WO2015072736A1 - Système et procédé de génération de données topographiques à résolution élevée - Google Patents

Système et procédé de génération de données topographiques à résolution élevée Download PDF

Info

Publication number
WO2015072736A1
WO2015072736A1 PCT/KR2014/010836 KR2014010836W WO2015072736A1 WO 2015072736 A1 WO2015072736 A1 WO 2015072736A1 KR 2014010836 W KR2014010836 W KR 2014010836W WO 2015072736 A1 WO2015072736 A1 WO 2015072736A1
Authority
WO
WIPO (PCT)
Prior art keywords
terrain data
tiles
tile
unit
boundary
Prior art date
Application number
PCT/KR2014/010836
Other languages
English (en)
Korean (ko)
Inventor
이선용
김규랑
천지민
이지선
정현숙
Original Assignee
대한민국(기상청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(기상청장) filed Critical 대한민국(기상청장)
Publication of WO2015072736A1 publication Critical patent/WO2015072736A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/12Relief maps
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • Embodiments of the present invention relate to a method and a system for generating high resolution terrain data used in a meteorological analysis system.
  • meteorological analysis The process of inferring the distribution of continuous weather variables from meteorological variables such as temperature, humidity and wind observed at discrete time intervals at discrete locations on the ground or in the atmosphere is called meteorological analysis.
  • the subjective analysis method that the forecaster draws on the weather map based on the meteorological knowledge and experience and the objective of distributing discretely observed weather variables in the grid space of computer algorithm and expressing them in the form of weather map, etc.
  • the high resolution means that when the high resolution meteorological analysis system is constructed, the raw topographic data of the dense grid spacing that is denser than the grid spacing of the high resolution meteorological analysis system need.
  • the grid spacing of the raw topographical data is larger than the grid spacing of the analysis system, and the altitude above sea level is simply interpolated with the altitude of the raw topographical data. There is a problem that it is impossible to implement precise valleys and ridges.
  • the present invention has been made to solve the above-mentioned problem, and after dividing and rearranging the digital topographical data into tiles, projecting onto the plane of the meteorological analysis system, the topographic data generated by the projection and the existing low resolution topographical data
  • This study aims to generate high resolution terrain data using Gaussian weighted averages and provide them to the weather analysis system.
  • the first step of the terrain data divider divides the digital topographic map data into tiles of a predetermined area; A second step in which the terrain data arranging unit rearranges the tiles to match the arrangement order of the meteorological analysis system; A third step of combining a tile corresponding to an analysis region selected from the tiles by converting a coordinate system of a latitude and longitude unit of the digital topographical data in which a coordinate system converting unit is rearranged into a coordinate system of a distance unit of the meteorological analysis system; A fourth step of generating, by the terrain data generation unit, terrain data by storing tiles corresponding to a minimum tile including the analysis area among the combined tiles; And a fifth step of generating the high resolution terrain data by applying the Gaussian weighted average method to the generated terrain data and the low resolution terrain data.
  • the digital topographic map may be a digital topographic map of the National Geographic Information Institute.
  • the weather analysis system may be a Local Analysis and Prediction System (LAPS).
  • LAPS Local Analysis and Prediction System
  • the second step includes the tiles of the digital topographic map arranged in a structure in which the topographical data arranging unit moves in a lower row when it reaches the east end tile from the northwest tile, from the southwest tile to the east end tile. As early as this can be relocated to move to the top row.
  • the second step may include at least one of the lattice number of the area, the latitude and longitude interval, the average altitude, and the rearranged lattice altitude of the tiles to which the terrain data arrangement unit is rearranged. Can be saved in USGS format.
  • the third step corresponds to a coordinate system of latitude and longitude units of the digital topographical data in which the coordinate system converting unit repositions the tiles, and corresponds to a projection plane according to the Lambert conformal method. Can be converted to a coordinate system in distance units.
  • the terrain data generation unit may include the first eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region. Position the westernmost tile of which the hardness of the east boundary of the tile is not smaller than the hardness of the western boundary of the meteorological analysis zone, and the latitude of the south boundary of the tile north of the meteorological analysis zone Place the northernmost tile that is not greater than the latitude of the boundary at the southern end of the meteorological zone, and the southernmost tile whose latitude at the north boundary of the tile is not less than the latitude of the southern boundary of the meteorological zone. You can create terrain data by placing and storing it in.
  • the low resolution terrain data may be terrain data of the meteorological analysis system.
  • the fourth step is Gaussian to the terrain data generation unit is generated by applying the Local Analysis and Prediction System (LAPS) to the generated terrain data and terrain data of 1km resolution Gaussian A weighted average method can be applied to generate high resolution terrain data.
  • LAPS Local Analysis and Prediction System
