WO2015076576A1 - 탈이온 장치 - Google Patents

탈이온 장치 Download PDF

Info

Publication number
WO2015076576A1
WO2015076576A1 PCT/KR2014/011183 KR2014011183W WO2015076576A1 WO 2015076576 A1 WO2015076576 A1 WO 2015076576A1 KR 2014011183 W KR2014011183 W KR 2014011183W WO 2015076576 A1 WO2015076576 A1 WO 2015076576A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ion exchange
porous
exchange membrane
porous electrode
Prior art date
Application number
PCT/KR2014/011183
Other languages
English (en)
French (fr)
Inventor
황준식
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN201480055189.2A priority Critical patent/CN105612128B/zh
Publication of WO2015076576A1 publication Critical patent/WO2015076576A1/ko
Priority to US15/132,560 priority patent/US10392275B2/en
Priority to US16/511,572 priority patent/US10836657B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes

Definitions

  • the present invention relates to a deionization apparatus, and more particularly, to a deionization apparatus capable of selectively adsorbing anions or cations contained in the treated water at a porous electrode, so that only ions of a specific polarity can be deionized in the treated water. will be.
  • Water is very important for human life, and water is widely used as living water or industrial water. Due to industrial development, water is contaminated with heavy metals, nitrate nitrogen, fluorine ions, etc., and it is very harmful to health when drinking contaminated water.
  • the desalination technology is a technique for desalination by removing various suspended substances or ionic components contained in contaminated water such as seawater and wastewater, and using an evaporation method that evaporates moisture using a heat source such as fossil fuel or electricity, and a separation membrane. Filtration removes foreign substances and electrodialysis removes ions using the electrolysis of electrode cells.
  • the evaporation method is to evaporate water by using fossil fuel or electricity as a heat source.
  • the volume of the desalination unit is large and inefficient, and the cost of energy is increased, and the cost of air pollution caused by the use of fossil fuel is increased. Cause.
  • the filtration method needs to remove foreign substances by applying high pressure to the membrane, the cost of energy is increased due to the high energy consumption, and the electrodialysis method requires the replacement of the electrode cell continuously, thus causing a wasteful factor due to the replacement of the electrode cell.
  • the human and material incidental costs are increased according to the replacement.
  • Korean Patent Publication No. 501417 includes a reverse osmosis membrane device for firstly removing a salt component with respect to treated water flowing at a predetermined pressure; An electrode desalination device in which a spacer, a positive electrode, and a negative electrode are sequentially installed in a cylindrical tank to remove salt components from the treated water firstly treated by the reverse osmosis membrane apparatus; An energy recovery device for utilizing the brine side pressure of the reverse osmosis membrane device to pressurize the inlet water of the electrode desalination device; Power supply means for supplying power to the positive electrode and the negative electrode provided in the electrode desalination device; And control means for controlling valves provided in pipes through which the treated water flows to perform a desalting process of desalting the treated water flowing into the electrode desalting apparatus and a regeneration process of desorbing ions adsorbed to the electrode during the desalting process.
  • a wastewater desalination apparatus using a reverse osmosis membrane method / electrode method Disclosed is a wastewater desalination apparatus using a reverse osmosis membrane method / electrode method.
  • the wastewater desalination apparatus is provided with a reverse osmosis membrane apparatus and an electrode desalination apparatus separately, so that the size of the desalination apparatus is large and a large manufacturing cost is required.
  • the present inventors continue to study the technology that can slim down the deionization apparatus and reduce the manufacturing cost, and have a structural feature that can deionize only certain ions in the treated water while having a high storage capacity.
  • the present invention has completed the more economical, usable and competitive invention.
  • the present invention has been devised in view of the above, and an object thereof is to provide a deionization apparatus capable of deionizing only an anion or a cation contained in treated water.
  • Another object of the present invention is to provide a deionization apparatus capable of assembling a deionization apparatus into a spiral wound to improve deionization efficiency.
  • Another object of the present invention is to penetrate the conductive material into the fine pores of the porous substrate to implement a current collector, it is possible to ultra-thin, to reduce the manufacturing cost, to have a high storage capacity, and to increase the specific surface area very high It is to provide a deionization device.
  • Still another object of the present invention is to provide a deionization apparatus that can implement a flexible deionized electrode by applying a flexible nanofiber web or nonwoven fabric as an electrode support.
  • a porous electrode having fine pores; An inorganic pore ion exchange membrane formed on the porous electrode; An opposite electrode facing the inorganic hole ion exchange membrane with a space therebetween; And a spacer positioned in a space between the porous electrode and the counter electrode and having a flow path through which the treated water passes.
  • a porous electrode having fine pores; An inorganic pore ion exchange membrane formed on the porous electrode; An opposite electrode facing the inorganic hole ion exchange membrane with a space therebetween; A spacer positioned in a space between the porous electrode and the counter electrode and having a flow path through which treated water is passed; And an insulating layer in contact with the counter electrode or the porous electrode, wherein the porous electrode, the inorganic pore ion exchange membrane, the spacer, the counter electrode, and the insulating layer are rolled in a spiral shape. do.
  • the first deion unit for deionizing anion in the treated water; And a second deionization unit deionized with a cation in the treated water and connected to the first deionization unit, wherein the first deionization unit comprises: a first porous electrode; A first ion exchange membrane formed on the first porous electrode; A first counter electrode facing the first ion exchange membrane with a space therebetween; And a first spacer positioned in a space between the first porous electrode and the first counter electrode, the first spacer having a flow path through which treated water passes, and a constant voltage is applied to the first porous electrode and the first counter electrode.
  • a deionized anion in water wherein the second deionized portion comprises a second porous electrode; A second ion exchange membrane formed on the second porous electrode; A second counter electrode facing the second ion exchange membrane with a space therebetween; And a second spacer positioned in a space between the second porous electrode and the second counter electrode, the second spacer having a flow path through which treated water passes, and a negative voltage is applied to the second porous electrode and the second counter electrode.
  • a deionization device configured to deionize a cation in treated water.
  • the anion or cation contained in the treated water is selectively adsorbed by the porous electrode, so that only ions of a specific polarity can be deionized in the treated water.
  • a deionization apparatus capable of sequentially placing a porous electrode, an inorganic pore ion exchange membrane, a spacer, and a counter electrode, and adsorbing ions in the treated water passing through the spacer by a voltage applied to the porous electrode and the counter electrode.
  • deionization efficiency is achieved by having an assembly structure in which the treated water introduced into one side of the deionization unit flows along the flow path of the spiral wound spacer, and the deionized purified water is discharged to the other side of the deionization unit. Can improve.
  • the conductive film is deposited by depositing a conductive material on a porous substrate having a laminated structure of one or both of nanofiber webs and nonwoven fabrics in which nanofibers obtained by electrospinning a polymer material or an ion exchange solution are accumulated and have micro pores.
  • a porous electrode By forming a porous electrode by forming, it is possible to implement a deionized electrode that can be ultra-thin and have a high capacitance at low cost.
  • an electrode structure in which a conductive material penetrates into micropores of a porous substrate an electrode having a specific surface area and an ultra-thin electrode may be manufactured.
  • the present invention has the advantage of implementing a flexible deionized electrode by applying a nanofiber web or non-woven fabric excellent in flexibility as an electrode support.
  • the pore size of the electrode support can be easily adjusted, and an electrode having a uniform size of pores can be implemented, so that the adsorption and desorption efficiency of ions can be improved, and the binder is not used and there is concern of elution of the binder.
  • FIG. 1 is a conceptual cross-sectional view for explaining the structure of a deionization apparatus according to a first embodiment of the present invention
  • FIG. 2 is a conceptual perspective view for explaining an assembly state of a deionization apparatus according to a second embodiment of the present invention
  • FIG. 3 is a conceptual cross-sectional view for explaining the structure of a deionization apparatus for assembling into a spiral wound according to a second embodiment of the present invention
