WO2015072736A1 - High resolution topographical data generating method and system - Google Patents

High resolution topographical data generating method and system Download PDF

Info

Publication number
WO2015072736A1
WO2015072736A1 PCT/KR2014/010836 KR2014010836W WO2015072736A1 WO 2015072736 A1 WO2015072736 A1 WO 2015072736A1 KR 2014010836 W KR2014010836 W KR 2014010836W WO 2015072736 A1 WO2015072736 A1 WO 2015072736A1
Authority
WO
WIPO (PCT)
Prior art keywords
terrain data
tiles
tile
unit
boundary
Prior art date
Application number
PCT/KR2014/010836
Other languages
French (fr)
Korean (ko)
Inventor
이선용
김규랑
천지민
이지선
정현숙
Original Assignee
대한민국(기상청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(기상청장) filed Critical 대한민국(기상청장)
Publication of WO2015072736A1 publication Critical patent/WO2015072736A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/12Relief maps
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • Embodiments of the present invention relate to a method and a system for generating high resolution terrain data used in a meteorological analysis system.
  • meteorological analysis The process of inferring the distribution of continuous weather variables from meteorological variables such as temperature, humidity and wind observed at discrete time intervals at discrete locations on the ground or in the atmosphere is called meteorological analysis.
  • the subjective analysis method that the forecaster draws on the weather map based on the meteorological knowledge and experience and the objective of distributing discretely observed weather variables in the grid space of computer algorithm and expressing them in the form of weather map, etc.
  • the high resolution means that when the high resolution meteorological analysis system is constructed, the raw topographic data of the dense grid spacing that is denser than the grid spacing of the high resolution meteorological analysis system need.
  • the grid spacing of the raw topographical data is larger than the grid spacing of the analysis system, and the altitude above sea level is simply interpolated with the altitude of the raw topographical data. There is a problem that it is impossible to implement precise valleys and ridges.
  • the present invention has been made to solve the above-mentioned problem, and after dividing and rearranging the digital topographical data into tiles, projecting onto the plane of the meteorological analysis system, the topographic data generated by the projection and the existing low resolution topographical data
  • This study aims to generate high resolution terrain data using Gaussian weighted averages and provide them to the weather analysis system.
  • the first step of the terrain data divider divides the digital topographic map data into tiles of a predetermined area; A second step in which the terrain data arranging unit rearranges the tiles to match the arrangement order of the meteorological analysis system; A third step of combining a tile corresponding to an analysis region selected from the tiles by converting a coordinate system of a latitude and longitude unit of the digital topographical data in which a coordinate system converting unit is rearranged into a coordinate system of a distance unit of the meteorological analysis system; A fourth step of generating, by the terrain data generation unit, terrain data by storing tiles corresponding to a minimum tile including the analysis area among the combined tiles; And a fifth step of generating the high resolution terrain data by applying the Gaussian weighted average method to the generated terrain data and the low resolution terrain data.
  • the digital topographic map may be a digital topographic map of the National Geographic Information Institute.
  • the weather analysis system may be a Local Analysis and Prediction System (LAPS).
  • LAPS Local Analysis and Prediction System
  • the second step includes the tiles of the digital topographic map arranged in a structure in which the topographical data arranging unit moves in a lower row when it reaches the east end tile from the northwest tile, from the southwest tile to the east end tile. As early as this can be relocated to move to the top row.
  • the second step may include at least one of the lattice number of the area, the latitude and longitude interval, the average altitude, and the rearranged lattice altitude of the tiles to which the terrain data arrangement unit is rearranged. Can be saved in USGS format.
  • the third step corresponds to a coordinate system of latitude and longitude units of the digital topographical data in which the coordinate system converting unit repositions the tiles, and corresponds to a projection plane according to the Lambert conformal method. Can be converted to a coordinate system in distance units.
  • the terrain data generation unit may include the first eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region. Position the westernmost tile of which the hardness of the east boundary of the tile is not smaller than the hardness of the western boundary of the meteorological analysis zone, and the latitude of the south boundary of the tile north of the meteorological analysis zone Place the northernmost tile that is not greater than the latitude of the boundary at the southern end of the meteorological zone, and the southernmost tile whose latitude at the north boundary of the tile is not less than the latitude of the southern boundary of the meteorological zone. You can create terrain data by placing and storing it in.
  • the low resolution terrain data may be terrain data of the meteorological analysis system.
  • the fourth step is Gaussian to the terrain data generation unit is generated by applying the Local Analysis and Prediction System (LAPS) to the generated terrain data and terrain data of 1km resolution Gaussian A weighted average method can be applied to generate high resolution terrain data.
  • LAPS Local Analysis and Prediction System
  • a high resolution terrain data generation system includes a terrain data divider for dividing a digital topographic map data into tiles of a predetermined area; A terrain data placement unit for rearranging the tiles to match the arrangement order of the weather analysis system; A coordinate system converting unit converting a coordinate system of latitude and longitude unit of the digital topographic map data in which the tiles are rearranged into a coordinate system of distance unit of the meteorological analysis system and combining tiles corresponding to an analysis area selected from the tiles; Generating terrain data by storing tiles corresponding to the minimum tile including the analysis region among the combined tiles, and generating high resolution terrain data by applying a Gaussian weighted average method to the generated terrain data and low resolution terrain data. It is configured to include; terrain data generation unit.
  • the digital topographic map may be a digital topographic map of the National Geographic Information Institute.
  • the meteorological analysis system may be a Local Analysis and Prediction System (LAPS).
  • LAPS Local Analysis and Prediction System
  • the topographical data placement unit moves the tiles of the digital topographic map arranged in a structure that moves to the lower row when the northwest tile reaches the east end tile, and moves to the upper row when the southwest tile reaches the east end tile. Can be relocated to a structure.
  • the geographic data arrangement unit stores the tiles to be rearranged in USGS format such that the tiles to be rearranged include at least one of a grid number of a region, a latitude and longitude interval, an average altitude, and a rearranged altitude of the grid. Can be.
  • the coordinate system converting unit uses a coordinate system of latitude and longitude unit of the digital topographical data in which the tiles are rearranged, and coordinate system of a distance unit corresponding to the projection plane according to the Lambert conformal method. Can be converted to
  • the topographical data generating unit places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region, and is located at the western end of the meteorological analysis region.
  • the westmost tile whose longitude of the east boundary is not less than the longitude of the western boundary of the meteorological zone is placed at the east boundary of the meteorological zone, and the latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological zone.
  • the low resolution topographic data may be used the topographic data of the weather analysis system.
  • the terrain data generation unit by applying a Gaussian weighted average method to the generated terrain data and LAPS terrain data generated by applying a Local Analysis and Prediction System (LAPS) to the terrain data of 1km resolution Generate high resolution terrain data.
  • LAPS Local Analysis and Prediction System
  • the digital topographical data after dividing and rearranging the digital topographical data into tiles, projecting onto a plane of a meteorological analysis system, and performing a high resolution through a Gaussian weighted average between the terrain data generated by the projection and the existing low resolution terrain data. Generate terrain data.
  • FIG. 1 is a block diagram of a high resolution terrain data generation system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of generating high resolution terrain data according to an embodiment of the present invention.
  • 3 and 4 are views for explaining the high resolution terrain data according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a high resolution terrain data generation system according to an embodiment of the present invention.
