WO2015077911A1 - 一种黄铜矿的选矿工艺及方法 - Google Patents

一种黄铜矿的选矿工艺及方法 Download PDF

Info

Publication number
WO2015077911A1
WO2015077911A1 PCT/CN2013/087823 CN2013087823W WO2015077911A1 WO 2015077911 A1 WO2015077911 A1 WO 2015077911A1 CN 2013087823 W CN2013087823 W CN 2013087823W WO 2015077911 A1 WO2015077911 A1 WO 2015077911A1
Authority
WO
WIPO (PCT)
Prior art keywords
selection
rough
tailings
coarse
dosage
Prior art date
Application number
PCT/CN2013/087823
Other languages
English (en)
French (fr)
Inventor
白丽梅
韩跃新
袁志涛
马玉新
刘国振
李萌
赵礼兵
牛福生
张晋霞
Original Assignee
河北联合大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北联合大学 filed Critical 河北联合大学
Priority to CN201380059330.1A priority Critical patent/CN106170343B/zh
Priority to PCT/CN2013/087823 priority patent/WO2015077911A1/zh
Priority to US14/907,578 priority patent/US9475067B2/en
Publication of WO2015077911A1 publication Critical patent/WO2015077911A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores

Definitions

  • the invention belongs to the technical field of mineral processing, and particularly relates to a beneficiation process and method for sorting talc, pyrite, pyrrhotite and chalcopyrite.
  • CN200710180591.5 discloses a copper-sulfur separation flotation method, which comprises separating copper and sulfur from mixed gold concentrate, and adopting a combination inhibitor of CaO, NaS0 3 and NaCN under the condition of pH value of 12.5 ⁇ 13.
  • CN201010539277.3 discloses a method for separating copper and sulfur by using water glass or sodium sulfide as an inhibitor to achieve copper-sulfur separation.
  • CN200710035782.4 discloses a high-efficiency clean beneficiation method for complex sulfide ore, using one or several combinations of oxalic acid, sodium carbonate, ammonium hydrogencarbonate, ammonium sulfate, ammonium hydrogen sulfate and ferrous sulfate as activators, and then yellow
  • the sulphide ore collectors such as medicine, black medicine, white medicine and sulphur sulphate are added to the BC and stirred uniformly to carry out sulphide ore flotation to recover the sulphide ore concentrate.
  • Such a process generally uses a combination of inhibitors or activators, or a highly selective flotation agent to achieve copper-sulfur separation.
  • Some refractory copper ore have multiple natural types, such as copper-bearing pyrrhotite, copper-bearing pyrite talc serpentine, copper-bearing pyrite, copper-bearing skarn, etc., while copper-magnetic pyrite talc snake
  • the type of stone is a typical refractory ore.
  • the Dongguashan copper mine is such a copper mine.
  • the winter melon mountain adopts a multi-selection process for the characteristics of the ore.
  • When processing the ore without the copper pyrrhotite talc serpentine type it can float up under the xanthate system, using joint suppression.
  • the agent and the high-efficiency collector are used for sorting.
  • the combined inhibitor and the high-efficiency collector are used for sorting.
  • This process also has the following two deficiencies: First, although the site uses an online analysis and inspection system, there are certain lags in the changes between different selection processes, and the selection process cannot be stabilized in time, making the selection The index is unstable, especially when the ore type fluctuates frequently, the sorting effect is worse, and the copper loss is serious. Second, the talc has good floatability, and the talc pre-flotation process can effectively reduce the silicon and copper in the copper concentrate. The content of magnesium, but the floatability of chalcopyrite is also better.
  • the chalcopyrite will lose part of it into the talc concentrate, which will reduce the recovery rate of chalcopyrite.
  • the selection criteria are not ideal, and the cost of flotation reagents is high.
  • the present invention provides a highly efficient sorting process and method for a refractory chalcopyrite for a plurality of natural types of chalcopyrite containing copper pyrrhotite talc serpentine.
  • the specific method is as follows:
  • the crushed chalcopyrite is subjected to a grinding inspection and classification.
  • the inspection grade of the section I is -0.074mm, accounting for 60%, and then the grade I product is inspected for a coarse subdivision level I, coarse subdivision level I.
  • the grading fineness is 0.04mm, and the ore larger than 0.04mm is subjected to the second-stage grinding inspection classification II.
  • the fineness of the inspection classification II product is -0.074mm, accounting for 95%, and the product of the inspection classification II is subjected to the second section thickness.
  • Grade II the fineness of the coarse subdivision level II is 0.04 mm;
  • Fine-grained flotation of coarse-grained grade I and coarse-grained grade II less than 0.04mm, fine-grained graded products are firstly subjected to two rough selections, and two rough selections are selected from kerosene or diesel as collectors.
  • the No. 2 oil is a foaming agent, and is added in sequence.
  • the two rough-selected tailings are subjected to two sweeps.
  • the two sweeping collectors are also kerosene or diesel oil, and the foaming agent is No. 2 oil.
  • the selected concentrates are returned to a rough selection, the second selected concentrates are returned to the sweeping, the second sweeping tailings are tailings II, and the two rough-selected concentrates are selected for pre-selection of selected operations.
  • the selected pre-selected tailings are returned to the sweeping selection.
  • the selected pre-selected concentrates are used for two rough selections.
  • the two selected coarse selections are adjusted with calcium oxide to adjust the pH value.
  • the tailings are subjected to two selected sweeps.
  • the selected types of selected swabs are the same as the selected coarsely selected types.
  • the second selected coarsely selected tailings are first selected for sweeping.
  • the selected concentrate returns two selected coarse selections, two selected coarsely selected concentrates return to a select sweep, two selected sweeping tailings for tailings III, and two fine books for coarsely selected concentrates Selected and re-selected, selected and re-selected tailings are returned to a selection of rough selection, and the selected re-selected concentrate is Copper Concentrate II.
  • the pH value of the crude selection in step (2) is 11.4 ⁇ 11.6, the dosage of the inhibitor is 65 ⁇ 75g/t, the dosage of the collector is 60 ⁇ 90g/t, and the dosage of the foaming agent is 20 ⁇ 25g/t.
  • the pH value during sweeping is still 11.4 ⁇ 11.6.
  • the amount of inhibitor, collector and foaming agent is half of that when roughing, when sweeping, inhibitor, collector, foaming agent
  • the dosage is one third of the rough selection.
  • the amount of a coarse selection collector in the step (3) is 35 ⁇ 40g/t
  • the amount of the foaming agent is 6 ⁇ 10g/t
  • the amount of the second coarsely selected collector and the foaming agent is a rough selection.
  • the amount of collector and foaming agent used in one sweep is half of the coarse selection
  • the amount of the second sweep collector and the foaming agent is one third of the coarse selection.
  • the pH value of a selected rough selection in step (3) is 11.8 ⁇ 12.0
