WO2015076773A1 - Способ очистки промышленных и сточных вод от соединений хрома - Google Patents

Способ очистки промышленных и сточных вод от соединений хрома Download PDF

Info

Publication number
WO2015076773A1
WO2015076773A1 PCT/UA2014/000034 UA2014000034W WO2015076773A1 WO 2015076773 A1 WO2015076773 A1 WO 2015076773A1 UA 2014000034 W UA2014000034 W UA 2014000034W WO 2015076773 A1 WO2015076773 A1 WO 2015076773A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
iron
solution
fed
compounds
Prior art date
Application number
PCT/UA2014/000034
Other languages
English (en)
French (fr)
Inventor
Олег Игоревич NOSOVSKYI OLEG I. ul. Nikolsko-Botanicheskaya 17/19 kv. 60 Kiev 01033 НОСОВСКИЙ
Олег Сергеевич ВЕРЕВКА
Original Assignee
Олег Игоревич NOSOVSKYI OLEG I. ul. Nikolsko-Botanicheskaya 17/19 kv. 60 Kiev 01033 НОСОВСКИЙ
Олег Сергеевич ВЕРЕВКА
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Игоревич NOSOVSKYI OLEG I. ul. Nikolsko-Botanicheskaya 17/19 kv. 60 Kiev 01033 НОСОВСКИЙ, Олег Сергеевич ВЕРЕВКА filed Critical Олег Игоревич NOSOVSKYI OLEG I. ul. Nikolsko-Botanicheskaya 17/19 kv. 60 Kiev 01033 НОСОВСКИЙ
Publication of WO2015076773A1 publication Critical patent/WO2015076773A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/14Chromates; Bichromates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Definitions