  • FIG. 4 is a conceptual view illustrating a deionization apparatus for deionizing anions and cations according to a third embodiment of the present invention
  • FIG. 5 is a conceptual cross-sectional view for explaining a porous electrode having an inorganic pore ion exchange membrane according to embodiments of the present invention
  • FIG. 6 is a conceptual view illustrating that a deposition material penetrates into micropores of a porous substrate having an inorganic pore ion exchange membrane applied to embodiments of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a porous electrode having an inorganic pore ion exchange membrane according to embodiments of the present invention.
  • FIGS. 8A and 8B are conceptual views illustrating a process of forming a porous substrate and an inorganic pore ion exchange membrane in a method of manufacturing a porous electrode having an inorganic pore ion exchange membrane according to embodiments of the present invention.
  • a deionization apparatus includes a porous electrode 100 having fine pores; An inorganic pore ion exchange membrane 110 formed on the porous electrode 100; An opposite electrode 130 facing the inorganic hole ion exchange membrane 110 with a space therebetween; And a spacer 120 positioned in a space between the porous electrode 100 and the counter electrode 130 and having a flow path through which treated water passes.
  • the porous electrode 100 includes a porous substrate having a laminated structure selected from one or both of nanofiber webs and nonwoven fabrics in which nanofibers obtained by electrospinning a polymer material or an ion exchange solution are accumulated and have micropores; And a conductive film formed by depositing a conductive material on the other surface or the entire surface of the porous substrate.
  • the inorganic pore ion exchange membrane 110 may be applied to the inorganic pore ion exchange membrane formed by electrospraying the ion exchange solution on one surface of the porous substrate, the spray droplets are accumulated, or the ion exchange solution is coated on one surface of the porous substrate
  • An inorganic pore ion exchange membrane can be used.
  • the porous electrode 100 may further include a conductive film formed by depositing a conductive material on the other surface of the porous substrate.
  • the porous electrode 100 and the counter electrode 130 are electrodes in which a potential can be generated.
  • the porous electrode 100 is a cathode
  • the counter electrode 130 is an anode.
  • the counter electrode 130 is a positive electrode.
  • the porous electrode 100 is a positive electrode or a negative electrode
  • the counter electrode 130 is a ground electrode.
  • the counter electrode 130 may be formed of an inorganic porous electrode, and in this case, the ions may be prevented from being resorbed to the counter electrode 130 when the ions are desorbed for regeneration after adsorption.
  • the counter electrode 130 may be referred to as a counter electrode.
  • the spacer 120 is preferably a mesh or a nonwoven fabric.
  • the deionization apparatus of the present invention having such a configuration selectively adsorbs anions or cations contained in the treated water on the porous electrode 100 to deionize only ions having a specific polarity in the treated water.
  • the deionization apparatus has a very flexible property by using a nanofiber web or a nonwoven fabric having excellent flexibility as an electrode support, thereby implementing various assembly forms.
  • the insulating layer has a structure of a deionization device in which the porous electrode 100, the inorganic pore ion exchange membrane 110, the spacer 120, and the counter electrode 130 are sequentially positioned.
  • 140 may be added and assembled by spiral winding as shown in FIG. 2. That is, the deionizer 200 is assembled in a spiral winding type.
  • the insulating layer 140 is added and wound so as to contact the counter electrode 130 or the porous electrode 100.
  • the insulating layer 140 is in contact with the counter electrode 130 in FIG.
  • the deionization apparatus 200 having the spiral wound assembly structure has a spiral shape in which a porous electrode 100, an inorganic pore ion exchange membrane 110, a spacer 120, and a counter electrode 130 are sequentially stacked.
  • the porous electrode 100, the inorganic pore ion exchange membrane 110, the spacer 120, and the counter electrode 130 are continuously structured in the direction of the outer circumferential surface from the center of the rolled structure (rolling shaft).
  • a voltage is applied to the porous electrode 100 and the counter electrode 130, electrical interference may occur with a neighboring repeating structure, and thus deionization characteristics may be reduced.
  • the deionization apparatus is assembled into a spiral winding including an insulating layer 140 to prevent electrical interference and influence between the repeated structures wound in a spiral winding.
  • the porous electrode 100 and the counter electrode 130 are opposed to each other, so that when the voltage is applied to the porous electrode 100 and the counter electrode 130, the porous electrode 100 in the treated water passing through the spacer 120 Will adsorb silver ions.
  • the deionization apparatus 200 of the present invention is de-ionized while the treated water flowing into one side of the deionization apparatus 200 flows along the flow path of the spiral wound spacer 120, and the deionized purified water is deionized ( By having the assembly structure discharged to the other side of 200), it is possible to improve the deionization efficiency.
  • FIG. 4 is a conceptual diagram illustrating a deionization apparatus for deionizing anions and cations according to a third embodiment of the present invention.
  • the deionization apparatus of the present invention selectively adsorbs anions or cations in the treated water passing through a spacer positioned between the porous electrode and the counter electrode to deionize ions of a specific polarity.
  • the deionizer of the present invention in series the first deionization unit 210 for deionizing anion in the treated water and the second deionization unit 220 for deionizing the cation in series
  • the first deionization unit 210 may include a first porous electrode; A first ion exchange membrane formed on the first porous electrode; A first counter electrode facing the first ion exchange membrane with a space therebetween; And a first spacer positioned in a space between the first porous electrode and the first counter electrode and having a flow path through which treated water passes, wherein a constant voltage is applied to the first porous electrode and the first counter electrode. Configured to deionize anions in the treated water.
  • the second deionization unit 220 may include a second porous electrode; A second ion exchange membrane formed on the second porous electrode; A second counter electrode facing the second ion exchange membrane with a space therebetween; And a second spacer positioned in a space between the second porous electrode and the second counter electrode, the second spacer having a flow path through which treated water passes, and a negative voltage is applied to the second porous electrode and the second counter electrode. And to deionize the cation in the treated water.
  • the treated water introduced into the first spacer is anion in the first deionization unit 210. After this is removed, it is injected into the second spacer of the second deionization unit 220 to remove the cation from the second deionization unit 220.
  • the deionization apparatus of this embodiment removes anions from the treated water introduced into the first spacer of the first deionization unit 210, and then removes the anions from the treated water, thereby removing the second water from the second deionization unit 220.
  • the purified water from which both the anion and the cation have been removed can be discharged.
  • the porous electrode mentioned in the above-described deionization device may be formed by various methods in which the inorganic pore ion exchange membrane is described, and a detailed method and structure thereof will be described.
  • a porous electrode having an inorganic pore ion exchange membrane includes a porous substrate 310 having fine pores; An inorganic pore ion exchange membrane 320 formed by electrospraying an ion exchange solution on one surface 311 of the porous substrate 310; And a conductive film 330 formed on at least the other surface 312 of the porous substrate 310.
  • the inorganic pore ion exchange membrane 320 may be a cation exchange membrane or an anion exchange membrane depending on the polarity of the electrode, and the inorganic pore ion exchange membrane 320 serves to selectively adsorb ions to the electrode. That is, an anion exchange membrane is coupled to the positive electrode, and a cation exchange membrane is coupled to the negative electrode. When voltage is applied, only negative ions are adsorbed to the negative electrode and only negative ions are absorbed to the positive electrode.
  • ion exchange membrane 320 When the ion exchange solution is electrosprayed, droplets of fine size are injected from the electrosprayed nozzle, and finely differentiated and accumulated by the electric force, thereby forming an ion exchange membrane 320 in the form of an inorganic porous film.
  • the inorganic pore ion exchange membrane 320 has an inorganic pore form, selective permeability of ions may be increased.
  • the ion exchange membrane having pores is not a preferable structure because both cations and anions can pass through the pores despite electrical attraction or repulsion.
  • the ion exchange solution is electrosprayed, and the sprayed droplets are accumulated to form the inorganic hole ion exchange membrane 320, so that the inorganic porous film may have a compact structure and may have an ultra-thin film thickness. Only the selected ions can move freely, and there is an advantage in that the resistance to move the ions can be lowered.