  • a high resolution terrain data generation system according to an embodiment of the present invention will be described with reference to FIG. 1.
  • a high resolution terrain data generation system includes a terrain data partitioner 110, a terrain data deployment unit 120, a coordinate system conversion unit 130, and a terrain data generation unit 140. It is configured to include).
  • the terrain data dividing unit 110 divides the digital topographic map data into tiles of a predetermined area.
  • the digital topographic map may be a 10m resolution data as a digital topographic map of the National Geographic Information Institute.
  • the terrain data dividing unit 110 divides the tiles, which are files of several small regions, each of which has a constant range of east, west and south, in order to save processing time and memory of the digital topographic map.
  • the terrain data placement unit 120 rearranges the tiles to match the arrangement order of the weather analysis system.
  • the weather analysis system refers to a Local Analysis and Prediction System (LAPS), and the terrain data arranging unit 120 moves downward from the northwest tile to the east end tile in the digital topographic map.
  • LAPS Local Analysis and Prediction System
  • the terrain data placement unit 120 may store the rearranged tiles in a USGS format to include at least one of a grid number, a latitude and longitude interval, an average altitude, and a rearranged altitude of the rearranged grids.
  • the coordinate system converting unit 130 may combine the tiles corresponding to the analysis area selected from the tiles by converting the coordinate system of the latitude and longitude unit of the digital topographic map data in which the tiles are rearranged into the coordinate system of the distance unit of the meteorological analysis system. have.
  • the coordinate system converting unit 130 converts the coordinate system of the latitude and longitude unit of the digital topographical data in which the tiles are rearranged into a coordinate system of a distance unit corresponding to the projection plane according to the Lambert conformal method. I can convert it.
  • the coordinate system conversion unit 130 may match the coordinates of the southwest corner of the digital topographical data with the coordinates of the southwest corner of the analysis area as the origin.
  • the terrain data generation unit 140 generates the terrain data by storing the tiles corresponding to the minimum tiles including the analysis area among the combined tiles.
  • the terrain data generation unit 140 places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the weather analysis region, and places the westernmost end of the weather analysis region, and the hardness of the east boundary of the tile. Can be placed on the eastern boundary of the meteorological analysis zone, with the westernmost tile not less than the hardness of the western boundary of the meteorological analysis zone.
  • the terrain data generating unit 140 places the northernmost tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the weather analysis region, and places the tile at the southern end of the weather analysis region, and the latitude of the north boundary of the tile.
  • the geographic data can be generated by placing and storing the southernmost tile, which is not smaller than the latitude of the south boundary of the meteorological analysis zone, at the north boundary of the meteorological analysis zone.
  • the terrain data generation unit 140 generates high resolution terrain data by applying a Gaussian weighted average method to the low resolution terrain data and the terrain data.
  • the low resolution terrain data is the terrain data of the weather analysis system
  • the terrain data generation unit 140 is generated by applying the Local Analysis and Prediction System (LAPS) to the generated terrain data and terrain data of 1km resolution
  • LAPS Local Analysis and Prediction System
  • High resolution terrain data can be generated by applying Gaussian weighted average method to LAPS terrain data.
  • FIG. 2 is a flowchart illustrating a method of generating high resolution terrain data according to an embodiment of the present invention.
  • the terrain data division unit divides the digital topographic map data into tiles of a predetermined area (S210).
  • the digital topographic map may be used as a digital topographic map of the National Geographic Information Institute, and 10m resolution data may be used.
  • the terrain data partitioning unit may include files of several small regions having a constant range of east, west, north and south for saving processing time and memory of the digital topographic map. Can be divided into tiles.
  • the terrain data arrangement unit rearranges the tiles to match the arrangement order of the weather analysis system (S220).
  • the weather analysis system refers to a Local Analysis and Prediction System (LAPS), and the terrain data arranging unit is arranged in a structure that moves from the northwest tile to the east end tile of the digital topographic map in a lower line.
  • the tiles of the digital topographic map can be rearranged in a structure that moves upward when the southwest tile, which is the arrangement structure of LAPS, reaches the east end tile.
  • the topographic data placement unit may be stored in the USGS format so that the tiles to be rearranged include at least one of the number of grids of the area, the latitude and longitude interval, the average altitude and the rearranged altitude of the lattice.
  • a coordinate system converting unit converts a coordinate system of latitude and longitude unit of the digital topographical data in which the tiles are rearranged into a coordinate system of distance unit of the meteorological analysis system (S230), and combines tiles corresponding to an analysis area selected from the tiles. It may be (S240).
  • the coordinate system 130 converts the coordinate system of the latitude and longitude unit of the digital topographical data in which the tiles are rearranged into the coordinate system of the distance unit corresponding to the projection plane according to the Lambert conformal method. I can convert it.
  • the coordinate system converting unit may match the coordinates of the southwest corner of the digital topographical data with the coordinates of the southwest corner of the analysis region as the origin.
  • the terrain data generation unit generates the terrain data by storing tiles corresponding to the minimum tiles including the analysis area among the combined tiles (S250).
  • the terrain data generating unit places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region, and the hardness of the east boundary of the tile is the meteorological analysis region.
  • the westernmost tile not less than the hardness of the western boundary of can be located at the eastern boundary of the meteorological area.
  • the terrain data generating unit places the northernmost tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological analysis area, and places the latitude of the north boundary of the tile in the meteorological analysis area.
  • Terrain data can be generated by placing and storing the southernmost tile, which is not smaller than the latitude of the southern boundary of, at the northern boundary of the meteorological analysis region.
  • the terrain data generation unit generates the high resolution terrain data by applying the Gaussian weighted average method to the low resolution terrain data and the terrain data (S260).
  • the low resolution terrain data is the terrain data of the meteorological analysis system, the terrain data generation unit to the generated terrain data, and the LAPS terrain data generated by applying the Local Analysis and Prediction System (LAPS) to the terrain data of 1km resolution Gaussian weighted average method can be applied to generate high resolution terrain data.
  • LAPS Local Analysis and Prediction System
  • FIG. 3 and 4 are views for explaining high resolution terrain data according to an embodiment of the present invention
  • Figure 3 is a view showing a low resolution terrain data according to an embodiment of the present invention
  • Figure 4 is a view of the present invention
  • Figure 3 is a low resolution LAPS terrain data generated by applying the Local Analysis and Prediction System (LAPS) to terrain data of 1km resolution.
  • LAPS Local Analysis and Prediction System
  • the low resolution LAPS topographic data configured as described above, the digital topographical data are divided and rearranged into tiles, projected onto the plane of the meteorological analysis system, and then the topographic data generated by the projection.
  • the Gaussian weighted average may generate high resolution terrain data as shown in FIG. 4.
  • the discrete boundary surface according to the linear weighted average is prominent in the boundary region of the low resolution and the high resolution portion, but according to the present invention, as shown in FIG.
  • the low-resolution topographical data can be used to generate discontinuous boundaries as an initial estimation field when generating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Geometry (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Educational Technology (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Computer Graphics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Processing Or Creating Images (AREA)
  • Instructional Devices (AREA)