  • the invention relates to the treatment of industrial and wastewater, and can be used for purification of industrial and wastewater from ions of hexavalent and trivalent chromium.
  • Sodium sulfite (Na 2 S0 3 ), sodium bisulfite (NaHS0 3 ) or sodium thiosulfate (Na 2 S 2 0 3 ) are used as reducing agents.
  • caustic soda in order to precipitate trivalent chromium, caustic soda, caustic potassium or milk of lime are used, which contribute to the formation of soluble chromites even with local overdose of alkaline precipitant:
  • waste degreasing bath solutions containing trisodium phosphate are proposed [RU N ° 21 10486, C 02 F 1/66, 1998].
  • the disadvantages of the method include the introduction into the cleaning medium of aluminum cations (III), which, due to the pronounced amphoteric properties, dissolve in both acidic and alkaline environments. This eliminates the complete purification of the solution of trivalent cations. There are also certain difficulties due to the need to obtain spent alkaline solutions for chemical milling of aluminum parts and its alloys.
  • a known method of wastewater treatment from chromium which consists in processing with reagents - ash liquid and lignin, subsequent sedimentation and filtration.
  • the treatment is carried out first with lignin to pH 3, and then with ash liquid to pH 8-9 [RU o2088541 CI, C02F1 / 62, 1997].
  • This method of wastewater treatment from chromium is suitable only for chromium (III), used in the leather industry, since the compounds of chromium (VI) quite stable.
  • the method is intended only for chromium (III), chromium (VI) is not at all effective.
  • the obtained chromium hydroxide precipitate is separated, dissolved in acid and treated with alkali to a pH of 9.0-9.5 to separate a precipitate of pure chromium hydroxide, and then to pH 1 1, 5 to precipitate a precipitant - magnesium hydroxide and its return to the process of cooling chromium [RU jN ° 2068396 C1. C02F1 / 62, 1996].
  • the method is effective only for chromium (III), leads to the formation of significant additional volumes of contaminated wastewater, for chromium (VI) it is not at all effective.
  • Closest to the claimed utility model is a method of purifying water from chromium (VI), containing sorption and using as a sorbent a solution of ammonium humate in proportion to a solution of chromium (VI) equal to (4 1) :( 5 " * " 50), when pI ⁇ 2 created by sulfuric acid [UA jN 58042 A, C02F1 / 28, 2003].
  • chromium (VI) Sorption of chromium (VI) by a multiple excess of ammonium humate leads to wastewater pollution.
  • Ammonium gummat belongs to the structural analogues of steroids that have a harmful effect on the human body. Water pollution by this type of compounds in recent years has grown into a severe environmental problem.
  • the basis of the invention is the task of creating an economical method of purification of industrial and wastewater from chromium compounds, which would be simple in technology and would give a complete water purification.
  • the problem is solved by the fact that in the method of purifying industrial and waste water from chromium compounds, including purification from hexavalent chromium compounds according to the invention, the solutions to be purified from chromium compounds are fed through the first pipe and accumulated in the first tank, where, with stirring, the mixer is carried out reduction of dissolved hexavalent compounds chromium, then a reducing solution of excess ferrous sulfate is fed through the second pipeline, after the redox reaction is carried out with constant stirring, the reaction mixture is alkalized with an alkaline solution supplied through the third pipeline to a pH of 10.0 ⁇ 1.
  • the inventive method differs from the prototype
  • Isomorphic coprecipitation is the formation of mixed crystalline precipitates containing the main component and impurities trapped from the solution. The ability to coprecipitate certain ions is determined by the similarity of their valencies and ionic radii. V.I. Vernadsky defined 8 isomorphic series cations and anions. Moreover, the cations of chromium (III) and iron (III) belong to one - the first row, and the cations of iron (II) - to the seventh [Fractional precipitation and coprecipitation / in the book: F.M. Shemyakin, A.N. Karpov, A.N. Brusentsov. Analytical chemistry. M.: Higher School, 1965, p.77-81.].
  • the ionic radii of the cations of chromium (III) and iron (III) are very similar to 0.67 and 0.65 A, while for iron (II) it is 0.83 A.
  • the low solubility of iron (III) hydroxide and isomorphic precipitates formed on its basis allows to completely remove chromium ions from the solutions being purified in the form of a precipitate that is practically insoluble in saline, slightly acidic, and slightly alkaline media.
  • the invention is illustrated by the installation scheme for the treatment of industrial and wastewater from chromium compounds.
  • the installation includes a P1 tank equipped with a pH-metric equipment 1, a liquid level indicator 2, a pipeline 3 for supplying solutions to be purified from chromium compounds, a pipe 4 for supplying a reducing solution of excess ferrous sulfate, a pipe 5 for supplying an alkaline solution 5, a spray trap 6, an immersion mixer 7 and an air compressor 8 with a submersible arator.
  • the reservoir P1 is connected through a slurry pump 9 and a filter 10 to a reservoir P2 equipped with an immersion mixer 1 1, an oxidizing solution supply pipe 12, a liquid level indicator 13 and pH metric equipment 14 to bring the pH of the solution to an environmentally acceptable level.
  • the inventive method is as follows.
  • a reducing solution of an excess of ferrous sulfate is fed through line 4.
  • the reaction mixture is alkalized with an alkaline solution supplied through line 5 to a pH of 10 ⁇ 1 with precipitation of ferric chromium, ferrous and ferric cations:
  • the resulting suspension of the isomorphic precipitate Cr (OH) 3 / Fe (OH) 3 is pumped 9 to the filter 10, where the insoluble isomorphic precipitate Cr (OH) 3 / Fe (OH) 3 is separated (Sediment is shown in the diagram), and freed from chromium compounds and iron solution is fed into the reservoir P2, where, with a constantly working mixer 1 1, they are neutralized with a sour solution, which is fed through line 12 to an environmentally acceptable pH level of 6.5-8.5, and then sent to the drain (in the diagram - DRAIN).