  • the dosage of the inhibitor is 50 ⁇ 70g/t
  • the dosage of the collector is 50 ⁇ 75g/t
  • the amount of foaming agent is 18 ⁇ 24g/t
  • the second selected coarse selection, one selected sweeping, and the second selected sweeping pH are all 11.8 ⁇ 12.0
  • the second selected coarse selection inhibitor is 50 ⁇ 70g/t
  • the foaming agent dosage is 18 ⁇ 24g/t
  • the pH value is still 11.8 ⁇ 12.0 during the sweeping.
  • the amount of inhibitor, collector, and foaming agent is one-third of the selected coarse selection.
  • the invention adopting the above technical solution, not only solves the ore by the coarse subdivision level.
  • talc can be inhibited by adding sodium carboxymethylcellulose, and pyrite and pyrrhotite can be inhibited by controlling the pH of calcium oxide.
  • the fine-grained grade can be used to sort out high-grade copper concentrates. Separation of fine-grained chalcopyrite, pyrite, pyrrhotite and talc is difficult, inhibiting talc only by adding sodium carboxymethylcellulose, and inhibiting pyrite and pyrrhotite by controlling pH by calcium oxide The xanthate captures the chalcopyrite, and the chalcopyrite cannot be effectively sorted out at all.
  • the invention separately treats the coarse-grain grade and the fine-grain grade ore by grading, and adopts the conventional collector of the sulfide ore to And the commonly used inhibitors can achieve the sorting of such refractory chalcopyrite, which greatly reduces the cost of flotation reagents.
  • kerosene For fine-grained flotation collectors, kerosene, diesel or a mixture of the two is used. Yes. If the ore does not contain copper pyrrhotite talc serpentine type ore, this process will not affect the final sorting index. Therefore, the process of the present invention can effectively realize the sorting of multiple natural types of chalcopyrite containing copper pyrrhotite talc serpentine.
  • Figure 1 is a technical road map of the present invention.
  • the main raw materials of the invention are: Dongguashan chalcopyrite; calcium oxide; sodium carboxymethyl cellulose; ethyl xanthate, kerosene, oil No. 2.
  • the chalcopyrite ore used in the present invention mainly contains Cu of 0.94%, TFe of 23.20%, S of 14.38%, MgO of 3.9%, and Si0 2 of 28.03%.
  • the main constituent mineral in the ore is metal sulfur book, including magnetic Pyrite (24.75%), pyrite (10.71%), chalcopyrite (3.07%), trace galena (0.01%), followed by iron oxide (8.07%), Magnetite is the main source, and gangue minerals are less, mainly quartz (7.49%), feldspar (4.34%), talc (1.5%), and carbonate (6.22%).
  • the ore content of chalcopyrite and pyrrhotite in the ore is relatively fine, and the pyrite is mainly distributed in the coarse-grained grade.
  • the embedding relationship of these three minerals is very complicated, so the monomer dissociation is more difficult. Mines and subsequent sorting operations have a greater impact.
  • the first step coarse subdivision
  • the crushed chalcopyrite is subjected to a grinding inspection and classification.
  • the inspection grade of the section I is -0.074mm, accounting for 60%.
  • the grade I product is inspected for a coarse subdivision grade I, and the grade of the coarse subdivision grade I.
  • the fineness is 0.04mm, and the ore of more than 0.04mm is subjected to the second-stage grinding inspection classification II.
  • the fineness of the inspection classification II product is -0.074mm, accounting for 95%, and the product of the inspection classification II is subjected to the second-stage coarse subdivision level II.
  • the graded fineness of the coarse subdivision level II is 0.04 mm ;
  • Step 2 coarse-grained flotation
  • the coarse-grained product with the coarse subdivision level II greater than 0.04 mm is subjected to coarse-grained flotation, the coarse-grained product is subjected to coarse selection, and the crude selection is adjusted with calcium oxide, and then the inhibitor sodium carboxymethylcellulose is sequentially added. After taking the yellow medicine and No. 2 oil for 5 minutes, the crude bottom is selected for sweeping. The pH of the calcium oxide is adjusted. The flotation time is the same as the rough selection. The sweep concentrate is returned to the rough selection, and the sweep is selected.
  • Two sweeps are selected, two sweeps of calcium oxide are used to adjust the pH value, the flotation time is the same as the rough selection, the second sweep concentrate is returned to the sweep, the coarse concentrate is selected for a selection, the flotation is 3 min, and a tailing is selected.
  • rough selection a selection of concentrates for two selections, flotation for 3 minutes, two selected tailings for return to a selection, two selected concentrates for copper concentrate I, and two selected tailings for tailings I.
  • the third step fine-grained flotation
  • the fine-grained grade I and the coarse-grained grade II with a fine subdivision level II of less than 0.04 mm are subjected to fine-grained flotation, and the fine-grained grade product is first subjected to two rough selections, and two rough selections are both selected as kerosene as a collector, and the second oil is
  • the foaming agent is added in sequence, and the two rough-selected tailings are subjected to two sweeps.
  • the two sweeping collectors are also kerosene, the foaming agent is No.
  • the selected concentrate is returned to a thick Selection
  • the second sweep of the concentrate returned to the sweep
  • the second sweep of the tailings for tailings II the second roughing of the concentrate for the selected pre-selection of the selected operations
  • the selection of pre-selection without any chemicals fine Select the pre-selected tailings to return to the sweeping selection
  • select the pre-selected concentrates for two rough selections select the two coarse selections to adjust the pH value with calcium oxide, and then add the inhibitor sodium carboxymethylcellulose to collect Agent xanthate, foaming agent No.
  • one selected coarsely selected tailings for two selected rough selection two selected coarsely selected tailings for two selected sweeps, two selected sweeping agents
  • the type is the same as that of the selected rough-selected medicinal preparations.
  • the second selection of rough-selected tailings is preferred for a selection of sweeps, a selection of sweeping Back ore two roughing selection, selection of two rougher concentrate return a featured scavenger, Erjing
  • the selected tailings are tailings III, two selected coarsely selected concentrates are selected and re-selected, and the selected re-selected tailings are returned to a selected rough selection, selected and re-selected concentrates.
  • the dosing amount and dosing time of each operation are shown in Table 1.
  • the copper concentrate I and the copper concentrate II are combined to obtain a copper grade of 21.03%, a recovery of 90.42%, a yield of 4.12% of copper concentrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本申请涉及一种难选黄铜矿的选矿工艺及方法,特别是含铜磁黄铁矿、滑石、蛇纹石等多重自然类型的黄铜矿石中分选出黄铜矿的选矿工艺及方法,属于矿物加工技术领域,其特征在于:将黄铜矿石进行两段磨矿,每一段磨矿后进行粗细分级,然后将不同粒级的矿石分别处理,粗粒级矿石在黄药体系下采用氧化钙调节pH值、羟甲基纤维素钠做抑制剂进行分选;细粒级在煤油体系下进行粗选,在黄药体系下进行精选。通过粗细分级不仅在黄药体系下实现了细粒级黄铜矿的有效回收,同时减小了细粒级脉石矿物对浮选效果的影响,减少了药剂消耗,实现了难选黄铜矿的高效分选。

