WO2015072703A1 - 상향링크 동기를 획득하고 상향링크 연결을 설정하는 방법 - Google Patents

상향링크 동기를 획득하고 상향링크 연결을 설정하는 방법 Download PDF

Info

Publication number
WO2015072703A1
WO2015072703A1 PCT/KR2014/010670 KR2014010670W WO2015072703A1 WO 2015072703 A1 WO2015072703 A1 WO 2015072703A1 KR 2014010670 W KR2014010670 W KR 2014010670W WO 2015072703 A1 WO2015072703 A1 WO 2015072703A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrh
bbu
random access
access preamble
terminal
Prior art date
Application number
PCT/KR2014/010670
Other languages
English (en)
French (fr)
Inventor
최혜영
조희정
정재훈
한진백
이은종
김진민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020167006971A priority Critical patent/KR101789639B1/ko
Priority to CN201480061860.4A priority patent/CN105765882B/zh
Priority to EP14862025.5A priority patent/EP3070859B1/en
Priority to US15/033,213 priority patent/US10362599B2/en
Publication of WO2015072703A1 publication Critical patent/WO2015072703A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to a method for establishing an uplink connection between a terminal, an RRH, and a BBU in an environment in which RRHs and BBUs are separately implemented.
  • a radio access network (RAN) structure is changing to a form in which various small cells such as a pico cell and a femto cell interoperate with a macro cell.
  • the radio access network structure refers to a hierarchical cell structure or a heterogeneous cell structure in which small cells for low power / near-field communication are mixed in addition to a homogeneous network based on a conventional macro cell.
  • the new wireless access network architecture aims to improve the Quality of Experience (QoE) by providing end users with high data rates.
  • QoE Quality of Experience
  • the present invention has been made to solve the problems of the above-described technology, and an object of the present invention is to allow the terminal to establish an uplink connection even if the terminal does not receive a direct downlink signal for uplink synchronization acquisition from the RRH.
  • Still another object of the present invention is to actively establish an uplink connection of a UE even in a C-RAN environment in which the connection relationship between the RRH and the BBU changes over time.
  • Another object of the present invention is to provide a service efficiently to a terminal by separating the downlink connection and the uplink connection asymmetrically set.
  • the method for establishing an uplink connection for solving the technical problem includes receiving a downlink signal from a plurality of RRHs, and random access preamble to any one target RRH whose strength of the received downlink signal is greater than or equal to a threshold value among the plurality of RRHs. Transmitting, and establishes an uplink connection with the selected RRH based on a difference between the received power of the random access preamble received by the target RRH and the received power of the random access preamble overheared by a neighbor RRH adjacent to the target RRH. Receiving a random access response message indicative of a message being established, and establishing an uplink connection with the selected RRH.
  • the transmitting of the random access preamble may transmit the random access preamble generated based on the physical random access channel (PRACH) configuration information included in the downlink signal.
  • PRACH physical random access channel
  • the PRACH configuration information may include information on at least one of a PRACH configuration index, a PRACH frequency offset, and a root sequence index.
  • the random access response message may indicate a connection with the RRH that received the random access preamble with greater power among the target RRH and the neighbor RRH, and may be received from the BBU mapped with the target RRH.
  • the BBU compares the received power of the random access preambles received by the target RRH and the neighbor RRH, and compares the target RRH and the neighbor RRH to different first and second BBUs.
  • the first BBU and the second BBU may compare and exchange information on random access preambles received by the target RRH and the neighbor RRH.
  • one of the BBUs of the first BBU and the second BBU requests an uplink connection request to support the UE through the connection with the selected RRH.
  • the message may be transmitted to the other BBU of the first BBU and the second BBU.
  • the uplink connection setting method further includes receiving information on a timing advance value between the selected RRH and the terminal, and the timing advance value is calculated from a timing advance value between the RRH and the terminal other than the selected RRH among the target RRH and the neighboring RRH. Can be.
  • the terminal for solving the technical problem includes a transmitter, a receiver, and a processor connected to the transmitter and the receiver to establish an uplink connection, the processor controls the receiver to receive a downlink signal from a plurality of RRH, The transmitter controls the transmitter to transmit the random access preamble to any one target RRH whose strength of the received downlink signal is greater than or equal to a threshold among the plurality of RRHs, and is adjacent to the reception power of the random access preamble received by the target RRH and the target RRH.
