WO2016195288A1 - 흡착 멤브레인 - Google Patents

흡착 멤브레인 Download PDF

Info

Publication number
WO2016195288A1
WO2016195288A1 PCT/KR2016/005255 KR2016005255W WO2016195288A1 WO 2016195288 A1 WO2016195288 A1 WO 2016195288A1 KR 2016005255 W KR2016005255 W KR 2016005255W WO 2016195288 A1 WO2016195288 A1 WO 2016195288A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
membrane
pores
nanofibers
ion exchange
Prior art date
Application number
PCT/KR2016/005255
Other languages
English (en)
French (fr)
Inventor
서인용
정의영
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN201680029523.6A priority Critical patent/CN107666952A/zh
Priority to US15/572,986 priority patent/US20180133658A1/en
Publication of WO2016195288A1 publication Critical patent/WO2016195288A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00042Organic membrane manufacture by agglomeration of particles by deposition of fibres, nanofibres or nanofibrils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21811Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to an adsorption membrane, and more particularly, to adsorb ionic foreign matter with an adsorption member in which ion-exchange nanofibers are accumulated, and to allow material adsorption by pores to improve adsorption efficiency and excellent antibacterial properties.
  • the present invention relates to an adsorption membrane capable of obtaining properties.
  • pollutants such as wastewater, heavy metals, dust and harmful gases are emitted from manufacturing plants, industrial facilities, living facilities, automobiles and motorcycles in various industries, thereby polluting air and water quality.
  • One example technique for purifying contaminants is to filter contaminated gas or liquid through a membrane.
  • Membranes are capable of separating and filtering only certain components from gases, liquids, solids or mixtures thereof, and the mixture is filtered using the physicochemical properties of the membrane.
  • Membranes in the field of water treatment are classified into porous membranes, microporous membranes, and homogeneous membranes according to their structure, and are classified into microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, gas separation membranes, pervaporation membranes, and the like, depending on the use.
  • the polymer membrane is prepared by casting a polymer solution to form a sheet, and then depositing it in a solid phase.
  • Polymeric membranes have been used in a wide range of membranes from microfiltration to gas permeation.
  • Korean Patent Publication No. 507969 discloses a composite ion exchange filter in the form of a nonwoven fabric using needle punching by making a web of ion exchange fibers on an ion exchange nonwoven fabric, sprinkling an ion exchange resin on it, and then placing an ion exchange nonwoven fabric on it.
  • the technology to remove acidic and alkaline ions from the clean room of the semiconductor manufacturing process has been proposed, but because the pores of the nonwoven fabric are large, it is not possible to filter out minute harmful dust, and the ion exchange resin sprayed onto the ion exchange nonwoven fabric There is a problem that can flow and become an additional source of contamination.
  • the present invention has been made in view of the above, the object of the present invention is to provide an adsorption membrane that can adsorb ionic foreign matter, and physically filter the foreign matter by pores to improve the adsorption performance while preserving the flow rate. There is.
  • Another object of the present invention is to provide an adsorption membrane that includes an adsorption member made by accumulating nanofibers containing an antimicrobial material, or obtains excellent antimicrobial properties by performing silver stitching on the membrane.
  • the support member is provided with a plurality of first pores; And a first adsorption member stacked on the support member and having a plurality of second pores formed thereon, wherein ion exchange nanofibers are accumulated to adsorb foreign substances.
  • the support member may be a nonwoven fabric or a woven fabric.
  • the first pore size may be larger than the second pore size.
  • the ion exchange nanofibers may be cation exchange nanofibers or anion exchange nanofibers.
  • the first adsorption member is laminated on the upper surface of the support member, is laminated on the lower surface of the support member, a plurality of third pores are formed and foreign matter It may further include a second adsorption member made by accumulating the ion exchange nanofibers adsorbed.
  • the ion exchange nanofibers are cation exchange nanofibers or anion exchange nanofibers, are laminated on the first adsorption member, and a plurality of third pores are formed.
  • the ion exchange nanofibers may further include a third adsorption member made by accumulating ion exchange nanofibers for exchanging ions of opposite polarity.
  • the nanofibers are formed by accumulating dopamine-containing nanofibers stacked on the first adsorption member and having a plurality of pores formed thereon and having a functional group for adsorbing foreign substances. It may further comprise a fibrous web.
  • the nanofiber web is that the functional group is attached to the dopamine by one of UV irradiation, plasma treatment, acid treatment and base treatment to the web made by spinning the spinning solution mixed with the dopamine, solvent and polymer material It features.
  • the functional group may be a negatively charged functional group or a positively charged functional group.
  • oil may be coated on the ion exchange nanofibers.
  • the thickness of the first adsorption member may be designed to be thinner than the thickness of the support member.
  • the support member, the first adsorption member and may further include a silver stitched to one of both.
  • the support member is provided with a plurality of first pores; A first adsorption member stacked on an upper surface of the support member and having a plurality of second pores formed therein and accumulating ion exchange nanofibers that adsorb foreign substances; And a second adsorption member stacked on an upper surface of the first adsorption member and having a plurality of third pores formed therein, wherein the second adsorption member is formed by accumulating nanofibers containing an antibacterial material.
  • the second and third pore size may be designed smaller than the first pore size
  • the antimicrobial material may be a silver nano material
  • the second adsorption member together with the silver nano material
  • the spinning solution prepared by dissolving in an organic solvent may be a nanofiber web structure formed by electrospinning.
  • the ionic foreign matter is adsorbed from the ion exchange nanofibers of the adsorption member, and the foreign matter having a size larger than the pore size in the pores of the support member and the pores of the adsorption member is physically filtered to improve the adsorption efficiency of the foreign substances.
  • the present invention by providing a membrane formed by stacking an adsorption member having a plurality of pores made of nanofibers on a supporting member having a plurality of pores, it is possible to improve the adsorption performance while preserving the passage flow rate.
  • the adsorption member and the support member can have an excellent handleability and strength, it is possible to implement an adsorption membrane that can be manufactured at a low cost.
  • the nanofiber web containing the nanofibers containing the dopamine attached with the functional groups included in the membrane has an advantage of adsorbing heavy metals, bacteria, or viruses contained in the gas or liquid passing therethrough. .
  • the membrane includes the adsorption member having a plurality of pores formed therein and the nanofibers containing the antimicrobial material accumulated therein, or the silver is sewn onto the membrane, so that the antimicrobial properties can be excellent.
  • a membrane capable of adsorption of ionic foreign matters such as heavy metals and harmful micromaterials such as dust, dust, flakes, particles, etc. it can be applied to various fields such as water treatment, air filtration, biotechnology, medical use, etc. There is this.
