WO2015074329A1 - 燃油气内燃机 - Google Patents

燃油气内燃机 Download PDF

Info

Publication number
WO2015074329A1
WO2015074329A1 PCT/CN2014/070677 CN2014070677W WO2015074329A1 WO 2015074329 A1 WO2015074329 A1 WO 2015074329A1 CN 2014070677 W CN2014070677 W CN 2014070677W WO 2015074329 A1 WO2015074329 A1 WO 2015074329A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
pipe
internal combustion
cylinder
Prior art date
Application number
PCT/CN2014/070677
Other languages
English (en)
French (fr)
Inventor
郑伯平
王下雨
Original Assignee
郑伯平
王下雨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑伯平, 王下雨 filed Critical 郑伯平
Publication of WO2015074329A1 publication Critical patent/WO2015074329A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • F02M31/18Other apparatus for heating fuel to vaporise fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the utility model relates to a gas moving gas device for an internal combustion engine, in particular to a fuel gas internal combustion engine.
  • the fuel engine is a power mechanical device represented by an internal combustion engine.
  • Combustion engines have made tremendous contributions to social progress, technological development, and improvement of people's lives. Many transportation tools in modern civilized society rely on combustion engines as their power source. Since the birth of the combustion engine
  • combustion engines still rely mainly on petroleum fuels, and the problem of air pollution caused by oil combustion has become a major problem facing the world.
  • the research on combustion engines will focus on energy saving and pollutant control of existing petroleum combustion engines.
  • renewable energy engines and new combustion engines the goal is to extend the life of petroleum resources through the use of petroleum-based fuel engines, develop fuel replacement for combustion engines, and develop new engine combustion technologies for efficient and clean combustion.
  • the whole process of fuel from the internal combustion engine to the discharge is basically two:
  • the gasoline engine mixes air and gasoline in a certain ratio (air-fuel ratio), and then is compressed into the cylinder through the intake pipe and compressed to the top dead center.
  • the spark ignition system controls the spark timing ignition, the combustion work pushes the piston to the bottom dead center, and then the exhaust gas is removed upwards; the diesel fuel is sucked in pure air, and the diesel fuel injection system injects the diesel into the combustion chamber under high temperature and high pressure. Burn on your own.
  • the fuel supplied is liquid cold oil
  • the distance between molecules is relatively close
  • the ignition point is high
  • a large amount of heat needs to be absorbed when burning work, and it is difficult to fully burn, so that it will be in the air after combustion.
  • a large amount of dust particles and toxic gases are emitted.
  • the turbine drives the coaxial impeller, and the impeller is pumped by the air filter.
  • the air sent from the cleaner pipe is pressurized into the cylinder.
  • the exhaust gas discharge speed and the turbine speed also increase synchronously.
  • the impeller compresses more air into the cylinder.
  • the increase in air pressure and density can burn more fuel, increase the fuel amount and adjust the engine speed. , you can increase the output power of the engine.
  • the purpose of the utility model is to provide a fuel gas internal combustion engine with better energy saving effect, better combustion-supporting effect and lower pollution emission rate.
  • the fuel gas internal combustion engine provided by the utility model comprises a fuel pump, a control device, a cylinder, a mixing supply connected to the cylinder inlet, an exhaust pipe connected to the cylinder outlet, and the mixing feeder includes a combustion improver a supply port and a plurality of fuel supply ports
  • the system further comprises a liquid fuel gasification pipe, a gas gathering cylinder, a pressure reducer and a sequentially connected air filter, an air compressor, a water separator, an oxygen molecular sieve, an oxygen gas cylinder, a vector a controller
  • the liquid fuel gasification tube is installed in the exhaust pipe, one end of the liquid fuel gasification pipe is connected to the fuel pump through a side wall of the exhaust pipe through a one-way electromagnetic valve, and the other end passes through
  • the side wall of the exhaust pipe is connected to a fuel supply port of the mixing supply or connected to the air inlet of the gas collecting cylinder through a one-way valve, and the gas outlet of the gas collecting cylinder passes through an air-cooling start solenoid
  • the liquid fuel gasification pipe is installed in the exhaust pipe near the cylinder end.
  • the air compressor adopts a screw type structure.
  • the oxygen molecular sieve adopts a double cylinder structure.
  • the gasification is more complete, and the liquid fuel gasification pipe is installed in the exhaust pipe to adopt a spiral pipe.
  • the liquid fuel gasification tube is installed in a section of the exhaust pipe using a straight pipe.