  • the receiver is controlled to receive a random access response message instructing to establish an uplink connection with the selected RRH based on the difference in the received power of the random access preamble overlaid by the neighbor RRH, and establishes an uplink connection with the selected RRH. Set it.
  • a method for establishing an uplink connection by a terminal receiving a first random access preamble transmitted through a target RRH, and a neighbor RRH adjacent to the target RRH overhears the random access preamble Receiving the second random access preamble delivered to), based on the difference between the received power of the first random access preamble and the received power of the second random access preamble, any one of the target RRH and the neighbor RRH to be connected to the terminal Selecting an RRH, and transmitting a random access response message to the terminal instructing to establish an uplink connection with the selected RRH.
  • the BBU compares the received power of the first random access preamble and the second random access preamble, and when the target RRH is connected to the BBU and the neighbor RRH is connected to another BBU, The BBU may receive information on the second random access preamble received by another BBU and compare it with the received power of the first random access preamble.
  • the BBU may transmit an uplink connection request message requesting to support the terminal through the connection with the selected RRH to another BBU.
  • the BBU for solving the technical problem includes a transmitter, a receiver, and a processor connected to the transmitter and the receiver to establish an uplink connection, wherein the processor is configured to receive a first random access preamble transmitted by the terminal through a target RRH.
  • a receiving unit is controlled to receive and receive a second random access preamble, which is transmitted by neighboring RRHs adjacent to the target RRH by overhearing the random access preamble, and receives the received power of the first random access preamble and the second random access preamble.
  • the transmitter controls the transmitter to select one of the target RRHs and the neighboring RRHs to be connected to the terminal and to transmit a random access response message to the terminal to establish an uplink connection with the selected RRH based on the difference in the received power of the emblem. .
  • the UE can efficiently establish an uplink connection, so that normal service can be provided even when the channel condition change between the UE and the RRH or the power of the RRH is insufficient. .
  • FIG. 1 is a diagram illustrating a heterogeneous network environment according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a cloud LAN environment according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a method of obtaining uplink sync associated with one embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an uplink synchronization acquisition method according to another embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an uplink synchronization acquisition method according to another embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a configuration of a terminal, an RRH, and a BBU according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a 'mobile station (MS)' may be a user equipment (UE), a subscriber station (SS), a mobile subscriber station (MSS), a mobile terminal, an advanced mobile station (AMS) or a terminal. (Terminal), etc. may be substituted.
  • the mobile station may be used in the same sense as the M2M device.
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
  • FIG. 1 is a diagram illustrating a heterogeneous network environment according to an embodiment of the present invention.
  • next generation mobile communication a hierarchical cell structure in which a small cell (for example, a pico cell or a femto cell) for low power / near-field communication is mixed in a homogeneous network based on a macro cell in order to more stably guarantee data services such as multimedia.
  • a small cell for example, a pico cell or a femto cell
  • a homogeneous network based on a macro cell in order to more stably guarantee data services such as multimedia.
  • the structure of the heterogeneous network considered in the next generation communication network may be formed in the form shown in FIG. 1.
  • a plurality of small cells coexist in one macro cell, and each small cell base station is allocated resources according to a cell coordination scheme to serve terminals.
  • One of the core technologies for implementing the heterogeneous network environment described above may include a separate implementation of a remote radio head (RRH) and a baseband unit (BBU).
  • RRH remote radio head
  • BBU baseband unit
  • FIG. 2 is a diagram illustrating a cloud radio access network (C-RAN) environment according to an embodiment of the present invention.
  • the cloud LAN environment includes multiple RRHs (200a, 200b) and software-based virtual BBU pools (350a, 350b) or virtual base stations (VBS) and access control / resource management / authentication servers that control them. And the like.
  • the cloud LAN environment as the elements of the core network are changed to an open IP network, the elements of the cloud LAN are directly linked to the elements of the core network in an organic relationship.