  • a high resolution terrain data generation system includes a terrain data divider for dividing a digital topographic map data into tiles of a predetermined area; A terrain data placement unit for rearranging the tiles to match the arrangement order of the weather analysis system; A coordinate system converting unit converting a coordinate system of latitude and longitude unit of the digital topographic map data in which the tiles are rearranged into a coordinate system of distance unit of the meteorological analysis system and combining tiles corresponding to an analysis area selected from the tiles; Generating terrain data by storing tiles corresponding to the minimum tile including the analysis region among the combined tiles, and generating high resolution terrain data by applying a Gaussian weighted average method to the generated terrain data and low resolution terrain data. It is configured to include; terrain data generation unit.
  • the digital topographic map may be a digital topographic map of the National Geographic Information Institute.
  • the meteorological analysis system may be a Local Analysis and Prediction System (LAPS).
  • LAPS Local Analysis and Prediction System
  • the topographical data placement unit moves the tiles of the digital topographic map arranged in a structure that moves to the lower row when the northwest tile reaches the east end tile, and moves to the upper row when the southwest tile reaches the east end tile. Can be relocated to a structure.
  • the geographic data arrangement unit stores the tiles to be rearranged in USGS format such that the tiles to be rearranged include at least one of a grid number of a region, a latitude and longitude interval, an average altitude, and a rearranged altitude of the grid. Can be.
  • the coordinate system converting unit uses a coordinate system of latitude and longitude unit of the digital topographical data in which the tiles are rearranged, and coordinate system of a distance unit corresponding to the projection plane according to the Lambert conformal method. Can be converted to
  • the topographical data generating unit places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region, and is located at the western end of the meteorological analysis region.
  • the westmost tile whose longitude of the east boundary is not less than the longitude of the western boundary of the meteorological zone is placed at the east boundary of the meteorological zone, and the latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological zone.
  • the low resolution topographic data may be used the topographic data of the weather analysis system.
  • the terrain data generation unit by applying a Gaussian weighted average method to the generated terrain data and LAPS terrain data generated by applying a Local Analysis and Prediction System (LAPS) to the terrain data of 1km resolution Generate high resolution terrain data.
  • LAPS Local Analysis and Prediction System
  • the digital topographical data after dividing and rearranging the digital topographical data into tiles, projecting onto a plane of a meteorological analysis system, and performing a high resolution through a Gaussian weighted average between the terrain data generated by the projection and the existing low resolution terrain data. Generate terrain data.
  • FIG. 1 is a block diagram of a high resolution terrain data generation system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of generating high resolution terrain data according to an embodiment of the present invention.
  • 3 and 4 are views for explaining the high resolution terrain data according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a high resolution terrain data generation system according to an embodiment of the present invention.
  • a high resolution terrain data generation system according to an embodiment of the present invention will be described with reference to FIG. 1.
  • a high resolution terrain data generation system includes a terrain data partitioner 110, a terrain data deployment unit 120, a coordinate system conversion unit 130, and a terrain data generation unit 140. It is configured to include).
  • the terrain data dividing unit 110 divides the digital topographic map data into tiles of a predetermined area.
  • the digital topographic map may be a 10m resolution data as a digital topographic map of the National Geographic Information Institute.
  • the terrain data dividing unit 110 divides the tiles, which are files of several small regions, each of which has a constant range of east, west and south, in order to save processing time and memory of the digital topographic map.
  • the terrain data placement unit 120 rearranges the tiles to match the arrangement order of the weather analysis system.
  • the weather analysis system refers to a Local Analysis and Prediction System (LAPS), and the terrain data arranging unit 120 moves downward from the northwest tile to the east end tile in the digital topographic map.
  • LAPS Local Analysis and Prediction System
  • the terrain data placement unit 120 may store the rearranged tiles in a USGS format to include at least one of a grid number, a latitude and longitude interval, an average altitude, and a rearranged altitude of the rearranged grids.
  • the coordinate system converting unit 130 may combine the tiles corresponding to the analysis area selected from the tiles by converting the coordinate system of the latitude and longitude unit of the digital topographic map data in which the tiles are rearranged into the coordinate system of the distance unit of the meteorological analysis system. have.
  • the coordinate system converting unit 130 converts the coordinate system of the latitude and longitude unit of the digital topographical data in which the tiles are rearranged into a coordinate system of a distance unit corresponding to the projection plane according to the Lambert conformal method. I can convert it.
  • the coordinate system conversion unit 130 may match the coordinates of the southwest corner of the digital topographical data with the coordinates of the southwest corner of the analysis area as the origin.
  • the terrain data generation unit 140 generates the terrain data by storing the tiles corresponding to the minimum tiles including the analysis area among the combined tiles.
  • the terrain data generation unit 140 places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the weather analysis region, and places the westernmost end of the weather analysis region, and the hardness of the east boundary of the tile. Can be placed on the eastern boundary of the meteorological analysis zone, with the westernmost tile not less than the hardness of the western boundary of the meteorological analysis zone.