Description

一种黄铜矿的选矿工艺及方法
技术领域
本发明属于矿物加工技术领域, 特别涉及一种分选滑石、 黄铁矿、 磁黄铁矿、 黄铜矿的 选矿工艺及方法。
背景技术
铜是国民经济建设中非常重要的金属原料。 随着国民经济的迅速发展, 易选铜矿资源不 断紧缺,难选铜矿资源的开发利用越来越被重视。为了实现难选黄铜矿资源的高效开发利用, 不少研究单位和院所进行了研究。 CN200710180591.5 公开了一种铜-硫分离浮选的方法, 该 方法对混合金精矿进行铜硫分离, 在 pH说值为 12.5~13的条件下, 采用 CaO、 NaS03与 NaCN 组合抑制剂实现了铜硫分离, NaCN是剧毒性物质, 其应用会给后续尾矿处理以及环境带来 很大不便。 CN201010539277.3公开了一种铜硫分书离的方法, 采用水玻璃或硫化钠做抑制剂实 现了铜硫分离。 CN200710035782.4公开了一种复杂硫化矿的高效清洁选矿方法, 用草酸、 碳 酸钠、 碳酸氢铵、 硫酸铵、 硫酸氢铵、 硫酸亚铁的一种或几种组合作为活化剂, 再用黄药、 黑药、 白药、 硫氨脂等硫化矿捕收剂, 加入 BC搅拌均匀后进行硫化矿浮选, 回收硫化矿精 矿。而此类工艺一般是采用组合抑制剂或活化剂,或高选择性能的浮选药剂来实现铜硫分离。
有些难选铜矿有多重自然类型, 如含铜磁黄铁矿、 含铜磁黄铁矿滑石蛇纹石、 含铜黄铁 矿、 含铜矽卡岩等, 而铜磁黄铁矿滑石蛇纹石类型属于典型的难选矿石。 冬瓜山铜矿就是此 类铜矿, 冬瓜山针对矿石性质特点采取多选别工艺: 在处理没有铜磁黄铁矿滑石蛇纹石类型 矿石时, 在黄药体系下均能上浮, 采用联合抑制剂和高效捕收剂来实现分选, 当含有铜磁黄 铁矿滑石蛇纹石类型矿石时, 再采用联合抑制剂和高效捕收剂来实现分选。 此工艺也存在以 下两个不足之处: 第一, 现场虽然采用在线分析检査系统, 但不同的选别工艺之间的改变存 在一定的滞后性, 也选别工艺不能及时稳定, 使得选别指标不稳定, 尤其是当矿石类型波动 频繁时, 选别效果更差, 铜损失严重; 第二, 滑石的可浮性好, 增加滑石预先浮选工艺, 可 以有效的降低铜精矿中硅和镁的含量, 但是黄铜矿的可浮性也比较好, 在滑石预选作业时, 黄铜矿会损失一部分进入滑石精矿中, 使得黄铜矿的回收率降低; 第三, 即便选择高选择性 的捕收剂或组合抑制剂, 选别指标也不是很理想, 并且浮选药剂成本很高。
发明内容 为此本发明针对含铜磁黄铁矿滑石蛇纹石的多重自然类型黄铜矿, 提供了一种难选黄铜 矿的高效分选工艺及方法。 具体方法按如下步骤进行:
( 1 )将破碎好的黄铜矿进行一段磨矿检査分级,一段的检査分级 I产品细度为 -0.074mm 占 60%, 再将检查分级 I产品进行一段粗细分级 I, 粗细分级 I的分级细度为 0.04mm,将大 于 0.04mm的矿石进行二段磨矿检査分级 II, 检查分级 II产品的细度为 -0.074mm占 95%, 将 检査分级 II的产品进行二段粗细分级 II, 粗细分级 II的分级细度为 0.04mm;
(2)将粗细分级 II大于 0.04mm的粗粒级产品进行粗粒级浮选, 粗粒级产品进行一次 粗选, 粗选时采用氧化钙调 pH值, 依次加入抑制剂羧甲基纤维素钠, 捕收剂黄药, 起泡剂 二号油, 粗选的尾矿进行两次扫选, 两次扫选的药剂类型与粗选的药剂类型相同, 一扫选精 矿返回粗选, 一扫选尾矿进行二扫选, 二扫选尾矿为尾矿 I, 一粗选精矿进行两次精选, 一 精选尾矿返回粗选, 一精选精矿进行二精选, 二精选尾矿返回一精选, 二精选精矿为铜精矿
I;
(3)将粗细分级 I和粗细分级 II小于 0.04mm 的细粒级产品进行细粒级浮选, 细粒级 产品首先进行两次粗选, 两次粗选均选用煤油或柴油作为捕收剂, 二号油为起泡剂, 并依次 加入, 两次粗选的尾矿进行两次扫选, 两次扫选的捕收剂也为煤油或柴油, 起泡剂为二号油, 一扫选的精矿返回一粗选, 二扫选的精矿返回一扫选, 二扫选的尾矿为尾矿 II, 两次粗选的 精矿进行精选作业的精选预选, 精选预选时不加任何药剂, 精选预选的尾矿返回一扫选, 精 选预选的精矿进行两次精选粗选, 两次精选粗选采用氧化钙调 pH值, 依次加入抑制剂羧甲 基纤维素钠, 捕收剂黄药, 起泡剂二号油, 一精选粗选的尾矿进行二精选粗选, 二精选粗选 说