  • an environment in which the RRHs 200a and 200b and the BBUs 300a and 300b are separated may be mentioned. According to the separation of the RRH and the BBU cloud cloud environment having the following characteristics can be created.
  • virtual BBU pools 350a and 350b exist to include a number of BBUs 300a and 300b, and the virtual BBU pools 350a and 350b have multiple wireless connections through access gateways (Access GWs 250a and 250b). It has a structure associated with shared antenna system (SAS) RRHs 200a and 200b that support a multi-radio access technology (Multi-RAT).
  • the virtual BBU pools 350a and 350b include a plurality of BBUs 300a and 300b supporting various radio access technologies, and one RRH 200a or 200b may be associated with one or more BBUs 300a and 300b. In contrast, one BBU 300a and 300b may be associated with one or more RRHs 200a and 200b.
  • the BBUs 300a and 300b in the virtual BBU pools 350a and 350b may be connected to the RRHs 200a and 200b by IDeal / non-Ideal backhaul.
  • a unique service area is allocated to one virtual BBU pool 350a, and may be connected to another virtual BBU pool 350b to which another service area is allocated through an X2 interface or an interface similar to X2.
  • all RRHs 200a and 200b in virtual BBU pools 350a and 350b have the same Virtual Cell ID, and all BBUs 300a and 300b in virtual BBU pools 350a and 350b. All of the RRHs 200a and 200b are connected by an ideal backhaul so that the RRHs 200a and 200b are controlled by the BBUs 300a and 300b associated with them.
  • a synchronization signal used for downlink synchronization acquisition is transmitted by each of the RRHs 200a and 200b, and the virtual BBU pool 350a to which the RRHs 200a and 200b belong to the synchronization signal.
  • the RRH ID that can distinguish each of the RRHs 200a and 2000b may be included and transmitted.
  • each of the RRHs 200a and 200b assumes a simple antenna, and the L1 / L2 / L3 layer processing is applied to the BBUs 300a and 300b present in the virtual BBU pools 350a and 350b.
  • the RRHs 200a and 200b have SAS attributes, which means that the RRHs 200a and 200b can change their affiliation from one BBU to another BBU in the virtual BBU pools 350a and 350b. That is, the time-varying affiliation of the RRHs 200a and 200b is changed from one BBU to another according to the situation of the BBUs 300a and 300b (for example, the load of the BBU, the available resource situation, and the like). can be changed.
  • the network can provide a zone-based service by configuring a zone or coverage that can provide an optimal communication environment for each user. Will be.
  • FIG. 3 is a diagram for explaining a method of obtaining uplink sync associated with one embodiment of the present invention.
  • the embodiment shown in solid lines between the BBU and RRHs in FIG. 3 illustrates a case in which BBU # 0 is connected to two RRH # 0 and RRH # 1.
  • 3 illustrates a case where BBU # 1 is connected to RRH # 0 and BBU # 2 is connected to RRH # 1, respectively, in a dotted line between BBU and RRH.
  • a UE accesses a cell having a large downlink (DL) received signal and performs downlink and uplink communication through a corresponding cell.
  • DL downlink
  • the transmission power of the macro cell and the small cell is different. That is, since the transmission power of the macro cell is generally larger than the transmission power of the small cell, the downlink signal of the macro cell may be received at a greater intensity than the downlink signal of the small cell to a terminal located adjacent to the small cell.
  • the uplink (UL) connection may be connected to a small cell which is a cell closer to the distance between the terminal and the base station.
  • an asymmetric connection between DL / UL has been proposed as a method for improving the yield of a service provided to a terminal.
  • transmit power (specifically, transmit power for each carrier) may be set differently for each RRH.
  • transmission powers of RRH # 0 and RRH # 1 adjacent to each other are different from each other, and the UE is located adjacent to RRH # 1 within the coverage of RRH # 0.
  • the distance from the RRH # 1 is shorter than the distance from the RRH # 0 to perform UL communication through the RRH # 1 may be good for improving the UL yield of the terminal.
  • the UE may be considered that the UE is connected to the RRH # 1 to transmit a UL signal.
  • the UE proposes a method for obtaining UL synchronization for UL transmission when the UE does not receive a DL signal from a specific RRH connected to the DL.