  • the conductive film 330 may be formed by depositing a conductive material on at least the other surface 312 of the porous substrate 310.
  • metals such as (Mo), tungsten (W), silver (Ag), gold (Au), and aluminum (Al) may be used, and preferably, copper is deposited to form a deposited film.
  • the conductive material may be deposited only on the other surface 312, which is one surface of the porous substrate 310, and preferably, the conductive material is deposited on the entire surface of the porous substrate 310.
  • the porous substrate 310 may apply a laminated structure selected from one or both of nanofiber webs and nonwoven fabrics in which nanofibers obtained by electrospinning a polymer material are accumulated and have micropores.
  • the laminated structure of the nanofiber web and the nonwoven fabric may be a structure in which the nanofiber web is laminated on one surface of the nonwoven fabric or a nanofiber web is laminated on both sides of the nonwoven fabric.
  • a porous electrode having an inorganic pore ion exchange membrane is applied by applying a laminated structure of one or both selected from a nanofiber web and a nonwoven fabric, an electrode having a high specific surface area can be made.
  • the porous substrate 310 may be applied as a laminated structure of a nanofiber web and a nonwoven fabric or a laminated structure of a nanofiber web / nonwoven / nanofiber web.
  • the thickness of the nanofiber web is preferably thinner than the thickness of the nonwoven fabric.
  • the nanofiber web and the nonwoven fabric may be laminated by performing a lamination process.
  • the nonwoven fabric is less expensive than the nanofiber web and has a higher strength. It is possible to reduce the manufacturing cost of the electrode and at the same time improve the strength.
  • the nonwoven fabric also has a plurality of pores, so that the deposited conductive material penetrates.
  • porous thin film formed by accumulating nanofibers formed by electrospinning an ion exchange solution as the porous substrate 310 may be applied.
  • the porous substrate 310 Since the porous substrate 310 has fine pores, when the conductive material is deposited on the porous substrate 310 having the fine pores, the deposited conductive material penetrates into the fine pores, thereby forming a deposition film inside the fine pores.
  • the pores of the porous substrate 310 after deposition are finer than the pores of the porous substrate 310 before deposition. Therefore, the porous electrode having the inorganic pore ion exchange membrane of the present invention has an electrode structure having fine pores capable of adsorbing ions, and thus can be used as a capacitive deionized electrode.
  • the porous substrate 310 is a conductive material 331 deposited on the other surface 312 or the entire surface is penetrated into the fine pores 315, is formed as a porous electrode.
  • the plating layer 350 may be further formed on the conductive layer 330 formed on the porous substrate 310. This plating layer 350 becomes a current collector.
  • the plating layer 350 improves the electrical conductivity of the porous electrode having the inorganic pore ion exchange membrane and does not require a separate current collector, the plating layer 350 can be made thinner and thinner, thereby miniaturizing the deionizer.
  • the plating layer 350 is plated and formed on the conductive film 330 formed on the porous substrate 310, and in this case, the plating layer 350 is formed only on one surface of the porous substrate 310. That is, the electrode of the deionization apparatus applied to the present invention is implemented as a single sheet to simultaneously perform the role of the electrode and the current collector, and the conductive film 330 formed by deposition is sufficient electricity for the electrode of the deionization apparatus. Since it has no conductivity, the plating layer 350 is required.
  • the reason why the plating layer 350 is formed only on one surface of the porous substrate 310 is that pores are blocked when the plating is performed.
  • the electrode part of the porous electrode having the inorganic hole ion exchange membrane should be porous, so that the electrode layer has a plating layer ( 350).
  • the porous electrode having the inorganic pore ion exchange membrane according to the embodiments of the present invention has an electrode structure in which a conductive material penetrates into micropores of a porous substrate such as a nanofiber web, an electrode having a very high specific surface area and 1 ⁇ m ⁇
  • an electrode having a very high specific surface area and 1 ⁇ m ⁇ There is an advantage that can manufacture a ultra-thin electrode of 50 ⁇ m thickness.
  • a porous electrode having a flexible inorganic-porous ion exchange membrane may be implemented using a nanofiber web or nonwoven fabric having excellent flexibility as an electrode support, and at the same time, inorganic pore ion may be used in a deionized device having a curved extreme shape.
  • a porous electrode with an exchange membrane can be mounted.
  • the present invention can provide a porous electrode having an inorganic pore ion exchange membrane that can reduce the manufacturing cost and have a high storage capacity at a low cost by manufacturing an electrode by penetrating a conductive material into the fine pores of the porous substrate. have.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a porous electrode having an inorganic pore ion exchange membrane according to embodiments of the present invention.
  • a method of manufacturing a porous electrode having an inorganic ion exchange membrane includes lamination of one or both selected from nanofiber webs and nonwoven fabrics in which nanofibers obtained by electrospinning a polymer material and having micropores are accumulated. Prepare a porous substrate of the structure (S100).
  • the porous nanofiber webs are electrospun a single spinning polymer or a mixed spinning solution in which at least two polymers are mixed and dissolved in a solvent, or cross each other through different spinning nozzles after dissolving different polymers in a solvent. It can be obtained by spinning.
  • the mixing ratio of the heat-resistant polymer and the adhesive polymer is less than 5: 5 by weight, the heat resistance is poor and does not have the required high temperature characteristics.
  • the mixing ratio is larger than 8: 2 by weight, the strength drops and the radiation trouble occurs.
  • the process when using a single solvent, considering that the solvent may not be well volatilized depending on the type of the polymer, after the spinning process as described below after the pre-air dry zone (Pre-Air Dry Zone) As it passes, the process may control the amount of solvent and water remaining on the surface of the porous nanofiber web.
  • Any polymer may be used as long as the polymer is dissolved in a solvent to form a spinning solution and then spun by electrospinning to form nanofibers.
  • the heat resistant polymer resin usable in the present invention is a resin that can be dissolved in an organic solvent for electrospinning and has a melting point of 180 ° C. or higher, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, Aromatic polyesters such as poly (meth-phenylene isophthalamide), polysulfones, polyetherketones, polyethylene terephthalates, polytrimethylene terephthalates, polyethylene naphthalates, and the like, polytetrafluoroethylene, polydiphenoxyphosphazenes Polyphosphazenes, such as poly ⁇ bis [2- (2-methoxyethoxy) phosphazene] ⁇ , polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate pros Cypionate and the like can be used.
  • PAN polyacrylonitrile
  • Polyamide polyimi
  • Porous nanofiber web forms a spinning solution by dissolving a single or mixed polymer in a solvent to form a spinning solution, and then spinning the spinning solution to form a porous nanofiber web made of ultra-fine nanofibers, and calendering pores at a temperature below the melting point of the polymer It is formed by adjusting the size and thickness of the web.
  • the porous nanofiber web is formed by, for example, nanofibers having a diameter of 1 to 150 um, and is set to 1 to 100 um thick, preferably 10 to 30 um thick.
  • the size of the fine pores is set from several hundred nm to several tens of um, the porosity is set to 50 to 90%.
  • the porous substrate may be used alone or in combination with a porous nonwoven fabric to reinforce the strength of the porous nanofiber web and the support if necessary.
  • the porous nonwoven fabric is, for example, a nonwoven fabric made of a double structured PP / PE fiber coated with PE on the outer circumference of the PP fiber as a core, or a PET nonwoven fabric made of polyethyleneterephthalate (PET) fibers or a nonwoven fabric made of cellulose fibers. You can use one.
  • an ion exchange solution is electrosprayed on one surface of the porous substrate to form an inorganic-porous ion exchange membrane in which spray droplets are accumulated (S110), and a conductive material is formed by depositing a conductive material on the other surface of the porous substrate (S120).
  • a porous electrode having an ultra-thin inorganic pore ion exchange membrane is manufactured, and when the porous substrate is formed of a nanofiber web, as shown in FIG. 8A, a spinning solution in which a polymer material is dissolved in a solvent is used as a nozzle ( 41) and electrospins the nano-dispersed nanofibers 313 to form a nanofiber web 317.
  • the inorganic hole ion exchange membrane 327 is formed by accumulating the spray droplets 323 by electrospraying the ion exchange solution on one surface 317a of the nanofiber web 317 as shown in FIG. 8B.
  • the conductive film is subjected to a deposition process using a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method depending on the material of the conductive material.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the present invention can provide a deionization apparatus that can selectively adsorb the anion or cation contained in the treated water in the porous electrode, to deionize only ions of a specific polarity in the treated water.