  • the liquid fuel gasification pipe is installed in a section of the exhaust pipe using a sandwich pipe, and fuel in the fuel pump flows through the interlayer of the sandwich pipe.
  • the utility model increases the liquid fuel gasification pipe by adding a liquid fuel gasification pipe in the exhaust pipe, and uses the temperature of the high temperature gas discharged from the exhaust pipe to heat the liquid fuel gasification pipe flowing from the fuel pump.
  • the gaseous fuel is supplied to the cylinder for work. Compared with the liquid fuel, it increases the distance between the fuel molecules and makes the combustion work more complete.
  • the heat released after each cubic meter of natural gas is burned. The value is about 116 kilojoules, and the calorific value of each cubic meter of gaseous gasoline after combustion is about 881 kilojoules, and the power is greater.
  • the utility model can realize the gas starting mode by injecting gas into the gas collecting cylinder through the gas filling valve, or can open the oil cooling starting electromagnetic valve to directly inject the liquid fuel in the fuel pump into the mixing supplier to realize the oil starting mode.
  • the temperature in the exhaust pipe can reach 600 degrees to 800 degrees, while the national standard stipulates that the final point of each grade of gasoline is not higher than 205 degrees, and the boiling point of light diesel oil ranges from 180 degrees to 370 degrees. Heavy diesel oil has a boiling point range of 350 to 410 degrees. Whether it is directly adding liquid gasoline or diesel oil to the fuel pump, it can be completely vaporized into a gaseous state by the heat in the exhaust pipe in the liquid fuel gasification pipe. There is no need to divide the internal combustion engine into diesel or gasoline engines.
  • the absorbed oxygen is passed through an air filter, an air compressor, a water separator, and an oxygen molecular sieve to form a pure oxygen combustion-supporting agent, which is stored in the re-oxygen gas collection cylinder, and then mixed with the fuel to supply the internal combustion engine with the mixed feeder. Since the combustion-supporting effect of pure oxygen is significantly higher than that of air-assisted combustion, the explosive combustion operation of the internal combustion engine can not only be more efficient, but also ensure the combustion effect is more complete, so that the fuel required for combustion can achieve a saving effect. Combustion exhaust Degree can also achieve the purpose of direct reduction and improvement.
  • the utility model has the advantages of simple structure, convenient use, strong practicability, good energy saving and environmental protection effect, and can directly add liquid oil or gas oil, and the liquid oil does not need to be respectively diesel or gasoline, and can save fuel after use compared with the existing internal combustion engine. 60%-80%, exhaust pollution emissions reduced by 85%-90%.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a schematic structural view 2 of a liquid fuel gasification tube of the present invention.
  • FIG. 3 is a schematic structural view 3 of the liquid fuel gasification tube of the present invention. detailed description
  • the fuel gas internal combustion engine of the present invention comprises a fuel pump 1, a liquid fuel gasification pipe 3, a gas gathering cylinder 5, a pressure reducer 7, a control device 10, a cylinder 12, and an inlet of the cylinder 12.
  • Mixing supply 8 an exhaust pipe 11 connected to the outlet of the cylinder 12, an air filter 14, an air compressor 15, a water separator 16, an oxygen molecular sieve 17, an oxygen gas cylinder 18, and a vector controller 19, wherein A temperature sensor 13 is mounted on the exhaust pipe 11, and a gas pressure sensor 51 and an air supply valve 52 are mounted on the gas collecting cylinder 5, and the mixing feeder 8 includes a combustion improver supply port 81 and a plurality of fuel supply ports 82 in the mixing feeder.
  • a total oil intake amount sensor 83 is attached to the outlet of each fuel supply port 82, and an oxygen pressure sensor 181 is attached to the oxygen gas collection cylinder 18.
  • the liquid fuel gasification pipe 3 is installed in the exhaust pipe 11, and one end of the liquid fuel gasification pipe 3 is connected to the fuel pump 1 through a side-way solenoid valve 2 through the side wall of the exhaust pipe 11, and the other end thereof passes through
  • the side wall of the exhaust pipe 11 is connected to a fuel supply port 82 of the mixing supply 8 or connected to the intake port of the gas collecting cylinder 5 through a check valve 4, and the gas outlet of the gas collecting cylinder 5 passes through an air-cooling start solenoid valve.
  • 6 is connected to a fuel supply port 82 of the mixing feeder 8
  • the fuel pump 1 is connected to a fuel supply port 82 of the mixing feeder 8 via an oil-cooling start solenoid valve 9, the signal output of the temperature sensor 13 and the gas pressure sensor 51.