Abstract

The present invention relates to a high resolution topographical data generating method and system. The high resolution topographical data generating method according to the present invention comprises: a first step in which a topographical data partitioning unit partitions a digital topographic map into tiles for certain regions; a second step in which a topographical data arranging unit rearranges the tiles to match an arranged sequence of a weather analysis system; a third step in which a coordinate system converting unit converts a coordinate system, constituted of latitude and longitude units of the digital topographical map in which the tiles have been rearranged, to a coordinate system constituted of distance units in the weather analysis system, and combines tiles from among the tiles which correspond to selected analysis regions; a fourth step in which a topographical data generating unit saves and generates tiles, from among the coupled tiles that correspond to a minimum number of tiles including the analysis regions, as topographical data; and a fifth step in which the topographical data generating unit generates high resolution topographical data by applying the Gaussian weighted average technique to the generated topographical data and low resolution topographical data.

Description

고해상도 지형자료 생성 방법 및 시스템High resolution terrain data generation method and system
본 발명의 실시예는 기상 분석 시스템에 사용되는 고해상도 지형자료 생성 방법 및 시스템에 관한 것이다.Embodiments of the present invention relate to a method and a system for generating high resolution terrain data used in a meteorological analysis system.
지면이나 대기 중에 이산적으로 위치하는 지점에서 불연속적인 시간 간격으로 관측된 기온, 습도, 바람 등의 기상변수로부터 연속적인 기상변수의 분포를 유추하는 과정을 기상분석이라고 한다.The process of inferring the distribution of continuous weather variables from meteorological variables such as temperature, humidity and wind observed at discrete time intervals at discrete locations on the ground or in the atmosphere is called meteorological analysis.
기상 분석의 방법으로는 예보관이 기상학적 지식 및 경험을 바탕으로 일기도에 묘화하는 주관 분석 방법과, 이산적으로 관측된 기상 변수를 컴퓨터 알고리즘 상의 격자 공간에 배치하여 일기도 등의 형식으로 표출하는 객관 분석방법이 있다.As the method of meteorological analysis, the subjective analysis method that the forecaster draws on the weather map based on the meteorological knowledge and experience, and the objective of distributing discretely observed weather variables in the grid space of computer algorithm and expressing them in the form of weather map, etc. There is an analysis method.
기상변수의 객관 분석 방법에서 격자 사이의 간격을 100 m 이하로 조밀한 정도를 고해상도라고 정의하면, 고해상도 기상분석 시스템을 구축할 때 고해상도 기상분석시스템의 격자 간격 보다 조밀한 격자 간격의 원시 지형 자료가 필요하다.In the objective analysis method of the meteorological variables, if the distance between grids is less than 100 m, the high resolution means that when the high resolution meteorological analysis system is constructed, the raw topographic data of the dense grid spacing that is denser than the grid spacing of the high resolution meteorological analysis system need.
일반적으로 종래에는 고해상도의 기상분석 시스템의 지면 격자에 해발 고도를 부여할 때, 그 격자 주변의 일정 범위 내의 원시 지형 자료의 해발 고도 들의 대표값을 부여하는 방법을 적용하였다.In general, when applying the elevation to the ground grid of the high-resolution meteorological analysis system, a method of giving a representative value of the elevation of the elevation of the raw terrain data within a certain range around the grid was applied.
그러나, 종래에는 원시 지형 자료의 격자 간격을 분석시스템의 격자 간격 보다 크게 되어, 분석시스템의 격자에 부여되는 해발고도는 원시 지형 자료의 해발고도를 단순 내삽한 형태가 되어, 고해상도의 격자의 장점인 정밀한 계곡과 능선 등의 구현이 불가능하게 되는 문제점이 있다.However, in the related art, the grid spacing of the raw topographical data is larger than the grid spacing of the analysis system, and the altitude above sea level is simply interpolated with the altitude of the raw topographical data. There is a problem that it is impossible to implement precise valleys and ridges.
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 수치지형도 자료를 타일들로 분할 및 재배치하고, 기상분석 시스템의 평면으로 투영한 후, 상기 투영에 의해 생성된 지형자료와 기존의 저해상도 지형자료 간의 가우시안 가중 평균을 통해 고해상도 지형자료를 생성하여 기상분석 시스템에 제공하고자 한다.The present invention has been made to solve the above-mentioned problem, and after dividing and rearranging the digital topographical data into tiles, projecting onto the plane of the meteorological analysis system, the topographic data generated by the projection and the existing low resolution topographical data This study aims to generate high resolution terrain data using Gaussian weighted averages and provide them to the weather analysis system.
전술한 문제를 해결하기 위한 본 실시예에 따른 고해상도 지형자료 생성 방법은, 지형자료 분할부가 수치지형도 자료를 일정 영역의 타일들로 분할하는 제1 단계; 지형자료 배치부가 상기 타일들을 기상분석 시스템의 배치 순서와 일치하도록 재배치하는 제2 단계; 좌표계 변환부가 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를 상기 기상분석 시스템의 거리 단위의 좌표계로 변환하여, 상기 타일들 중에서 선택된 분석 영역에 해당하는 타일들을 결합하는 제3 단계; 지형자료 생성부가 상기 결합된 타일들 중에서 상기 분석 영역을 포함하는 최소한의 타일에 해당하는 타일들을 저장하여 지형자료를 생성하는 제4 단계; 상기 지형자료 생성부가 상기 생성된 지형자료와 저해상도 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성하는 제5 단계;를 포함하여 구성된다.The high resolution terrain data generation method according to the present embodiment for solving the above-mentioned problem, the first step of the terrain data divider divides the digital topographic map data into tiles of a predetermined area; A second step in which the terrain data arranging unit rearranges the tiles to match the arrangement order of the meteorological analysis system; A third step of combining a tile corresponding to an analysis region selected from the tiles by converting a coordinate system of a latitude and longitude unit of the digital topographical data in which a coordinate system converting unit is rearranged into a coordinate system of a distance unit of the meteorological analysis system; A fourth step of generating, by the terrain data generation unit, terrain data by storing tiles corresponding to a minimum tile including the analysis area among the combined tiles; And a fifth step of generating the high resolution terrain data by applying the Gaussian weighted average method to the generated terrain data and the low resolution terrain data.
본 발명의 다른 실시예에 따르면, 상기 수치지형도는 국립지리정보원의 수치지형도일 수 있다.According to another embodiment of the present invention, the digital topographic map may be a digital topographic map of the National Geographic Information Institute.
본 발명의 다른 실시예에 따르면, 상기 기상분석 시스템은 LAPS(Local Analysis and Prediction System)일 수 있다.According to another embodiment of the present invention, the weather analysis system may be a Local Analysis and Prediction System (LAPS).
본 발명의 다른 실시예에 따르면, 상기 제2 단계는 상기 지형자료 배치부가 북서쪽 타일로부터 동쪽 끝 타일에 이르면 아랫줄로 이동하는 구조로 배치되는 상기 수치지형도의 타일들을, 남서쪽 타일로부터 동쪽 끝 타일에 이르면 윗줄로 이동하는 구조로 재배치할 수 있다.According to another embodiment of the present invention, the second step includes the tiles of the digital topographic map arranged in a structure in which the topographical data arranging unit moves in a lower row when it reaches the east end tile from the northwest tile, from the southwest tile to the east end tile. As early as this can be relocated to move to the top row.
본 발명의 다른 실시예에 따르면, 상기 제2 단계는 상기 지형자료 배치부가 상기 재배치되는 상기 타일들이, 영역의 격자 수, 위경도 간격, 평균 고도 및 재배열된 격자별 고도 중에서 적어도 어느 하나를 포함하도록 USGS 형식으로 저장할 수 있다.According to another embodiment of the present invention, the second step may include at least one of the lattice number of the area, the latitude and longitude interval, the average altitude, and the rearranged lattice altitude of the tiles to which the terrain data arrangement unit is rearranged. Can be saved in USGS format.
본 발명의 다른 실시예에 따르면, 상기 제3 단계는 상기 좌표계 변환부가 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를, 상기 람베르트 정각원추도법(Lambert conformal)에 따른 투영 평면에 해당하는 거리 단위의 좌표계로 변환할 수 있다.According to another embodiment of the present invention, the third step corresponds to a coordinate system of latitude and longitude units of the digital topographical data in which the coordinate system converting unit repositions the tiles, and corresponds to a projection plane according to the Lambert conformal method. Can be converted to a coordinate system in distance units.