  • the terrain data generating unit 140 places the northernmost tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the weather analysis region, and places the tile at the southern end of the weather analysis region, and the latitude of the north boundary of the tile.
  • the geographic data can be generated by placing and storing the southernmost tile, which is not smaller than the latitude of the south boundary of the meteorological analysis zone, at the north boundary of the meteorological analysis zone.
  • the terrain data generation unit 140 generates high resolution terrain data by applying a Gaussian weighted average method to the low resolution terrain data and the terrain data.
  • the low resolution terrain data is the terrain data of the weather analysis system
  • the terrain data generation unit 140 is generated by applying the Local Analysis and Prediction System (LAPS) to the generated terrain data and terrain data of 1km resolution
  • LAPS Local Analysis and Prediction System
  • High resolution terrain data can be generated by applying Gaussian weighted average method to LAPS terrain data.
  • FIG. 2 is a flowchart illustrating a method of generating high resolution terrain data according to an embodiment of the present invention.
  • the terrain data division unit divides the digital topographic map data into tiles of a predetermined area (S210).
  • the digital topographic map may be used as a digital topographic map of the National Geographic Information Institute, and 10m resolution data may be used.
  • the terrain data partitioning unit may include files of several small regions having a constant range of east, west, north and south for saving processing time and memory of the digital topographic map. Can be divided into tiles.
  • the terrain data arrangement unit rearranges the tiles to match the arrangement order of the weather analysis system (S220).
  • the weather analysis system refers to a Local Analysis and Prediction System (LAPS), and the terrain data arranging unit is arranged in a structure that moves from the northwest tile to the east end tile of the digital topographic map in a lower line.
  • the tiles of the digital topographic map can be rearranged in a structure that moves upward when the southwest tile, which is the arrangement structure of LAPS, reaches the east end tile.
  • the topographic data placement unit may be stored in the USGS format so that the tiles to be rearranged include at least one of the number of grids of the area, the latitude and longitude interval, the average altitude and the rearranged altitude of the lattice.
  • a coordinate system converting unit converts a coordinate system of latitude and longitude unit of the digital topographical data in which the tiles are rearranged into a coordinate system of distance unit of the meteorological analysis system (S230), and combines tiles corresponding to an analysis area selected from the tiles. It may be (S240).
  • the coordinate system 130 converts the coordinate system of the latitude and longitude unit of the digital topographical data in which the tiles are rearranged into the coordinate system of the distance unit corresponding to the projection plane according to the Lambert conformal method. I can convert it.
  • the coordinate system converting unit may match the coordinates of the southwest corner of the digital topographical data with the coordinates of the southwest corner of the analysis region as the origin.
  • the terrain data generation unit generates the terrain data by storing tiles corresponding to the minimum tiles including the analysis area among the combined tiles (S250).
  • the terrain data generating unit places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region, and the hardness of the east boundary of the tile is the meteorological analysis region.
  • the westernmost tile not less than the hardness of the western boundary of can be located at the eastern boundary of the meteorological area.
  • the terrain data generating unit places the northernmost tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological analysis area, and places the latitude of the north boundary of the tile in the meteorological analysis area.
  • Terrain data can be generated by placing and storing the southernmost tile, which is not smaller than the latitude of the southern boundary of, at the northern boundary of the meteorological analysis region.
  • the terrain data generation unit generates the high resolution terrain data by applying the Gaussian weighted average method to the low resolution terrain data and the terrain data (S260).
  • the low resolution terrain data is the terrain data of the meteorological analysis system, the terrain data generation unit to the generated terrain data, and the LAPS terrain data generated by applying the Local Analysis and Prediction System (LAPS) to the terrain data of 1km resolution Gaussian weighted average method can be applied to generate high resolution terrain data.
  • LAPS Local Analysis and Prediction System
  • FIG. 3 and 4 are views for explaining high resolution terrain data according to an embodiment of the present invention
  • Figure 3 is a view showing a low resolution terrain data according to an embodiment of the present invention
  • Figure 4 is a view of the present invention
  • Figure 3 is a low resolution LAPS terrain data generated by applying the Local Analysis and Prediction System (LAPS) to terrain data of 1km resolution.
  • LAPS Local Analysis and Prediction System
  • the low resolution LAPS topographic data configured as described above, the digital topographical data are divided and rearranged into tiles, projected onto the plane of the meteorological analysis system, and then the topographic data generated by the projection.
  • the Gaussian weighted average may generate high resolution terrain data as shown in FIG. 4.
  • the discrete boundary surface according to the linear weighted average is prominent in the boundary region of the low resolution and the high resolution portion, but according to the present invention, as shown in FIG.
  • the low-resolution topographical data can be used to generate discontinuous boundaries as an initial estimation field when generating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Geometry (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Educational Technology (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Computer Graphics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Processing Or Creating Images (AREA)
  • Instructional Devices (AREA)

