2 In the luminescent material, the pH of water increased with the passage of days. This is presumed to be because the luminescent materials of Comparative Examples 1 and 2 were hydrolyzed with water and hydrogen was generated, resulting in a large pH value.
  • the luminescent materials of Comparative Examples 1 and 2 were characterized by being immersed in water. Seems to have deteriorated.
  • the light emitting material of Comparative Example 2 was 3 days elapsed, and no light emission could be confirmed even when irradiated with light.
  • the luminescent materials obtained in the examples are excellent in water resistance and have a long life.
  • the luminance test of the luminescent material obtained in the example was performed. Specifically, after the luminescent material is immersed in water for 6 days, in accordance with JIS 9107 standard, the light source of normal light source fluorescent lamp D65 is irradiated with 200 lx for 20 minutes, and the elapsed time from immediately after that is 0 minutes, 2 minutes later, The luminance after 10 minutes, 20 minutes, 30 minutes and 60 minutes was measured.
  • the luminance immediately after the light irradiation was 3151 mcd / m 2 for the luminescent material obtained in the example, Comparative Example 3 (2132 mcd / m 2 ) and Comparative Example 4 (1920 mcd / m). It was extremely high compared to 2 ). Moreover, the brightness
  • Comparative Example 3 since the phosphor particles are not coated with the silica thin film, it is considered that the phosphor particles are hydrolyzed by immersion in water and the light emission characteristics are deteriorated.
  • Comparative Example 4 since the phosphor particles are coated with a silica thin film, it is considered that a certain level of water resistance is obtained and deterioration of the light emission characteristics is suppressed.
  • the particle diameter of the phosphor particles is not set in the range of 15 to 50 ⁇ m, the light emitted from the phosphor particles is irregularly reflected by the phosphor particles having a small particle diameter, and the luminance Is thought to have declined.
  • the water resistance is improved by the effect of the silica thin film, and the phosphor particles have a uniform particle size, so that the light emitted from the light emitting material is not irregularly reflected, resulting in a decrease in luminance. It is considered difficult to do.

Abstract

 本発明は、耐水性、耐熱性、及び取扱い性を向上させた、高輝度を有する発光材及びその製造方法を提供する。本発明に係る発光材は、ストロンチウムを含み、粒径が15~50μmの範囲にある蛍光体粒子の表面に、珪素化合物膜が被覆されてなる。本発明に係る発光材は、ストロンチウムを含む蛍光体粒子を分級して、前記蛍光体粒子の粒径を15~50μmの範囲に揃えるステップと、前記蛍光体粒子を水中に投入した水分散液を調製し、前記水分散液を50~90℃に加熱するステップと、前記水分散液を中性状態に維持させながら、前記水分散液に珪酸アルカリ及び無機酸、又はシラン化合物を加え、撹拌するステップと、前記水分散液を乾燥させて、前記蛍光体粒子の表面に珪素化合物膜が被覆された発光材を得るステップとを有する方法により、好適に製造できる。