  • the control device 10 controls the fuel pump 1, the one-way solenoid valve 2, the air filling valve 52, the air-cooling start solenoid valve 6 and the oil-cooling start solenoid valve 9 to open or close, respectively, the air filter 14, empty
  • the press 15, the oil-water separator 16, the oxygen-generating molecular sieve 17, the oxygen-collecting cylinder 18, and the vector controller 19 are sequentially connected, and the air outlet of the vector controller 19 is connected to the combustion-promoting supply port 81, and the oxygen pressure sensing is performed.
  • the signal output of the 181 is connected to the control device 10 and the air compressor 15 is controlled to be turned on or off by the control device 10.
  • the signal output of the flow sensor 83 is connected to the control device 10 and controls the vector controller 19 via the control device 10. The amount of outflow.
  • liquid fuel gasification tube 3 of the present invention is installed in the exhaust pipe. Close to the gas rainbow end.
  • liquid fuel gasification tube 3 of the present invention is installed in the exhaust pipe 11 in a section using a threaded pipe.
  • liquid fuel gasification pipe 3 of the present invention is installed in the exhaust pipe 11 in a section using a straight pipe.
  • liquid fuel gasification pipe 3 of the present invention is installed in a section of the exhaust pipe 11 by using a sandwich pipe, and fuel in the fuel pump flows through the interlayer of the sandwich pipe.
  • the user can directly add gaseous fuel to the gas gathering cylinder 5.
  • the air compressor 15 is of a screw type structure
  • the oxygen molecular sieve 17 is of a double cylinder type.
  • the starting mode of the utility model includes a gas starting and an oil starting, wherein the gas starting process is as follows: First, the temperature sensor 13 detects that the temperature on the exhaust pipe 11 is lower than the temperature value required for the liquid gasification, and the gas pressure sensor 51 detects the gas. When the pressure in the collecting cylinder 5 is higher than the standard requirement thereof, the control device 10 controls the air-cooling start solenoid valve 6 to be opened, and the fuel pump 1, the one-way solenoid valve 2 and the oil-cooling start solenoid valve 9 are closed, and the gas collecting cylinder 5 is closed. The gaseous fuel directly enters the mixing feeder 8.
  • the control device 10 controls the fuel pump 1 and the one-way electromagnetic
  • the valve 2 is opened, the oil-cooling start solenoid valve 9 is closed, and the liquid fuel in the fuel pump 1 is vaporized by the liquid fuel gasification pipe 3 to form a gas, which flows through the check valve 4 into the gas collecting cylinder 5, and continues to be the mixing supplier 8 Provide fuel.
  • the oil start process is as follows:
  • control device 10 controls the air-cooling start solenoid valve 6 to be closed, and the gas fuel in the gas gathering cylinder 5 cannot supply fuel to the mixing supplier 8; the temperature sensor 13 detects that the temperature on the exhaust pipe 11 is lower than the temperature required for liquid gasification.
  • the control device 10 controls the one-way solenoid valve 2 to be closed, the fuel pump 1 and the oil-cooled start solenoid valve 9 to be opened, and the liquid fuel in the fuel pump 1 directly enters the mixing feeder 8;
  • the control device 10 controls the one-way solenoid valve 2 to open, The oil-cooled start solenoid valve 9 is closed, and the liquid fuel in the fuel pump 1 is vaporized by the liquid fuel gasification pipe 3 to form a gas, which directly enters the mixing feeder 8.
  • the pure oxygen combustion combustion supply process of the utility model is as follows:
  • the air compressor 15 is started, and the air is stored in the oxygen gas cylinder 18 through the air filter 14, the air compressor 15, the oil water separator 16, and the oxygen molecular sieve 17, and then stored in the oxygen gas cylinder 18, and then passed through the vector controller 19 The mixture is mixed into the mixing feeder 8.
  • the oxygen pressure sensor 181 sends a signal to the control device 10 to drive the air compressor 15 off;
  • the pressure of the pure oxygen oxidizer in the gas cylinder 18 is lower than the pressure value of the oxidant required for the internal combustion engine, the oxygen pressure sensor 181 sends a signal to the control device 10 to drive the opening of the air compressor 15.
  • the fuel flow rate into the fuel supply port 82 of the mixing feeder 8 is increased, and the total fuel amount sensor 83 sends a signal to the control device 10 to expand the opening of the drive vector controller 19, pure oxygen.
  • the outflow of the combustion improver is increased, and is proportional to the fuel in the mixing feeder 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种燃油气内燃机,包括燃油泵(1)、控制装置(10)、气缸(12)、与所述气缸(12)进口相连的混合供应器(8)、与所述气缸(12)出口相连的排气管(11),所述混合供应器(8)包括助燃剂供给口(81)和若干燃料供给口(82),该内燃机还包括液态燃油气化管(3)、燃气聚集筒(5)、减压器(7)和依次连通的空气过滤器(14)、空压机(15)、油水分离器(16)、制氧分子筛(17)、氧气聚气筒(18)、矢量控制器(19),所述液态燃油气化管(3)安装在所述排气管(11)内,该液态燃油气化管(3)的一端通过一单向电磁阀(2)与燃油泵(1)相连,其另一端与混合供应器(8)的一燃料供给口(82)相连或通过一单向阀(4)与燃气聚集筒(5)的进气口相连。所述内燃机结构简单,具有油起动和气起动两种模式,节能环保效果好,液体油无需分别是柴油或汽油。