본 발명의 다른 실시예에 따르면, 상기 제4 단계는 상기 지형자료 생성부가, 상기 타일의 서쪽 경계의 경도가 기상분석영역의 동쪽 경계의 경도 보다 크지 않은 제일 동쪽의 타일을 기상분석영역의 서쪽 끝에 위치시키고, 상기 타일의 동쪽 경계의 경도가 기상분석영역의 서쪽 경계의 경도 보다 작지 않은 제일 서쪽의 타일을 기상분석영역의 동쪽 경계에 위치시키고, 상기 타일의 남쪽 경계의 위도가 기상분석영역의 북쪽 경계의 위도 보다 크지 않은 제일 북쪽의 타일을 기상분석영역의 남쪽 끝에 위치시키고, 상기 타일의 북쪽 경계의 위도가 기상분석영역의 남쪽 경계의 위도 보다 작지 않은 제일 남쪽의 타일을 기상분석영역의 북쪽 경계에 위치시키고 저장하여 지형자료를 생성할 수 있다.According to another embodiment of the present invention, in the fourth step, the terrain data generation unit may include the first eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region. Position the westernmost tile of which the hardness of the east boundary of the tile is not smaller than the hardness of the western boundary of the meteorological analysis zone, and the latitude of the south boundary of the tile north of the meteorological analysis zone Place the northernmost tile that is not greater than the latitude of the boundary at the southern end of the meteorological zone, and the southernmost tile whose latitude at the north boundary of the tile is not less than the latitude of the southern boundary of the meteorological zone. You can create terrain data by placing and storing it in.
본 발명의 다른 실시예에 따르면, 상기 저해상도 지형자료는 상기 기상분석 시스템의 지형자료일 수 있다.According to another embodiment of the present invention, the low resolution terrain data may be terrain data of the meteorological analysis system.
본 발명의 다른 실시예에 따르면, 상기 제4 단계는 상기 지형자료 생성부가 상기 생성된 지형자료와, 1km 해상도의 지형자료에 LAPS(Local Analysis and Prediction System)를 적용하여 생성된 LAPS 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성할 수 있다.According to another embodiment of the present invention, the fourth step is Gaussian to the terrain data generation unit is generated by applying the Local Analysis and Prediction System (LAPS) to the generated terrain data and terrain data of 1km resolution Gaussian A weighted average method can be applied to generate high resolution terrain data.
본 발명의 실시예에 따른 고해상도 지형자료 생성 시스템은, 수치지형도 자료를 일정 영역의 타일들로 분할하는 지형자료 분할부; 상기 타일들을 기상분석 시스템의 배치 순서와 일치하도록 재배치하는 지형자료 배치부; 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를 상기 기상분석 시스템의 거리 단위의 좌표계로 변환하여, 상기 타일들 중에서 선택된 분석 영역에 해당하는 타일들을 결합하는 좌표계 변환부; 상기 결합된 타일들 중에서 상기 분석 영역을 포함하는 최소한의 타일에 해당하는 타일들을 저장하여 지형자료를 생성하고, 상기 생성된 지형자료와 저해상도 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성하는 지형자료 생성부;를 포함하여 구성된다.A high resolution terrain data generation system according to an embodiment of the present invention includes a terrain data divider for dividing a digital topographic map data into tiles of a predetermined area; A terrain data placement unit for rearranging the tiles to match the arrangement order of the weather analysis system; A coordinate system converting unit converting a coordinate system of latitude and longitude unit of the digital topographic map data in which the tiles are rearranged into a coordinate system of distance unit of the meteorological analysis system and combining tiles corresponding to an analysis area selected from the tiles; Generating terrain data by storing tiles corresponding to the minimum tile including the analysis region among the combined tiles, and generating high resolution terrain data by applying a Gaussian weighted average method to the generated terrain data and low resolution terrain data. It is configured to include; terrain data generation unit.
본 발명의 다른 실시예에 따르면, 상기 수치지형도는 국립지리정보원의 수치지형도가 사용될 수 있다.According to another embodiment of the present invention, the digital topographic map may be a digital topographic map of the National Geographic Information Institute.
본 발명의 다른 실시예에 따르면, 상기 기상분석 시스템은 LAPS(Local Analysis and Prediction System)가 사용될 수 있다.According to another embodiment of the present invention, the meteorological analysis system may be a Local Analysis and Prediction System (LAPS).
본 발명의 다른 실시예에 따르면, 상기 지형자료 배치부는 북서쪽 타일로부터 동쪽 끝 타일에 이르면 아랫줄로 이동하는 구조로 배치되는 상기 수치지형도의 타일들을, 남서쪽 타일로부터 동쪽 끝 타일에 이르면 윗줄로 이동하는 구조로 재배치할 수 있다.According to another embodiment of the present invention, the topographical data placement unit moves the tiles of the digital topographic map arranged in a structure that moves to the lower row when the northwest tile reaches the east end tile, and moves to the upper row when the southwest tile reaches the east end tile. Can be relocated to a structure.
본 발명의 다른 실시예에 따르면, 상기 지형자료 배치부는 상기 재배치되는 상기 타일들이, 영역의 격자 수, 위경도 간격, 평균 고도 및 재배열된 격자별 고도 중에서 적어도 어느 하나를 포함하도록 USGS 형식으로 저장할 수 있다.According to another embodiment of the present invention, the geographic data arrangement unit stores the tiles to be rearranged in USGS format such that the tiles to be rearranged include at least one of a grid number of a region, a latitude and longitude interval, an average altitude, and a rearranged altitude of the grid. Can be.
본 발명의 다른 실시예에 따르면, 상기 좌표계 변환부는 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를, 상기 람베르트 정각원추도법(Lambert conformal)에 따른 투영 평면에 해당하는 거리 단위의 좌표계로 변환할 수 있다.According to another embodiment of the present invention, the coordinate system converting unit uses a coordinate system of latitude and longitude unit of the digital topographical data in which the tiles are rearranged, and coordinate system of a distance unit corresponding to the projection plane according to the Lambert conformal method. Can be converted to
본 발명의 다른 실시예에 따르면, 상기 지형자료 생성부는 상기 타일의 서쪽 경계의 경도가 기상분석영역의 동쪽 경계의 경도 보다 크지 않은 제일 동쪽의 타일을 기상분석영역의 서쪽 끝에 위치시키고, 상기 타일의 동쪽 경계의 경도가 기상분석영역의 서쪽 경계의 경도 보다 작지 않은 제일 서쪽의 타일을 기상분석영역의 동쪽 경계에 위치시키고, 상기 타일의 남쪽 경계의 위도가 기상분석영역의 북쪽 경계의 위도 보다 크지 않은 제일 북쪽의 타일을 기상분석영역의 남쪽 끝에 위치시키고, 상기 타일의 북쪽 경계의 위도가 기상분석영역의 남쪽 경계의 위도 보다 작지 않은 제일 남쪽의 타일을 기상분석영역의 북쪽 경계에 위치시키고 저장하여 지형자료를 생성할 수 있다.According to another embodiment of the present invention, the topographical data generating unit places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region, and is located at the western end of the meteorological analysis region. The westmost tile whose longitude of the east boundary is not less than the longitude of the western boundary of the meteorological zone is placed at the east boundary of the meteorological zone, and the latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological zone. Place the northernmost tile at the southern end of the meteorological zone, and place and store the southernmost tile at the north boundary of the meteorological zone, where the latitude of the north boundary of the tile is no less than the latitude of the south boundary of the meteorological zone. Can generate data.
본 발명의 다른 실시예에 따르면, 상기 저해상도 지형자료는 상기 기상분석 시스템의 지형자료가 사용될 수 있다.According to another embodiment of the present invention, the low resolution topographic data may be used the topographic data of the weather analysis system.
본 발명의 다른 실시예에 따르면, 상기 지형자료 생성부는 상기 생성된 지형자료와, 1km 해상도의 지형자료에 LAPS(Local Analysis and Prediction System)를 적용하여 생성된 LAPS 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성할 수 있다.According to another embodiment of the present invention, the terrain data generation unit by applying a Gaussian weighted average method to the generated terrain data and LAPS terrain data generated by applying a Local Analysis and Prediction System (LAPS) to the terrain data of 1km resolution Generate high resolution terrain data.
본 발명의 실시예에 따르면 수치지형도 자료를 타일들로 분할 및 재배치하고, 기상분석 시스템의 평면으로 투영한 후, 상기 투영에 의해 생성된 지형자료와 기존의 저해상도 지형자료 간의 가우시안 가중 평균을 통해 고해상도 지형자료를 생성할 수 있다.According to an embodiment of the present invention, after dividing and rearranging the digital topographical data into tiles, projecting onto a plane of a meteorological analysis system, and performing a high resolution through a Gaussian weighted average between the terrain data generated by the projection and the existing low resolution terrain data. Generate terrain data.