Abstract

본 발명은 탈이온 장치에 관한 것으로, 미세 기공을 갖는 다공성 전극; 상기 다공성 전극에 형성된 무기공 이온교환막; 상기 무기공 이온교환막과 공간을 사이에 두고 대향하고 있는 대향전극; 및 상기 다공성 전극과 상기 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 스페이서를 포함한다.

Description

탈이온 장치
본 발명은 탈이온 장치에 관한 것으로, 더욱 상세하게는, 처리수에 포함된 음이온 또는 양이온을 다공성 전극에서 선택적으로 흡착하여, 처리수에서 특정 극성의 이온만을 탈이온할 수 있는 탈이온 장치에 관한 것이다.
일반적으로, 지구의 모든 물 중 우리가 사용할 수 있는 양은 고작 0.0086%에 지나지 않는다. 이는 기후변화로 인한 재해를 염두에 둔다면 과히 넉넉한 편은 못된다.
물은 인간 생활에 있어 매우 중요하고, 생활용수나 산업용수로서 물은 다양하게 이용된다. 산업 발전으로 물이 중금속, 질산성 질소, 불소 이온 등으로 오염되고 있고, 오염된 물을 음용했을 때 건강에 매우 해롭다.
최근, 오염된 물을 정화하고, 해수를 정화하여 용수로 사용하기 위한 탈염 기술이 다양하게 연구되고 있다.
이러한 탈염 기술은, 해수나 폐수 등과 같은 오염수에 함유되는 각종 부유물질이나 이온성분을 제거하여 담수화하는 기술로, 화석연료나 전기 등의 열원을 이용하여 수분을 증발시키는 증발법과, 분리막을 이용하여 이물질을 걸러 제거하는 여과법과, 전극셀의 전기분해작용을 이용하여 이온들을 제거하는 전기투석법이 있다.
증발법은, 화석연료나 전기 등을 열원으로 사용하여 수분을 증발시키는 것으로, 탈염장치의 부피가 커서 비효율적이고, 에너지의 소모량이 커서 비용이 증대될 뿐만 아니라, 화석연료의 사용으로 인한 대기오염의 원인이 된다.
여과법은 분리막에 고압을 가하여 이물질을 제거해야하므로 에너지의 소모량이 커서 비용이 증대되고, 전기투석법은 지속적으로 전극셀을 교체해야 하므로 전극셀의 교체에 따른 낭비요인이 발생될 뿐만 아니라 전극셀의 교체에 따른 인적 및 물적 부대비용이 증대되는 단점이 있다.
한국 등록특허공보 제501417호에는 소정의 압력으로 유입되는 처리수에 대해 1차로 염성분을 제거하는 역삼투막장치; 스페이서, 양전극, 음전극이 원통형의 탱크내에 순차적으로 설치되어 상기 역삼투막장치에서 1차 처리된 처리수로부터 재차 염성분을 제거하는 전극탈염장치; 상기 역삼투막장치의 브라인측 압력을 전극탈염장치의 입구수 가압용으로 활용하기 위한 에너지회수장치; 상기 전극탈염장치에 구비된 양전극과 음전극에 전원을 공급하는 전원공급수단; 및 상기 전극탈염장치로 유입되는 처리수를 탈염하는 탈염과정과 탈염과정중에 전극에 흡착된 이온들을 탈리시키는 재생과정을 수행하기 위해 처리수가 유동하는 배관들에 구비된 밸브들을 제어하는 제어수단;을 포함하는 역삼투막법/전극법을 이용한 폐수 탈염장치가 개시되어 있다. 그러나, 이러한 폐수 탈염장치는 역삼투막장치 및 전극탈염장치가 개별적으로 구비되어 있어, 탈염 장치의 크기가 크고, 많은 제조 비용이 소요되는 문제점이 있다.
따라서, 본 발명자들은 탈이온 장치를 슬림화시키고, 제조 경비를 감소시킬 수 있는 기술에 대한 연구를 지속적으로 진행하여 고 축전용량을 가짐과 동시에 처리수에서 특정 이온만 탈이온할 수 있는 구조적인 특징을 도출하여 발명함으로써, 보다 경제적이고, 활용 가능하고 경쟁력있는 본 발명을 완성하였다.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로, 그 목적은 처리수에 포함된 음이온 또는 양이온만을 탈이온할 수 있는 탈이온 장치를 제공하는 데 있다.
본 발명의 다른 목적은 탈이온 장치를 나권형으로 조립하여, 탈이온 효율을 향상시킬 수 있는 탈이온 장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 다공성 기재의 미세 기공에 도전성 물질을 침투시켜 집전체를 구현함으로써, 초박형화가 가능하고, 제조 경비를 감소시키고, 고 축전용량을 가질 수 있으며, 비표면적을 매우 높일 수 있는 탈이온 장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 가요성이 우수한 나노섬유 웹 또는 부직포를 전극 지지체로 적용하여 플렉서블한 탈이온용 전극을 구현할 수 있는 탈이온 장치를 제공하는 데 있다.
상술된 목적을 달성하기 위한, 본 발명의 일 실시예는, 미세 기공을 갖는 다공성 전극; 상기 다공성 전극에 형성된 무기공 이온교환막; 상기 무기공 이온교환막과 공간을 사이에 두고 대향하고 있는 대향전극; 및 상기 다공성 전극과 상기 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 스페이서;를 포함하는 탈이온 장치를 제공한다.
또한, 본 발명의 일 실시예는, 미세 기공을 갖는 다공성 전극; 상기 다공성 전극에 형성된 무기공 이온교환막; 상기 무기공 이온교환막과 공간을 사이에 두고 대향하고 있는 대향전극; 상기 다공성 전극과 상기 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 스페이서; 및 상기 대향전극 또는 다공성 전극에 접촉되어 있는 절연층;을 포함하며, 상기 다공성 전극, 상기 무기공 이온교환막, 상기 스페이서, 상기 대향전극 및 상기 절연층이 스파이럴 형상으로 롤링되어 있는 탈이온 장치를 제공한다.
아울러, 본 발명의 일 실시예는, 처리수에서 음이온을 탈이온하는 제1 탈이온부; 및 상기 처리수에서 양이온을 탈이온하며, 상기 제1 탈이온부에 연결되어 있는 제2 탈이온부;를 포함하며, 상기 제1 탈이온부는 제1 다공성 전극; 상기 제1 다공성 전극에 형성된 제1 이온교환막; 상기 제1 이온교환막과 공간을 사이에 두고 대향하고 있는 제1 대향전극; 및 상기 제1 다공성 전극과 상기 제1 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 제1 스페이서를 포함하며, 상기 제1 다공성 전극과 상기 제1 대향전극에 정전압이 인가되어 상기 처리수에서 음이온을 탈이온하도록 구성되고, 상기 제2 탈이온부는 제2 다공성 전극; 상기 제2 다공성 전극에 형성된 제2 이온교환막; 상기 제2 이온교환막과 공간을 사이에 두고 대향하고 있는 제2 대향전극; 및 상기 제2 다공성 전극과 상기 제2 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 제2 스페이서를 포함하며, 상기 제2 다공성 전극과 상기 제2 대향전극에 음전압이 인가되어 상기 처리수에서 양이온을 탈이온하도록 구성되는 탈이온 장치를 제공한다.
상기한 바와 같이, 본 발명에서는 처리수에 포함된 음이온 또는 양이온을 다공성 전극에서 선택적으로 흡착하여, 처리수에서 특정 극성의 이온만을 탈이온할 수 있는 잇점이 있다.
또, 본 발명에서는 다공성 전극, 무기공 이온교환막, 스페이서, 대향전극을 순차적으로 배치하고, 다공성 전극과 대향전극에 인가된 전압에 의해 스페이서로 통과되는 처리수에서 이온을 흡착할 수 있는 탈이온 장치를 제공할 수 있다.
또한, 본 발명에서는 탈이온 장치의 일측에 투입된 처리수가 나권형된 스페이서의 유로를 따라 유동되면서 탈이온되고, 탈이온된 정화수가 탈이온 장치의 타측으로 배출되는 조립 구조를 가짐으로써, 탈이온 효율을 향상시킬 수 있다.
더불어, 본 발명에서는 처리수에서 음이온을 탈이온하는 제1 탈이온부와 양이온을 탈이온하는 제2 탈이온부를 직렬로 연결하여, 처리수에서 음이온 및 양이온 모두를 탈이온시킬 수 있는 장치를 구현할 수 있는 장점이 있다.
아울러, 본 발명에서는 고분자 물질 또는 이온교환용액을 전기방사하여 얻어진 나노섬유가 축적되어 있고 미세 기공을 갖는 나노섬유 웹 및 부직포 중 선택된 하나 또는 양자의 적층 구조의 다공성 기재에 도전성 물질을 증착하여 도전성막을 형성하여 다공성 전극을 구현함으로써, 초박형이 가능하고, 저렴한 비용으로 고 축전용량을 가질 수 있는 탈이온 전극을 구현할 수 있는 효과가 있다.
그리고, 본 발명에서는 다공성 기재의 미세 기공에 도전성 물질이 침투된 전극 구조를 구현하여 비표면적이 매우 높은 전극 및 초박막 전극을 제작할 수 있는 효과가 있다.
또한, 본 발명에서는 가요성이 우수한 나노섬유 웹 또는 부직포를 전극 지지체로 적용하여 플렉서블한 탈이온용 전극을 구현할 수 있는 잇점이 있다.
또, 본 발명에서는 전극 지지체의 기공 크기를 쉽게 조절할 수 있고, 균일한 크기의 기공을 갖는 전극 구현이 가능하여, 이온의 흡착 및 탈착 효율을 향상시킬 수 있으며, 바인더를 사용하지 않아 바인더의 용출 우려를 해소하고, 간단한 제조 공정으로 제조 경비를 감소시킬 수 있는 탈이온용 전극을 제작할 수 있는 기술을 제공한다.
아울러, 본 발명에서는 이온교환용액을 전기분사하고, 분사된 액적을 축적하여 이온교환막을 형성함으로써, 치밀한 구조의 무기공 필름 형태를 구현할 수 있고, 초박막의 두께를 가질 수 있어, 선택된 이온만이 자유자제로 이동할 수 있고, 이온들이 이동하는 저항을 낮출 수 있는 잇점이 있다.
도 1은 본 발명의 제1실시예에 따른 탈이온 장치의 구조를 설명하기 위한 개념적인 단면도이고,
도 2는 본 발명의 제2실시예에 따른 탈이온 장치의 조립 상태를 설명하기 위한 개념적인 사시도이고,
도 3은 본 발명의 제2실시예에 따라 나권형으로 조립하기 위한 탈이온 장치의 구조를 설명하기 위한 개념적인 단면도이고,
도 4는 본 발명의 제3실시예에 따른 음이온 및 양이온을 탈이온하기 위한 탈이온 장치를 설명하기 위한 개념적인 도면이고,
도 5는 본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극을 설명하기 위한 개념적인 단면도이고,