Description

発光材及びその製造方法
 本発明は、光エネルギを吸収して蛍光を発する発光材及びその製造方法に関する。
 光エネルギを吸収して蛍光を発する蛍光体が知られている。蛍光体は、外部から電力が供給されなくても発光するため、例えば、夜間の安全標識や、衣服、装飾品等に多く用いられている。蛍光体の用途は、その他、多岐にわたる。
 しかしながら、従来の蛍光体は、耐水性、耐熱性、加工の容易性等の点で課題を有している。すなわち、蛍光体は、一般に、水に弱い。蛍光体は、水分に晒されると、加水分解して特性が劣化する。また、蛍光体は、高温度で加熱されると、輝度が著しく低下する。したがって、例えば、蛍光体を高温の樹脂に混ぜて成形品を製造することは困難である。さらに、蛍光体は、表面に多数の凹凸があるため抵抗が大きく、塗装材として利用することが難しい。
 そこで、蛍光体の耐水性を向上させるため、蛍光体を薄膜シリカで被覆する方法が提案されている(特許文献1)。特許文献1では、アルカリ性のシリカ被膜形成用組成物に蛍光体を接触させることで、蛍光体の表面にシリカ被膜を形成している。この結果、蛍光体の耐水性が向上するとされている。
 また、種々の粒子の耐水性を向上させる先行技術として、特許文献2に開示された方法がある。特許文献2では、加熱された脱イオン水に粒子が浸漬され、この水溶液にアルカリ金属珪酸塩及び鉱酸が加入される。そして、水溶液のpHがアルカリ性と酸性との間で交互に変化され、粒子の表面にシリカ被膜が形成される。
特開2003-261869号公報 特表平7-506081号公報
 しかしながら、特許文献1及び2に記載された方法では、シリカ被膜を形成するためにアルカリ性又は酸性の組成物を用いるため、蛍光体はアルカリ又は酸に侵され、蛍光体の輝度が低下するという問題があった。
 そこで、本発明は、耐水性、耐熱性、及び取扱い性を向上させた、高輝度を有する発光材及びその製造方法を提供することを目的とする。
 本発明に係る発光材は、ストロンチウムを含み、粒径が15~50μmの範囲にある蛍光体粒子の表面に、珪素化合物膜が被覆されてなる。
 本発明に係る発光材の製造方法は、ストロンチウムを含む蛍光体粒子を分級して、前記蛍光体粒子の粒径を15~50μmの範囲に揃えるステップと、前記蛍光体粒子を水中に投入した水分散液を調製し、前記水分散液を50~90℃に加熱するステップと、前記水分散液を中性状態に維持させながら、前記水分散液に珪酸アルカリ及び無機酸、又はシラン化合物を加え、撹拌するステップと、前記水分散液を乾燥させて、前記蛍光体粒子の表面に珪素化合物膜が被覆された発光材を得るステップとを有する。
 本発明によれば、耐水性、耐熱性、及び取扱い性を向上させた、高輝度を有する発光材及びその製造方法を提供できる。
本発明に係る発光材を製造する装置の一例を示す構成図である。 発光材の加水分解テストの結果を示すグラフである。
 [発光体]
 本発明に係る発光体は、ストロンチウムを含み、粒径が15~50μmの範囲にある蛍光体粒子の表面に、珪素化合物膜が被覆されてなる。このような構成により、耐水性、耐熱性、及び取扱い性を向上させた、高輝度を有する発光材となる。
 ストロンチウムを含む蛍光体粒子としては、アルミン酸ストロンチウムの粒子が挙げられる。アルミン酸ストロンチウムとしては、SrAl:Eu,Dy、SrAl1425:Eu,Dyが挙げられる。
 蛍光体粒子の粒径は、15~50μmの範囲にあればよく、例えば、粒径が15~50μm、15~25μm、25~35μm、又は35~50μmの範囲に揃えられた蛍光体粒子を用いることができる。なお、本発明において、粒径が15~50μmの範囲にある蛍光体粒子のみを用いることが好ましいが、粒径が15~50μmの範囲外である蛍光体を少量含んでいてもよく、例えば、95個数%以上の蛍光体粒子の粒径が15~50μmの範囲にあればよい。
 このように蛍光体粒子の粒径を所定範囲に揃えることで、高輝度を実現することができる。すなわち、本発明に係る発光材は、粒径の小さい不純物や蛍光体粒子を殆ど含まないので、蛍光体から放出される光が乱反射される確率が低く、その結果として高輝度を有するようになる。また、粒径が大きいほど蛍光体粒子に蓄積される光エネルギの量が多くなるため発光時間が長くなるが、発光材がざらつくため取扱いが不便になる。したがって、発光材を形成する蛍光体粒子の粒径は、15~50μmの範囲とすることが好適である。
 蛍光体粒子の表面には、珪素化合物膜が被覆されている。蛍光体粒子の表面に珪素化合物膜を被覆することで、耐水性が向上するとともに、耐熱性も向上する。さらに、珪素化合物膜の被覆により蛍光体粒子表面の凹凸が減少するので、粘性抵抗が下がり、取扱い性が良好になる。例えば、粘性抵抗が低い発光材を塗装材として用いることで、塗装材の伸びが良く、使い勝手が向上する。また、表面の凹凸が少ない発光材を成形機に充填して成形処理を行うことで、成形機が発光材により摩耗したり損傷したりする事態を回避できる。
 なお、蛍光体粒子の表面全面に、珪素化合物膜が被覆されてなることが好ましいが、蛍光体粒子の表面の一部に、珪素化合物膜が被覆されてない箇所があっても構わない。蛍光体粒子に対する珪素化合物膜の割合は、3~15重量%とすることが好ましく、5~12重量%とすることがより好ましく、例えば10重量%とすることができる。