도 1은 본 발명의 일실시예에 따른 고해상도 지형자료 생성 시스템의 구성도이다.1 is a block diagram of a high resolution terrain data generation system according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 고해상도 지형자료 생성 방법을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a method of generating high resolution terrain data according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 일실시예에 따른 고해상도 지형자료를 설명하기 위한 도면이다.3 and 4 are views for explaining the high resolution terrain data according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 바람직한 본 발명의 일실시예에 대해서 상세히 설명한다. 다만, 실시형태를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. 또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. However, in describing the embodiments, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted. In addition, the size of each component in the drawings may be exaggerated for description, it does not mean the size that is actually applied.
도 1은 본 발명의 일실시예에 따른 고해상도 지형자료 생성 시스템의 구성도이다.1 is a block diagram of a high resolution terrain data generation system according to an embodiment of the present invention.
도 1을 참조하여 본 발명의 일실시예에 따른 고해상도 지형자료 생성 시스템을 설명하기로 한다.A high resolution terrain data generation system according to an embodiment of the present invention will be described with reference to FIG. 1.
도 1에 도시된 바와 같이 본 발명의 일실시예에 따른 고해상도 지형자료 생성 시스템은 지형자료 분할부(110), 지형자료 배치부(120), 좌표계 변환부(130) 및 지형자료 생성부(140)를 포함하여 구성된다.As shown in FIG. 1, a high resolution terrain data generation system according to an embodiment of the present invention includes a terrain data partitioner 110, a terrain data deployment unit 120, a coordinate system conversion unit 130, and a terrain data generation unit 140. It is configured to include).
지형자료 분할부(110)는 수치지형도 자료를 일정 영역의 타일들로 분할한다.The terrain data dividing unit 110 divides the digital topographic map data into tiles of a predetermined area.
이때, 상기 수치지형도는 국립지리정보원의 수치지형도로서 10 m의 해상도 자료가 사용될 수 있다.At this time, the digital topographic map may be a 10m resolution data as a digital topographic map of the National Geographic Information Institute.
지형자료 분할부(110)는 수치지형도의 처리시간과 메모리 절약을 위하여 동서 및 남북의 범위가 일정한 여러 개의 작은 영역의 파일인 타일들로 분할한다.The terrain data dividing unit 110 divides the tiles, which are files of several small regions, each of which has a constant range of east, west and south, in order to save processing time and memory of the digital topographic map.
지형자료 배치부(120)는 상기 타일들을 기상분석 시스템의 배치 순서와 일치하도록 재배치한다.The terrain data placement unit 120 rearranges the tiles to match the arrangement order of the weather analysis system.
본 발명의 일실시예에 따르면 상기 기상분석 시스템이라 함은 LAPS(Local Analysis and Prediction System)을 말하며, 지형자료 배치부(120)는 상기 수치지형도 중에서 북서쪽 타일로부터 동쪽 끝 타일에 이르면 아랫줄로 이동하는 구조로 배치되는 상기 수치지형도의 타일들을, LAPS의 배치구조인 남서쪽 타일로부터 동쪽 끝 타일에 이르면 윗줄로 이동하는 구조로 재배치할 수 있다.According to an embodiment of the present invention, the weather analysis system refers to a Local Analysis and Prediction System (LAPS), and the terrain data arranging unit 120 moves downward from the northwest tile to the east end tile in the digital topographic map. Tiles of the digital topographic map arranged in a structure that can be relocated to a structure that moves to the upper row when the southwest tile, which is the layout structure of LAPS, reaches the east end tile.
이때, 상기 지형자료 배치부(120)는 상기 재배치되는 상기 타일들이, 영역의 격자 수, 위경도 간격, 평균 고도 및 재배열된 격자별 고도 중에서 적어도 어느 하나를 포함하도록 USGS 형식으로 저장할 수 있다.In this case, the terrain data placement unit 120 may store the rearranged tiles in a USGS format to include at least one of a grid number, a latitude and longitude interval, an average altitude, and a rearranged altitude of the rearranged grids.
좌표계 변환부(130)는 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를 상기 기상분석 시스템의 거리 단위의 좌표계로 변환하여, 상기 타일들 중에서 선택된 분석 영역에 해당하는 타일들을 결합할 수 있다.The coordinate system converting unit 130 may combine the tiles corresponding to the analysis area selected from the tiles by converting the coordinate system of the latitude and longitude unit of the digital topographic map data in which the tiles are rearranged into the coordinate system of the distance unit of the meteorological analysis system. have.
보다 상세하게는, 좌표계 변환부(130)는 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를, 상기 람베르트 정각원추도법(Lambert conformal)에 따른 투영 평면에 해당하는 거리 단위의 좌표계로 변환할 수 있다.More specifically, the coordinate system converting unit 130 converts the coordinate system of the latitude and longitude unit of the digital topographical data in which the tiles are rearranged into a coordinate system of a distance unit corresponding to the projection plane according to the Lambert conformal method. I can convert it.
이때, 좌표계 변환부(130)는 분석영역의 남서쪽 모서리의 좌표를 원점으로 하여 수치지형도 자료의 남서쪽 모서리의 좌표와 일치시킬 수 있다.In this case, the coordinate system conversion unit 130 may match the coordinates of the southwest corner of the digital topographical data with the coordinates of the southwest corner of the analysis area as the origin.
지형자료 생성부(140)는 상기 결합된 타일들 중에서 상기 분석 영역을 포함하는 최소한의 타일에 해당하는 타일들을 저장하여 지형자료를 생성한다.The terrain data generation unit 140 generates the terrain data by storing the tiles corresponding to the minimum tiles including the analysis area among the combined tiles.
이때, 지형자료 생성부(140)는 상기 타일의 서쪽 경계의 경도가 기상분석영역의 동쪽 경계의 경도 보다 크지 않은 제일 동쪽의 타일을 기상분석영역의 서쪽 끝에 위치시키고, 상기 타일의 동쪽 경계의 경도가 기상분석영역의 서쪽 경계의 경도 보다 작지 않은 제일 서쪽의 타일을 기상분석영역의 동쪽 경계에 위치시킬 수 있다.At this time, the terrain data generation unit 140 places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the weather analysis region, and places the westernmost end of the weather analysis region, and the hardness of the east boundary of the tile. Can be placed on the eastern boundary of the meteorological analysis zone, with the westernmost tile not less than the hardness of the western boundary of the meteorological analysis zone.
또한, 지형자료 생성부(140)는 상기 타일의 남쪽 경계의 위도가 기상분석영역의 북쪽 경계의 위도 보다 크지 않은 제일 북쪽의 타일을 기상분석영역의 남쪽 끝에 위치시키고, 상기 타일의 북쪽 경계의 위도가 기상분석영역의 남쪽 경계의 위도 보다 작지 않은 제일 남쪽의 타일을 기상분석영역의 북쪽 경계에 위치시키고 저장하여 지형자료를 생성할 수 있다.In addition, the terrain data generating unit 140 places the northernmost tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the weather analysis region, and places the tile at the southern end of the weather analysis region, and the latitude of the north boundary of the tile. The geographic data can be generated by placing and storing the southernmost tile, which is not smaller than the latitude of the south boundary of the meteorological analysis zone, at the north boundary of the meteorological analysis zone.
또한, 지형자료 생성부(140)는 저해상도 지형자료와 상기 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성한다.In addition, the terrain data generation unit 140 generates high resolution terrain data by applying a Gaussian weighted average method to the low resolution terrain data and the terrain data.
이때, 상기 저해상도 지형자료는 상기 기상분석 시스템의 지형자료로서, 지형자료 생성부(140)는 상기 생성된 지형자료와, 1km 해상도의 지형자료에 LAPS(Local Analysis and Prediction System)를 적용하여 생성된 LAPS 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성할 수 있다.In this case, the low resolution terrain data is the terrain data of the weather analysis system, the terrain data generation unit 140 is generated by applying the Local Analysis and Prediction System (LAPS) to the generated terrain data and terrain data of 1km resolution High resolution terrain data can be generated by applying Gaussian weighted average method to LAPS terrain data.
도 2는 본 발명의 일실시예에 따른 고해상도 지형자료 생성 방법을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a method of generating high resolution terrain data according to an embodiment of the present invention.
도 2를 참조하여 본 발명의 일실시예에 따른 고해상도 지형자료 생성 방법을 설명하기로 한다.Referring to Figure 2 will be described a method of generating high resolution terrain data according to an embodiment of the present invention.
먼저, 지형자료 분할부가 수치지형도 자료를 일정 영역의 타일들로 분할한다(S210).First, the terrain data division unit divides the digital topographic map data into tiles of a predetermined area (S210).