도 6은 본 발명의 실시예들에 적용된 무기공 이온교환막을 구비한 다공성 기재의 미세 기공에 증착 물질이 침투된 것을 설명하기 위한 개념적인 도면이며,
도 7은 본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극의 제조 방법의 흐름도이고,
도 8a 및 도 8b는 본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극의 제조 방법 중 다공성 기재 및 무기공 이온교환막을 형성하는 공정을 설명하기 위한 개념적인 도면이다.
이하, 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.
도 1을 참고하면, 본 발명의 제1실시예에 따른 탈이온 장치는 미세 기공을 갖는 다공성 전극(100); 상기 다공성 전극(100)에 형성된 무기공 이온교환막(110); 상기 무기공 이온교환막(110)과 공간을 사이에 두고 대향하고 있는 대향전극(130); 및 상기 다공성 전극(100)과 상기 대향전극(130) 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 스페이서(120)를 포함한다.
다공성 전극(100)은 고분자 물질 또는 이온교환용액을 전기방사하여 얻어진 나노섬유가 축적되어 있고 미세 기공을 갖는 나노섬유 웹 및 부직포 중 선택된 하나 또는 양자의 적층 구조의 다공성 기재; 및 다공성 기재의 타면 또는 전체면에 도전성 물질이 증착되어 형성된 도전성막을 포함하여 구현할 수 있다.
이때, 무기공 이온교환막(110)은 다공성 기재의 일면에 이온교환용액을 전기분사하여 분사액적이 축적되어 이루어진 무기공 이온교환막을 적용할 수 있거나, 또는 다공성 기재의 일면에 이온교환용액이 코팅된 무기공 이온교환막을 사용할 수 있다.
또한, 다공성 전극(100)은 다공성 기재의 타면에 도전성 물질을 증착하여 형성된 도전성막을 더 포함할 수 있다.
다공성 전극(100)과 대향전극(130) 사이에 전압(V)이 인가되면, 다공성 전극(100)의 표면에 형성되는 전기이중층에서 전기적 인력에 의하여, 스페이서(120)로 통과되는 해수나 폐수등의 처리수에 포함된 이온이 다공성 전극(100)의 표면에 흡착되어 제거된 정화수가 배출된다. 이때, 전기적인 인력에 의해, 다공성 전극(100)은 해수나 폐수등의 처리수에 포함된 이온을 흡착한다.
다공성 전극(100)과 대향전극(130)은 전위가 발생될 수 있는 전극으로, 예컨대, 다공성 전극(100)이 정전극(cathode)인 경우, 대향전극(130)은 부전극(anode)이고, 반대로, 다공성 전극(100)이 부전극인 경우, 대향전극(130)은 정전극이다. 여기서, 본 발명에서는 다공성 전극(100)이 정전극 또는 부전극이고, 대향전극(130)이 그라운드 전극인 것이 바람직하다.
그리고, 대향전극(130)은 무기공성 전극으로 구성할 수 있고, 이 경우, 이온이 흡착후 재생을 위해 탈착시 이온이 대향전극(130)에 재흡착되는 것을 방지할 수 있다. 그리고, 대향전극(130)은 상대전극으로 지칭할 수 있다.
또, 스페이서(120)는 메쉬(mesh) 또는 부직포인 것이 바람직하다.
이와 같은 구성을 갖는 본 발명의 탈이온 장치는 처리수에 포함된 음이온 또는 양이온을 다공성 전극(100)에서 선택적으로 흡착하여, 처리수에서 특정 극성의 이온만을 탈이온하는 것이다.
도 2를 참고하면, 본 발명의 제2실시예에 따른 탈이온 장치는 가요성이 우수한 나노섬유 웹 또는 부직포를 전극 지지체로 사용함으로써, 매우 플렉서블한 특성을 가지고 있어 다양한 조립 형태를 구현할 수 있다.
그의 일례로, 본 발명에서는 도 1과 같이, 다공성 전극(100), 무기공 이온교환막(110), 스페이서(120), 대향전극(130)이 순차적으로 위치되어 있는 탈이온 장치의 구조에 절연층(140)을 부가하여 도 2에 도시된 바와 같이 스파이럴(spiral) 권취하여 조립할 수 있다. 즉, 탈이온 장치(200)는 나권형으로 조립되어 있다.
여기서, 절연층(140)은 대향전극(130) 또는 다공성 전극(100)에 접촉되도록 부가하여 권취한다. 참고로, 도 3에는 절연층(140)이 대향전극(130)에 접촉되어 있다.
한편, 본 발명에서 나권형 조립 구조의 탈이온 장치(200)는 다공성 전극(100), 무기공 이온교환막(110), 스페이서(120), 대향전극(130)이 순차적으로 적층된 구조를 스파이럴 형상으로 롤링하게 되면, 롤링된 구조의 중심(롤링축)에서 외주면 방향으로, 다공성 전극(100), 무기공 이온교환막(110), 스페이서(120), 대향전극(130)이 계속 반복되는 구조가 됨으로, 다공성 전극(100)과 대향전극(130)에 전압이 인가되면, 이웃하는 반복 구조와 전기적인 간섭이 발생되어 탈이온 특성이 저하될 수 있다.
이에, 나권형으로 권취된 반복 구조 간에 전기적인 간섭 및 영향을 방지하기 위한 절연층(140)을 포함하여 탈이온 장치를 나권형으로 조립하는 것이다.
그러므로, 다공성 전극(100)과 대향전극(130)은 서로 대향되어 있어, 다공성 전극(100)과 대향전극(130)에 전압이 인가되면 스페이서(120)로 통과되는 처리수에서 다공성 전극(100)은 이온을 흡착하게 된다. 이때, 본 발명의 탈이온 장치(200)는 탈이온 장치(200)의 일측에 투입된 처리수가 나권형된 스페이서(120)의 유로를 따라 유동되면서 탈이온되고, 탈이온된 정화수가 탈이온 장치(200)의 타측으로 배출되는 조립 구조를 가짐으로써, 탈이온 효율을 향상시킬 수 있는 것이다.
도 4는 본 발명의 제3실시예에 따른 음이온 및 양이온을 탈이온하기 위한 탈이온 장치를 설명하기 위한 개념적인 도면이다.
전술된 바와 같이, 본 발명의 탈이온 장치는 다공성 전극과 대향전극 사이에 위치된 스페이서를 통과하는 처리수에서 음이온 또는 양이온을 선택적으로 흡착하여, 특정 극성의 이온을 탈이온한다.
이때, 도 4에 도시된 바와 같이, 본 발명의 탈이온 장치는 처리수에서 음이온을 탈이온하는 제1 탈이온부(210)와 양이온을 탈이온하는 제2 탈이온부(220)를 직렬로 연결하여, 처리수에서 음이온 및 양이온 모두를 탈이온시킬 수 있는 장치를 구현할 수 있다.
즉, 제1 탈이온부(210)는 제1 다공성 전극; 상기 제1 다공성 전극에 형성된 제1 이온교환막; 상기 제1 이온교환막과 공간을 사이에 두고 대향하고 있는 제1 대향전극; 및 상기 제1 다공성 전극과 상기 제1 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 제1 스페이서;를 포함하며, 상기 제1 다공성 전극과 상기 제1 대향전극에 정전압이 인가되어 상기 처리수에서 음이온을 탈이온하도록 구성된다.
그리고, 제2 탈이온부(220)는 제2 다공성 전극; 상기 제2 다공성 전극에 형성된 제2 이온교환막; 상기 제2 이온교환막과 공간을 사이에 두고 대향하고 있는 제2 대향전극; 및 상기 제2 다공성 전극과 상기 제2 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 제2 스페이서;를 포함하며, 상기 제2 다공성 전극과 상기 제2 대향전극에 음전압이 인가되어 상기 처리수에서 양이온을 탈이온하도록 구성된다.
여기서, 제1 탈이온부(210)의 제1 스페이서를 제2 탈이온부(220)의 제2 스페이서와 연결시킴으로써, 제1 스페이서로 유입된 처리수는 제1 탈이온부(210)에서 음이온이 제거된 후, 제2 탈이온부(220)의 제2 스페이서로 주입되어, 제2 탈이온부(220)에서 양이온이 제거된다.
그러므로, 이 실시예의 탈이온 장치는 제1 탈이온부(210)의 제1 스페이서로 유입된 처리수에서 음이온을 제거한 다음, 음이온이 제거된 처리수를 제2 탈이온부(220)의 제2 스페이서로 공급하여, 양이온을 제거함으로써, 음이온 및 양이온 모두가 제거된 정화수를 배출할 수 있다.
전술된 탈이온 장치에 언급된 다공성 전극은 무기공 이온교환막이 다양한 방법으로 형성될 수 있는 바, 이에 대한 구체적인 방법 및 구조에 대해 설명하기로 한다.
먼저, 도 5를 참고하면, 본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극은 미세 기공을 갖는 다공성 기재(310); 다공성 기재(310)의 일면(311)에 이온교환용액이 전기분사되어 형성된 무기공 이온교환막(320); 및 다공성 기재(310)의 적어도 타면(312)에 형성되어 있는 도전성막(330)을 포함한다.
무기공 이온교환막(320)은 전극의 극성에 따라 양이온교환막 또는 음이온교환막일 수 있고, 무기공 이온교환막(320)은 이온들을 전극에 선택적으로 흡착시키는 역할을 한다. 즉, 양극에는 음이온교환막이 결합되고, 음극에는 양이온교환막이 결합되어, 전압이 인가되면 음극에는 양이온만 흡착되고, 양극에는 음이온만 흡착된다.
그리고, 이온교환용액을 전기분사하게 되면, 전기분사되는 노즐에서 미세한 크기의 액적이 분사하고, 전기적인 힘에 의해 더 미세하게 분화되어 축적됨으로써 무기공 필름 형태의 이온교환막(320)이 형성된다.
무기공 이온교환막(320)이 무기공 형태를 갖는 경우, 이온의 선택적 투과성을 높일 수 있다. 이와 반대로, 기공을 갖는 이온교환막은 전기적인 인력 또는 반발력에도 불구하고 양이온 및 음이온 모두가 기공을 통하여 통과될 수 있기에, 바람직한 구조는 아니다.
이와 같이, 본 발명에서는 이온교환용액을 전기분사하고, 분사된 액적을 축적하여 무기공 이온교환막(320)을 형성함으로써, 치밀한 구조의 무기공 필름 형태를 구현할 수 있고, 초박막의 두께를 가질 수 있어, 선택된 이온만이 자유자재로 이동할 수 있고, 이온들이 이동하는 저항을 낮출 수 있는 장점이 있다.