  • the contents to be described below are described by taking a C-RAN SAS situation as an example, but are not limited thereto, and may be similarly or similarly applied to various network environments in which a macro cell and a small cell are mixed.
  • the above-described asymmetric DL / UL connection relationship may be always performed to improve communication performance or may be performed only when a specific condition is triggered.
  • information on a predetermined RRH obtained by the UE performing a measurement report on the RRH may be transmitted to the serving BBU through the serving RRH of the UE.
  • the serving BBU of the terminal may check the presence and information of RRHs neighboring to the serving RRH of the terminal based on the measurement report message from the terminal, and from the A-GW connecting the RRH and the BBU or the measurement report message of the terminal It is also known about the BBUs connected to the RRHs.
  • the case where the power value of any of the RRHs different from the RRHs neighboring to the serving RRHs of the UE by more than a threshold may be the trigger condition of the aforementioned DL / UL separation connection. That is, when several RRHs are connected to one BBU, one BBU can know the information about the DL transmission power of the RRHs, and the BBU separates the DL / UL when the difference in the transmission power becomes more than a threshold. The connection can be determined.
  • an interface X2 interface or X2 similar interface
  • the BBUs utilize the X2 setup request message of the conventional LTE / LTE-A or add a field indicating information on the transmission power to the eNB configuration update message through the aforementioned BBU interface. Exchange information between RRHs.
  • each BBU should connect the RRHs by DL / UL separation for the UE according to this information. It can be seen.
  • the PRACH configuration process may be performed when the trigger condition of the DL / UL split connection described above is satisfied, or may be performed according to a decision of a network such as a BBU pool or a BBU.
  • a network such as a BBU pool or a BBU.
  • LTE / LTE-A when setting up an X2 interface between base stations or using a 'served cell information field' of a base station configuration update message, information on RPACH configuration is transmitted.
  • Such information may be equally or similarly applied in a C-RAN SAS environment, and information about the RRH associated with itself may be transmitted between the BBUs with this information.
  • information about the RRH associated with itself may be transmitted between the BBUs with this information.
  • interference control or CoMP schemes between RRHs can be effectively applied.
  • a case of using the same carrier in a plurality of RRHs may be considered. That is, resources for transmitting the PRACH of the UE located within the coverage of the RRHs may be set identically for the plurality of RRHs. In this case, the plurality of RRHs are configured such that terminals within their coverage use different random access preambles.
  • the BBU may include a PRACH configuration index and a PRACH frequency for configuring the PRACH.
  • the PRACH frequency offset By setting the PRACH frequency offset to be the same, the resources to be applied to the PRACH are set to be the same.
  • 64 different random access preambles may be utilized by setting different root sequence index values. Alternatively, it may be configured to use 32 different random access preambles while using the same root sequence index.
  • the following description will be made based on the embodiment implemented in the former manner.
  • the RRHs not only prevent random access preambles from colliding with each other even if the PRACHs transmitted by the UE to the RRHs use the same resource, and the PRACH received from the UE is transmitted to any RRH by the PRACH received from the UE. Awareness is also known.
  • BBU # 0 may determine to set asymmetrically by separating the DL / UL connection of the terminal. . Accordingly, in order to set the PRACH resources of RRH # 0 and RRH # 1 equally, BBU # 0 sets the PRACH configuration index for both RRHs to '0' and the PRACH frequency offset to '0'.
  • the root sequence index for RRH # 0 may be set to '0', and the root sequence index for RRH # 1 may be set to '64'.
  • the BBU # 0 may change the PRACH setting of another RRH according to the PRACH setting of the specific RRH.
  • the BBU informs the other RRH of the changed system information, and the RRH acquiring the changed system information transmits the changed system information to inform the terminal of the change.
  • the RRH having obtained the changed system information may transmit a system information modification message of a paging message to the terminal for the idle terminal.
  • each BBU can set the same PRACH configuration index value and PRACH frequency offset for a specific carrier of the RRH associated with it. That is, BBUs can equally allocate resources for PRACH to RRHs mapped and operated.
  • the root sequence index may identify the PRACH transmitted by the UE without collision between the UEs. It is set to be.
  • the BBUs set the same PRACH configuration index and PRACH frequency offset for the connected RRH, but different root sequence indexes.