 蛍光体粒子の表面を被覆する珪素化合物膜としては、シリカ(SiO)又はシラン化合物が好ましい。シラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。
 蛍光体粒子の表面に被覆された珪素化合物膜の膜厚は、目的とする耐水性、耐熱性、及び取扱い性に応じて適宜設定すればよいが、その平均膜厚は、0.05~0.5μmであることが好ましく、0.2~0.4μmであることがより好ましい。珪素化合物膜の平均膜厚を厚くすると、蛍光体粒子が珪素化合物膜により十分に被覆されるため、発光材の耐水性及び耐熱性がより向上する。一方、珪素化合物膜の平均膜厚を薄くすると、蛍光体粒子が外光を吸収し易く、蛍光体粒子からの光が珪素化合物膜の被膜を通して外部に放出され易くなるため、発光材の輝度が向上する。なお、蛍光体粒子の表面に被覆された珪素化合物膜の平均膜厚は、得られた発光材の粒径と、用いた蛍光体粒子の粒径とから算出することができる。
 [発光材の製造方法]
 本発明に係る発光材を製造する装置の構成例を図1に示す。図1の製造装置10は、制御装置12、処理槽14、撹拌機16、ヒータ18、並びに定滴装置20a及び20bを備える。
 制御装置12は、撹拌機16、ヒータ18、並びに定滴装置20a及び20bを制御する装置である。処理槽14は、蛍光体粒子が投入された水分散液22を収容する槽である。処理槽14の上部には、密閉のための蓋24が装着される。撹拌機16は、モータ26、シャフト28及び撹拌翼30を備える。シャフト28の上端部には、モータ26が連結される。シャフト28の下端部には、撹拌翼30が連結される。撹拌翼30は、水分散液22の中に配置される。ヒータ18は、水分散液22を所定の温度に加熱維持する加熱手段である。ヒータ18は、処理槽14の底部に配置される。定滴装置20aは、パイプ32aを介して、水分散液22に珪酸アルカリを所定速度で所定量滴下する装置である。定滴装置20bは、パイプ32bを介して、水分散液22に無機酸を所定速度で所定量滴下する装置である。
 以下、図1の装置を用いて、前述した本発明に係る発光材を製造する方法を説明する。
 まず、ストロンチウムを含む蛍光体粒子を分級して、蛍光体粒子の粒径を15~50μmの範囲に揃える。分級とは、粒子を所定範囲の粒径に揃えることをいい、具体的には、流体力や篩いを利用して、粒子を粒径の大小にしたがって分離する。この分級により、蛍光体の粒径を、例えば、15~50μm、15~25μm、25~35μm、又は35~50μmの範囲に揃えることが好ましい。
 ここで、蛍光体粒子の表面に存在する凹凸を除去することが好ましい。凹凸を除去する方法としては、ボールミルを用いる方法、酸により焼く方法が挙げられる。
 次いで、蛍光体粒子を水中に投入した水分散液を調製し、水分散液を50~90℃に加熱する。具体的には、処理槽14内に水が投入され、制御装置12によって制御されるヒータ18により水が50~90℃に加熱される。水の温度は、55~70℃が好ましく、例えば60℃とすることができる。
 その後、制御装置12は、モータ26を駆動する。シャフト28の下端部に連結された撹拌翼30は、モータ26により回転される。この結果、蛍光体粒子が加入された水分散液22は、撹拌翼30により撹拌される。
 次いで、水分散液を中性状態に維持させながら、水分散液に珪酸アルカリ及び無機酸を加え、撹拌する。具体的には、製造装置10が定滴装置20a及び20bを制御し、定滴装置20aから珪酸アルカリが水分散液22に滴下され、定滴装置20bから無機酸が水分散液22に滴下される。珪酸アルカリとしては、例えば、珪酸ソーダを用いることができる。無機酸としては、例えば、硫酸、塩酸、硝酸、及びリン酸からなる群より選択される少なくとも1種の酸を用いることができる。なお、蛍光体粒子をシラン化合物で被覆する場合は、珪酸アルカリ及び無機酸の代わりに、シランカップリング剤等のシラン化合物を添加すればよい。
 ここで、制御装置12は、水分散液22を中性状態に維持するため、定滴装置20a及び20bを制御して、珪酸アルカリ及び無機酸の滴下量を調整する。すなわち、水分散液22が中性に維持された状態で、蛍光体粒子の表面に珪素化合物膜が被覆される。したがって、蛍光体粒子は、その表面に珪素化合物膜が被覆される間に、アルカリ又は酸に侵されることがない。この結果、生成された発光材は、蛍光体粒子の発光特性が劣化せず、高輝度の光を放出することができる。
 水分散液22は、撹拌翼30により所定時間撹拌される。このとき、水分散液22の温度は、ヒータ18により50~90℃に維持されることが好ましい。水分散液22の温度は、55~70℃が好ましく、例えば60℃とすることができる。その後、制御装置12により、モータ26の回転が停止され、定滴装置20a及び20bによる珪酸アルカリ及び無機酸の滴下が終了される。
 珪素化合物膜の膜厚は、水分散液22に滴下させる珪酸アルカリ及び無機酸の滴下速度及び滴下時間を調整することにより制御可能である。さらに、蛍光体粒子の表面に存在する凹凸を除去した後、その表面に珪素化合物膜を被覆することで、蛍光体粒子の表面を、より薄い膜厚の珪素化合物膜によって十分密に被覆することができる。したがって、蛍光体粒子は、より薄い膜厚の珪素化合物膜により耐水性が確保されるとともに、高い輝度が得られる。