Abstract

Изобретение относится к обработке промышленных и сточных вод, и может быть использовано для очистки промышленных и сточных вод от ионов шести- и трехвалентного хрома. Растворы, подлежащие очистке от соединений хрома, подают через первый трубопровод и накапливают в первом резервуаре, где при перемешивании мешалкой осуществляют восстановление растворенных соединений шестивалентного хрома, затем туда через второй трубопровод подают восстановительный раствор избытка сульфата двухвалентного железа, после осуществления окислительно-восстановительной реакции при постоянном перемешивании проводят ощелачивание реакционной смеси щелочным раствором, подаваемым через третий трубопровод, до уровня рН 10.0±1.0 с осаждением катионов трехвалентного хрома, двух- и трехвалентного железа, далее с помощью погружного аэратора постоянного перемешивания проводят насыщение реакционной смеси кислородом воздуха, обеспечивающим преобразование гидроксида двухвалентного железа в гидроксид трехвалентного, при этом происходит изоморфное осаждения ионов хрома (III) избытком гидроксида железа (III), образованную суспензию изоморфного осадка подают насосом на фильтр, где отделяют нерастворимый изоморфный осадок, а освобожденный от соединений хрома и железа раствор подают во второй резервуар, где при постоянно работающей мешалке подвергают нейтрализации раствором-окислителем до экологически допустимого уровня рН 6.5-8.5, после чего направляют в сток. Создания экономичный способ очистки промышленных и сточных вод от соединений хрома, простой по технологии и дающий полную очистку воды.