  • FIG. 1 is a cross-sectional view of an adsorption membrane according to a first embodiment of the present invention
  • Figure 2 is a schematic diagram illustrating the principle of adsorbing foreign matter to the adsorption member according to the present invention
  • FIG. 3 is a view schematically showing a state in which ion-exchange nanofibers are accumulated by electrospinning on a support member according to the present invention
  • FIG. 4 is a cross-sectional view of an adsorption membrane according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of an adsorption membrane according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an adsorption membrane according to a fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an adsorption membrane according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic plan view illustrating a state in which silver is sewn onto the adsorption membrane according to the present invention.
  • the adsorption membrane 100 includes a support member 110 having a plurality of first pores; And an adsorption member 120 stacked on the support member 110 and having a plurality of second pores formed therein and accumulating ion exchange nanofibers to adsorb foreign substances.
  • the adsorption membrane 100 absorbs and filters ionic foreign matter from the ion exchange nanofibers of the adsorption member 120, and is larger than the pore size in the first pores of the support member 110 and the second pores of the adsorption member 120. Physically filtering foreign matter (dust, dust, chips, particles, etc.) having a large size to improve the removal efficiency of the foreign matter.
  • the ionic foreign matter A contained in the gas or liquid is ion exchange nanofibers 121 of the adsorption member 120.
  • the adsorption membrane 100 Since the foreign matter (A, B) is bound in the adsorption state (state attached to the inside of the foreign matter does not escape) inside, it is possible to increase the filtration performance of the adsorption membrane 100 of the present invention.
  • the second pores 122 of the adsorption member 120 filters the micro-contaminants in the nano unit included in the gas or the liquid by the fine pores. That is, the adsorption member 120 made of nanofibers is adsorbed by surface filtration made in the surface layer and by deep filtration made in the inner layer.
  • the adsorption membrane of the present invention is not a membrane structure of inorganic pores, but is obtained by laminating an adsorption member having a plurality of pores made of nanofibers on a supporting member having a plurality of pores, thereby adsorbing while preserving the passage flow rate. There is an advantage to excellent performance.
  • the foreign matter B having a large size contained in the gas or the liquid may not pass even in the first pores of the support member 110 and may be trapped inside the adsorption membrane 100 to further improve the adsorption capacity.
  • the first pore size of the support member 110 is preferably larger than the size of the second pore 122 of the adsorption member 120.
  • the support member 110 serves as a passage through which a gas or a liquid can pass by the plurality of first pores provided therein, and serves as a support layer supporting the adsorption member 120 to maintain a flat plate shape.
  • the support member 110 is preferably a nonwoven or woven fabric.
  • the nonwoven fabric that can be used may be any one of a melt-blown nonwoven fabric, a spun bond nonwoven fabric, a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, and a wet-laid nonwoven fabric. 40-50 ⁇ m, and the pore size may be 100 ⁇ m or more.
  • the adsorption membrane having excellent handleability and strength is formed by stacking the adsorption member 120 and the support member 110. Can be implemented.
  • the manufacturing cost can be reduced by stacking a support member that is much cheaper than the adsorption member 120 formed by accumulating ion exchange nanofibers with the adsorption member 120.
  • the expensive adsorption member 120 is thin, the low-cost support member 110 is designed to be thick, it is possible to optimize the manufacturing at a low cost.
  • the ion exchange solution may be electrospun to release the ion exchange nanofibers to the support member, and the released ion exchange nanofibers may be accumulated on the support member 110 to manufacture the adsorption member 120.
  • An ion exchange solution may be defined as a solution in which a polymer, a solvent and an ion exchange functional group are synthesized by a synthetic process such as bulk polymerization.
  • the ion exchange functional groups are contained in the ion exchange nanofibers, ionic foreign substances such as heavy metals contained in the gas or liquid passing through the adsorption membrane 100 are exchanged by substitution and adsorbed to the ion exchange functional groups. As a result, the ionic foreign matter is adsorbed onto the ion exchange nanofibers by the ion exchange functional group.
  • the ion exchange functional group is SO 3 H, NH 4 CH 3
  • the ionic foreign matter (heavy metal cation or heavy metal anion in ionic state) contained in the water is exchanged by substitution with H + , CH 3 + to exchange the ion exchange functional group. Is adsorbed on.
  • the ion exchange functional group may be a cation exchange functional group selected from sulfonic acid group, phosphoric acid group, phosphonic group, phosphonic group, carboxylic acid group, asonic group, selinonic group, imino diacetic acid group and phosphate ester group; Or an anion exchange functional group selected from quaternary ammonium groups, tertiary amino groups, primary amino groups, imine groups, tertiary sulfonium groups, phosphonium groups, pyridyl groups, carbazolyl groups and imidazolyl groups.
  • the polymer is capable of electrospinning, and is not particularly limited as long as it can be dissolved in an organic solvent for electrospinning and can form nanofibers by electrospinning.
  • PVdF polyvinylidene fluoride
  • PVdF
  • the polymers that can be used are polyamide, polyimide, polyamideimide, poly (meth-phenylene isophthalamide), polysulfone, polyetherketone, polyetherimide, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene Aromatic polyesters such as naphthalate, polytetrafluoroethylene, polydiphenoxyphosphazene, polyphosphazenes such as poly ⁇ bis [2- (2-methoxyethoxy) phosphazene] ⁇ , polyurethanes and polyethers Polyurethane copolymers including urethane, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate and the like.
  • Preferred polymers for the adsorption member in the present invention are PAN, polyvinylidene fluoride (PVdF), polyester sulfone (PES: Polyester Sulfone), polystyrene (PS) alone, or polyvinylidene fluoride (PVdF) and poly Acrylonitrile (PAN) may be mixed, or PVdF and PES, PVdF and thermoplastic polyurethane (TPU) may be mixed and used.
  • the solvent may be a monocomponent solvent, for example, dimethylformamide (DMF), but in the case of using a bicomponent solvent, a two-component system in which a boiling point (BP) is mixed with a high boiling point is low. Preference is given to using a solvent.
  • DMF dimethylformamide
  • BP boiling point
  • a plurality of ultra-fine pores are formed between the ion exchange nanofibers that are randomly accumulated. It is preferable that this ultrafine pore size is 3 micrometers or less.
  • the diameter of the ion-exchange nanofibers is preferably in the range of 0.1 ⁇ 3.0 ⁇ m, the adsorption member 120 is freely adjusted according to the time radiated from the electrospinning apparatus, the pore according to the thickness of the adsorption member 120 The size is determined.
  • the ion exchange nanofibers may be defined as having ion exchange functional groups with ion exchange ability on the surface, and the ion exchange nanofibers may be cation exchange nanofibers or anion exchange nanofibers depending on the ions exchanged by the ion exchange functional groups. have.
  • the adsorption member 120 formed by accumulating ion exchange nanofibers becomes a web structure of ion exchange nanofibers, and the web is ultra thin and ultra light, and has a specific surface area.
  • the ion exchange nanofibers 121 discharged from the spinning nozzle 210 of the electrospinning apparatus are stacked on the support member 110, and the stacked ion exchange nanofibers 121 are accumulated to form a web.