的尾矿进行两次精选扫选, 两次精选扫选的药剂类型与精选粗选的药剂类型相同, 二精选粗 选的尾矿首先进行一精选扫选, 一精选扫选的精矿返回二精选粗选, 二精选粗选的精矿返回 一精选扫选, 二精选扫选的尾矿为尾矿 III, 两次精书选粗选的精矿进行精选再精选, 精选再精 选的尾矿返回一精选粗选, 精选再精选的精矿为铜精矿 II。
按上述方案, 步骤(2) 中粗选的 pH值为 11.4~11.6, 抑制剂用量为 65~75g/t, 捕收剂用 量为 60~90g/t, 起泡剂用量为 20~25g/t, 扫选时 pH值仍为 11.4~11.6, —扫选时, 抑制剂、捕 收剂、 起泡剂用量为粗选时的一半, 二扫选时, 抑制剂、 捕收剂、 起泡剂用量为粗选时的三 分之一。
按上述方案, 步骤 (3) 中一粗选捕收剂用量为 35~40g/t, 起泡剂用量为 6~10g/t, 二粗 选的捕收剂和起泡剂用量与一粗选相同, 一扫选的捕收剂和起泡剂用量分别是一粗选用量的 一半, 二扫选捕收剂和起泡剂的用量分别是一粗选用量的三分之一。
按上述方案, 步骤(3) 中一精选粗选的 pH值为 11.8~12.0, 抑制剂用量为 50~70g/t, 捕 收剂用量为 50~75g/t, 起泡剂用量为 18~24g/t, 二精选粗选、 一精选扫选、 二精选扫选的 pH 值均为 11.8~12.0, 二精选粗选的抑制剂用量为 50~70g/t, 捕收剂用量为 50~75g/t, 起泡剂用 量为 18〜24g/t, 扫选时 pH值仍为 11.8~12.0, 一精选扫选时, 抑制剂、 捕收剂、 起泡剂用量 为一粗选时的一半, 二精选扫选时, 抑制剂、 捕收剂、 起泡剂用量为一精选粗选时的三分之 采用上述技术方案的本发明, 通过粗细分级不仅解决了当矿石中含有铜磁黄铁矿滑石蛇 纹石类型矿石时, 滑石、 黄铁矿、 磁黄铁矿对黄铜矿的影响, 而且也减少了细粒级对粗粒级 的影响, 减少了药剂消耗。 对于粗粒级含有铜磁黄铁矿滑石蛇纹石类型矿的黄铜矿可以通过 添加羧甲基纤维素钠抑制滑石, 通过氧化钙控制 pH值抑制黄铁矿和磁黄铁矿, 又没有细粒级 的影响, 可分选出高品位的铜精矿。 细粒级黄铜矿、 黄铁矿、 磁黄铁矿以及滑石的分选是难 点, 仅通过添加羧甲基纤维素钠抑制滑石, 通过氧化钙控制 pH值抑制黄铁矿和磁黄铁矿, 黄 药捕收黄铜矿, 根本不能有效的分选出黄铜矿。 而通过用煤油或柴油等烃油类捕收剂预选选 出含有滑石的黄铜矿粗精矿, 减少细粒级磁黄铁矿和黄铁矿浮选过程的影响, 再通过添加羧 甲基纤维素钠抑制滑石, 通过氧化钙控制 pH值抑制黄铁矿和磁黄铁矿, 可实现细粒级黄铜矿 的有效分选。 本发明通过分级分别处理粗粒级和细粒级矿石, 采用硫化矿常规的捕收剂, 以 及常用的抑制剂就可以实现此类难选黄铜矿的分选, 大大降低了浮选药剂的成本, 对细粒级 的浮选捕收剂选用煤油、 柴油或两者的混合捕收剂均可。 如果矿石中不含有铜磁黄铁矿滑石 蛇纹石类型矿石, 此工艺也不会影响最终的分选指标。 因此, 本发明工艺可以有效的实现含 铜磁黄铁矿滑石蛇纹石的有多重自然类型黄铜矿的分选。
附图说明:
图 1是本发明的技术路线图。
具体实施方式:
下面结合附图 1及实施例详述本发明:
实施例 1 :
本发明主要原料: 冬瓜山黄铜矿; 氧化钙; 羧甲基纤维素钠; 乙基黄药, 煤油, 2号油。 本发明所用的黄铜矿原矿主要含 Cu为 0.94%,TFe为 23.20%,S为 14.38%,MgO为 3.9%, Si02为 28.03%, 原矿中主要的组成矿物为金属硫书化物, 包括磁黄铁矿 (占 24.75%)、 黄铁矿 (占 10.71%),黄铜矿 (占 3.07% )、微量方铅矿 (占 0.01% )等,其次为铁氧化物 (占 8.07% ), 以磁铁矿为主, 脉石矿物较少, 以石英(占 7.49%)、 长石(占 4.34%)、 滑石(占 1.5%)、 碳 酸盐 (占 6.22% ) 为主。 矿石中黄铜矿和磁黄铁矿的嵌布粒度相对较细, 黄铁矿主要分布在 粗粒级中, 这三种矿物的嵌布关系非常复杂, 因而单体解离比较困难, 对磨矿和后续分选作 业影响较大。