Description

СПОСОБ ОЧИСТКИ ПРОМЫШЛЕННЫХ И СТОЧНЫХ вод
ОТ СОЕДИНЕНИЙ ХРОМА
Изобретение относится к обработке промышленных и сточных вод, и может быть использовано для очистки промышленных и сточных вод от ионов шести- и трехвалентного хрома.
Соединения шести и трехвалентного хрома используют в гальванотехнике, химической обработке металлов, кожевенной, химической и радиотехнической промышленности, что приводит к образованию значительных объемов отработанных вод, содержащих соединения шести- и трехвалентного хрома. Соединения трех- и, особенно, шестивалентного хрома имеют тяжелое токсическое и онкогенное действие, что обусловило жесткие ограничения их присутствия в окружающей среде.
Известны способы очистки отработанных растворов соединений хрома, предусматривающие восстановление шестивалентного хрома до трехвалентного и осаждения его в форме гидроксида хрома Сг(ОН)з [Смирнов Д.Н., Еенкин В.Е. Очистка сточных вод в процессах обработки металлов. М.: Металлургия, 1989, с. 95].
В качестве реагентов-восстановителей используют сульфит (Na2S03), бисульфит (NaHS03) или тиосульфат (Na2S203) натрия. Токсичность, цена этих реагентов, а также образование в результате окислительно-восстановительной реакции большого количества сульфатных анионов, препятствующих осаждению гидроксида хрома из-за образования растворимых комплексных сульфатов хрома (III), существенно ограничивает применение этих способов очистки.
В качестве реагентов-восстановителей также используют сернистый газ (S02) или гидразин (N2H4) - достаточно токсичные вещества. Наибольшее распространение получило использование как химического восстановителя соединений железа (II), эффективно восстанавливающих соединения хрома (VI) до хрома (III):
К2Сг207 + 6FeS04 + 7H2S04 - Cr2(S04)3 + 3Fe2(S04)3 + K2S04 + 7H20
Так, для восстановления шестивалентного хрома с последующим осаждением Сг(ОН)з используют смесь, содержащую сульфат железа (II), сульфат аммония, гидрокарбонат натрия, крахмал, глину [RU Патент РФ N° 2006484, С 02 F 1/62, 1994] .
К недостаткам данного способа можно отнести невозможность полного осаждения катионов хрома вследствие образования стабильных растворимых комплексных соединений с аммиаком. Этого недостатка лишено использование в качестве восстановителя отработанного раствора гальванического производства [Авт.св. СССР 1837734, С 02 F 1/66, 1990].
Однако при этом для осаждения трехвалентного хрома используют едкий натр, едкий калий или известковое молоко, способствующие образованию растворимых хромитов даже при локальной передозировке щелочного осадителя:
Сг(ОН)3 + NaOH -> NaCr02 + 2Н20.
Поэтому щелочью невозможно достичь полноты осаждения.
Для полного осаждения ионов хрома и железа предлагают отработанные растворы ванн обезжиривания, содержащие тринатрийфосфат [RU N° 21 10486, С 02 F 1/66, 1998].
Однако такое решение требует обеспечения точного стехиометрического соотношения осаждающихся фосфат-ионов и катионов металлов, а это существенно усложняет и удорожает процедуру очистки.
Известен способ, основанный на восстановлении хрома Cr(VI) железоалюмохлоридним раствором, получаемым при цементации меди алюминиевой стружкой отработанных растворов травления плат печатного монтажа. При этом полное восстановление Cr(VI) до Сг(Ш) независимо от исходного содержания Cr(VI) обеспечивается при соотношении Cr(VI) к Fe (II) 1 :3,5. Следующее осаждения Сг(ОН)3 осуществляют отработанным щелочным раствором химического фрезерования деталей из алюминия и его сплавов. Алюминат натрия, содержащийся в растворе, интенсифицируют осаждением гидроксида хрома (III) [Шутько А.П., Коротченко B.C. и Супрунчук В. И. Химическая технология, 1989, N6, с.89].
К недостаткам способа следует отнести введение в очищающую среду катионов алюминия (III), которые из-за выраженных амфотерных свойств растворяются как в кислой, так и в щелочной среде. Это исключает полную очистку раствора трехвалентных катионов. Есть также определенные затруднения из-за необходимости получения отработанных щелочных растворов химического фрезерования деталей из алюминия и его сплавов.
Известен способ очистки сточных вод от хрома, заключающийся в обработке реагентами - зольной жидкостью и лигнином, последующем отстаивании и фильтрации. Обработку осуществляют сначала лигнином до рН 3, а затем зольной жидкостью до рН 8- 9 [RU o2088541 CI, C02F1/62, 1997].
Такой способ очистки сточных вод от хрома пригоден только для хрома (III), применяемого в кожевенной промышленности, поскольку соединения хрома (VI) достаточно стабильны. Способ предназначен только для хрома (III), по хрому (VI) совсем не эффективен.
Известен также способ очистки сточных вод от хрома путем нейтрализации сточных вод и сорбции на пористом материале - гидроксиде меди [RU N° 2081842 CI , C02F1 /28, 1997].
По простейшими расчетами такое очищение гарантирует загрязнение сточных вод ионами меди в концентрации, равной или большей допустимой.
Известен способ глубокой очистки сточных вод от хрома (III), осуществляемый путем введения 50-150%-ного избытка осадителя - оксида (гидроксида) магния, увеличивающего степень и скорость очистки раствора хрома. Для улучшения качества регенерируемого гидроксида хрома и возвращения осадителя в процесс полученный осадок гидроксида хрома отделяют, растворяют в кислоте и обрабатывают щелочью до рН 9,0-9,5 для выделения осадка чистого гидроксида хрома, а затем до рН 1 1 ,5 для выделение осадителя - гидроксида магния и возвращение его в процесс охлаждения хрома [RU jN° 2068396 C1. C02F1/62, 1996].
Способ эффективен только по хрому (III), приводит к образованию значительных дополнительных объемов загрязненных сточных вод, для хрома (VI) он совсем не эффективен.
Наиболее близким к заявляемой полезной модели является способ очистки воды от хрома (VI), содержащий сорбцию и использующий в качестве сорбента раствор гуммата аммония в соотношении с раствором хрома (VI), равным (4 1):(5 "*" 50), при рИ < 2, созданным серной кислотой [UA jN 58042 А , C02F1/28 , 2003].
Сорбция хрома (VI) многократным избытком гуммата аммония приводит к загрязнению сточных вод. Гуммат аммония относится к структурным аналогам стероидов, оказывающими вредное влияние на человеческий организм. Загрязнение вод такого рода соединениями в последние годы выросло в тяжелую экологическую проблему.