  • Adsorption member 120 of the form is formed.
  • 4 to 7 are cross-sectional views of adsorption membranes according to the second to fifth embodiments of the present invention.
  • the adsorption membrane according to the second embodiment of the present invention includes a support member 110 having a plurality of first pores; A first adsorption member (120a) stacked on an upper surface of the support member (110) and having a plurality of second pores formed thereon and accumulating ion exchange nanofibers that adsorb foreign substances; And a second adsorption member (120b) stacked on a lower surface of the support member (110) and having a plurality of third pores formed therein, and in which ion exchange nanofibers adsorbing foreign matter are accumulated.
  • the first and second adsorption members 120a and 120b are stacked on both surfaces of the support member 110, and thus, the ionic foreign matter and the first adsorption member 120a that are not adsorbed by the first adsorption member 120a. Since foreign matter having a size larger than the three pore sizes can be adsorbed by the second adsorption member 120b, the adsorption efficiency of the foreign matter can be increased.
  • the first pore size may be designed to be the largest
  • the second pore size may be designed to be an intermediate
  • the third pore size may be designed to be the smallest.
  • the adsorption membrane according to the third embodiment of the present invention includes a support member 110 having a plurality of first pores; A first adsorption member (120c) stacked on an upper surface of the support member (110) and having a plurality of second pores formed therein and accumulating first ion exchange nanofibers that adsorb foreign substances; And a second adsorption member (120d), which is stacked on the first adsorption member (120c), has a plurality of third pores, and is formed by accumulating second ion exchange nanofibers that adsorb foreign substances. It is characterized by.
  • the first ion exchange nanofibers of the first adsorption member 120c may be cation exchange nanofibers or anion exchange nanofibers
  • the second ion exchange nanofibers of the second adsorption member 120d may be combined with the first ion exchange nanofibers.
  • Nanofibers that exchange ions of opposite polarity that is, when the first ion exchange nanofiber is a cation exchange nanofiber, the second ion exchange nanofiber is an anion exchange nanofiber.
  • the adsorption membrane of the third embodiment has the advantage of adsorbing both the cationic heavy metal and the anionic heavy metal contained in the gas or liquid passing through the first and second adsorption members 120c and 120d.
  • the adsorption membrane according to the fourth embodiment of the present invention includes a support member 110 having a plurality of first pores; A first adsorption member (120) stacked on an upper surface of the support member (110) and having a plurality of second pores formed thereon and accumulating ion exchange nanofibers that adsorb foreign substances; And a second adsorption member 130 stacked on an upper surface of the first adsorption member 120 and having a plurality of third pores formed therein, wherein the nanofibers containing the antimicrobial material are accumulated. do.
  • the adsorption membrane according to the fourth embodiment may adsorb ionic foreign matter from the ion exchange nanofibers of the first adsorption member 120, and antibacterial properties by the nanofibers containing the antibacterial material of the second adsorption member 130.
  • the second and third pore sizes are preferably designed smaller than the first pore size.
  • the adsorption membrane can also physically filter foreign matter having a size larger than the pore size in the first to third pores and adsorb it therein.
  • the antimicrobial material is preferably a silver nano material.
  • the silver nano material is silver (Ag, silver) metal salt such as silver nitrate (AgNO 3 ), silver sulfate (Ag 2 SO 4 ), silver chloride (AgCl).
  • a silver nano-material is dissolved in an organic solvent together with a fiber-forming polymer material to prepare a spinning solution, and the spinning solution is electrospun and the second adsorption of the nanofiber web structure made by accumulating nanofibers containing antimicrobial material
  • the member 130 may be implemented.
  • adsorption membrane according to the fifth embodiment of the present invention a plurality of pores are formed in the adsorption membrane of the above-described embodiments of the present invention, and dopamine-containing nanofibers having a functional group for adsorbing foreign substances are accumulated. It may further comprise a nanofiber web made.
  • the nanofiber web containing dopamine is preferably laminated on the adsorption member.
  • the adsorption membrane has a plurality of pores are formed between the first and second adsorption member (120a, 120b) and the dopamine-containing nanofibers are attached to a functional group for adsorbing foreign matter It can be implemented through the nanofiber web 150 is made to accumulate.
  • the first and second adsorption members 120a and 120b are adsorption members in which a plurality of pores are formed and ion exchange nanofibers that adsorb foreign substances are accumulated
  • the nanofiber web 150 is a dopamine monomer or polymer, It is a nanofiber web made by spinning a spinning solution mixed with a solvent and a polymer material.
  • Dopamine (DOPAMINE; 3,4-dihydroxyphenylalamine) has a structure in which -NH 2 and -OH are bonded to a benzene ring.
  • the functional groups attached to the dopamine contained in the nanofibers may be formed by a post-treatment process such as UV irradiation, plasma treatment, acid treatment, and base treatment after forming the nanofiber web containing the dopamine monomer or polymer.
  • Dopamine-containing nanofiber webs are in a state where functional groups are attached to the nanofibers.
  • the functional group may be a negatively charged functional group such as SO 3 H ⁇ or a positively charged functional group such as NH 4 +, and may perform a function of adsorbing heavy metals, bacteria, and viruses, such that the adsorptive membrane of the fifth embodiment of the present invention is passed through Alternatively, heavy metals, bacteria and viruses contained in the liquid may be filtered and adsorbed inside the adsorption membrane.
  • FIG. 8 is a schematic plan view illustrating a state in which silver is sewn onto the adsorption membrane according to the present invention.
  • the silver sewn may be performed on one of the support member, the adsorption member and both of the adsorption membrane.
  • the adsorption member of the adsorption membrane may be damaged by the sewn silver.
  • the support member has a strength capable of withstanding the silver sewn, as shown in FIG. 8, sewn the silver 310 to the support member 110.
  • the silver 310 is preferably sewn in a lattice pattern, but is not limited thereto.
  • the silver is a thread made of silver, and the silver sewn on the support member 110 may kill bacteria contained in the gas or liquid passing through it, and the adsorption membrane may have strong antibacterial properties.
  • an oil such as glycerin may be coated on the nanofibers of the adsorption member of the adsorption membrane of the aforementioned embodiments.
  • the adsorption member is in the form of a web in which ion-exchange nanofibers are accumulated, in order to activate the adsorption of ion-exchange functional groups on the surface of the ion-exchange nanofibers, the nanofibers are coated with oil to adsorb ionic foreign matter onto the oil, Is adsorbed to the exchange functional groups.
  • the present invention can be applied to the adsorption membrane which can adsorb ionic foreign matters by the adsorption member in which the ion exchange nanofibers are accumulated, and can be physically adsorbed by the pores to improve the adsorption efficiency and obtain excellent antibacterial properties. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 흡착 멤브레인에 관한 것으로, 흡착 멤브레인은 다수의 제1기공이 구비된 지지부재; 및 상기 지지부재에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제1흡착부재;를 포함하는 것을 특징으로 한다.