이때, 상기 수치지형도가 국립지리정보원의 수치지형도로서 10 m의 해상도 자료가 사용될 수 있으며, 지형자료 분할부는 수치지형도의 처리시간과 메모리 절약을 위하여 동서 및 남북의 범위가 일정한 여러 개의 작은 영역의 파일인 타일들로 분할할 수 있다.In this case, the digital topographic map may be used as a digital topographic map of the National Geographic Information Institute, and 10m resolution data may be used. The terrain data partitioning unit may include files of several small regions having a constant range of east, west, north and south for saving processing time and memory of the digital topographic map. Can be divided into tiles.
이후, 지형자료 배치부가 상기 타일들을 기상분석 시스템의 배치 순서와 일치하도록 재배치한다(S220).Thereafter, the terrain data arrangement unit rearranges the tiles to match the arrangement order of the weather analysis system (S220).
본 발명의 일실시예에 따르면 상기 기상분석 시스템이라 함은 LAPS(Local Analysis and Prediction System)을 말하며, 지형자료 배치부가 상기 수치지형도 중에서 북서쪽 타일로부터 동쪽 끝 타일에 이르면 아랫줄로 이동하는 구조로 배치되는 상기 수치지형도의 타일들을, LAPS의 배치구조인 남서쪽 타일로부터 동쪽 끝 타일에 이르면 윗줄로 이동하는 구조로 재배치할 수 있다.According to an embodiment of the present invention, the weather analysis system refers to a Local Analysis and Prediction System (LAPS), and the terrain data arranging unit is arranged in a structure that moves from the northwest tile to the east end tile of the digital topographic map in a lower line. The tiles of the digital topographic map can be rearranged in a structure that moves upward when the southwest tile, which is the arrangement structure of LAPS, reaches the east end tile.
이때, 상기 지형자료 배치부가 상기 재배치되는 상기 타일들이, 영역의 격자 수, 위경도 간격, 평균 고도 및 재배열된 격자별 고도 중에서 적어도 어느 하나를 포함하도록 USGS 형식으로 저장할 수 있다.In this case, the topographic data placement unit may be stored in the USGS format so that the tiles to be rearranged include at least one of the number of grids of the area, the latitude and longitude interval, the average altitude and the rearranged altitude of the lattice.
이후, 좌표계 변환부가 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를 상기 기상분석 시스템의 거리 단위의 좌표계로 변환하고(S230), 상기 타일들 중에서 선택된 분석 영역에 해당하는 타일들을 결합할 수 있다(S240).Thereafter, a coordinate system converting unit converts a coordinate system of latitude and longitude unit of the digital topographical data in which the tiles are rearranged into a coordinate system of distance unit of the meteorological analysis system (S230), and combines tiles corresponding to an analysis area selected from the tiles. It may be (S240).
보다 상세하게는, 좌표계 변환부(130)가 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를, 상기 람베르트 정각원추도법(Lambert conformal)에 따른 투영 평면에 해당하는 거리 단위의 좌표계로 변환할 수 있다.More specifically, the coordinate system 130 converts the coordinate system of the latitude and longitude unit of the digital topographical data in which the tiles are rearranged into the coordinate system of the distance unit corresponding to the projection plane according to the Lambert conformal method. I can convert it.
이때, 좌표계 변환부가 분석영역의 남서쪽 모서리의 좌표를 원점으로 하여 수치지형도 자료의 남서쪽 모서리의 좌표와 일치시킬 수 있다.In this case, the coordinate system converting unit may match the coordinates of the southwest corner of the digital topographical data with the coordinates of the southwest corner of the analysis region as the origin.
이후, 지형자료 생성부가 상기 결합된 타일들 중에서 상기 분석 영역을 포함하는 최소한의 타일에 해당하는 타일들을 저장하여 지형자료를 생성한다(S250).Thereafter, the terrain data generation unit generates the terrain data by storing tiles corresponding to the minimum tiles including the analysis area among the combined tiles (S250).
이때, 지형자료 생성부가 상기 타일의 서쪽 경계의 경도가 기상분석영역의 동쪽 경계의 경도 보다 크지 않은 제일 동쪽의 타일을 기상분석영역의 서쪽 끝에 위치시키고, 상기 타일의 동쪽 경계의 경도가 기상분석영역의 서쪽 경계의 경도 보다 작지 않은 제일 서쪽의 타일을 기상분석영역의 동쪽 경계에 위치시킬 수 있다.At this time, the terrain data generating unit places the most eastern tile whose hardness of the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological analysis region, and the hardness of the east boundary of the tile is the meteorological analysis region. The westernmost tile not less than the hardness of the western boundary of can be located at the eastern boundary of the meteorological area.
또한, 지형자료 생성부가 상기 타일의 남쪽 경계의 위도가 기상분석영역의 북쪽 경계의 위도 보다 크지 않은 제일 북쪽의 타일을 기상분석영역의 남쪽 끝에 위치시키고, 상기 타일의 북쪽 경계의 위도가 기상분석영역의 남쪽 경계의 위도 보다 작지 않은 제일 남쪽의 타일을 기상분석영역의 북쪽 경계에 위치시키고 저장하여 지형자료를 생성할 수 있다.Also, the terrain data generating unit places the northernmost tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological analysis area, and places the latitude of the north boundary of the tile in the meteorological analysis area. Terrain data can be generated by placing and storing the southernmost tile, which is not smaller than the latitude of the southern boundary of, at the northern boundary of the meteorological analysis region.
이후, 지형자료 생성부가 저해상도 지형자료와 상기 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성한다(S260).Thereafter, the terrain data generation unit generates the high resolution terrain data by applying the Gaussian weighted average method to the low resolution terrain data and the terrain data (S260).
이때, 상기 저해상도 지형자료는 상기 기상분석 시스템의 지형자료로서, 지형자료 생성부가 상기 생성된 지형자료와, 1km 해상도의 지형자료에 LAPS(Local Analysis and Prediction System)를 적용하여 생성된 LAPS 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성할 수 있다.At this time, the low resolution terrain data is the terrain data of the meteorological analysis system, the terrain data generation unit to the generated terrain data, and the LAPS terrain data generated by applying the Local Analysis and Prediction System (LAPS) to the terrain data of 1km resolution Gaussian weighted average method can be applied to generate high resolution terrain data.
도 3 및 도 4는 본 발명의 일실시예에 따른 고해상도 지형자료를 설명하기 위한 도면으로서, 도 3은 본 발명의 일실시예에 따른 저해상도 지형자료를 도시한 도면이고, 도 4는 본 발명의 일실시예에 따른 고해상도 지형자료를 도시한 도면이다.3 and 4 are views for explaining high resolution terrain data according to an embodiment of the present invention, Figure 3 is a view showing a low resolution terrain data according to an embodiment of the present invention, Figure 4 is a view of the present invention A diagram showing high resolution terrain data according to an embodiment.
본 발명의 일실시예에 따르면, 도 3은 1km 해상도의 지형자료에 LAPS(Local Analysis and Prediction System)를 적용하여 생성된 저해상도의 LAPS 지형자료이다.According to an embodiment of the present invention, Figure 3 is a low resolution LAPS terrain data generated by applying the Local Analysis and Prediction System (LAPS) to terrain data of 1km resolution.
본 발명의 일실시예에 따르면, 상기와 같이 구성된 저해상도 LAPS 지형자료와, 수치지형도 자료를 타일들로 분할 및 재배치하고, 기상분석 시스템의 평면으로 투영한 후, 상기 투영에 의해 생성된 지형자료 간의 가우시안 가중 평균을 통해 도 4에 도시된 바와 같은 고해상도 지형자료를 생성할 수 있다.According to an embodiment of the present invention, the low resolution LAPS topographic data configured as described above, the digital topographical data are divided and rearranged into tiles, projected onto the plane of the meteorological analysis system, and then the topographic data generated by the projection. The Gaussian weighted average may generate high resolution terrain data as shown in FIG. 4.
종래에는 기상분석 시스템인 LAPS의 분석 영역 내에서 해상도가 다른 경우, 저해상도와 고해상도 부분의 경계 영역에서 선형 가중평균에 따른 불연속 경계면이 두드러졌으나, 본 발명에 따르면 도 4에 도시된 바와 같이 고해상도 지형자료를 생성할 때 초기 추정장으로서 저해상도 지형자료를 사용하여 불연속 경계면이 발생하지 않도록 개선할 수 있다.Conventionally, when the resolution is different in the analysis region of LAPS, which is a meteorological analysis system, the discrete boundary surface according to the linear weighted average is prominent in the boundary region of the low resolution and the high resolution portion, but according to the present invention, as shown in FIG. The low-resolution topographical data can be used to generate discontinuous boundaries as an initial estimation field when generating.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the invention as described above, specific embodiments have been described. However, many modifications are possible without departing from the scope of the invention. The technical spirit of the present invention should not be limited to the above-described embodiments of the present invention, but should be determined not only by the claims, but also by those equivalent to the claims.