第一步: 粗细分级
首先将破碎好的黄铜矿进行一段磨矿检査分级, 一段的检查分级 I产品细度为 -0.074mm 占 60% , 再将检査分级 I产品进行一段粗细分级 I , 粗细分级 I的分级细度为 0.04mm,将大 于 0.04mm的矿石进行二段磨矿检査分级 II, 检查分级 II产品的细度为 -0.074mm占 95%, 将 检査分级 II的产品进行二段粗细分级 II, 粗细分级 II的分级细度为 0.04mm;
第二步: 粗粒级浮选
将粗细分级 II大于 0.04mm的粗粒级产品进行粗粒级浮选, 粗粒级产品进行一次粗选, 粗选时采用氧化钙调 pH值,然后依次加入抑制剂羧甲基纤维素钠、黄药、二号油,浮选 5min 后, 粗选底流进行一扫选, 一扫选氧化钙调 pH值,浮选时间与粗选相同, 一扫选精矿返回粗 选, 一扫选底流进行二扫选, 二扫选氧化钙调 pH值, 浮选时间与粗选相同, 二扫选精矿返 回一扫选,粗选精矿进行一精选, 浮选 3min, 一精选尾矿返回粗选, 一精选精矿进行二精选, 浮选 3min, 二精选尾矿返回一精选, 二精选精矿为铜精矿 I, 二扫选的尾矿为尾矿 I。
第三步: 细粒级浮选
将粗细分级 I和粗细分级 II小于 0.04mm的细粒级产品进行细粒级浮选, 细粒级产品首 先进行两次粗选, 两次粗选均选用煤油作为捕收剂, 二号油为起泡剂, 并依次加入, 两次粗 选的尾矿进行两次扫选, 两次扫选的捕收剂也为煤油, 起泡剂为二号油, 一扫选的精矿返回 一粗选, 二扫选的精矿返回一扫选, 二扫选的尾矿为尾矿 II , 二次粗选的精矿进行精选作业 的精选预选, 精选预选时不加任何药剂, 精选预选的尾矿返回一扫选, 精选预选的精矿进行 两次精选粗选, 两次精选粗选采用氧化钙调 pH值, 依次加入抑制剂羧甲基纤维素钠, 捕收 剂黄药, 起泡剂二号油, 一精选粗选的尾矿进行二精选粗选, 二精选粗选的尾矿进行两次精 选扫选, 两次精选扫选的药剂类型与精选粗选的药剂类型相同, 二精选粗选的尾矿首选进行 一精选扫选, 一精选扫选的精矿返回二精选粗选, 二精选粗选的精矿返回一精选扫选, 二精 选扫选的尾矿为尾矿 III, 两次精选粗选的精矿进行精选再精选, 精选再精选的尾矿返回一精 选粗选, 精选再精选的精矿为铜精矿 II。
各作业的加药量及加药搅拌时间见表 1。
Figure imgf000005_0001
经过浮选后, 铜精矿 I和铜精矿 II合并一起, 得到铜品位 21. 28%, 回收率 89.
率 3. 97%的铜精矿。
实施例 2:
实施步骤如实施例 1。
各作业的加药量及加药搅拌时间见表 2。
表 2
CaO 羧甲基纤维素钠 黄药 (g/t) 二号油 (g/t) 序
pH值 搅拌时间 用量 搅拌时间 用量 搅拌时间 用量 搅拌时间 号
(min) (g/t) (min) (g/t) (min) (g/t) (min)
1 11.4 2 75 2 75 2 22 1
2 11.5 2 37 2 37 2 11 1
3 11.5 2 25 2 25 2 7 1
9 11.9 2 70 2 75 2 24 1
10 11.9 2 65 2 70 2 20 1
11 11.9 2 35 2 37 2 12 1
12 11.9 2 23 2 25 2 8 1
煤油 柴油 二号油 (g/t) - - 用量 搅拌时间 用量 搅拌时间 用量 搅拌时间 -
- (g/t) (min) (g/t) (min) (g/t) (min)
4 40 2 - - 10 1 - -
5 40 2 - - 8 1 - -
6 20 2 - - 5 1 - - 7 13 2 - - 3 1 - - 经过浮选后, 铜精矿 I和铜精矿 II合并一起, 得到铜品位 21. 12%, 回收率 91. 3%, 产率
3. 89%的铜精矿。
实施例 3:
实施步骤如实施例 1,在第三步细粒级浮选中选用柴油做捕收剂。
各作业的加药量及加药搅拌时间见表 3。
表 3
说 书
Figure imgf000006_0001
经过浮选后, 铜精矿 I和铜精矿 II合并一起, 得到铜品位 21. 03%, 回收率 90. 42%, 产 率 4. 12%的铜精矿。