도전성막(330)은 도전성 물질을 다공성 기재(310)의 적어도 타면(312)에 증착하여 형성할 수 있다. 도전성 물질로 니켈(Ni), 구리(Cu), 스텐레스 스틸(SUS), 티타늄(Ti), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 아연(Zn), 몰리브덴(Mo), 텅스텐(W), 은(Ag), 금(Au), 알루미늄(Al)과 같은 금속류 중 하나를 적용할 수 있고, 바람직하게는 구리를 증착시켜 증착막을 형성하는 것이다. 여기서, 다공성 기재(310)의 하나의 면인 타면(312)에만 도전성 물질을 증착할 수 있고, 바람직하게는 다공성 기재(310)의 전체면에 대하여 도전성 물질을 증착하는 것이다.
다공성 기재(310)는 고분자 물질을 전기방사하여 얻어진 나노섬유가 축적되어 있고 미세 기공을 갖는 나노섬유 웹 및 부직포 중 선택된 하나 또는 양자의 적층 구조를 적용할 수 있다. 나노섬유 웹과 부직포의 적층 구조는 부직포 일면에 나노섬유 웹이 적층된 구조 또는 부직포 양면에 나노섬유 웹이 적층된 구조일 수 있다. 여기서, 나노섬유 웹 및 부직포 중 선택된 하나 또는 양자의 적층 구조를 적용하여 무기공 이온교환막을 구비한 다공성 전극을 구현하게 되면, 비표면적이 높은 전극을 만들 수 있다.
즉, 다공성 기재(310)는 나노섬유 웹과 부직포의 적층 구조 또는 나노섬유 웹/부직포/나노섬유 웹의 적층 구조로 적용할 수 있다. 이때, 나노섬유 웹의 두께는 부직포의 두께보다 얇은 것이 바람직하다. 이때, 나노섬유 웹과 부직포는 합지하는 공정을 수행하여 적층할 수 있다.
이와 같이, 무기공 이온교환막을 구비한 다공성 전극을 나노섬유 웹과 부직포의 적층 구조로 적용하게 되면, 부직포가 나노섬유 웹보다 가격이 저렴하고, 강도가 높기 때문에, 무기공 이온교환막을 구비한 다공성 전극의 제조 경비를 감소시킴과 동시에 강도를 향상시킬 수 있다. 이와 더불어, 부직포도 다수의 기공이 존재함으로, 증착되는 도전성 물질이 침투된다.
한편, 다공성 기재(310)로 이온교환용액을 전기방사로 만들어진 나노섬유가 축적되어 형성된 기공성 박막을 적용할 수도 있다.
이러한 다공성 기재(310)는 미세 기공을 구비하고 있으므로, 미세 기공을 갖는 다공성 기재(310)에 도전성 물질이 증착되면, 증착된 도전성 물질은 미세 기공으로 침투되어, 미세 기공 내측에 증착막이 형성되고, 증착된 후의 다공성 기재(310)의 기공은 증착되기 전의 다공성 기재(310) 기공보다 더 미세해진다. 그러므로, 본 발명의 무기공 이온교환막을 구비한 다공성 전극은 이온을 흡착시킬 수 있는 미세 기공을 갖는 전극 구조가 되어 축전식 탈이온 전극으로 사용할 수 있는 것이다.
즉, 도 6에 도시된 바와 같이, 다공성 기재(310)는 타면(312) 또는 전체면에 증착된 도전성 물질(331)이 미세 기공(315)으로 침투되어, 다공성 전극으로 형성되는 것이다.
도 6을 참고하면, 본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극은 다공성 기재(310)에 형성된 도전성막(330)에 도금되어 있는 도금층(350)이 더 형성되어 있을 수 있고, 이 도금층(350)은 집전체가 된다.
도금층(350)은 무기공 이온교환막을 구비한 다공성 전극의 전기전도도를 향상시키고, 별도의 집전체를 필요로하지 않기 때문에 초박막화하여 슬림화시킬 수 있어, 탈이온 장치를 소형화시킬 수 있다. 여기서, 도금층(350)은 다공성 기재(310)에 형성된 도전성막(330)에 도금되어 형성되며, 이때, 다공성 기재(310)의 일면에만 도금층(350)을 형성한다. 즉, 본 발명에 적용된 탈이온 장치의 전극은 전극 및 집전체의 역할을 동시에 수행하기 위하여 하나의 시트로 구현한 것으로, 증착하여 형성된 도전성막(330)으로는 탈이온 장치의 전극을 위한 충분한 전기전도성을 갖지 못하므로, 도금층(350)이 필요한 것이다.
그리고, 다공성 기재(310)의 일면에만 도금층(350)을 형성하는 이유는 통상 도금을 하면 기공이 막히게 되는바, 무기공 이온교환막을 구비한 다공성 전극의 전극부는 다공성이어야 함으로, 전극부에는 도금층(350)을 형성하지 않는다.
따라서, 본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극은 나노섬유 웹과 같은 다공성 기재의 미세 기공에 도전성 물질이 침투된 전극 구조이므로, 비표면적이 매우 높은 전극 및 1㎛-50㎛ 두께의 초박막 전극을 제작할 수 있는 장점이 있다.
또한, 본 발명에서는 가요성이 우수한 나노섬유 웹 또는 부직포를 전극 지지체로 사용하여 플렉서블한 무기공 이온교환막을 구비한 다공성 전극을 구현할 수 있고, 이와 동시에, 휘어진 극한 형상의 탈이온 장치에도 무기공 이온교환막을 구비한 다공성 전극을 장착할 수 있는 잇점이 있다.
아울러, 본 발명에서는 바인더를 사용하지 않아 바인더의 용출 우려가 없으며, 공정이 간단해 경제성 있는 전극을 만들수 있다.
게다가, 본 발명에서는 다공성 기재의 미세 기공에 도전성 물질을 침투시켜 전극을 제작함으로써, 제조 경비를 감소시키고, 저렴한 비용으로 고 축전용량을 가질 수 있는 무기공 이온교환막을 구비한 다공성 전극을 제공할 수 있다.
도 7은 본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극의 제조 방법의 흐름도이다.
본 발명의 실시예들에 따른 무기공 이온교환막을 구비한 다공성 전극의 제조 방법은 고분자 물질을 전기방사하여 얻어진 나노섬유가 축적되어 있고 미세 기공을 갖는 나노섬유 웹 및 부직포 중 선택된 하나 또는 양자의 적층 구조의 다공성 기재를 준비한다(S100).
여기서, 다공성 나노섬유 웹은 단일 종류의 고분자 또는 적어도 2 종류의 고분자를 혼합하여 용매에 용해시킨 혼합 방사용액을 전기방사하거나 또는 서로 다른 고분자를 각각 용매에 용해시킨 후 각각 서로 다른 방사 노즐을 통하여 교차방사하여 얻어질 수 있다.
2 종류의 고분자를 사용하여 혼합 방사용액을 형성하는 경우, 예를 들어, 내열성 고분자로서 PAN과 접착성 고분자로서 PVDF를 혼합하는 경우, 8:2 내지 5:5 중량% 범위로 혼합하는 것이 바람직하다.
내열성 고분자와 접착성 고분자의 혼합비가 중량비로 5:5보다 작은 경우 내열성이 떨어져서 요구되는 고온 특성을 갖지 못하며, 혼합비가 중량비로 8:2보다 큰 경우 강도가 떨어지고 방사 트러블이 발생하게 된다.
본 발명에서는 단일 용매를 사용할 때는 고분자의 종류에 따라 용매의 휘발이 잘 이루어지지 못하는 경우가 있다는 것을 고려하여 방사공정 이후에 후술하는 바와 같이 프리히터에 의한 선 건조구간(Pre-Air Dry Zone)을 통과하면서 다공성 나노섬유 웹의 표면에 잔존해 있는 용매와 수분의 양을 조절하는 공정을 거칠 수 있다.
고분자는 용매에 용해되어 방사용액을 형성한 후 전기방사 방법으로 방사되어 나노섬유를 형성할 수 있는 섬유 성형성 폴리머라면 어떤 것도 사용 가능하다.
본 발명에서 사용 가능한 내열성 고분자 수지는 전기방사를 위해 유기용매에 용해될 수 있고 융점이 180℃ 이상인 수지로서, 예를 들어, 폴리아크릴로니트릴(PAN), 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리{비스[2-(2-메톡시에톡시)포스파젠]} 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등을 사용할 수 있다.
다공성 나노섬유 웹은 단일 또는 혼합 고분자를 용매에 용해시켜 방사용액을 형성한 후, 방사용액을 방사하여 초극세 나노섬유로 이루어진 다공성 나노섬유 웹을 형성하고, 고분자의 융점 이하의 온도에서 캘린더링하여 기공 사이즈와 웹의 두께를 조절하여 형성된다.
다공성 나노섬유 웹은 예를 들어, 1 내지 150um의 직경을 갖는 나노섬유에 의해 형성되고, 1 내지 100um 두께, 바람직하게는 10 내지 30um 두께로 설정된다. 상기 미세 기공의 크기는 수백 nm에서 수십 um로 설정되고, 기공도는 50 내지 90%로 설정된다.
이 경우, 다공성 기재는 다공성 부직포 단독으로 사용하거나 필요에 따라 다공성 나노섬유 웹과 지지체의 강도를 보강하기 위해 다공성 부직포가 합지되어 사용될 수 있다. 다공성 부직포는 예를 들어, 코어로서 PP 섬유의 외주에 PE가 코팅된 이중 구조의 PP/PE 섬유로 이루어진 부직포 또는 폴리에틸렌테레프탈레이트(PET: polyethyleneterephthalate) 섬유로 이루어진 PET 부직포, 셀룰로즈 섬유로 이루어진 부직포 중 어느 하나를 사용할 수 있다.
이어서, 다공성 기재의 일면에 이온교환용액을 전기분사하여 분사액적이 축적되어 이루어진 무기공 이온교환막을 형성하고(S110), 다공성 기재의 타면에 도전성 물질을 증착하여 도전성막을 형성한다(S120).
이와 같은 방법으로 초박형의 무기공 이온교환막을 구비한 다공성 전극을 제조하게 되며, 다공성 기재를 나노섬유 웹으로 구현하는 경우 도 8a에 도시된 바와 같이, 고분자 물질이 용매에 용해된 방사용액을 노즐(41)로 전기 방사하고, 전기 방산된 나노섬유(313)를 축적하여 나노섬유 웹(317)을 형성한다. 그리고, 무기공 이온교환막(327)은 도 8b와 같이 나노섬유 웹(317)의 일면(317a)에 이온교환용액을 전기분사하여 분사 액적(323)을 축적하여 형성한다.
한편, 도전성막은 도전성 물질의 재료에 따라 CVD(Chemical Vapor Deposition:화학적 기상성장) 방법 또는 PVD(Physical Vapor Deposition :물리적 기상 성장) 방법을 이용하여 증착 공정을 수행한다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 처리수에 포함된 음이온 또는 양이온을 다공성 전극에서 선택적으로 흡착하여, 처리수에서 특정 극성의 이온만을 탈이온할 수 있는 탈이온 장치를 제공할 수 있다.