Description

燃油气内燃机 技术领域
本实用新型涉及一种内燃机燃气动气设备 , 尤其涉及一种燃油气内燃 机。 背景技术
燃油发动机是以内燃机为代表的动力机械装置。 燃烧发动机为社会进 步、 科技发展和改善人民生活做出了巨大的贡献, 现代文明社会的诸多交 通工具都是依靠燃烧发动机作为其动力源。 从燃烧发动机的诞生至今已有
100年的历史, 100年来特别是近 20〜30年来, 燃烧发动机的技术取得了突 飞猛进的发展, 发动机的热效率获得明显提高, 排放得到有效控制, 燃烧 基础研究的进展和燃烧控制技术的提高对燃烧发动机的改进起到了至关重 要的作用。
目前为止, 燃烧发动机仍主要靠石油类燃料, 而石油燃烧多带来的大 气污染问题已成为全世界面临的重大问题, 燃烧发动机的研究将主要集中 在现有石油燃烧发动机的节能、 污染物控制、 石油替代燃料发动机、 可再 生能源发动机和新型燃烧方式发动机上, 目标是通过石油类燃料发动机节 能延长石油资源的使用期, 开发燃烧发动机的燃料替代, 开发新型发动机 燃烧技术实现高效清洁燃烧。 为实现上述目标, 需要再发动机燃烧方面开 展系统深入的基础研究和应用基础研究, 为发动机技术的不断发展提供理 论支撑和技术创新源泉。
但到目前为止, 内燃机的燃料从进入到排放的整个过程基本是两种: 汽油机是将空气与汽油按一定比例(空燃比)混合,然后经进气管供入气缸内 被压缩至上止点, 由汽油机点火系统控制的电火花定时点燃, 燃烧做功把 活塞推至下止点, 随即向上排除废气; 柴油机的燃油则是吸入纯空气, 通 过柴油机喷油系统将柴油喷入燃烧室, 在高温高压下自行着火燃烧。 无论 是汽油机还是柴油机, 其供给的燃油都是液态的冷油, 分子间的距离较近, 燃点较高, 燃烧做功时需要吸收大量的热量, 且很难充分燃烧, 致使燃烧 后会向空气中排放大量的粉尘颗粒和有毒气体。
虽然现在利用电子喷油起到一定的节油作用, 但这仅仅是一种改变进 油的方式而已, 对于其压缩、 燃烧做功和排放并没有改变, 就汽油机而言, 在运行时吸进的是汽油和空气混合气, 压缩比越大, 压缩终了的混合气的 压力和温度就越高, 混合气中汽油分子就能气化得更完全, 燃烧也更迅速 更充分, 因而发动机发出的功率越大, 经济性越好, 排气质量也能相应得 到改善。 为此, 人们发明了通过压缩空气来增加进气量的涡轮增压器, 它 是利用发动机排出的废气惯性沖力来推动涡轮室内的涡轮, 涡轮又带动同 轴的叶轮, 叶轮压送由空气滤清器管道送来的空气, 使之增压进入气缸。 当发动机转速增快, 废气排出速度与涡轮转速也同步增快, 叶轮就压缩更 多的空气进入气缸, 空气的压力和密度增大可以燃烧更多的燃料, 相应增 加燃料量和调整发动机的转速, 就可以增加发动机的输出功率。
然而, 不论是一般的内燃机还是增加了涡轮增压器的内燃机, 其都是 通过吸收空气直接作为助燃剂使用, 而空气中真正具有助燃作用的氧气却 仅含有 20.9%, 其余 79%的氮气及少量的二氧化碳、 水及微量惰性气体不 但没有助燃效果, 还会吸收燃烧时热量, 不但影响内燃机的效果, 燃烧后 还会产生大量的一氧化碳、 碳化氢、 氮素酸化物等有害气体及尘埃颗粒, 对环境污染严重, 严重影响人类健康。
为了节能减排, 人们还发明燃烧天然气的内燃机, 由于其采用的是气 体分子结构, 分子间的距离较大, 燃烧做功时需要吸收热量的相对较少, 燃烧较为完全, 能省油 50%, 排放减少 85%-90%, 但在使用过程中, 其需 要配备一较大的储气罐随车行车, 安全性不强, 且天然气的使用还没有燃 油普及, 往往会出现加气难的情况发生, 致使其不能被大范围的普及使用。 实用新型内容
本实用新型的目的在于提供一种节能效果更好, 助燃效果更好, 污 染排放率更低的燃油气内燃机。