В основу изобретения поставлена задача создания экономичного способа очистки промышленных и сточных вод от соединений хрома, который был бы простым по технологии и давал бы полную очистку воды.
Поставленную задачу решают тем, что в способе очистки промышленных и сточных вод от соединений хрома, включающем очистку от соединений шестивалентного хрома, согласно изобретению, растворы, подлежащие очистке от соединений хрома, подают через первый трубопровод и накапливают в первом резервуаре, где при перемешивании мешалкой осуществляют восстановление растворенных соединений шестивалентного хрома, затем туда через второй трубопровод подают восстановительный раствор избытка сульфата двухвалентного железа, после осуществления окислительно-восстановительной реакции при постоянном перемешивании проводят ощелачивание реакционной смеси щелочным раствором, подаваемым через третий трубопровод, до уровня рН 10.0±1 .() с осаждением катионов трехвалентного хрома, двух- и трехвалентного железа, далее с помощью погружного аэратора постоянного перемешивания проводят насыщение реакционной смеси кислородом воздуха, обеспечивающим преобразование гидроксида двухвалентного железа в гидроксид трехвалентного, при этом происходит изоморфное осаждения ионов хрома (III) избытком гидроксида железа (III), образованную суспензию изоморфного осадка подают насосом на фильтр, где отделяют нерастворимый изоморфный осадок, а освобожденный от соединений хрома и железа раствор подают во второй резервуар, где при постоянно работающей мешалке подвергают нейтрализации раствором-окислителем до экологически допустимого уровня рН 6.5-8.5, после чего направляют в сток.
Создан экономичный и простой по технологии способ обезвреживания растворов, содержащих хром, с использованием избытка железа в качестве восстановителя соосаждения катионов хроме (III) избытком гидроксида железа (III), образуемого в результате окисления кислородом воздуха гидроксида железа (И). Используются отработанные растворы ванн травления черных металлов и отходов металлообработки как реагент-восстановитель, отработанные щелочные растворы для осаждения смеси гидроксидов хрома (III) и железа (И) и окисления железа (II) до гидроксида железа (III) кислородом воздуха. Способ позволяет использовать в качестве реагентов- восстановителей и осадителя отходы производств и получить целевой продукт, находящий применение в народном хозяйстве.
Заявляемый способ отличается от прототипа
- легкостью окисления гидроксида железа (II) до гидроксида железа (III) кислородом воздуха;
- низкой растворимостью гидроксида железа (III) в нейтральных и слабощелочных растворах;
- склонностью катионов хрома (III) к изоморфному соосаждению гидроксидом железа (III). Изоморфным соосаждением называют образования смешанных кристаллических осадков, содержащих основной компонент и примеси, захваченные из раствора. Способность к соосаждения тех или иных ионов определяется сходством их валентностей и ионных радиусов. В. И. Вернадский определил 8 изоморфных рядов катионов и анионов. При этом катионы хрома (III) и железа (III) относятся к одному - первому ряду, а катионы железа (II) - к седьмому [Дробное осаждения и соосаждение / в кн.: Ф.М. Шемякин, А.Н. Карпов, А.Н. Брусенцов. Аналитическая химия. М.: Высшая школа, 1965, с.77-81.].
Ионные радиусы катионов хрома (III) и железа (III) весьма сходны 0.67 и 0.65 А, тогда как у железа (II) - 0.83 А.
Низкая растворимость гидроксида железа (III) и изоморфных осадков, образованных на его основе, позволяет полностью удалить из очищаемых растворов ионы хрома в виде осадка, практически нерастворимого в солевых, слабокислых и слабощелочных средах.
Изобретение поясняется схемой установки очистки промышленных и сточных вод от соединений хрома.
Установка включает резервуар Р1 , оснащенным рН-метрическим оборудованием 1, показателем 2 уровня жидкости, трубопроводом 3 подачи растворов, подлежащих очистке от соединений хрома, трубопроводом 4 подачи восстановительного раствора избытка сульфата двухвалентного железа, трубопроводом 5 подачи щелочного раствора 5, брызгоуловителем 6, погружной мешалкой 7 и воздушным компрессором 8 с погружным а ратором. Резервуар Р1 соединен через насос 9 для перекачки суспензии и фильтр 10 с резервуаром Р2, снабженным погружной мешалкой 1 1 , трубопроводом 12 подачи раствора-окислителя, показателем 13 уровня жидкости и рН-метрическим оборудованием 14 для доведения значения рН раствора до экологически допустимого уровня.
Заявляемый способ осуществляют следующим образом.
Растворы, подлежащие очистке от соединений хрома, подают через трубопровод 3 и накапливают в резервуаре Р1, где при перемешивании мешалкой 7 осуществляют восстановление растворенных соединений шестивалентного хрома:
2Сг207 + 6FeS04 + 7H2S04 = Cr2(S04)3 + 3Fe2(S04)3 + K2S04 + 7 H20.
Восстановительный раствор избытка сульфата двухвалентного железа подают через трубопровод 4. После прохождения окислительно-восстановительной реакции при постоянном перемешивании проводят ощелачивание реакционной смеси щелочным раствором, подаваемого через трубопровод 5, до уровня рН 10 ± 1 с осаждением катионов трехвалентного хрома, двух- и трехвалентного железа:
Cr2(S04)3 + 6NaOH = 2Cr(OH)3 + 3Na2S04
Fe2(S04)3 + 6NaOH = 2Fe(OH)3 + 3Na2S04
FeS04 + 2NaOH = Fe(OH)2 + Na2S04. С помощью погружного аэратора 8 постоянного перемешивания проводят насыщение реакционной смеси кислородом воздуха, обеспечивающим преобразование гидроксида двухвалентного железа в гидроксид трехвалентного:
4Fe(OH)2 + 02 + 2Н20 = 4Fe(OH)3.
При этом происходит изоморфное осаждения ионов хрома (III) избытком гидроксида железа (III).
Образовавшуюся суспензию изоморфного осадка Сг(ОН)3/Ре(ОН)3 подают насосом 9 на фильтр 10, где отделяют нерастворимый изоморфный осадок Cr(OH)3/Fe(OH)3 (на схеме - ОСАДОК), а освобожденный от соединений хрома и железа раствор подают в резервуар Р2, где при постоянно работающей мешалке 1 1 подвергают нейтрализации раствором-закислювачем, который подают по трубопроводу 12 до экологически допустимого уровня рН 6.5-8.5, после чего направляют в сток (на схеме - СЛИВ).