Description

흡착 멤브레인
본 발명은 흡착 멤브레인에 관한 것으로, 더욱 상세하게는, 이온교환 나노섬유가 축적된 흡착부재로 이온성 이물질을 흡착할 수 있고, 기공에 의한 물질적인 흡착이 가능하여 흡착 효율을 향상시키고, 우수한 항균 특성을 얻을 수 있는 흡착 멤브레인에 관한 것이다.
최근, 산업이 발전하고, 급속한 경제성장과 인구증가 및 도시화 등의 원인으로 발생된 오염원들로 인하여 여러 가지 환경문제를 일으키고 있다.
즉, 다양한 산업의 제조 공장, 산업시설, 생활시설, 자동차, 오토바이에서 오폐수, 중금속, 분진 및 유해 가스 등의 오염원들이 배출되어, 대기와 수질을 오염시키고 있다.
이와 같은 오염원들은 쾌적하고 건강하게 살아가고자하는 인간의 삶에 방해요소로, 오염원들을 정화시키기 위한 다양한 방법의 해결책이 모색되고 있고, 이를 위한 연구 및 개발이 다각적으로 꾸준히 지속되고 있다.
오염원들을 정화하기 위한 일례의 기술로, 오염된 기체 또는 액체를 멤브레인(Membrane)을 통과시켜 여과시키는 기술이 있다.
멤브레인은 기체, 액체, 고체 또는 이들의 혼합물로부터 특정한 성분만을 분리해 여과시킬 수 있는 것으로, 혼합물을 멤브레인의 물리화학적 특성을 이용하여 여과시킨다.
수처리 분야에서의 멤브레인은 구조에 따라 다공막, 미세다공막 및 균질막으로 분류되고, 용도에 따라 정밀여과막, 한외여과막, 역삼투막, 기체분리막, 투과증발막 등으로 구분된다.
그중, 고분자 멤브레인은 고분자 용액을 캐스팅하여 시트로 형성한 다음, 고체상으로 침적시켜 제조한다. 고분자 멤브레인은 정밀여과에서 기체투과에 이르는 넓은 범위의 멤브레인으로 사용되어 왔다.
한국 공개특허공보 제2011-85096호에는, 활성탄소섬유 및 이온교환섬유가 하우징의 측벽에 적층된 복합필터가 제안되어 있으나, 복합 필터의 형태로 필터의 크기가 크다는 것이 단점이다.
한국 등록특허공보 제507969호에는, 이온교환부직포 위에 이온교환섬유로 웹을 만들고, 그 위에 이온교환수지를 뿌려 넣은 후 이온교환부직포를 그 위에 올려놓고 니들펀칭을 이용하여 부직포 형태의 복합이온교환필터로 반도체 제조 공정의 클린룸에 존재하는 산성, 알카리성 등의 이온가스를 제거하는 기술이 제안되어 있으나, 부직포의 기공이 커서 극미세한 유해 분진을 필터링하지 못하고, 이온교환부직포에 분사된 이온교환수지가 유동되어 추가의 오염원이 될 수 있는 문제점이 있다.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로, 그 목적은 이온성 이물질을 흡착하고, 기공에 의해 이물질을 물리적으로 여과하여 통과 유량을 보존하면서 흡착 성능을 향상시킬 수 있는 흡착 멤브레인을 제공하는 데 있다.
본 발명의 다른 목적은 항균 물질이 함유된 나노섬유가 축적되어 만들어진 흡착부재를 포함하거나, 또는 멤브레인에 은사 박음질을 수행하여 우수한 항균 특성을 얻을 수 있는 흡착 멤브레인을 제공하는 데 있다.
상술된 목적을 달성하기 위한, 본 발명의 일 실시예에 의한 흡착 멤브레인은, 다수의 제1기공이 구비된 지지부재; 및 상기 지지부재에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제1흡착부재;를 포함하는 것을 특징으로 한다.
그리고, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 지지부재는 부직포 또는 직포일 수 있다.
또한, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 제1기공 사이즈는 상기 제2기공 사이즈보다 클 수 있다.
아울러, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 이온교환 나노섬유는 양이온교환 나노섬유 또는 음이온교환 나노섬유일 수 있다.
또, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 제1흡착부재는 상기 지지부재의 상면에 적층되어 있고, 상기 지지부재의 하면에 적층되고, 다수의 제3기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제2흡착부재를 더 포함할 수 있다.
또, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 이온교환 나노섬유는 양이온교환 나노섬유 또는 음이온교환 나노섬유이고, 상기 제1흡착부재에 적층되고, 다수의 제3기공이 형성되어 있으며 상기 이온교환 나노섬유와 반대 극성의 이온을 교환하는 이온교환 나노섬유가 축적되어 만들어진 제3흡착부재를 더 포함할 수 있다.
게다가, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 제1흡착부재에 적층되며, 다수의 기공이 형성되어 있으며 이물질을 흡착하는 작용기가 부착되어 있는 도파민이 함유된 나노섬유가 축적되어 만들어진 나노섬유 웹을 더 포함할 수 있다.
여기서, 상기 나노섬유 웹은 상기 도파민, 용매 및 고분자 물질이 혼합된 방사용액이 전기방사되어 만들어진 웹에 UV조사, 플라즈마 처리, 산처리 및 염기처리 중 하나에 의하여 상기 도파민에 작용기가 부착되어 있는 것을 특징으로 한다. 이때, 상기 작용기는 음전하 작용기 또는 양전하 작용기일 수 있다.
또, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 이온교환 나노섬유에 오일이 코팅되어 있을 수 있다.
또, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 제1흡착부재의 두께는 상기 지지부재의 두께보다 얇게 설계할 수 있다.
또한, 본 발명의 일 실시예에 의한 흡착 멤브레인에서, 상기 지지부재, 제1흡착부재 및 이들 모두 중 하나에 박음질된 은사를 더 포함할 수 있다.
본 발명의 다른 목적을 달성하기 위한 흡착 멤브레인은, 다수의 제1기공이 구비된 지지부재; 상기 지지부재 상면에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제1흡착부재; 및 상기 제1흡착부재 상면에 적층되고, 다수의 제3기공이 형성되어 있으며 항균 물질이 함유된 나노섬유가 축적되어 만들어진 제2흡착부재;를 포함하는 것을 특징으로 한다.
여기서, 상기 제2 및 제3기공 사이즈는 제1기공 사이즈보다 작게 설계할 수 있고, 상기 항균 물질은 은나노 물질일 수 있으며, 상기 제2흡착부재는, 상기 은나노 물질, 섬유 성형성 고분자 물질과 함께 유기 용매에 용해하여 제조된 방사용액이 전기방사되어 형성된 나노섬유 웹 구조일 수 있다.
본 발명에 의하면, 흡착부재의 이온교환 나노섬유에서 이온성 이물질을 흡착하고, 지지부재의 기공 및 흡착부재의 기공에서 기공 사이즈보다 큰 사이즈를 가지는 이물질을 물리적으로 여과하여 이물질의 흡착 효율을 향상시킬 수 있는 잇점이 있다.
본 발명에 의하면, 나노섬유에 의해 만들어진 다수의 기공이 구비된 흡착부재를 다수의 기공을 가지는 지지부재에 적층하여 구성되는 멤브레인이 제공됨으로써, 통과 유량을 보존하면서 흡착 성능을 우수하게 할 수 있다.
본 발명에 의하면, 흡착부재와 지지부재를 적층하여 우수한 취급성과 강도를 가지며, 저비용으로 제조 가능한 흡착 멤브레인을 구현할 수 있다.
본 발명에 의하면, 멤브레인에 포함된 작용기가 부착된 도파민이 함유된 나노섬유가 축적된 나노섬유 웹에 의해, 통과되는 기체 또는 액체에 포함된 중금속, 박테리아, 또는 바이러스를 흡착시킬 수 있는 장점이 있다.
본 발명에 의하면, 다수의 기공이 형성되어 있으며 항균 물질이 함유된 나노섬유가 축적되어 만들어진 흡착부재를 멤브레인이 포함하거나, 또는 멤브레인에 은사 박음질이 되어 있어, 항균 특성을 우수하게 할 수 있다.
본 발명에 의하면, 중금속과 같은 이온성 이물질 및 먼지, 분진, 조각, 입자등과 같은 유해성 미세 물질의 흡착이 가능한 멤브레인이 제공됨으로써, 수처리, 공기 여과, 바이오, 의료 용도 등 다양한 분야에 응용 가능한 장점이 있다.
도 1은 본 발명의 제1실시예에 따른 흡착 멤브레인의 단면도,
도 2는 본 발명에 따른 흡착부재에 이물질이 흡착되는 원리를 설명하는 모식적인 도면,
도 3은 본 발명에 따라 지지부재에 전기방사하여 이온교환 나노섬유를 축적하는 상태를 모식적으로 도시한 도면,
도 4는 본 발명의 제2실시예에 따른 흡착 멤브레인의 단면도,