本实用新型提供的这种燃油气内燃机, 包括燃油泵、 控制装置、 气缸、 与所述气缸进口相连的混合供应器、 与所述气缸出口相连的排气管, 所述 混合供给器包括助燃剂供给口和若干燃料供给口, 该系统还包括液态燃油 气化管、 燃气聚集筒、 减压器和依次连通的空气过滤器、 空压机、 油水分 离器、 制氧分子筛、 氧气聚气筒、 矢量控制器, 所述液态燃油气化管安装 在所述排气管内, 该液态燃油气化管的一端穿过排气管的侧壁通过一单向 电磁阀与燃油泵相连, 其另一端穿过排气管的侧壁与混合供应器的一燃料 供给口相连或通过一单向阀与燃气聚集筒的进气口相连, 所述燃气聚集筒 的出气口通过一气冷启动电磁阀与混合供应器的一燃料供给口相连, 所述 燃油泵通过一油冷启动电磁阀与混合供应器的一燃料供给口相连, 在所述 排气管上安装有一温度传感器, 在所述燃气聚集筒上安装有一燃气压力传 感器和加气阀, 所述温度传感器和燃气压力传感器的信号输出端与控制装 置连接, 所述控制装置分别控制燃油泵、 单向电磁阀、 加气阀、 气冷启动 电磁阀和油冷启动电磁阀的开启或关闭, 所述矢量控制器的出气口与助燃 剂供给口连通, 在所述氧气聚气筒上安装有一氧气压力传感器, 所述氧气 压力传感器的信号输出端与控制装置连接, 所述控制装置控制空压机的开 启或关闭, 在所述在混合供给器内各燃料供给口的出口处安装有总进油量 传感器, 所述流量传感器的信号输出端与控制装置连接, 该控制装置控制 矢量控制器的流出量大小。
为使本发明排气管中热量的利用率更高, 所述液态燃油气化管安装在 所述排气管内靠近气缸端。
所述空压机采用螺杆式结构。
所述制氧分子筛采用双筒式结构。
为使本发明中液态燃油在排气管内流通的时间越长气化越完全, 所述 液态燃油气化管安装在排气管内的一段采用螺旋管。
所述液态燃油气化管安装在排气管内的一段采用直管。
所述液态燃油气化管安装在排气管内的一段采用夹层管, 所述燃油泵 内的燃油从所述夹层管的夹层流过。
与现有技术相比, 本实用新型具有以下优点:
1、 本实用新型通过在排气管内增加一液态燃油气化管, 利用排气管内 排放的高温气体的温度对液态燃油气化管进行加热, 使从燃油泵内流过来 的液态燃油气化变成气态燃油供给气缸做功, 与液态燃油相比, 其加大了 燃油分子间的距离, 使燃烧做功更完全; 与天然气相比, 在正常状况下, 每立方米的天然气燃烧后所放的热值约为 116千焦, 而每立方米的气态汽 油燃烧后所放的热值约为 881千焦, 功率更大。
2、 本实用新型可以通过加气阀为燃气聚集筒内注燃气实现气起动模 式, 也可以通过打开油冷起动电磁阀, 使燃油泵内的液体燃油直接注入混 合供应器内实现油起动模式, 功能齐全, 方便实用。
3、 在正常状况下, 排气管内的温度可达 600度至 800度, 而国标规定 各牌号汽油的终镏点则不高于 205度, 轻柴油的沸点范围在 180度至 370 度之间, 重柴油的沸点范围在 350度至 410度之间, 不论是直接在燃油泵 内加入液态的汽油还是柴油, 其都可以在液态燃油气化管内被排气管内的 热量完全气化成为气态, 无需再将内燃机分为柴油机或汽油机。
4、 通过将吸收的空气经过空气过滤器、 空压机、 油水分离器和制氧分 子筛后形成纯氧助燃剂存入再氧气聚气筒内, 再经混合供给器与燃料混合 为内燃机提供原料, 由于纯氧的助燃效果明显高于空气助燃, 内燃机产生 动力的爆炸燃烧运作, 不但可籍以具有更加效率, 同时, 可保证燃烧的效 果更完全, 从而使燃烧所需的燃料实现节省效果, 对于燃烧排放的废气浓 度也可以达到直接降低、 改善的目的。
本实用新型结构简单, 使用方便, 实用性强, 节能环保效果好, 可直 接加入液体油或气体油, 液体油无需分别是柴油或汽油, 与现有的内燃机 相比, 其使用后可节省燃油 60%-80%,尾气污染排放减少 85%-90%。 附图说明
图 1为本实用新型的结构示意。
图 2为本实用新型液态燃油气化管的结构示意图二。
图 3为本实用新型液态燃油气化管的结构示意图三。 具体实施方式
从图 1可以看出, 本实用新型这种燃油气内燃机, 包括燃油泵 1、 液态 燃油气化管 3、 燃气聚集筒 5、 减压器 7、 控制装置 10、 气缸 12、 与气缸 12进口相连的混合供应器 8、 与气缸 12出口相连的排气管 11、 空气过滤器 14、 空压机 15、 油水分离器 16、 制氧分子筛 17、 氧气聚气筒 18和矢量控 制器 19, 其中, 在排气管 11上安装有一温度传感器 13 , 在燃气聚集筒 5 上安装有一燃气压力传感器 51和加气阀 52,混合供给器 8包括助燃剂供给 口 81和若干燃料供给口 82, 在混合供给器 8内各燃料供给口 82的出口处 安装有总进油量传感器 83 , 在氧气聚气筒 18上安装有一氧气压力传感器 181。