Abstract

La présente invention concerne un système et un procédé de génération de données topographiques à résolution élevée. Le procédé de génération de données topographiques à résolution élevée de la présente invention comprend : une première étape dans laquelle une unité de séparation de données topographiques divise une carte topographique numérique en carreaux pour certaines régions ; une deuxième étape dans laquelle une unité d'organisation de données topographiques réorganise les carreaux pour permettre une correspondance avec une séquence organisée d'un système d'analyse météorologique ; une troisième étape dans laquelle une unité de conversion de système de coordonnées convertit un système de coordonnées, constitué d'unités de latitude et de longitude de la carte topographique numérique sur laquelle les carreaux ont été réorganisés, en système de coordonnées constitué d'unités de distance dans le système d'analyse météorologique, et combine les carreaux provenant des carreaux qui correspondent à des régions d'analyse sélectionnées ; une quatrième étape dans laquelle une unité de génération de données topographiques conserve et génère des carreaux, provenant des carreaux couplés qui correspondent à un nombre minimum de carreaux incluant les régions d'analyse, sous la forme de données topographiques ; et une cinquième étape dans laquelle l'unité de génération de données topographiques génère des données topographiques à résolution élevée par l'application de la technique de la moyenne pondérée gaussienne aux données topographiques générées et à des données topographiques à résolution basse.
PCT/KR2014/010836 2013-11-14 2014-11-12 Système et procédé de génération de données topographiques à résolution élevée WO2015072736A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130138256A KR101560733B1 (ko) 2013-11-14 2013-11-14 고해상도 지형자료 생성 방법 및 시스템
KR10-2013-0138256 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072736A1 true WO2015072736A1 (fr) 2015-05-21

Family

ID=53057617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010836 WO2015072736A1 (fr) 2013-11-14 2014-11-12 Système et procédé de génération de données topographiques à résolution élevée

Country Status (2)