Claims (18)

  1. 지형자료 분할부가 수치지형도 자료를 일정 영역의 타일들로 분할하는 제1 단계;A first step in which the terrain data division unit divides the digital topographic map data into tiles of a predetermined area;
    지형자료 배치부가 상기 타일들을 기상분석 시스템의 배치 순서와 일치하도록 재배치하는 제2 단계;A second step in which the terrain data arranging unit rearranges the tiles to match the arrangement order of the meteorological analysis system;
    좌표계 변환부가 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를 상기 기상분석 시스템의 거리 단위의 좌표계로 변환하여, 상기 타일들 중에서 선택된 분석 영역에 해당하는 타일들을 결합하는 제3 단계;A third step of combining a tile corresponding to an analysis region selected from the tiles by converting a coordinate system of a latitude and longitude unit of the digital topographical data in which a coordinate system converting unit is rearranged into a coordinate system of a distance unit of the meteorological analysis system;
    지형자료 생성부가 상기 결합된 타일들 중에서 상기 분석 영역을 포함하는 최소한의 타일에 해당하는 타일들을 저장하여 지형자료를 생성하는 제4 단계;A fourth step of generating, by the terrain data generation unit, terrain data by storing tiles corresponding to a minimum tile including the analysis area among the combined tiles;
    상기 지형자료 생성부가 상기 생성된 지형자료와 저해상도 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성하는 제5 단계;A fifth step of generating the high resolution terrain data by applying a Gaussian weighted average method to the generated terrain data and the low resolution terrain data;
    를 포함하는 고해상도 지형자료 생성 방법.High resolution terrain data generation method comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 수치지형도는,The digital topographic map,
    국립지리정보원의 수치지형도인 고해상도 지형자료 생성 방법.High resolution terrain data generation method, which is a topographical map of the National Geographic Information Institute.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 기상분석 시스템은,The meteorological analysis system,
    LAPS(Local Analysis and Prediction System)인 고해상도 지형자료 생성 방법.High resolution terrain data generation method, which is a Local Analysis and Prediction System (LAPS).
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제2 단계는,The second step,
    상기 지형자료 배치부가 북서쪽 타일로부터 동쪽 끝 타일에 이르면 아랫줄로 이동하는 구조로 배치되는 상기 수치지형도의 타일들을, 남서쪽 타일로부터 동쪽 끝 타일에 이르면 윗줄로 이동하는 구조로 재배치하는 고해상도 지형자료 생성 방법.High resolution terrain data generation method for rearranging the tiles of the digital topographic map arranged in a structure that moves to the lower line when the terrain data placement unit reaches the east end tile from the northwest tile, the structure moves to the upper line when the southwest tile reaches the east end tile .
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제2 단계는,The second step,
    상기 지형자료 배치부가 상기 재배치되는 상기 타일들이, 영역의 격자 수, 위경도 간격, 평균 고도 및 재배열된 격자별 고도 중에서 적어도 어느 하나를 포함하도록 USGS 형식으로 저장하는 고해상도 지형자료 생성 방법.And reconstructing the tiles to be rearranged in the USGS format to include at least one of a grid number of a region, a latitude and longitude interval, an average altitude, and a rearranged lattice altitude.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 제3 단계는,The third step,
    상기 좌표계 변환부가 상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를,The coordinate system converting the coordinate system of the latitude and longitude unit of the digital topographical data in which the tiles are rearranged;
    상기 람베르트 정각원추도법(Lambert conformal)에 따른 투영 평면에 해당하는 거리 단위의 좌표계로 변환하는 고해상도 지형자료 생성 방법.High-resolution terrain data generation method for converting into a coordinate system of the distance unit corresponding to the projection plane according to the Lambert conformal method (Lambert conformal).
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제4 단계는,The fourth step,
    상기 지형자료 생성부가,The terrain data generation unit,
    상기 타일의 서쪽 경계의 경도가 기상분석영역의 동쪽 경계의 경도 보다 크지 않은 제일 동쪽의 타일을 기상분석영역의 서쪽 끝에 위치시키고,Place the most eastern tile whose hardness at the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological zone,
    상기 타일의 동쪽 경계의 경도가 기상분석영역의 서쪽 경계의 경도 보다 작지 않은 제일 서쪽의 타일을 기상분석영역의 동쪽 경계에 위치시키고,The westernmost tile whose hardness of the east boundary of the tile is not less than the hardness of the western boundary of the meteorological analysis zone is placed at the east boundary of the meteorological analysis zone,
    상기 타일의 남쪽 경계의 위도가 기상분석영역의 북쪽 경계의 위도 보다 크지 않은 제일 북쪽의 타일을 기상분석영역의 남쪽 끝에 위치시키고,The most northern tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological zone is placed at the southern end of the meteorological zone,
    상기 타일의 북쪽 경계의 위도가 기상분석영역의 남쪽 경계의 위도 보다 작지 않은 제일 남쪽의 타일을 기상분석영역의 북쪽 경계에 위치시키고 저장하여 지형자료를 생성하는 고해상도 지형자료 생성 방법.And generating the topographical data by placing and storing the southernmost tile whose latitude of the north boundary of the tile is not smaller than the latitude of the south boundary of the weather analysis region at the north boundary of the weather analysis region.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 저해상도 지형자료는,The low resolution terrain data,
    상기 기상분석 시스템의 지형자료인 고해상도 지형자료 생성 방법.High resolution terrain data generation method that is the terrain data of the weather analysis system.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 제4 단계는,The fourth step,
    상기 지형자료 생성부가 상기 생성된 지형자료와, 1km 해상도의 지형자료에 LAPS(Local Analysis and Prediction System)를 적용하여 생성된 LAPS 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성하는 고해상도 지형자료 생성 방법.The terrain data generation unit generates high resolution terrain data by applying a Gaussian weighted average method to the generated terrain data and LAPS terrain data generated by applying a Local Analysis and Prediction System (LAPS) to terrain data having a 1km resolution. How to produce.
  10. 수치지형도 자료를 일정 영역의 타일들로 분할하는 지형자료 분할부;A terrain data dividing unit for dividing the digital topographic map data into tiles of a predetermined area;
    상기 타일들을 기상분석 시스템의 배치 순서와 일치하도록 재배치하는 지형자료 배치부;A terrain data placement unit for rearranging the tiles to match the arrangement order of the weather analysis system;
    상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를 상기 기상분석 시스템의 거리 단위의 좌표계로 변환하여, 상기 타일들 중에서 선택된 분석 영역에 해당하는 타일들을 결합하는 좌표계 변환부;A coordinate system converting unit converting a coordinate system of latitude and longitude unit of the digital topographic map data in which the tiles are rearranged into a coordinate system of distance unit of the meteorological analysis system and combining tiles corresponding to an analysis area selected from the tiles;
    상기 결합된 타일들 중에서 상기 분석 영역을 포함하는 최소한의 타일에 해당하는 타일들을 저장하여 지형자료를 생성하고, 상기 생성된 지형자료와 저해상도 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성하는 지형자료 생성부;Generating terrain data by storing tiles corresponding to the minimum tile including the analysis region among the combined tiles, and generating high resolution terrain data by applying a Gaussian weighted average method to the generated terrain data and low resolution terrain data. Terrain data generation unit;
    를 포함하는 고해상도 지형자료 생성 시스템.High resolution terrain data generation system comprising a.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 수치지형도는,The digital topographic map,
    국립지리정보원의 수치지형도인 고해상도 지형자료 생성 시스템.High resolution terrain data generation system which is a digital topographic map of National Geographic Information Institute.
  12. 청구항 10에 있어서,The method according to claim 10,
    상기 기상분석 시스템은,The meteorological analysis system,
    LAPS(Local Analysis and Prediction System)인 고해상도 지형자료 생성 시스템.High resolution terrain data generation system, which is a Local Analysis and Prediction System (LAPS).
  13. 청구항 10에 있어서,The method according to claim 10,
    상기 지형자료 배치부는,The terrain data placement unit,
    북서쪽 타일로부터 동쪽 끝 타일에 이르면 아랫줄로 이동하는 구조로 배치되는 상기 수치지형도의 타일들을, 남서쪽 타일로부터 동쪽 끝 타일에 이르면 윗줄로 이동하는 구조로 재배치하는 고해상도 지형자료 생성 시스템.A high-resolution terrain data generation system for rearranging tiles of the digital topographic map arranged in a structure that moves to the lower row when the northwest tile reaches the east end tile, and moves to a structure that moves upward when the southwest tile reaches the east end tile.
  14. 청구항 10에 있어서,The method according to claim 10,
    상기 지형자료 배치부는,The terrain data placement unit,
    상기 재배치되는 상기 타일들이, 영역의 격자 수, 위경도 간격, 평균 고도 및 재배열된 격자별 고도 중에서 적어도 어느 하나를 포함하도록 USGS 형식으로 저장하는 고해상도 지형자료 생성 시스템.And the tiles to be rearranged are stored in a USGS format to include at least one of a grid number of a region, a latitude and longitude interval, an average elevation, and an rearranged grid-specific elevation.
  15. 청구항 10에 있어서,The method according to claim 10,
    상기 좌표계 변환부는,The coordinate system conversion unit,
    상기 타일들을 재배치한 수치지형도 자료의 위경도 단위의 좌표계를,Coordinate system of latitude and longitude unit of digital topographical data in which the tiles are rearranged,
    상기 람베르트 정각원추도법(Lambert conformal)에 따른 투영 평면에 해당하는 거리 단위의 좌표계로 변환하는 고해상도 지형자료 생성 시스템.A high-resolution terrain data generation system for converting the coordinate system of the distance unit corresponding to the projection plane according to the Lambert conformal method (Lambert conformal).
  16. 청구항 10에 있어서,The method according to claim 10,
    상기 지형자료 생성부는,The terrain data generation unit,
    상기 타일의 서쪽 경계의 경도가 기상분석영역의 동쪽 경계의 경도 보다 크지 않은 제일 동쪽의 타일을 기상분석영역의 서쪽 끝에 위치시키고,Place the most eastern tile whose hardness at the western boundary of the tile is not greater than the hardness of the eastern boundary of the meteorological zone,
    상기 타일의 동쪽 경계의 경도가 기상분석영역의 서쪽 경계의 경도 보다 작지 않은 제일 서쪽의 타일을 기상분석영역의 동쪽 경계에 위치시키고,The westernmost tile whose hardness of the east boundary of the tile is not less than the hardness of the western boundary of the meteorological analysis zone is placed at the east boundary of the meteorological analysis zone,
    상기 타일의 남쪽 경계의 위도가 기상분석영역의 북쪽 경계의 위도 보다 크지 않은 제일 북쪽의 타일을 기상분석영역의 남쪽 끝에 위치시키고,The most northern tile whose latitude of the south boundary of the tile is not greater than the latitude of the north boundary of the meteorological zone is placed at the southern end of the meteorological zone,
    상기 타일의 북쪽 경계의 위도가 기상분석영역의 남쪽 경계의 위도 보다 작지 않은 제일 남쪽의 타일을 기상분석영역의 북쪽 경계에 위치시키고 저장하여 지형자료를 생성하는 고해상도 지형자료 생성 시스템.And a top southern tile whose latitude of the north boundary of the tile is not smaller than the latitude of the south boundary of the meteorological analysis region is located at the north boundary of the meteorological analysis region and stored to generate the terrain data.
  17. 청구항 10에 있어서,The method according to claim 10,
    상기 저해상도 지형자료는,The low resolution terrain data,
    상기 기상분석 시스템의 지형자료인 고해상도 지형자료 생성 시스템.High resolution terrain data generation system which is terrain data of the meteorological analysis system.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 지형자료 생성부는,The terrain data generation unit,
    상기 생성된 지형자료와, 1km 해상도의 지형자료에 LAPS(Local Analysis and Prediction System)를 적용하여 생성된 LAPS 지형자료에 가우시안 가중평균법을 적용하여 고해상도 지형자료를 생성하는 고해상도 지형자료 생성 시스템.A high resolution terrain data generation system generating high resolution terrain data by applying a Gaussian weighted average method to the generated terrain data and LAPS terrain data generated by applying a Local Analysis and Prediction System (LAPS) to terrain data having a resolution of 1 km.
PCT/KR2014/010836 2013-11-14 2014-11-12 High resolution topographical data generating method and system WO2015072736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130138256A KR101560733B1 (en) 2013-11-14 2013-11-14 Method and system for generating high resolution terrain data
KR10-2013-0138256 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072736A1 true WO2015072736A1 (en) 2015-05-21