液态燃油气化管 3安装在排气管 11内, 该液态燃油气化管 3的一端穿 过排气管 11的侧壁通过一单向电磁阀 2与燃油泵 1相连, 其另一端穿过排 气管 11的侧壁与混合供应器 8的一燃料供给口 82相连或通过一单向阀 4 与燃气聚集筒 5的进气口相连, 燃气聚集筒 5的出气口通过一气冷启动电 磁阀 6与混合供应器 8的一燃料供给口 82相连, 燃油泵 1通过一油冷启动 电磁阀 9与混合供应器 8的一燃料供给口 82相连, 温度传感器 13和燃气 压力传感器 51的信号输出端与控制装置 10连接, 控制装置 10分别控制燃 油泵 1、 单向电磁阀 2、 加气阀 52、 气冷启动电磁阀 6和油冷启动电磁阀 9 的开启或关闭, 空气过滤器 14、 空压机 15、 油水分离器 16、 制氧分子筛 17、 氧气聚气筒 18和矢量控制器 19依次连通, 矢量控制器 19的出气口与 助燃剂供给口 81连通, 氧气压力传感器 181 的信号输出端与控制装置 10 连接并通过该控制装置 10控制空压机 15的开启或关闭, 流量传感器 83的 信号输出端与控制装置 10连接并通过该控制装置 10控制矢量控制器 19的 流出量大小。
从图 1还可以看出, 本实用新型的液态燃油气化管 3安装在排气管内 靠近气虹端。
从图 1还可以看出, 本实用新型的液态燃油气化管 3安装在排气管 11 内的一段采用螺纹管。
从图 2还可以看出, 本实用新型的液态燃油气化管 3安装在排气管 11 内的一段采用直管。
从图 3还可以看出, 本实用新型的液态燃油气化管 3安装在排气管 11 内的一段采用夹层管, 燃油泵内的燃油从该夹层管的夹层流过。
本实用新型在使用前, 使用者可以直接给燃气聚集筒 5 内添加气态的 燃油。
在本实用新型中, 空压机 15采用螺杆式结构, 制氧分子筛 17采用双 筒式结构。
本实用新型的启动方式包括气起动和油起动, 其中气启动过程如下: 首先, 温度传感器 13检测到排气管 11上的温度低于液体油气化所需 温度值, 燃气压力传感器 51检测到燃气聚集筒 5内的压强高于其使用标准 要求时, 控制装置 10控制气冷启动电磁阀 6开启, 燃油泵 1、 单向电磁阀 2和油冷启动电磁阀 9关闭,燃气聚集筒 5内的气体燃油直接进入混合供应 器 8内。
然后, 随着内燃机的做功, 排气管 11的温度逐渐上升, 温度传感器 13 检测到排气管 11上的温度不低于液体油气化所需值, 控制装置 10控制燃 油泵 1和单向电磁阀 2开启、 油冷启动电磁阀 9关闭, 燃油泵 1 内的液体 燃油经过液态燃油气化管 3气化形成气体,通过单向阀 4流至燃气聚集筒 5 内, 继续为混合供应器 8提供燃料。
油启动过程如下:
首先, 控制装置 10控制气冷启动电磁阀 6关闭, 燃气聚集筒 5内气体 燃油不能为混合供应器 8提供燃料; 温度传感器 13检测到排气管 11上的 温度低于液体油气化所需温度值, 控制装置 10控制单向电磁阀 2关闭、 燃 油泵 1和油冷启动电磁阀 9开启, 燃油泵 1 内的液体燃油直接进入混合供 应器 8内;
其次, 随着内燃机的做功, 排气管 11的温度逐渐上升, 温度传感器 13 检测到排气管 11上的温度不低于液体油气化所需值, 控制装置 10控制单 向电磁阀 2开启、 油冷启动电磁阀 9关闭, 燃油泵 1 内的液体燃油经过液 态燃油气化管 3气化形成气体, 直接进入混合供应器 8内。
本实用新型纯氧助燃供给过程如下:
1、 空压机 15启动, 空气经空气过滤器 14、 空压机 15、油水分离器 16、 制氧分子筛 17形成纯氧助燃剂存入氧气聚气筒 18内, 再经矢量控制器 19 进入混合供给器 8内混合。
2、 当氧气聚气筒 18内纯氧助燃剂的压强高于氧气聚气筒 5所能承受 的压强值时, 氧气压力传感器 181发送信号给控制装置 10由其驱动空压机 15的关闭;当氧气聚气筒 18内纯氧助燃剂的压强低于内燃机所需助燃剂的 压强值时,氧气压力传感器 181发送信号给控制装置 10由其驱动空压机 15 的开启。
3、 当内燃机需要加快做功时, 流入混合供给器 8的燃料供给口 82的 燃油流量加大, 总进油量传感器 83发送信号给控制装置 10由其驱动矢量 控制器 19的开口扩大, 纯氧助燃剂的流出量增加, 与混合供给器 8内的燃 油按比列〉'昆合。