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
Способ очистки промышленных и сточных вод от соединений хрома, включающий очистку от соединений шестивалентного хрома, отличающийся тем, что растворы, подлежащие очистке от соединений хрома, подают через первый трубопровод и накапливают в первом резервуаре, где при перемешивании мешалкой осуществляют восстановление растворенных соединений шестивалентного хрома, затем туда через второй трубопровод подают восстановительный раствор избытка сульфата двухвалентного железа, после осуществления окислительно-восстановительной реакции при постоянном перемешивании проводят ощелачивание реакционной смеси щелочным раствором, подаваемым через третий трубопровод, до уровня рН 10.0±1.0 с осаждением катионов трехвалентного хрома, двух- и трехвалентного железа, далее с помощью погружного аэратора постоянного перемешивания проводят насыщение реакционной смеси кислородом воздуха, обеспечивающим преобразование гидроксида двухвалентного железа в гидроксид трехвалентного, при этом происходит изоморфное осаждения ионов хрома (III) избытком гидроксида железа (III), образованную суспензию изоморфного осадка подают насосом на фильтр, где отделяют нерастворимый изоморфный осадок, а освобожденный от соединений хрома и железа раствор подают во второй резервуар, где при постоянно работающей мешалке подвергают нейтрализации раствором-окислителем до экологически допустимого уровня рН 6.5-8.5, после чего направляют в сток.
PCT/UA2014/000034 2013-11-21 2014-03-20 Способ очистки промышленных и сточных вод от соединений хрома WO2015076773A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAU201313557 2013-11-21
UAU201313557U UA89559U (ru) 2013-11-21 2013-11-21 Способ очистки промышленных и сточных вод от соединений хрома