 そして、水分散液を乾燥させて、蛍光体粒子の表面に珪素化合物膜が被覆された発光材を得る。具体的には、水分散液22を取り出し、それを乾燥処理して水を除去することで、本発明に係る発光材が得られる。
 以下、本発明の実施例について具体的に説明する。
 <実施例>
 まず、SrAl1425:Eu,Dyの組成を有する蛍光体粒子(株式会社菱晃製、商品名:クライトブライト)が、粉砕機により砕かれ、次いで、ボールミルを用いて蛍光体粒子の表面の凹凸が除去された。蛍光体粒子は、篩にかけられ、粒径が15~50μmの範囲の蛍光体粒子に分級された。
 分級された蛍光体粒子1kgが、ヒータ18により60℃に加熱された処理槽14の水20Lに投入された。次いで、モータ26が400rpmの回転速度で駆動され、蛍光体粒子が投入された水分散液22が撹拌された。
 次に、定滴装置20aにより、水分散液22に2.5Lの珪酸ソーダが60mL/minの速度で滴下された。それと同時に、定滴装置20bにより、水分散液22に2.5Lの硫酸が60mL/minの速度で滴下された。水分散液22は、温度60℃で中性に維持された状態で、60分間撹拌された。その後、水分散液22は、加熱乾燥され、蛍光体粒子の表面にシリカ薄膜が被覆された発光材が生成された。シリカ薄膜の平均膜厚は0.2μmであり、蛍光体粒子に対するシリカ薄膜の割合は10重量%であった。
 <加水分解テスト>
 実施例で得られた発光材の加水分解テストを行った。具体的には、発光材5gが水50mLに浸漬され、経過日数毎の水のpHが計測された。なお、比較例として、実施例で用いたSrAl1425:Eu,Dyの組成を有する蛍光体粒子(比較例1)、及びSrAl:Eu,Dyの組成を有する蛍光体粒子(株式会社根本特殊化学製、商品名:ルミノーバ)(比較例2)を発光材として用い、同様のテストを行った。
 加水分解テストの結果を図2に示す。なお、図2に示されるグラフにおいて、横軸は発光材を水に浸漬した経過日数を示し、縦軸は発光材が浸漬された水のpHの値を示す。図2に示されるように、実施例で得られた発光材を水に浸漬して30日が経過しても、水のpHは7のままであったのに対し、比較例1及び2の発光材では日数の経過とともに水のpHが上昇した。これは、比較例1及び2の発光材は水により加水分解され、水素が発生してpHの値が大きくなったためと推定され、比較例1及び2の発光材は、水への浸漬により特性が劣化したと考えられる。なお、比較例2の発光材は、経過日数3日目で、光を照射しても発光が確認できなかった。
 なお、蛍光体粒子の表面にシランカップリング剤(EVONIC社製、商品名:ダイナシランMEMO)の薄膜を形成したこと以外は、実施例と同様にして製造した発光材についても、加水分解テストを行った。その結果、実施例と同様に、水に浸漬して30日が経過しても、水のpHは7のままであった。
 以上の結果から、実施例で得られた発光材は、耐水性に優れ、長寿命であることが分かる。
 <輝度テスト>
 実施例で得られた発光材の輝度テストを行った。具体的には、発光材が水に6日間浸漬された後に、JIS9107規格に従い、常用光源蛍光ランプD65から200lxの光を20分間照射し、その直後からの経過時間0分後、2分後、10分後、20分後、30分後、60分後の輝度を測定した。なお、比較例として、実施例で用いたSrAl1425:Eu,Dyの組成を有する蛍光体粒子(比較例3)、及び実施例で用いたSrAl1425:Eu,Dyの組成を有する蛍光体粒子を分級せずにシリカ被覆をした蛍光体粒子(比較例4)を発光材として用い、同様のテストを行った。輝度テストの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、光が照射された直後の輝度が、実施例で得られた発光材は3151mcd/mと、比較例3(2132mcd/m)及び比較例4(1920mcd/m)に比べて極めて高かった。また、経過時間に対する輝度の低下は、実施例で得られた発光材が最も遅く、次いで比較例4が遅く、比較例3が最も速かった。
 比較例3においては、蛍光体粒子にシリカ薄膜が被覆されていないため、水への浸漬により蛍光体粒子が加水分解して発光特性が劣化していると考えられる。比較例4においては、蛍光体粒子にシリカ薄膜が被覆されているため、一定の耐水性が得られ、発光特性の劣化が抑制されていると考えられる。ただし、比較例4の発光材は、蛍光体粒子の粒径が15~50μmの範囲に揃えられていないため、蛍光体粒子から放出された光が粒径の小さい蛍光体粒子により乱反射され、輝度が低下していると考えられる。これに対して、実施例では、シリカ薄膜の効果により耐水性が向上するとともに、蛍光体粒子の粒径が揃っているため発光材から放出された光が乱反射されず、その結果として輝度が低下しにくいと考えられる。
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で変更することが可能である。
10 製造装置
12 制御装置
14 処理槽
16 撹拌機
18 ヒータ
20a 定滴装置
20b 定滴装置
22 水分散液
24 蓋
26 モータ
28 シャフト
30 撹拌翼
32a パイプ
32b パイプ