Claims (14)

  1. 미세 기공을 갖는 다공성 전극;
    상기 다공성 전극에 형성된 무기공 이온교환막;
    상기 무기공 이온교환막과 공간을 사이에 두고 대향하고 있는 대향전극; 및
    상기 다공성 전극과 상기 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 스페이서;를 포함하는 탈이온 장치.
  2. 제1항에 있어서, 상기 무기공 이온교환막은,
    양이온교환막 또는 음이온교환막인 탈이온 장치.
  3. 제1항에 있어서, 상기 무기공 이온교환막은 다공성 기재의 일면에 이온교환용액을 전기분사하여 분사액적이 축적되어 이루어진 무기공 이온교환막 또는 이온교환용액이 코팅된 무기공 이온교환막인 탈이온 장치.
  4. 제3항에 있어서,
    상기 다공성 전극은,
    고분자 물질 또는 이온교환용액을 전기방사하여 얻어진 나노섬유가 축적되어 있고 미세 기공을 갖는 나노섬유 웹 및 부직포 중 선택된 하나 또는 양자의 적층 구조의 다공성 기재; 및 상기 다공성 기재의 타면 또는 전체면에 도전성 물질이 증착되어 형성된 도전성막을 포함하는 탈이온 장치.
  5. 제4항에 있어서, 상기 도전성막은,
    도전성 물질을 상기 다공성 이온교환 기재의 타면에 증착하여 형성된 탈이온 장치.
  6. 제5항에 있어서, 상기 다공성 기재의 미세 기공으로 상기 증착된 도전성 물질이 침투되어 있는 탈이온 장치.
  7. 제4항에 있어서, 상기 도전성막에 도금된 도금층을 더 포함하는 탈이온 장치.
  8. 제1항에 있어서, 상기 다공성 전극은 정전극 또는 부전극이고, 대향전극은 그라운드 전극인 탈이온 장치.
  9. 제1항에 있어서, 상기 대향전극은 무기공성 전극인 탈이온 장치.
  10. 제1항에 있어서, 상기 스페이서는 메쉬(mesh) 또는 부직포인 탈이온 장치.
  11. 미세 기공을 갖는 다공성 전극; 상기 다공성 전극에 형성된 무기공 이온교환막;
    상기 무기공 이온교환막과 공간을 사이에 두고 대향하고 있는 대향전극;
    상기 다공성 전극과 상기 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 스페이서; 및 상기 대향전극 또는 다공성 전극에 접촉되어 있는 절연층;을 포함하며,
    상기 다공성 전극, 상기 무기공 이온교환막, 상기 스페이서, 상기 대향전극 및 상기 절연층이 스파이럴 형상으로 롤링되어 있는 탈이온 장치.
  12. 제11항에 있어서,
    상기 다공성 전극은,
    고분자 물질 또는 이온교환용액을 전기방사하여 얻어진 나노섬유가 축적되어 있고 미세 기공을 갖는 나노섬유 웹 및 부직포 중 선택된 하나 또는 양자의 적층 구조의 다공성 기재; 및 상기 다공성 기재의 타면 또는 전체면에 도전성 물질이 증착되어 형성된 도전성막을 포함하는 탈이온 장치.
  13. 처리수에서 음이온을 탈이온하는 제1 탈이온부; 및 상기 처리수에서 양이온을 탈이온하며, 상기 제1 탈이온부에 연결되어 있는 제2 탈이온부;를 포함하며,
    상기 제1 탈이온부는 제1 다공성 전극; 상기 제1 다공성 전극에 형성된 제1 이온교환막; 상기 제1 이온교환막과 공간을 사이에 두고 대향하고 있는 제1 대향전극; 및 상기 제1 다공성 전극과 상기 제1 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 제1 스페이서를 포함하며, 상기 제1 다공성 전극과 상기 제1 대향전극에 정전압이 인가되어 상기 처리수에서 음이온을 탈이온하도록 구성되고,
    상기 제2 탈이온부는 제2 다공성 전극; 상기 제2 다공성 전극에 형성된 제2 이온교환막; 상기 제2 이온교환막과 공간을 사이에 두고 대향하고 있는 제2 대향전극; 및 상기 제2 다공성 전극과 상기 제2 대향전극 사이 공간에 위치되며, 처리수가 통과되는 유로를 갖는 제2 스페이서를 포함하며, 상기 제2 다공성 전극과 상기 제2 대향전극에 음전압이 인가되어 상기 처리수에서 양이온을 탈이온하도록 구성되는 탈이온 장치.
  14. 제13항에 있어서, 상기 제1 탈이온부의 제1 스페이서와, 상기 제2 탈이온부의 제2 스페이가 연결되어 있는 탈이온 장치.
PCT/KR2014/011183 2013-11-21 2014-11-20 탈이온 장치 WO2015076576A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480055189.2A CN105612128B (zh) 2013-11-21 2014-11-20 去离子装置
US15/132,560 US10392275B2 (en) 2013-11-21 2016-04-19 Deionizing device
US16/511,572 US10836657B2 (en) 2013-11-21 2019-07-15 Deionizing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0142350 2013-11-21
KR1020130142350A KR101655363B1 (ko) 2013-11-21 2013-11-21 탈이온 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/132,560 Continuation-In-Part US10392275B2 (en) 2013-11-21 2016-04-19 Deionizing device