Claims

权利要求书
1、 一种燃油气内燃机, 包括燃油泵(1)、 控制装置(10)、 气缸(12)、 与所述气缸(12)进口相连的混合供应器(8)、 与所述气缸(12) 出口相 连的排气管 (11 ), 所述混合供给器 (8) 包括助燃剂供给口 (81 )和若干 燃料供给口 (82), 其特征在于: 该系统还包括液态燃油气化管 (3)、 燃气 聚集筒 (5)、 减压器(7)和依次连通的空气过滤器(14)、 空压机(15)、 油水分离器(16)、 制氧分子筛(17)、 氧气聚气筒(18)、 矢量控制器(19), 所述液态燃油气化管 (3)安装在所述排气管 (11 ) 内, 该液态燃油气化管 (3) 的一端穿过排气管 (11 ) 的侧壁通过一单向电磁阀 (2)与燃油泵(1 ) 相连, 其另一端穿过排气管 (11 ) 的侧壁与混合供应器(8) 的一燃料供给 口 (82)相连或通过一单向阀 (4) 与燃气聚集筒 (5) 的进气口相连, 所 述燃气聚集筒(5)的出气口通过一气冷启动电磁阀(6)与混合供应器(8) 的一燃料供给口 (82)相连, 所述燃油泵(1 )通过一油冷启动电磁阀 (9) 与混合供应器(8) 的一燃料供给口 (82)相连, 在所述排气管 (11 )上安 装有一温度传感器(13), 在所述燃气聚集筒 (5)上安装有一燃气压力传 感器( 51 )和加气阀( 52 ), 所述温度传感器( 13 )和燃气压力传感器( 51 ) 的信号输出端与控制装置 (10) 连接, 所述控制装置 (10) 分别控制燃油 泵( 1 )、 单向电磁阀 (2)、 加气阀 (52)、 气冷启动电磁阀 (6)和油冷启 动电磁阀 (9) 的开启或关闭, 所述矢量控制器(19) 的出气口与助燃剂供 给口( 81 )连通,在所述氧气聚气筒( 18 )上安装有一氧气压力传感器( 181 ), 所述氧气压力传感器( 181 ) 的信号输出端与控制装置( 10)连接, 所述控 制装置 (10)控制空压机(15) 的开启或关闭, 在所述在混合供给器 8 内 各燃料供给口 ( 82 )的出口处安装有总进油量传感器( 83 ), 所述流量传感 器 (83) 的信号输出端与控制装置 (10)连接, 该控制装置 (10)控制矢 量控制器(19) 的流出量大小。
2、 根据权利要求 1所述的燃油气内燃机, 其特征在于: 所述液态燃油 气化管 (3)安装在所述排气管内靠近气缸端。
3、根据权利要求 1所述的燃油气内燃机,其特征在于:所述空压机( 15) 采用螺杆式结构。
4、 根据权利要求 1所述的燃油气内燃机, 其特征在于: 所述制氧分子 筛 (17)采用双筒式结构。
5、 根据权利要求 1或 2所述的内燃机燃料供给系统, 其特征在于: 所 述液态燃油气化管 (3)安装在排气管 (11 ) 内的一段采用螺旋管。
6、 根据权利要求 1或 2所述的内燃机燃料供给系统, 其特征在于: 所 述液态燃油气化管 (3)安装在排气管 (11 ) 内的一段采用直管。
7、 根据权利要求 1或 2所述的内燃机燃料供给系统, 其特征在于: 所 述液态燃油气化管 (3)安装在排气管 (11 ) 内的一段采用夹层管, 所述燃 油泵内的燃油从所述夹层管的夹层流过。
PCT/CN2014/070677 2013-11-19 2014-01-15 燃油气内燃机 WO2015074329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320730514.3U CN203627017U (zh) 2013-11-19 2013-11-19 燃油气内燃机
CN201320730514.3 2013-11-19