Family

ID=53057617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010836 WO2015072736A1 (en) 2013-11-14 2014-11-12 High resolution topographical data generating method and system

Country Status (2)

Country Link
KR (1) KR101560733B1 (en)
WO (1) WO2015072736A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107918930A (en) * 2017-12-28 2018-04-17 华润电力技术研究院有限公司 A kind of topographic map generates system
CN116958717A (en) * 2023-09-20 2023-10-27 山东省地质测绘院 Intelligent geological big data cleaning method based on machine learning

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168427B1 (en) * 2018-11-14 2020-10-21 김춘지 Spatial down-scaling method with regional characteristics
KR102417411B1 (en) * 2020-06-17 2022-07-05 주식회사 한화 Terrain elevation data system and opertation method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010149A (en) * 1999-07-16 2001-02-05 이계철 Automatic creation method for digital elevation model of various resolution
JP2011054144A (en) * 2009-09-02 2011-03-17 Korea Inst Of Energy Research Atmospheric flow field simulation method in consideration of topographical resolution difference
KR20110065058A (en) * 2009-12-09 2011-06-15 한국지질자원연구원 System for producing digital elevation model and digital terrain model using numerical map and method therefor
KR20130019876A (en) * 2011-08-18 2013-02-27 대한민국(국립기상연구소장) Method and apparatus for developing high resolution solar meteorological resource map based on meteorological data
KR101285804B1 (en) * 2012-01-31 2013-07-12 부경대학교 산학협력단 Retrieval system and method of horizontal field with the ground based meteorological data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018624B1 (en) 2008-11-06 2011-03-03 한국해양연구원 coastal mapping method for manufacturing fine-grid topographical map using nautical chart and topographic map
KR101006729B1 (en) 2010-07-23 2011-01-10 (주)동광지엔티 Digital elevation model generation method for generating and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010149A (en) * 1999-07-16 2001-02-05 이계철 Automatic creation method for digital elevation model of various resolution
JP2011054144A (en) * 2009-09-02 2011-03-17 Korea Inst Of Energy Research Atmospheric flow field simulation method in consideration of topographical resolution difference
KR20110065058A (en) * 2009-12-09 2011-06-15 한국지질자원연구원 System for producing digital elevation model and digital terrain model using numerical map and method therefor
KR20130019876A (en) * 2011-08-18 2013-02-27 대한민국(국립기상연구소장) Method and apparatus for developing high resolution solar meteorological resource map based on meteorological data
KR101285804B1 (en) * 2012-01-31 2013-07-12 부경대학교 산학협력단 Retrieval system and method of horizontal field with the ground based meteorological data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107918930A (en) * 2017-12-28 2018-04-17 华润电力技术研究院有限公司 A kind of topographic map generates system
CN116958717A (en) * 2023-09-20 2023-10-27 山东省地质测绘院 Intelligent geological big data cleaning method based on machine learning
CN116958717B (en) * 2023-09-20 2023-12-12 山东省地质测绘院 Intelligent geological big data cleaning method based on machine learning

Also Published As

Publication number Publication date
KR20150056108A (en) 2015-05-26
KR101560733B1 (en) 2015-10-19

Similar Documents

Publication Publication Date Title
WO2015072736A1 (en) High resolution topographical data generating method and system
CN101726748B (en) Method for displaying evaluation data of nuclear radiation aftermath
CN103281376B (en) The automatic buffer memory construction method of magnanimity sequential remote sensing image under a kind of cloud environment
CN103325068B (en) A kind of method for drafting of real-time dynamic three-dimensional power grid contamination area distribution diagram
Liang et al. New equations of wave energy assessment accounting for the water depth
CN103559360B (en) The construction method of a kind of three-dimensional overhead electrical power line model and system
CN107609049B (en) High-efficiency GIS map engine generation method
CN109274645B (en) Hierarchical access implementation method for smart city space-time cloud platform
CN111651649A (en) Virtual fence construction method and system for power transmission line and tower
WO2020209704A1 (en) Method for generating high-resolution marine data, and device using same
CN110457819B (en) Method for identifying urban natural air ducts according to natural environment
CN104392388A (en) Automatic imaging method and automatic imaging method for contact diagram of transformer substation of power grid GIS
Domingo et al. Long-term changes in 3D urban form in four Spanish cities
CN114510803A (en) Method and device for automatically generating topological graph of power distribution network, electronic equipment and storage medium
CN102930481B (en) network load density analysis method and system
CN107748502A (en) The passive spatial perception exchange method of entity in operation emulation based on discrete event
CN111190243B (en) Weather prediction graph generation method, computer device and readable storage medium thereof
WO2018225985A1 (en) Method and server for predicting weather-related dangerous situation at specific point on path of user by referencing separate observation data observed from multiple observation points
CN110825105B (en) Satellite film pattern spot inspection method and device based on unmanned aerial vehicle
CN114384611B (en) Typhoon simulation area determining method and device, electronic equipment and storage medium
CN107688431A (en) Man-machine interaction method based on radar fix
CN111914137A (en) GDP spatialization method based on remote sensing data and POI data
CN111738119A (en) Forest fire area estimation method and device based on MODIS satellite monitoring
ATE374507T1 (en) METHOD AND SYSTEM FOR RADIO COVERAGE PLANNING WITH A LOCAL DOUBLE GRID
CN114022635A (en) Method, device and equipment for constructing three-dimensional building model and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862923

Country of ref document: EP

Kind code of ref document: A1