Publications (1)

Publication Number Publication Date
WO2015076576A1 true WO2015076576A1 (ko) 2015-05-28

Family

ID=53179781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011183 WO2015076576A1 (ko) 2013-11-21 2014-11-20 탈이온 장치

Country Status (4)

Country Link
US (2) US10392275B2 (ko)
KR (1) KR101655363B1 (ko)
CN (1) CN105612128B (ko)
WO (1) WO2015076576A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194414A1 (ko) * 2017-04-21 2018-10-25 주식회사 아모그린텍 인쇄회로 나노섬유웹 제조방법, 이를 통해 제조된 인쇄회로 나노섬유웹 및 이를 이용한 전자기기
KR102064920B1 (ko) 2017-06-09 2020-01-10 주식회사 아모그린텍 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
SE540976C2 (en) * 2017-06-21 2019-02-12 Stockholm Water Tech Ab Device for capacitive deionization of aqueous media and method of manufacturing such a device
CN111328337B (zh) 2017-11-15 2022-01-25 阿莫绿色技术有限公司 石墨-高分子复合材料制造用组合物及通过其体现的石墨-高分子复合材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050056892A (ko) * 2003-12-10 2005-06-16 학교법인 성균관대학 다공성 연속막을 포함하는 전지
JP2010513018A (ja) * 2006-12-19 2010-04-30 ゼネラル・エレクトリック・カンパニイ スーパーキャパシタ脱塩装置及び製造方法
KR20110019573A (ko) * 2009-08-20 2011-02-28 삼성전자주식회사 전기 흡착 탈이온 장치
KR20110138862A (ko) * 2010-06-22 2011-12-28 주식회사 아모그린텍 다공성 폴리머 웹 집전체 및 그의 제조방법
KR20130068950A (ko) * 2011-12-16 2013-06-26 재단법인 포항산업과학연구원 전기흡착 탈염 장치의 이온교환막 일체형 전극 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460294A (en) * 1977-10-21 1979-05-15 Asahi Glass Co Ltd Electrolysis of aqueous alkali chrolide
JPS5629685A (en) * 1979-08-14 1981-03-25 Asahi Glass Co Ltd Fluorine containing cation exchange membrane for electrolysis
GB8332089D0 (en) * 1983-12-01 1984-01-11 Atomic Energy Authority Uk Electrodes
US5993996A (en) * 1997-09-16 1999-11-30 Inorganic Specialists, Inc. Carbon supercapacitor electrode materials
CN2327675Y (zh) * 1998-03-19 1999-07-07 李翔 螺旋卷式电除盐器
JP2001064799A (ja) * 1999-08-27 2001-03-13 Yuzo Mori 電解加工方法及び装置
KR100501417B1 (ko) 2002-06-21 2005-07-18 한국전력공사 역삼투막법/전극법을 이용한 폐수 탈염장치
JP4203547B2 (ja) * 2006-05-12 2009-01-07 有限会社ターナープロセス イオン供給源およびその製造方法
US20080198531A1 (en) * 2007-02-15 2008-08-21 Lih-Ren Shiue Capacitive deionization system for water treatment
KR101384663B1 (ko) * 2007-06-05 2014-04-14 삼성전자주식회사 수퍼캐패시터 및 이를 이용한 정수용 전기 화학 장치
CN102066268B (zh) 2008-06-24 2013-05-08 苏特沃克技术有限公司 用浓度差能使盐水脱盐的方法、装置和设备
CN101337717B (zh) * 2008-09-28 2011-01-12 上海纳晶科技有限公司 一种高效率节能型隔膜电容去离子装置
KR20100036495A (ko) * 2008-09-30 2010-04-08 삼성전자주식회사 탈 이온화장치 및 이에 사용되는 전극 모듈 및 그 제조방법
CN101740225B (zh) * 2008-11-11 2012-04-25 财团法人纺织产业综合研究所 超级电容的电极及其制作方法
KR101022257B1 (ko) * 2009-10-07 2011-03-21 (주) 시온텍 이온선택성 축전식 탈염 복합전극 및 모듈의 제조 방법
WO2012002754A2 (ko) * 2010-06-30 2012-01-05 주식회사 아모그린텍 전기방사된 나노 섬유 웹을 이용한 액체 필터용 필터여재와 그 제조방법 및 이를 이용한 액체 필터
CN102372345B (zh) * 2010-08-10 2013-07-31 通用电气公司 超级电容器脱盐装置及脱盐方法
US8715477B2 (en) * 2010-10-22 2014-05-06 Ionic Solutions Ltd. Apparatus and process for separation and selective recomposition of ions
US9272926B2 (en) * 2011-12-18 2016-03-01 Zhuo Sun Membrane enhanced deionization capacitor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050056892A (ko) * 2003-12-10 2005-06-16 학교법인 성균관대학 다공성 연속막을 포함하는 전지
JP2010513018A (ja) * 2006-12-19 2010-04-30 ゼネラル・エレクトリック・カンパニイ スーパーキャパシタ脱塩装置及び製造方法
KR20110019573A (ko) * 2009-08-20 2011-02-28 삼성전자주식회사 전기 흡착 탈이온 장치
KR20110138862A (ko) * 2010-06-22 2011-12-28 주식회사 아모그린텍 다공성 폴리머 웹 집전체 및 그의 제조방법
KR20130068950A (ko) * 2011-12-16 2013-06-26 재단법인 포항산업과학연구원 전기흡착 탈염 장치의 이온교환막 일체형 전극 제조방법

Also Published As

Publication number Publication date
US20190337824A1 (en) 2019-11-07
CN105612128B (zh) 2019-05-03
US20160229719A1 (en) 2016-08-11
KR20150058956A (ko) 2015-05-29
US10836657B2 (en) 2020-11-17
US10392275B2 (en) 2019-08-27
KR101655363B1 (ko) 2016-09-07
CN105612128A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2015060655A1 (ko) 이온교환막을 구비한 탈염용 복합전극, 그의 제조 방법 및 이를 이용한 탈염 장치
US10836657B2 (en) Deionizing device
WO2015072731A1 (ko) 이온 교환 멤브레인 및 그를 이용한 필터 모듈
KR102289676B1 (ko) 축전식 탈염전극 모듈, 그의 제조방법 및 이를 이용한 탈염장치
WO2013147380A1 (ko) 특정 이온 선택성 축전식 탈염 복합탄소전극 및 이의 제조방법
KR102064358B1 (ko) 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
CN103990390B (zh) 一种离子导电性高分子基分离膜元件及其膜分离组件
KR101976590B1 (ko) 이온교환막을 구비한 탈염용 복합전극, 그 제조방법 및 이를 이용한 탈염 장치
KR20140069581A (ko) 전기 흡착 탈이온 장치 및 이를 사용한 유체 처리 방법
CN100489160C (zh) 电荷阻挡层流通电容器
WO2016195288A1 (ko) 흡착 멤브레인
JP2009275310A (ja) 複合繊維体、その製造方法、フィルタ及び流体濾過方法
KR20120107308A (ko) 재생가능한 금속 제거용 필터 유닛, 필터 장치 및 이의 구동방법
WO2016195284A1 (ko) 흡착식 액체필터
US11014050B2 (en) Ion exchange membrane and filter module using same
WO2015041453A1 (ko) 축전식 탈염 전극 모듈, 그의 제조 방법 및 이를 이용한 탈염 장치
KR20190049680A (ko) 이온교환 멤브레인 및 이를 이용한 필터 모듈
WO2015053556A1 (ko) 탈염용 플렉서블 복합전극, 그의 제조 방법 및 이를 이용한 탈염 장치
KR101655364B1 (ko) 이온교환막을 구비한 탈염용 복합전극, 그의 제조 방법 및 이를 이용한 탈염 장치
KR20150046929A (ko) 이온교환막을 구비한 탈염용 복합전극, 그의 제조 방법 및 이를 이용한 탈염 장치
KR20160086316A (ko) 이온 교환 멤브레인 및 그를 이용한 필터 모듈
KR102359398B1 (ko) 연속적인 축전식 탈염 장치
CN111051252A (zh) 水处理系统
CN214635448U (zh) 一种多电极的双极膜组件、双极膜滤芯及净水设备
WO2022102884A1 (ko) 탈염 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864765

Country of ref document: EP

Kind code of ref document: A1