도 5는 본 발명의 제3실시예에 따른 흡착 멤브레인의 단면도,
도 6은 본 발명의 제4실시예에 따른 흡착 멤브레인의 단면도,
도 7은 본 발명의 제5실시예에 따른 흡착 멤브레인의 단면도,
도 8은 본 발명에 따른 흡착 멤브레인에 은사 박음질이 된 상태를 설명하는 모식적인 평면도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시를 위한 구체적인 내용을 설명하도록 한다.
도 1을 참고하면, 본 발명의 제1실시예에 따른 흡착 멤브레인(100)은 다수의 제1기공이 구비된 지지부재(110); 및 상기 지지부재(110)에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 흡착부재(120);를 포함한다.
이러한 흡착 멤브레인(100)은 흡착부재(120)의 이온교환 나노섬유에서 이온성 이물질을 흡착하여 여과하고, 지지부재(110)의 제1기공 및 흡착부재(120)의 제2기공에서 기공 사이즈보다 큰 사이즈를 가지는 이물질(먼지, 분진, 조각, 입자 등)을 물리적으로 여과하여 이물질의 제거 효율을 향상시킨다.
즉, 흡착 멤브레인(100)으로 기체 또는 액체가 통과될 때, 도 2에 도시된 바와 같이, 기체 또는 액체에 포함된 이온성 이물질(A)은 흡착부재(120)의 이온교환 나노섬유(121)에서 흡착되고, 기체 또는 액체에 포함된 큰 사이즈의 이물질(B)은 흡착부재(120)의 제2기공(122)을 통과하지 못하기에 흡착부재(120) 내부에 갇히게 되어, 흡착 멤브레인(100) 내부에 이물질(A,B)이 흡착 상태(이물질이 빠져나가지 못하고 내부에 붙어있는 상태)로 구속되어 있으므로, 본 발명의 흡착 멤브레인(100)의 여과 성능을 증가시킬 수 있는 것이다.
여기서, 흡착부재(120)의 제2기공(122)은 미세 기공으로 기체 또는 액체에 포함된 나노 단위의 미세 오염 물질을 여과한다. 즉, 나노섬유로 이루어진 흡착부재(120)는 표면층에서 이루어지는 표면여과에 의한 흡착 및 내층에서 이루어지는 심층여과에 의한 흡착이 이루어진다.
따라서, 본 발명의 흡착 멤브레인은 무기공의 막 구조가 아니고, 나노섬유에 의해 만들어진 다수의 기공이 구비된 흡착부재를 다수의 기공을 가지는 지지부재에 적층하여 얻어지는 것으로써, 통과 유량을 보존하면서 흡착 성능을 우수하게 할 수 있는 이점이 있다.
또한, 본 발명에서는 기체 또는 액체에 포함된 큰 사이즈의 이물질(B)은 지지부재(110)의 제1기공에서도 통과되지 못해 흡착 멤브레인(100) 내부에 갇혀 흡착 능력을 한층더 향상시킬 수 있다. 이때, 지지부재(110)의 제1기공 사이즈는 흡착부재(120)의 제2기공(122) 사이즈보다 큰 것이 바람직하다.
이러한 지지부재(110)는 구비된 다수의 제1기공에 의해 기체 또는 액체를 통과시킬 수 있는 통로 역할을 수행하고, 흡착부재(120)가 평판 형태를 유지할 수 있도록 지지하는 지지층 역할을 수행한다. 여기서, 지지부재(110)는 부직포 또는 직포인 것이 바람직하다.
사용 가능한 부직포는 멜트 블로운(melt-blown) 부직포, 스펀 본드(spun bond) 부직포, 서멀 본드 부직포, 케미컬 본드 부직포, 웨트 레이드(wet-laid) 부직포 중 어느 하나를 사용할 수 있으며, 부직포의 섬경은 40-50㎛이고, 기공 사이즈는 100㎛ 이상일 수 있다.
또한, 본 발명에서는 이온교환 나노섬유가 축적되어 만들어진 흡착부재(120)가 취급성과 강도가 열악하기 때문에, 흡착부재(120)와 지지부재(110)를 적층하여 우수한 취급성과 강도를 가지는 흡착 멤브레인을 구현할 수 있다.
한편, 이온교환 나노섬유가 축적되어 만들어진 흡착부재(120)가 고가인 관계로 단독의 흡착부재(120)만으로 본 발명의 흡착 멤브레인을 구현하는 경우, 많은 제조 비용이 소요된다. 그러므로, 본 발명에서는 이온교환 나노섬유가 축적되어 만들어진 흡착부재(120)보다 월등히 저렴한 지지부재를 흡착부재(120)와 적층하여 제조 비용을 절감할 수 있다. 이때, 고가의 흡착부재(120)의 두께는 얇게, 저가의 지지부재(110)의 두께는 두껍해 설계하여, 제조를 저비용으로 최적화시킬 수 있다.
본 발명에서는 이온교환 용액을 전기방사하여 이온교환 나노섬유를 지지부재로 방출시키고, 방출된 이온교환 나노섬유를 지지부재(110)에 축적시켜 흡착부재(120)를 제조할 수 있다.
이온교환 용액은 고분자, 용매와 이온교환 작용기가 괴상 중합과 같은 합성 공정에 의해 합성된 용액으로 정의될 수 있다.
이온교환 작용기는 이온교환 나노섬유에 함유되어 있으므로, 흡착 멤브레인(100)으로 통과되는 기체 또는 액체에 포함된 중금속과 같은 이온성 이물질은 치환에 의해 교환되어 이온교환 작용기에 흡착된다. 결국, 이온교환 작용기에 의해 이온성 이물질이 이온교환 나노섬유에 흡착되는 것이다.
예컨대, 이온교환 작용기가 SO3H, NH4CH3 인 경우, 수분에 포함된 이온성 이물질(이온 상태의 중금속 양이온 또는 중금속 음이온)이 H+, CH3 +와 치환에 의해 교환되어 이온교환 작용기에 흡착된다.
여기서, 이온교환 작용기는 술폰산기, 인산기, 포스포닉기, 포스피닉기, 카르복실산기, 아소닉기, 셀리노닉기, 이미노디아세트산기 및 인산에스테르기에서 선택되는 양이온교환 작용기; 또는 4급 암모늄기, 3급 아미노기, 1급 아미노기, 이민기, 3급 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기 및 이미다졸릴기에서 선택되는 음이온교환 작용기이다.
여기서, 고분자는 전기방사가 가능한 것으로, 전기방사를 위해 유기용매에 용해될 수 있고, 전기방사에 의해 나노섬유를 형성할 수 있는 수지이면 특별히 제한되지 않는다. 예를 들어, 폴리비닐리덴 플루오라이드(PVdF), 폴리(비닐리덴플루오라이드-코-헥사플루오로프로필렌), 퍼풀루오로폴리머, 폴리비닐클로라이드, 폴리비닐리덴 클로라이드 또는 이들의 공중합체, 폴리에틸렌글리콜 디알킬에테르 및 폴리에틸렌글리콜 디알킬에스터를 포함하는 폴리에틸렌글리콜 유도체, 폴리(옥시메틸렌-올리 고-옥시에틸렌), 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드를 포함하는 폴리옥사이드, 폴리비닐아세테이트, 폴리(비닐피롤리돈-비닐아세테이트), 폴리스티렌 및 폴리스티렌 아크릴로니트릴 공중합체, 폴리아크릴로니트릴(PAN), 폴리아크릴로니트릴 메틸메타크릴레이트 공중합체를 포함하는 폴리아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리메틸메타크릴레이트 공중합체 또는 이들의 혼합물을 들 수 있다.
또한, 사용 가능한 고분자는 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에테르이미드, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리{비스[2-(2-메톡시에톡시)포스파젠]} 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등이 있다.
본 발명에서 흡착부재로 바람직한 고분자는 PAN, 폴리비닐리덴 플루오라이드(PVdF), 폴리에스테르 설폰(PES: Polyester Sulfone), 폴리스티렌(PS)를 단독으로 사용하거나, 폴리비닐리덴 플루오라이드(PVdF)와 폴리아크릴로니트릴(PAN)을 혼합하거나, PVdF와 PES, PVdF와 열가소성 폴리우레탄(TPU: Thermoplastic Polyurethane)을 혼합하여 사용할 수 있다.
용매는 단성분계 용매, 예를 들면, 다이메틸포름아마이드(DMF: dimethylformamide)를 사용하는 것도 가능하나, 2성분계 용매를 사용하는 경우는 비등점(BP: boiling point)이 높은 것과 낮은 것을 혼합한 2성분계 용매를 사용하는 것이 바람직하다.
이와 같이, 지지부재(110)에 이온교환 나노섬유가 축적된 흡착부재(120)는 무질서하게 축적된 이온교환 나노섬유 사이에 다수의 초미세 기공(즉, 제2기공)이 형성된다. 이 초미세 기공 사이즈는 3㎛ 이하인 것이 바람직하다.
그리고 이온교환 나노섬유의 직경은 0.1~3.0㎛ 범위로 하는 것이 바람직하며, 흡착부재(120)는 전기방사 장치에서 방사되는 시간에 따라 두께가 자유롭게 조절되고, 흡착부재(120)의 두께에 따라 기공 사이즈가 결정된다.