Claims

权 利 要求 书
1、 一种黄铜矿的选矿工艺及方法, 该方法按如下步骤进行:
( 1 )将破碎好的黄铜矿进行一段磨矿检查分级,一段的检査分级 I产品细度为 -0.074mm 占 60% , 再将检査分级 I产品进行一段粗细分级 I , 粗细分级 I的分级细度为 0.04mm,将大 于 0.04mm的矿石进行二段磨矿检查分级 II, 检查分级 II产品的细度为 -0.074mm占 95%, 将 检査分级 II的产品进行二段粗细分级 II, 粗细分级 II的分级细度为 0.04mm;
(2)将粗细分级 II大于 0.04mm 的粗粒级产品进行粗粒级浮选, 粗粒级产品进行一次 粗选, 粗选时釆用氧化钙调 pH值, 依次加入抑制剂羧甲基纤维素钠, 捕收剂黄药, 起泡剂 二号油, 粗选的尾矿进行两次扫选, 两次扫选的药剂类型与粗选的药剂类型相同, 一扫选精 矿返回粗选, 一扫选尾矿进行二扫选, 二扫选尾矿为尾矿 I, 一粗选精矿进行两次精选, 一 精选尾矿返回粗选, 一精选精矿进行二精选, 二精选尾矿返回一精选, 二精选精矿为铜精矿
I;
(3 )将粗细分级 I和粗细分级 II小于 0.04mm 的细粒级产品进行细粒级浮选, 细粒级 产品首先进行两次粗选, 两次粗选均选用煤油或柴油作为捕收剂, 二号油为起泡剂, 并依次 加入, 两次粗选的尾矿进行两次扫选, 两次扫选的捕收剂也为煤油或柴油, 起泡剂为二号油, 一扫选的精矿返回一粗选, 二扫选的精矿返回一扫选, 二扫选的尾矿为尾矿 II, 两次粗选的 精矿进行精选作业的精选预选, 精选预选时不加任何药剂, 精选预选的尾矿返回一扫选, 精 选预选的精矿进行两次精选粗选, 两次精选粗选采用氧化钙调 pH值, 依次加入抑制剂羧甲 基纤维素钠, 捕收剂黄药, 起泡剂二号油, 一精选粗选的尾矿进行二精选粗选, 二精选粗选 的尾矿进行两次精选扫选, 两次精选扫选的药剂类型与精选粗选的药剂类型相同, 二精选粗 选的尾矿首先进行一精选扫选, 一精选扫选的精矿返回二精选粗选, 二精选粗选的精矿返回 一精选扫选, 二精选扫选的尾矿为尾矿 III, 两次精选粗选的精矿进行精选再精选, 精选再精 选的尾矿返回一精选粗选, 精选再精选的精矿为铜精矿 II。
2、根据权利要求 1所述的一种黄铜矿的选矿工艺及方法, 其特征在于: 权利要求 1步骤
(2) 中的粗选的 pH值为 11.4~11.6, 抑制剂用量为 65~75g/t, 捕收剂用量为 60~90g/t, 起泡 剂用量为 20〜25g/t, 扫选时 pH值仍为 11.4〜11.6, 一扫选时, 抑制剂、 捕收剂、 起泡剂用量 为粗选时的一半, 二扫选时, 抑制剂、 捕收剂、 起泡剂用量为粗选时的三分之一。
3、根据权利要求 1所述的一种黄铜矿的选矿工艺及方法, 其特征在于: 权利要求 1步骤
(3 ) 中的一粗选捕收剂用量为 35~40g/t, 起泡剂用量为 6~10g/t, 二粗选的捕收剂和起泡剂 用量和一粗选相同, 一扫选的捕收剂和起泡剂用量分别是一粗选用量的一半, 二扫选捕收剂 和起泡剂的用量分别是一粗选用量的三分之一。
4、根据权利要求 1所述的一种黄铜矿的选矿工艺及方法, 其特征在于: 权利要求 1步骤 (3 ) 中一精选粗选的 pH值为 11.8~12.0, 抑制剂用量为 50~70g/t, 捕收剂用量为 50~75g/t, 起泡剂用量为 18~24g/t, 二精选粗选、 一精选扫选、 二精选扫选的 pH值均为 11.8~12.0, 二 精选粗选的抑制剂用量为 50~70g/t, 捕收剂用量为 50~75g/t, 起泡剂用量为 18~24g/t, 扫选时 pH值仍为 11.8~12.0, 一精选扫选时, 抑制剂、 捕收剂、 起泡剂用量为一粗选时的一半, 二 精选扫选时, 抑制剂、 捕收剂、 起泡剂用量为一精选粗选时的三分之一。
PCT/CN2013/087823 2013-11-26 2013-11-26 一种黄铜矿的选矿工艺及方法 WO2015077911A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380059330.1A CN106170343B (zh) 2013-11-26 2013-11-26 一种黄铜矿的选矿方法
PCT/CN2013/087823 WO2015077911A1 (zh) 2013-11-26 2013-11-26 一种黄铜矿的选矿工艺及方法
US14/907,578 US9475067B2 (en) 2013-11-26 2013-11-26 Chalcopyrite ore beneficiation process and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087823 WO2015077911A1 (zh) 2013-11-26 2013-11-26 一种黄铜矿的选矿工艺及方法