Publications (1)

Publication Number Publication Date
WO2015076773A1 true WO2015076773A1 (ru) 2015-05-28

Family

ID=52281998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2014/000034 WO2015076773A1 (ru) 2013-11-21 2014-03-20 Способ очистки промышленных и сточных вод от соединений хрома

Country Status (2)

Country Link
UA (1) UA89559U (ru)
WO (1) WO2015076773A1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000709A (zh) * 2015-07-09 2015-10-28 芜湖仅一机械有限公司 污水处理方法
WO2017152339A1 (zh) * 2016-03-07 2017-09-14 刘湘静 一种可以延长使用寿命的水净化装置
CN107324303A (zh) * 2017-09-04 2017-11-07 青川县天运金属开发有限公司 一种从多金属危险废物中分离精制铁、铬的方法
RU2658032C1 (ru) * 2017-06-28 2018-06-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ очистки промышленных и сточных вод от соединений хрома
CN109534558A (zh) * 2018-12-27 2019-03-29 上海班德环保科技股份有限公司 重铬酸钠法生产可膨胀石墨酸性废水处理设备及工艺
CN110182922A (zh) * 2019-06-24 2019-08-30 东北师范大学 含铬废水的处理方法
CN111204918A (zh) * 2018-11-22 2020-05-29 浙江师范大学 一种处理含铬含氟废水的方法
CN113493244A (zh) * 2020-03-20 2021-10-12 四川大学 磷铁渣还原废水中六价铬的方法
CN113720789A (zh) * 2021-07-02 2021-11-30 金川集团股份有限公司 一种高镍基体溶液中铬的分析方法
CN116874139A (zh) * 2023-08-25 2023-10-13 云南滇清环境科技有限公司 一种含六价铬尾矿库渗滤液的高效处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023949B (zh) * 2021-03-17 2022-08-16 哈尔滨工业大学 一种催化还原耦合膜过滤强化去除六价铬的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292435A (en) * 1992-09-28 1994-03-08 Klaus Schwitzgebel Equipment and process for solid waste minimization in chromium and heavy metal removal from groundwater
RU2104958C1 (ru) * 1996-01-11 1998-02-20 Акционерное общество открытого типа "Московский радиотехнический завод" Способ очистки сточной воды от хроматов
EA005782B1 (ru) * 2003-01-17 2005-06-30 Светлана Ивановна Полушкина Способ очистки сточных вод от ионов тяжелых металлов
RU2282598C1 (ru) * 2005-02-08 2006-08-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ химической стабилизации гальванических шламов, длительное время находящихся на хранении
RU2433961C2 (ru) * 2010-02-04 2011-11-20 Тураев Дмитрий Юрьевич Способ обезвреживания водных растворов, содержащих соединения шестивалентного хрома
CN102583860A (zh) * 2012-02-17 2012-07-18 江苏加德绿色能源有限公司 一种新的钢铁质检废水处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292435A (en) * 1992-09-28 1994-03-08 Klaus Schwitzgebel Equipment and process for solid waste minimization in chromium and heavy metal removal from groundwater
RU2104958C1 (ru) * 1996-01-11 1998-02-20 Акционерное общество открытого типа "Московский радиотехнический завод" Способ очистки сточной воды от хроматов
EA005782B1 (ru) * 2003-01-17 2005-06-30 Светлана Ивановна Полушкина Способ очистки сточных вод от ионов тяжелых металлов
RU2282598C1 (ru) * 2005-02-08 2006-08-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ химической стабилизации гальванических шламов, длительное время находящихся на хранении
RU2433961C2 (ru) * 2010-02-04 2011-11-20 Тураев Дмитрий Юрьевич Способ обезвреживания водных растворов, содержащих соединения шестивалентного хрома
CN102583860A (zh) * 2012-02-17 2012-07-18 江苏加德绿色能源有限公司 一种新的钢铁质检废水处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHEMIAKIN F. M. ET AL.: "Izdatelstvo ''Vysshaya shkola", ANALITICHESKAYA KHIMIYA. MOSKVA, 1965, pages 79 - 80 *
SIVAK V. M. ET AL.: "Aeratory dlya ochistki prirodnykh i stochnykh vod. Lvov", IZDATELSTVO PRI LVOVSKOM GOSUDARSTVENNOM UNIVERSITETE IZDATELSKOGO OBEDINENIYA ''VISHCHA SHKOLA, 1984, pages 70 - 73 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000709A (zh) * 2015-07-09 2015-10-28 芜湖仅一机械有限公司 污水处理方法
WO2017152339A1 (zh) * 2016-03-07 2017-09-14 刘湘静 一种可以延长使用寿命的水净化装置
RU2658032C1 (ru) * 2017-06-28 2018-06-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ очистки промышленных и сточных вод от соединений хрома
CN107324303B (zh) * 2017-09-04 2020-01-24 青川县天运金属开发有限公司 一种从多金属危险废物中分离精制铁、铬的方法
CN107324303A (zh) * 2017-09-04 2017-11-07 青川县天运金属开发有限公司 一种从多金属危险废物中分离精制铁、铬的方法
CN111204918A (zh) * 2018-11-22 2020-05-29 浙江师范大学 一种处理含铬含氟废水的方法
CN111204918B (zh) * 2018-11-22 2022-11-08 浙江师范大学 一种处理含铬含氟废水的方法
CN109534558A (zh) * 2018-12-27 2019-03-29 上海班德环保科技股份有限公司 重铬酸钠法生产可膨胀石墨酸性废水处理设备及工艺
CN110182922A (zh) * 2019-06-24 2019-08-30 东北师范大学 含铬废水的处理方法
CN113493244A (zh) * 2020-03-20 2021-10-12 四川大学 磷铁渣还原废水中六价铬的方法
CN113493244B (zh) * 2020-03-20 2022-05-27 四川大学 磷铁渣还原废水中六价铬的方法
CN113720789A (zh) * 2021-07-02 2021-11-30 金川集团股份有限公司 一种高镍基体溶液中铬的分析方法
CN116874139A (zh) * 2023-08-25 2023-10-13 云南滇清环境科技有限公司 一种含六价铬尾矿库渗滤液的高效处理方法