그리고, 이온교환 나노섬유는 표면에 이온교환능이 있는 이온교환 작용기를 가지고 있는 것으로 정의할 수 있으며, 이온교환 작용기에서 교환하는 이온에 따라 이온교환 나노섬유는 양이온교환 나노섬유 또는 음이온교환 나노섬유일 수 있다.
이온교환 나노섬유가 축적되어 형성된 흡착부재(120)는 이온교환 나노섬유의 웹 구조가 되고, 이 웹은 초박막, 초경량으로서, 비표면적이 크다.
그리고, 본 발명에서는 전기방사하여 이온교환 나노섬유를 지지부재(110)에 축적시켜 흡착부재(120)를 형성함으로써, 지지부재(110)와 흡착부재(120)의 결합력을 증가시켜 외력에 의하여 흡착부재(120)가 지지부재(110)로부터 박리되는 것을 방지할 수 있는 잇점이 있다.
즉, 도 3과 같이, 전기방사장치의 방사노즐(210)에서 토출된 이온교환 나노섬유(121)는 지지부재(110)에 적층되고, 이 적층된 이온교환 나노섬유(121)가 축적되어 웹 형태의 흡착부재(120)가 형성된다.
도 4 내지 도 7은 본 발명의 제2 내지 제5실시예에 따른 흡착 멤브레인의 단면도이다.
도 4를 참고하면, 본 발명의 제2실시예에 따른 흡착 멤브레인은 다수의 제1기공이 구비된 지지부재(110); 상기 지지부재(110) 상면에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제1흡착부재(120a); 및 상기 지지부재(110) 하면에 적층되고, 다수의 제3기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제2흡착부재(120b);를 포함하여 구성하는 것을 특징으로 한다.
제2실시예에 따른 흡착 멤브레인은 지지부재(110)의 양면에 제1 및 제2흡착부재(120a,120b)가 적층되어 있어, 제1흡착부재(120a)에서 흡착되지 못한 이온성 이물질 및 제3기공 사이즈보다 큰 사이즈의 이물질을 제2흡착부재(120b)에서 흡착시킬 수 있으므로, 이물질의 흡착 효율을 증대시킬 수 있는 구조이다.
여기서, 제1기공 사이즈를 가장 크게 설계하고, 제2기공 사이즈를 중간 크기로 설계하고, 제3기공 사이즈를 가장 작게 설계할 수 있다.
도 5를 참고하면, 본 발명의 제3실시예에 따른 흡착 멤브레인은 다수의 제1기공이 구비된 지지부재(110); 상기 지지부재(110) 상면에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 제1이온교환 나노섬유가 축적되어 만들어진 제1흡착부재(120c); 및 상기 제1흡착부재(120c) 상면에 적층되고, 다수의 제3기공이 형성되어 있으며 이물질을 흡착하는 제2이온교환 나노섬유가 축적되어 만들어진 제2흡착부재(120d);를 포함하여 구성하는 것을 특징으로 한다.
제1흡착부재(120c)의 제1이온교환 나노섬유는 양이온교환 나노섬유 또는 음이온교환 나노섬유일 수 있고, 제2흡착부재(120d)의 제2이온교환 나노섬유는 제1이온교환 나노섬유와 반대 극성의 이온을 교환하는 나노섬유일 수 있다. 즉, 제1이온교환 나노섬유가 양이온교환 나노섬유인 경우, 제2이온교환 나노섬유는 음이온교환 나노섬유이다.
그러므로, 제3실시예의 흡착 멤브레인은 통과되는 기체 또는 액체에 포함된 양이온 중금속 및 음이온 중금속을 제1 및 제2흡착부재(120c,120d)에서 모두 흡착할 수 있는 장점이 있다.
도 6을 참고하면, 본 발명의 제4실시예에 따른 흡착 멤브레인은 다수의 제1기공이 구비된 지지부재(110); 상기 지지부재(110) 상면에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제1흡착부재(120); 및 상기 제1흡착부재(120) 상면에 적층되고, 다수의 제3기공이 형성되어 있으며 항균 물질이 함유된 나노섬유가 축적되어 만들어진 제2흡착부재(130);를 포함하여 구성하는 것을 특징으로 한다.
제4실시예에 따른 흡착 멤브레인은 제1흡착부재(120)의 이온교환 나노섬유에서 이온성 이물질을 흡착할 수 있고, 제2흡착부재(130)의 항균 물질이 함유된 나노섬유에 의해 항균 특성을 가질 수 있다.
여기서, 제2 및 제3기공 사이즈는 제1기공 사이즈보다 작게 설계하는 것이 바람직하다.
그리고, 이 흡착 멤브레인도 제1 내지 제3기공에서 기공 사이즈보다 큰 사이즈의 이물질을 물리적으로 여과하여 내부에 흡착시킬 수 있다.
여기서, 항균 물질은 은나노 물질이 바람직하다. 여기서, 은나노 물질은 질산은(AgNO3), 황산은(Ag2SO4), 염화은(AgCl)과 같은 은(Ag, silver) 금속염이다.
본 발명에서는 은나노 물질을 섬유 성형성 고분자 물질과 함께 유기 용매에 용해하여 방사용액을 제조하고, 이 방사용액을 전기방사하여 항균 물질이 함유된 나노섬유가 축적되어 만들어진 나노섬유 웹 구조의 제2흡착부재(130)를 구현할 수 있다.
본 발명의 제5실시예에 따른 흡착 멤브레인은, 전술된 본 발명의 실시예들의 흡착 멤브레인에, 다수의 기공이 형성되어 있으며 이물질을 흡착하는 작용기가 부착되어 있는 도파민이 함유된 나노섬유가 축적되어 만들어진 나노섬유 웹을 더 포함할 수 있다. 여기서, 도파민이 함유된 나노섬유 웹은 흡착부재에 적층되어 있는 것이 바람직하다.
예컨대, 도 7에 도시된 바와 같이, 흡착 멤브레인은 제1 및 제2흡착부재(120a,120b) 사이에 다수의 기공이 형성되어 있으며 이물질을 흡착하는 작용기가 부착되어 있는 도파민이 함유된 나노섬유가 축적되어 만들어진 나노섬유 웹(150)을 개재하여 구현할 수 있다.
여기서, 제1 및 제2흡착부재(120a,120b)는 다수의 기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 흡착부재이고, 나노섬유 웹(150)은 도파민 단량체 또는 중합체, 용매 및 고분자 물질이 혼합된 방사용액이 전기방사되어 만들어진 나노섬유 웹이다.
도파민(DOPAMINE; 3,4-dihydroxyphenylalamine)은 벤젠고리에 -NH2 및 -OH가 결합된 구조를 갖는다.
나노섬유에 함유된 도파민에 부착된 작용기는 도파민 단량체 또는 중합체가 함유된 나노섬유 웹을 형성한 후, UV조사, 플라즈마 처리, 산처리 및 염기처리 등의 후처리 공정으로 형성할 수 있으며, 결국, 도파민이 함유된 나노섬유 웹은 나노섬유에 작용기가 부착되어 있는 상태가 된다.
여기서, 작용기는 SO3H-와 같은 음전하 작용기 또는 NH4 +와 같은 양전하 작용기로, 중금속, 박테리아 및 바이러스를 흡착하는 기능을 수행할 수 있어, 본 발명의 제5실시예의 흡착 멤브레인은 통과되는 기체 또는 액체에 포함된 중금속, 박테리아 및 바이러스를 여과하여 흡착 멤브레인 내부에 흡착시킬 수 있는 것이다.
도 8은 본 발명에 따른 흡착 멤브레인에 은사 박음질이 된 상태를 설명하는 모식적인 평면도이다.
본 발명에서는 지지부재를 포함하는 실시예들의 흡착 멤브레인에 은사 박음질을 수행하여, 박음질된 은사에 의해 항균 특성을 가지는 흡착 멤브레인을 구현할 수 있다. 여기서, 은사 박음질은 흡착 멤브레인의 지지부재, 흡착부재 및 이들 모두 중 하나에 수행할 수 있다.
이때, 흡착 멤브레인의 흡착부재는 지지부재와 비교하여 월등히 낮은 강도를 가져 흡착부재에 은사를 박음질하게 되면, 박음질되는 은사에 의해 흡착부재에 손상을 일으킬 수 있다.
반면에, 지지부재는 은사 박음질을 견딜 수 있는 강도를 가져, 도 8에 도시된 바와 같이, 지지부재(110)에 은사(310)를 박음질한다. 이때, 은사(310)는 격자 패턴으로 박음질하는 것이 바람직하나, 이에 한정되는 것은 아니다.
은사는 은으로 만들어진 실이며, 지지부재(110)에 박음질된 은사는 통과되는 기체 또는 액체에 포함된 세균을 사멸시킬 수 있어, 흡착 멤브레인은 강력한 항균 특성을 가질 수 있는 것이다.
한편, 본 발명에서는 전술된 실시예들의 흡착 멤브레인의 흡착부재의 나노섬유에 글리세린과 같은 오일이 코팅되어 있을 수 있다.
흡착부재는 이온교환 나노섬유가 축적된 웹 형태이므로, 이온교환 나노섬유의 표면에 존재하는 이온교환 작용기의 흡착 활성화를 위하여, 나노섬유에 오일을 코팅하여 이온성 이물질이 오일에 흡착된 후, 이온교환 작용기에 흡착되는 것이다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 이온교환 나노섬유가 축적된 흡착부재로 이온성 이물질을 흡착할 수 있고, 기공에 의한 물리적인 흡착이 가능하여 흡착효율을 향상시키고, 우수한 항균 특성을 얻을 수 있는 흡착 멤브레인에 적용 가능하다.