Publications (1)

Publication Number Publication Date
WO2015077911A1 true WO2015077911A1 (zh) 2015-06-04

Family

ID=53198165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087823 WO2015077911A1 (zh) 2013-11-26 2013-11-26 一种黄铜矿的选矿工艺及方法

Country Status (3)

Country Link
US (1) US9475067B2 (zh)
CN (1) CN106170343B (zh)
WO (1) WO2015077911A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391326A (zh) * 2016-10-27 2017-02-15 江西理工大学 一种利用黄芪胶分离黄铜矿与滑石的方法
CN108160313A (zh) * 2017-12-21 2018-06-15 中南大学 一种氧化铜矿粗细分级-强化细粒级硫化浮选的方法
CN112844856A (zh) * 2020-12-21 2021-05-28 中南大学 一种萤石和脉石浮选分离的复合抑制剂、复合浮选药剂和方法
CN113019710A (zh) * 2021-03-15 2021-06-25 中国恩菲工程技术有限公司 组合捕收剂及含微细粒硫化矿物的浮选方法
CN113304876A (zh) * 2021-05-20 2021-08-27 安徽省庐江龙桥矿业有限公司 一种含铜高硫磁铁矿石的选矿方法
CN113751180A (zh) * 2021-08-20 2021-12-07 江西铜业集团有限公司 一种复杂嵌布低品位铜硫矿石的选矿方法
CN114918037A (zh) * 2022-05-09 2022-08-19 昆明理工大学 一种低品位复杂铜锡硫多金属矿梯级回收有价金属的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106563576A (zh) * 2016-10-27 2017-04-19 江西理工大学 一种利用刺槐豆胶浮选分离黄铜矿与滑石的方法
AU2017398923B2 (en) * 2017-02-15 2020-07-16 Outotec (Finland) Oy A flotation arrangement, its use, a plant and a method
EP3589418A4 (en) * 2017-02-28 2021-01-13 Cidra Corporate Services LLC PROCESS CONFIGURATIONS TO PREVENT EXCESSIVE REWINDING OF DEPLETION CONCENTRATES
CN107899754B (zh) * 2017-11-13 2019-09-20 西部矿业股份有限公司 一种铜硫分离浮选方法
CN108927284A (zh) * 2018-06-06 2018-12-04 北京矿冶科技集团有限公司 一种生产多产品镍精矿的选矿方法
CN109174398B (zh) * 2018-08-02 2020-11-24 攀枝花天泉科技有限公司 一种钒钛磁铁矿的综合利用工艺
CN110216008A (zh) * 2019-07-04 2019-09-10 长春黄金研究院有限公司 一种微细粒辉钼矿铜钼分离浮选方法
CN111036391B (zh) * 2019-11-20 2021-10-01 北京矿冶科技集团有限公司 一种从铜硫分离尾矿中回收铜矿物的方法
CN113042194A (zh) * 2021-03-19 2021-06-29 鞍钢集团北京研究院有限公司 赤铁矿石的选矿工艺
CN113042195A (zh) * 2021-03-19 2021-06-29 鞍钢集团北京研究院有限公司 赤铁矿石的粗细分级-重-磁-反浮选选矿工艺
CN113318855B (zh) * 2021-06-02 2022-02-11 中国矿业大学 一种高黏土含量低品位黄铜矿提质降杂的浮选系统及工艺
CN113333153B (zh) * 2021-07-15 2023-04-25 紫金矿业集团股份有限公司 一种高原地区细粒嵌布铜矿的选矿方法
CN114669399A (zh) * 2022-02-28 2022-06-28 玉溪大红山矿业有限公司 一种铜浮选中矿处理工艺
CN114798188B (zh) * 2022-04-27 2023-08-08 矿冶科技集团有限公司 一种含滑石铜矿的选矿方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069688A1 (en) * 2002-10-15 2004-04-15 Magliocco Lino G. Process for the beneficiation of sulfide minerals
CN101190426A (zh) * 2006-11-24 2008-06-04 中南大学 一种硫化-氧化混合铜矿浮选方法
CN101524669A (zh) * 2009-04-21 2009-09-09 广州有色金属研究院 一种以卤化物形式存在的铜矿物的选矿方法
CN101972705A (zh) * 2010-11-05 2011-02-16 江西理工大学 一种铜镍矿的选矿方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100594067C (zh) * 2006-12-30 2010-03-17 陈铁 复杂氧化铜矿的选矿方法
CN101254484A (zh) 2007-07-31 2008-09-03 中南大学 一种复杂硫化矿的高效清洁选矿方法
CN101450335A (zh) 2007-11-30 2009-06-10 灵宝市金源矿业有限责任公司 一种铜—硫分离浮选方法
CN101274306B (zh) * 2008-05-21 2011-03-23 昆明理工大学 一种多金属菱铁矿全浮选选矿方法
CN101985111B (zh) 2010-11-10 2012-10-03 云南铜业(集团)有限公司 一种铜硫矿的分离方法
CN102688809B (zh) * 2012-06-19 2013-04-03 昆明理工大学 基于铜矿物硫化浮选体系的铵-胺耦合活化方法
CN102921550B (zh) * 2012-11-05 2014-01-01 湖南有色金属研究院 一种铜铅硫化矿物的分离方法
CN103100481B (zh) * 2013-01-21 2015-07-08 湖南华洋铜业股份有限公司 高含泥自然铜矿分选方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069688A1 (en) * 2002-10-15 2004-04-15 Magliocco Lino G. Process for the beneficiation of sulfide minerals
CN101190426A (zh) * 2006-11-24 2008-06-04 中南大学 一种硫化-氧化混合铜矿浮选方法
CN101524669A (zh) * 2009-04-21 2009-09-09 广州有色金属研究院 一种以卤化物形式存在的铜矿物的选矿方法
CN101972705A (zh) * 2010-11-05 2011-02-16 江西理工大学 一种铜镍矿的选矿方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391326A (zh) * 2016-10-27 2017-02-15 江西理工大学 一种利用黄芪胶分离黄铜矿与滑石的方法
CN108160313A (zh) * 2017-12-21 2018-06-15 中南大学 一种氧化铜矿粗细分级-强化细粒级硫化浮选的方法
CN112844856A (zh) * 2020-12-21 2021-05-28 中南大学 一种萤石和脉石浮选分离的复合抑制剂、复合浮选药剂和方法
CN113019710A (zh) * 2021-03-15 2021-06-25 中国恩菲工程技术有限公司 组合捕收剂及含微细粒硫化矿物的浮选方法
CN113304876A (zh) * 2021-05-20 2021-08-27 安徽省庐江龙桥矿业有限公司 一种含铜高硫磁铁矿石的选矿方法
CN113751180A (zh) * 2021-08-20 2021-12-07 江西铜业集团有限公司 一种复杂嵌布低品位铜硫矿石的选矿方法
CN114918037A (zh) * 2022-05-09 2022-08-19 昆明理工大学 一种低品位复杂铜锡硫多金属矿梯级回收有价金属的方法
CN114918037B (zh) * 2022-05-09 2023-07-04 昆明理工大学 一种低品位复杂铜锡硫多金属矿梯级回收有价金属的方法