Claims (10)

  1.  ストロンチウムを含み、粒径が15~50μmの範囲にある蛍光体粒子の表面に、珪素化合物膜が被覆されてなる発光材。
  2.  前記珪素化合物膜がシリカ又はシラン化合物を含む請求項1に記載の発光材。
  3.  前記蛍光体粒子の表面全面に、前記珪素化合物膜が被覆されてなる請求項1又は2に記載の発光材。
  4.  前記蛍光体粒子が、アルミン酸ストロンチウムの粒子である請求項1~3のいずれか1項に記載の発光材。
  5.  ストロンチウムを含む蛍光体粒子を分級して、前記蛍光体粒子の粒径を15~50μmの範囲に揃えるステップと、
    前記蛍光体粒子を水中に投入した水分散液を調製し、前記水分散液を50~90℃に加熱するステップと、
    前記水分散液を中性状態に維持させながら、前記水分散液に珪酸アルカリ及び無機酸、又はシラン化合物を加え、撹拌するステップと、
    前記水分散液を乾燥させて、前記蛍光体粒子の表面に珪素化合物膜が被覆された発光材を得るステップと
    を有する発光材の製造方法。
  6.  前記蛍光体粒子の表面に存在する凹凸を除去するステップ
    をさらに有する請求項5に記載の発光材の製造方法。
  7.  前記珪酸アルカリが、珪酸ソーダであり、
    前記無機酸が、硫酸、塩酸、硝酸、及びリン酸からなる群より選択される少なくとも1種の酸である請求項5又は6に記載の発光材の製造方法。
  8.  前記珪素化合物膜がシリカ又はシラン化合物を含む請求項5~7のいずれか1項に記載の発光材の製造方法。
  9.  蛍光体粒子の表面全面に、前記珪素化合物膜が被覆されている請求項5~8のいずれか1項に記載の発光材の製造方法。
  10.  前記蛍光体粒子が、アルミン酸ストロンチウムの粒子である請求項5~9のいずれか1項に記載の発光材の製造方法。