Claims (16)

  1. 다수의 제1기공이 구비된 지지부재; 및
    상기 지지부재에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제1흡착부재;를 포함하는 것을 특징으로 하는 흡착 멤브레인.
  2. 제1항에 있어서, 상기 지지부재는 부직포 또는 직포인 것을 특징으로 하는 흡착 멤브레인.
  3. 제1항에 있어서, 상기 제1기공 사이즈보다 큰 것을 특징으로 하는 흡착 멤브레인.
  4. 제1항에 있어서, 상기 이온교환 나노섬유는 양이온교환 나노섬유 또는 음이온교환 나노섬유인 것을 특징으로 하는 흡착 멤브레인.
  5. 제1항에 있어서, 상기 제1흡착부재는 상기 지지부재의 상면에 적층되어 있으며,
    다수의 제3기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 형성되는 것으로, 상기 지지부재의 하면에 적층되는 제2흡착부재를 더 포함하는 것을 특징으로 하는 흡착 멤브레인.
  6. 제1항에 있어서, 상기 이온교환 나노섬유는 양이온교환 나노섬유 또는 음이온교환 나노섬유이고,
    상기 제1흡착부재에 적층되고, 다수의 제3기공이 형성되어 있으며 상기 이온교환 나노섬유와 반대 극성의 이온을 교환하는 이온교환 나노섬유가 축적되어 만들어진 제3흡착부재를 더 포함하는 것을 특징으로 하는 흡착 멤브레인.
  7. 제1항에 있어서, 상기 제1흡착부재에 적층되며, 다수의 기공이 형성되어 있으며 이물질을 흡착하는 작용기가 부착되어 있는 도파민이 함유된 나노섬유가 축적되어 만들어진 나노섬유 웹을 더 포함하는 것을 특징으로 하는 흡착 멤브레인.
  8. 제7항에 있어서, 상기 나노섬유 웹은 상기 도파민, 용매 및 고분자 물질이 혼합된 방사용액이 전기방사되어 만들어진 웹에 UV조사, 플라즈마 처리, 산처리 및 염기처리 중 어느 하나에 의하여 상기 도파민에 작용기가 부착되어 있는 것을 특징으로 하는 흡착 멤브레인.
  9. 제7항에 있어서, 상기 작용기는 음전하 작용기 또는 양전하 작용기인 것을 특징으로 하는 흡착 멤브레인.
  10. 제1항에 있어서, 상기 제1흡착부재의 두께는 상기 지지부재의 두께보다 얇은 것을 특징으로 하는 흡착 멤브레인.
  11. 제1항에 있어서, 상기 지지부재 및 제1흡착부재의 적어도 하나에는 박음질된 은사가 더 포함되는 것을 특징으로 하는 흡착 멤브레인.
  12. 제1항에 있어서, 상기 이온교환 나노섬유에 오일이 코팅되어 있는 것을 특징으로 하는 흡착 멤브레인.
  13. 다수의 제1기공이 구비된 지지부재;
    상기 지지부재 상면에 적층되고, 다수의 제2기공이 형성되어 있으며 이물질을 흡착하는 이온교환 나노섬유가 축적되어 만들어진 제1흡착부재; 및
    상기 제1흡착부재 상면에 적층되고, 다수의 제3기공이 형성되어 있으며 항균 물질이 함유된 나노섬유가 축적되어 만들어진 제2흡착부재;를 포함하는 것을 특징으로 하는 흡착 멤브레인.
  14. 제13항에 있어, 상기 제2 및 제3기공의 사이즈는 제1기공의 사이즈보다 작은 것을 특징으로 하는 흡착 멤브레인.
  15. 제13항에 있어서, 상기 항균 물질은 은나노 물질인 것을 특징으로 하는 흡착 멤브레인.
  16. 제15항에 있어서, 상기 제2흡착부재는, 상기 은나노 물질, 섬유 성형성 고분자 물질과 함께 유기 용매에 용해하여 제조된 방사용액이 전기방사되어 형성된 나노섬유 웹으로 구성된 것을 특징으로 하는 흡착 멤브레인.
PCT/KR2016/005255 2015-06-01 2016-05-18 흡착 멤브레인 WO2016195288A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680029523.6A CN107666952A (zh) 2015-06-01 2016-05-18 吸附膜
US15/572,986 US20180133658A1 (en) 2015-06-01 2016-05-18 Adsorptive membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0077321 2015-06-01
KR1020150077321A KR20160141912A (ko) 2015-06-01 2015-06-01 흡착 멤브레인