Also Published As

Publication number Publication date
UA89559U (ru) 2014-04-25

Similar Documents

Publication Publication Date Title
WO2015076773A1 (ru) Способ очистки промышленных и сточных вод от соединений хрома
CN104355473B (zh) 一种采用电渗析技术进行电厂脱硫废水脱盐零排放处理的方法
CN111032917B (zh) 一种线路板碱性蚀刻废液的蒸氨回收循环工艺及其系统
Patterson et al. Physical-chemical methods of heavy metals removal
CN102923874B (zh) 一种处理含重金属离子废水的方法
CN107089744B (zh) 一种脱硫废水深度处理零排放的方法
CN104445720A (zh) 钢铁业酸洗废液处理工艺
US4171255A (en) Apparatus for recovery of metals from metal plating baths and neutralizing toxic effluents therefrom
CN113149263A (zh) 一种钠基脱硫灰资源化利用处理酸性废水的方法
CN205773743U (zh) 一种锅炉酸洗废水处理系统
CN102795722A (zh) 铝制品表面处理产生的废水的处理方法
CN109368857A (zh) 一种钢铁酸洗废液的无害化处理装置及工艺
CN104370389A (zh) 钢铁业酸洗废液中氟的去除工艺
CN110818123B (zh) 三价铬镀铬废水的处理方法
Germain et al. Plating and cyanide wastes
CN109384330B (zh) 适用于石膏中和工序处理后液的二氧化碳除钙系统和方法
Suvorin et al. Purification of Cr (VI)-containing wastewater by chemical precipitation: Test results of an experimental-industrial installation
Yatskov et al. Development of technology for recycling the liquid iron-containing wastes of steel surface etching
JP5848119B2 (ja) フッ素含有排水の処理方法
CN209113642U (zh) 一种钢铁酸洗废液的无害化处理装置
CN102311185A (zh) 一种可去除电镀废水中重金属的方法
CN112875964A (zh) 含金属铁铬镍酸洗废水的处理及再生利用方法
JP2017136539A (ja) 高炉排水の処理方法
RU2110486C1 (ru) Способ переработки отработанных растворов, содержащих соединения шестивалентного хрома
CN104710051A (zh) 一种重金属电镀废水处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864159

Country of ref document: EP

Kind code of ref document: A1