     
PCT/JP2013/081830 2013-11-27 2013-11-27 発光材及びその製造方法 WO2015079507A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081830 WO2015079507A1 (ja) 2013-11-27 2013-11-27 発光材及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081830 WO2015079507A1 (ja) 2013-11-27 2013-11-27 発光材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015079507A1 true WO2015079507A1 (ja) 2015-06-04

Family

ID=53198498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081830 WO2015079507A1 (ja) 2013-11-27 2013-11-27 発光材及びその製造方法

Country Status (1)

Country Link
WO (1) WO2015079507A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089767A (ja) * 2001-08-23 2003-03-28 Tdo Graphics Co Ltd 蛍光体用コーティング剤およびこれを用いた蛍光粉並びにこれらの調製方法
JP2008050548A (ja) * 2006-08-25 2008-03-06 Ez Bright Corp 耐水性が改良された蓄光性蛍光体及びこれを用いた水性塗料又は水性インク
JP2011504544A (ja) * 2007-11-22 2011-02-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 表面修飾された変換発光物質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089767A (ja) * 2001-08-23 2003-03-28 Tdo Graphics Co Ltd 蛍光体用コーティング剤およびこれを用いた蛍光粉並びにこれらの調製方法
JP2008050548A (ja) * 2006-08-25 2008-03-06 Ez Bright Corp 耐水性が改良された蓄光性蛍光体及びこれを用いた水性塗料又は水性インク
JP2011504544A (ja) * 2007-11-22 2011-02-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 表面修飾された変換発光物質

Similar Documents

Publication Publication Date Title
JP5443662B2 (ja) 耐湿性蛍光体粒子粉末の製造方法及び該製造方法により得られた耐湿性蛍光体粒子粉末を用いたled素子または分散型el素子
TWI495709B (zh) And a method for producing a surface-treated phosphor and a surface-treated phosphor
JP5034314B2 (ja) 高屈折率透明粒子の製造方法と高屈折率透明粒子及び高屈折率透明複合体並びに発光素子
TW201136998A (en) Casting composition as diffusion barrier for water molecules
JP2016029191A (ja) アルカリ土類金属ケイ酸塩発光物質及びその長期安定性を改善するための方法
JP2011026535A (ja) 被覆膜付き蛍光体粒子およびその製造方法
CN107880873B (zh) 氧化锌-硫酸钡复合纳米材料制备方法、氧化锌-硫酸钡复合纳米材料、应用和led芯片
TW201302979A (zh) 具有被覆膜的鹼土金屬矽酸鹽螢光體粒子的製造方法
JP2003500515A (ja) 球状のオルトケイ酸亜鉛系緑色発光蛍光体の製造方法
JP4707200B2 (ja) 複合粒子及び複合粒子の製造方法
JP7245598B2 (ja) 赤色発光蛍光体および関連する赤色発光蛍光体の合成プロセス
JP2012079883A (ja) Led発光装置
TWI509052B (zh) And a method of manufacturing a surface-treated phosphor and a surface-treated phosphor
JP2010209186A (ja) 光学材料と無機微粒子分散液及び光学材料の製造方法並びに発光素子
WO2020255881A1 (ja) 蛍光体及び蛍光体の製造方法
JP5884717B2 (ja) 被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体及びその製造方法
WO2015079507A1 (ja) 発光材及びその製造方法
CN110467913B (zh) 一种大粒度led荧光粉的包覆方法
WO2016060004A1 (ja) 発光体及びその製造方法
TW202028415A (zh) 表面被覆螢光體粒子、複合體及發光裝置
JP2014009146A (ja) 粒子内部に空隙を有する粒子及びその製造方法
CN107945690B (zh) 一种长余辉自发光公共标识牌及其制作方法
JP5946054B2 (ja) 発光性遷移金属含有アルミナ自立薄膜の製造方法
CN113061433A (zh) 一种荧光体材料的制造方法及照明设备
JP6028420B2 (ja) 中空粒子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13898216

Country of ref document: EP

Kind code of ref document: A1