Publications (1)

Publication Number Publication Date
WO2016195288A1 true WO2016195288A1 (ko) 2016-12-08

Family

ID=57440663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005255 WO2016195288A1 (ko) 2015-06-01 2016-05-18 흡착 멤브레인

Country Status (4)

Country Link
US (1) US20180133658A1 (ko)
KR (1) KR20160141912A (ko)
CN (1) CN107666952A (ko)
WO (1) WO2016195288A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102001009B1 (ko) * 2016-12-12 2019-07-31 주식회사 아모라이프사이언스 피부부착형 패치
KR102353712B1 (ko) * 2017-03-29 2022-01-19 도레이첨단소재 주식회사 다층구조의 양전하 필터
KR102102040B1 (ko) 2018-07-31 2020-04-17 도레이첨단소재 주식회사 내오염성 역삼투 분리막, 이의 제조방법 및 이를 포함하는 내오염성 역삼투 모듈
KR102139711B1 (ko) * 2018-08-24 2020-07-30 한국생명공학연구원 나노 섬유막 및 이의 제조 방법
CN112301003A (zh) * 2019-07-26 2021-02-02 佛山市安芯纤维科技有限公司 羧酸型阳离子交换纤维及其织物在吸附过滤流感病毒方面的用途
KR20210086212A (ko) * 2019-12-31 2021-07-08 (주)아모레퍼시픽 금속물질 추출시트, 이를 포함하는 마스크 팩 및 금속물질 추출시트의 제조방법
KR102347498B1 (ko) * 2020-04-17 2022-01-05 도레이첨단소재 주식회사 중금속 비용출성 나권형 필터 모듈 및 이의 제조방법
CN113797649B (zh) * 2021-08-12 2022-03-25 浙江大学 一种抗菌防病毒的空气过滤材料及其制备方法
KR102493949B1 (ko) * 2021-11-04 2023-02-06 세레아 주식회사 무동력 공기정화필터용 복합섬유 및 이를 포함하는 무동력 공기정화필터
CN116714156B (zh) * 2023-06-08 2024-07-12 中国热带农业科学院农产品加工研究所 一种喷霜阻隔膜及其制备方法和抑制橡胶喷霜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100036691A (ko) * 2008-09-30 2010-04-08 주식회사 영인 다기능 정수기 필터
KR20100053989A (ko) * 2008-11-13 2010-05-24 웅진코웨이주식회사 산화철 나노 입자를 적용한 정수 필터 엘리먼트 및 그 제조방법
KR20140023012A (ko) * 2012-08-16 2014-02-26 김연중 나노기공막 포켓이 장착된 정수기용 멤브레인 필터
KR20140139176A (ko) * 2013-05-27 2014-12-05 주식회사 엘지화학 공기 정화 필터 및 그의 제조방법
KR20150017298A (ko) * 2013-08-06 2015-02-16 주식회사 아모그린텍 액체 필터용 필터여재 및 그의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171684B1 (en) * 1995-11-17 2001-01-09 Donaldson Company, Inc. Filter material construction and method
US6673136B2 (en) * 2000-09-05 2004-01-06 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
KR100507969B1 (ko) 2001-05-31 2005-08-17 이후근 이온교환섬유와 이온교환수지를 결합시킨 복합이온교환필터와 이를 이용한 케미칼 필터
US8939295B2 (en) * 2009-02-17 2015-01-27 Essentra Porous Technologies Corp. Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures
US8523971B2 (en) * 2009-05-07 2013-09-03 The Hong Kong Polytechnic University Multilayer nanofiber filter
KR20110085096A (ko) 2010-01-19 2011-07-27 엘지전자 주식회사 활성탄소섬유와 이온교환섬유가 포함된 필터 및 상기 필터를 포함하는 정수기
KR101655364B1 (ko) * 2013-11-05 2016-09-22 주식회사 아모그린텍 이온교환막을 구비한 탈염용 복합전극, 그의 제조 방법 및 이를 이용한 탈염 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100036691A (ko) * 2008-09-30 2010-04-08 주식회사 영인 다기능 정수기 필터
KR20100053989A (ko) * 2008-11-13 2010-05-24 웅진코웨이주식회사 산화철 나노 입자를 적용한 정수 필터 엘리먼트 및 그 제조방법
KR20140023012A (ko) * 2012-08-16 2014-02-26 김연중 나노기공막 포켓이 장착된 정수기용 멤브레인 필터
KR20140139176A (ko) * 2013-05-27 2014-12-05 주식회사 엘지화학 공기 정화 필터 및 그의 제조방법
KR20150017298A (ko) * 2013-08-06 2015-02-16 주식회사 아모그린텍 액체 필터용 필터여재 및 그의 제조방법

Also Published As

Publication number Publication date
CN107666952A (zh) 2018-02-06
KR20160141912A (ko) 2016-12-12
US20180133658A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2016195288A1 (ko) 흡착 멤브레인
WO2016195285A1 (ko) 기체 필터
WO2016195287A1 (ko) 흡착 멤브레인이 내장된 마스크
JP6704943B2 (ja) ナノファイバー含有複合材構造体
KR102109724B1 (ko) 액체 필터용 필터여재 및 이를 이용한 액체 필터
CN115155159B (zh) 包含纳米纤维的稳定过滤介质
KR20160134792A (ko) 개선된 먼지 포집 능력을 갖는 필터 구조
JP5062630B2 (ja) 複合繊維体、その製造方法、フィルタ及び流体濾過方法
WO2016195284A1 (ko) 흡착식 액체필터
WO2015072731A1 (ko) 이온 교환 멤브레인 및 그를 이용한 필터 모듈
WO2015060655A1 (ko) 이온교환막을 구비한 탈염용 복합전극, 그의 제조 방법 및 이를 이용한 탈염 장치
KR20160058579A (ko) 기능성 멤브레인 및 그의 제조 방법
WO2022145604A1 (ko) 나노섬유를 이용한 세척가능한 미세먼지필터 모듈
WO2015020328A1 (ko) 주름 필터 및 그 제조 방법
KR101628898B1 (ko) 이온 교환 수지 입자를 갖는 나노 섬유 웹을 이용한 액체처리 케미컬 필터 및 그 제조방법
KR20140137197A (ko) 술폰화된 나노 섬유 웹을 이용한 액체처리 케미컬 필터 및 그의 제조방법
WO2014126443A1 (ko) 필터 여재 및 그 제조방법과, 이를 이용한 필터 장치
CZ34619U1 (cs) Filtr k separaci arsenu z vody
WO2015020337A1 (ko) 액체 필터용 필터여재 및 그의 제조방법
JP2011189275A (ja) 液濾過用フィルタ及び液濾過方法
KR101601174B1 (ko) 롤형 액체처리 케미컬 필터 및 그의 제조방법
WO2022022453A1 (en) Reusable nanocomposite porous filter for highly efficient air filtration
WO2015053556A1 (ko) 탈염용 플렉서블 복합전극, 그의 제조 방법 및 이를 이용한 탈염 장치
Mao University of Leeds, Leeds, West Yorkshire, United Kingdom
Islam Fabrication of Various Nanofibrous Hybrid Membranes for Separation of Micro-Particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803643

Country of ref document: EP

Kind code of ref document: A1