Country Link
KR (1) KR101560733B1 (fr)
WO (1) WO2015072736A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107918930A (zh) * 2017-12-28 2018-04-17 华润电力技术研究院有限公司 一种地形图生成系统
CN116958717A (zh) * 2023-09-20 2023-10-27 山东省地质测绘院 基于机器学习的地质大数据智能清洗方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168427B1 (ko) * 2018-11-14 2020-10-21 김춘지 지역별 공간 특성이 반영되는 규모 상세화 방법
KR102417411B1 (ko) * 2020-06-17 2022-07-05 주식회사 한화 지형 고도 데이터 시스템 및 이의 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010149A (ko) * 1999-07-16 2001-02-05 이계철 다양한 해상도의 디지털 고도 모델 자동 생성 방법
JP2011054144A (ja) * 2009-09-02 2011-03-17 Korea Inst Of Energy Research 地形解像度差を考慮した大気流動場シミュレーション方法
KR20110065058A (ko) * 2009-12-09 2011-06-15 한국지질자원연구원 고해상도 지도형성시스템 및 이를 이용한 지도형성 방법
KR20130019876A (ko) * 2011-08-18 2013-02-27 대한민국(국립기상연구소장) 기상자료기반 고해상도 태양 기상자원지도 개발 방법 및 장치
KR101285804B1 (ko) * 2012-01-31 2013-07-12 부경대학교 산학협력단 지상 기상관측 자료의 수평 기상장 산출 시스템 및 그 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018624B1 (ko) 2008-11-06 2011-03-03 한국해양연구원 연안지역의 해도와 육도의 접합 정밀 지형도 제작방법
KR101006729B1 (ko) 2010-07-23 2011-01-10 (주)동광지엔티 수치 표고모델 제작 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010149A (ko) * 1999-07-16 2001-02-05 이계철 다양한 해상도의 디지털 고도 모델 자동 생성 방법
JP2011054144A (ja) * 2009-09-02 2011-03-17 Korea Inst Of Energy Research 地形解像度差を考慮した大気流動場シミュレーション方法
KR20110065058A (ko) * 2009-12-09 2011-06-15 한국지질자원연구원 고해상도 지도형성시스템 및 이를 이용한 지도형성 방법
KR20130019876A (ko) * 2011-08-18 2013-02-27 대한민국(국립기상연구소장) 기상자료기반 고해상도 태양 기상자원지도 개발 방법 및 장치
KR101285804B1 (ko) * 2012-01-31 2013-07-12 부경대학교 산학협력단 지상 기상관측 자료의 수평 기상장 산출 시스템 및 그 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107918930A (zh) * 2017-12-28 2018-04-17 华润电力技术研究院有限公司 一种地形图生成系统
CN116958717A (zh) * 2023-09-20 2023-10-27 山东省地质测绘院 基于机器学习的地质大数据智能清洗方法
CN116958717B (zh) * 2023-09-20 2023-12-12 山东省地质测绘院 基于机器学习的地质大数据智能清洗方法

Also Published As

Publication number Publication date
KR20150056108A (ko) 2015-05-26
KR101560733B1 (ko) 2015-10-19

Similar Documents

Publication Publication Date Title
WO2015072736A1 (fr) Système et procédé de génération de données topographiques à résolution élevée
CN101726748B (zh) 一种核辐射后果评价数据显示的方法
CN103325068B (zh) 一种实时动态三维电网污区分布图的绘制方法
Liang et al. New equations of wave energy assessment accounting for the water depth
CN103606192A (zh) 一种基于三维虚拟地球的风场可视化展示方法
CN103281376A (zh) 一种云环境下海量时序遥感影像的自动缓存构建方法
CN107609049B (zh) 一种高效率的gis地图引擎的生成方法
Lagouvardos et al. Study of a heavy precipitation event over southern France, in the frame of HYMEX project: Observational analysis and model results using assimilation of lightning
Conte et al. Analysis of instability indices during the development of a Mediterranean tropical-like cyclone using MSG-SEVIRI products and the LAPS model
CN109274645B (zh) 一种智慧城市时空云平台的分层分级访问实现方法
WO2020209704A1 (fr) Procédé de génération de données marines et dispositif utilisant ce procédé
CN110457819B (zh) 一种根据自然环境识别城市天然风道的方法
CN104392388A (zh) 电网gis中变电站联络图的自动成图方法及其装置
Domingo et al. Long-term changes in 3D urban form in four Spanish cities
CN108509495A (zh) 地震数据的处理方法及装置、存储介质、处理器
CN114510803A (zh) 配电网拓扑图自动生成方法、装置、电子设备和存储介质
CN107748502A (zh) 基于离散事件的作战仿真中实体的被动空间感知交互方法
CN111190243B (zh) 气象预测图的生成方法、计算机设备及其可读存储介质
WO2018225985A1 (fr) Procédé et serveur permettant de prédire une situation dangereuse liée aux conditions météorologiques au niveau d'un point spécifique sur le trajet d'un utilisateur par référencement des données d'observation séparées observées à partir de plusieurs points d'observation
CN110825105B (zh) 一种基于无人机的卫片图斑巡查方法及装置
CN111914137A (zh) 一种基于遥感数据和poi数据的gdp空间化方法
CN111738119A (zh) 一种基于modis卫星监测的森林山火面积估算方法及装置
Karnauskas et al. The role of SST in the east Pacific warm pool in the interannual variability of Central American rainfall
CN102131142A (zh) 一种根据地理位置信息进行资源分配的方法
CN114022635A (zh) 三维建筑模型的构建方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862923

Country of ref document: EP

Kind code of ref document: A1