Also Published As

Publication number Publication date
US9475067B2 (en) 2016-10-25
CN106170343A (zh) 2016-11-30
CN106170343B (zh) 2017-10-17
US20160158767A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2015077911A1 (zh) 一种黄铜矿的选矿工艺及方法
WO2021037243A1 (zh) 一种低碱先浮后磁的含磁黄铁矿选矿方法
CN106076606B (zh) 一种磁-赤复合铁矿石的选矿方法
CN105903552B (zh) 一种高效回收微细粒钼矿的选矿方法
CN103495506B (zh) 一种用于铁矿石反浮选的药剂及组合使用方法
WO2021037242A1 (zh) 一种低碱先磁后浮的含磁黄铁矿选矿方法
CN111495788B (zh) X射线智能优先选别含铜蓝硫化铜矿石的方法
CN103551255B (zh) 一种氧化钼矿浮选捕收剂的使用方法
CN110170381B (zh) 一种从锡铜共生矿中回收锡石的选矿方法
CN110237938B (zh) 一种浮选试剂和钼铋硫多金属硫化矿的浮选分离方法
CN101757984A (zh) 一种从复杂钨矿石中分离白钨的选矿药剂和方法
CN109465114B (zh) 一种重晶石与白云石的浮选分离方法
CN101829634A (zh) 一种高铁铝低品位磷矿浮选工艺
CN113731628B (zh) 从细粒浸染型锡多金属矿中高效回收锡石的方法
CN107081220A (zh) 一种改善白钨浮选精矿中氧化钼富集效果的方法
CN110773327A (zh) 一种氧化脉锡矿细粒锡石浮选回收的方法
CN102371206B (zh) 一种处理含碳铅锌多金属复杂硫化矿的工艺
CN105750090A (zh) 一种硅钙质胶磷矿分选方法
CN109604068A (zh) 一种用于橄榄石浮选的组合抑制剂、制备方法及其应用
CN106076605B (zh) 一种萤石矿扫精选脱泥分选方法
CN112718233A (zh) 一种从铜转炉渣中综合回收铜矿物和铁矿物的方法
CN111841830A (zh) 一种石墨矿石低品位中矿分选方法
CN110586335A (zh) 一种高碱先磁后浮的含磁黄铁矿选矿方法
CN109865600A (zh) 一种使用混合捕收剂在硫化铅锌矿浮选中优先浮铅的方法
CN104148175A (zh) 一种处理菱、磁混合矿石的选矿工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14907578

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898055

Country of ref document: EP

Kind code of ref document: A1