Publications (1)

Publication Number Publication Date
WO2015074329A1 true WO2015074329A1 (zh) 2015-05-28

Family

ID=50813503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070677 WO2015074329A1 (zh) 2013-11-19 2014-01-15 燃油气内燃机

Country Status (2)

Country Link
CN (1) CN203627017U (zh)
WO (1) WO2015074329A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203627017U (zh) * 2013-11-19 2014-06-04 郑伯平 燃油气内燃机
CN105781736A (zh) * 2016-05-09 2016-07-20 郑伯平 万能燃料发动机及其控制系统
CN112211760B (zh) * 2020-10-19 2022-04-22 盐城博尔福机电科技发展有限公司 一种用于汽油机超低温启动的燃油加热装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408973A (en) * 1993-11-26 1995-04-25 Spangjer; Keith G. Internal combustion engine fuel supply system and method
CN1131935C (zh) * 2000-12-13 2003-12-24 任凯利 内燃机的节能环保设备
CN2795467Y (zh) * 2005-05-30 2006-07-12 闫中民 汽油机燃烧乙醇装置
CN100467849C (zh) * 2003-04-10 2009-03-11 亚历山大·初 汽化燃料喷射系统及方法
CN203627017U (zh) * 2013-11-19 2014-06-04 郑伯平 燃油气内燃机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408973A (en) * 1993-11-26 1995-04-25 Spangjer; Keith G. Internal combustion engine fuel supply system and method
CN1131935C (zh) * 2000-12-13 2003-12-24 任凯利 内燃机的节能环保设备
CN100467849C (zh) * 2003-04-10 2009-03-11 亚历山大·初 汽化燃料喷射系统及方法
CN2795467Y (zh) * 2005-05-30 2006-07-12 闫中民 汽油机燃烧乙醇装置
CN203627017U (zh) * 2013-11-19 2014-06-04 郑伯平 燃油气内燃机

Also Published As

Publication number Publication date
CN203627017U (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
Wu et al. Effect of diesel late-injection on combustion and emissions characteristics of diesel/methanol dual fuel engine
CN101571069B (zh) 内燃机双燃料燃烧系统
WO2017028389A1 (zh) 基于燃烧反应路径可调控的新概念发动机及其调控方法
CN201517453U (zh) 以柴油和天然气为燃料发动机的燃气供给系统
CN102278189B (zh) 柴油-汽油双燃料顺序燃烧直喷式发动机
CN102278216A (zh) 多模式多燃料燃烧系统
CN101503983A (zh) 一种内燃发动机纯氧进气富氧燃烧控制方法及控制系统
Wei et al. Comparison of the conversion efficiency of DOC and DPOC to unregulated emissions from a DMDF engine
CN111305977A (zh) 一种氢气天然气全比例可变双燃料发动机
CN203604073U (zh) 内燃机燃料供给系统
WO2015074329A1 (zh) 燃油气内燃机
CN103089491A (zh) 蓄热式多孔介质尾气热能回收微排放节能发动机主件装置
CN107061064A (zh) 一种基于混合气稀释的当量燃烧系统及其控制方法
RO127544A0 (ro) Procedeu de realizare a combustiei totale cu ajutorul injectoarelor şi injectoare
CN102536451A (zh) 超微排放高节能巨动力发动机主件装置
CN202900456U (zh) 氢氧节油增力器
CN203604072U (zh) 内燃机燃料气化装置
CN201614997U (zh) 一种内燃机燃料雾化膨胀器
CN201318229Y (zh) 发动机增氧助燃节油装置
CN212535876U (zh) 一种超低浓度瓦斯气体机燃烧系统
CN1644909A (zh) 内燃蒸汽动力机
KR20120064214A (ko) 수소-산소 혼합기를 이용한 고효율 청정 엔진
Sinha et al. Experimental investigations on enhancement of DME energy shares in compression-ignition engine under dual fuel mode using reduced compression ratio
Yelvington et al. Oxygen-enriched combustion for industrial diesel engines
Saravanan et al. Experimental investigation on performance and emission characteristics of DI diesel engine with hydrogen fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863507

Country of ref document: EP

Kind code of ref document: A1