  • the PRACH configuration index, the PRACH frequency offset, and the root sequence index are determined in a specific BBU, the determined information is transmitted to another BBU (the BBU connected with the RRH neighboring to the RRH connected with itself) to inform that the PRACH configuration has been changed.
  • BBU # 1 determines to separate the DL / UL connection of the UE to be set . Subsequently, BBU # 1 utilizes the PRACH configuration information that was exchanged when forming an interface with BBU # 2 before setting the PRACH for RRH # 0 and RRH # 1. That is, BBU # 1 sets the PRACH configuration index and PRACH frequency offset set for RRH # 1 in the same way for RRH # 0 with reference to PRACH configuration information for RRH # 1 received from BBU # 2.
  • the root sequence index for RRH # 0 can be set to 0 and the root sequence index for RRH # 1 can be set to 64. . That is, BBU # 1 allocates the same PRACH resources to the two RRHs, but sets the random access preamble differently.
  • BBU # 1 may change PRACH setting values for RRH # 0. Subsequently, the BBU # 1 may transmit the changed system information about the RRH # 0 to the SIB, and may inform whether the system information is changed through a page message for the idle terminal.
  • resources for the PRACH transmission of the terminal may be set differently for a plurality of RRH.
  • random access preambles to be used by terminals connected to the plurality of RRHs may be set to be the same or different.
  • the BBUs may satisfy the trigger condition such as the transmission power difference of the RRHs described above or may be based on the network configuration and / or the PRACH configuration index of the RRHs.
  • the PRACH frequency offset may be set differently.
  • the two values may be set to the same (that is, even if the PRACH configuration value is set to the same if the carriers are different, they can be distinguished from each other). In this case, since the PRACH for the plurality of RRHs can be distinguished by the allocated resources, the root sequence index may be set to be the same or different.
  • BBU # 0 when a trigger condition for transmission power of two RRHs is satisfied, BBU # 0 is set to RRH # 0. And set the PRACH resources of the RRH # 1 differently. That is, BBU # 0 may set the PRACH configuration index for RRH # 0 to 0 and the PRACH frequency offset to 0, and the PRACH configuration index for RRH # 1 may be set to 1, and the PRACH frequency offset may be set to 0.
  • BBU # 0 may set the root sequence index of RRH # 0 to 0 and the root sequence index of RRH # 1 to 64 or 0 to differently set random access preambles of RRH # 0 and RRH # 1. That is, in BBU # 0, when the PRACH resources of the two RRHs are set differently, the index values for the random access preambles may be set to be the same or different.
  • BBU # 0 may change not only the PRACH setting of RRH # 0 whose transmission power is changed but also the PRACH setting of other RRHs. In this case, BBU # 0 may transmit the changed system information to the terminal connected to the RRH # 1 to the SIB, and inform the user of whether the system information has changed through the page for the idle terminal.
  • each of the BBUs is based on a trigger condition or a network configuration. At least one of the PRACH configuration index and the PRACH frequency offset of the RRHs connected to each other may be set differently. That is, each BBU may configure two RRHs to use different resources for the PRACH. At this time, the root sequence index may be the same or different as described above.
  • each BBU must reserve PRACH resources used by two RRHs. For example, the same resource as the PRACH resource of RRH # 0 must be reserved for RRH # 1 so that RRH # 1 can overhear the PRACH transmitted to RRH # 0. The same applies to RRH # 0.
  • BBU # 1 sets the PRACH resources of the two RRHs differently, and sets the root sequence indexes the same or different.
  • BBU # 1 may utilize the PRACH configuration value received from BBU # 2 when the interface between BBU # 1 and BBU # 2 is formed. Subsequently, BBU # 1 may inform BBU # 2 that the PRACH setting value of RRH # 0 has changed and transmit the changed setting value to BBU # 2.
  • the above-described embodiment may be similarly applied to a situation in which the transmission power of RRH # 0 is dynamically changed.
  • PRACH configuration value may be transmitted for all terminals located within the coverage of a specific RRH, or DL / UL may be transmitted only for a terminal that supports a separate connection.
  • the RRH transmits a PRACH configuration value only for terminals that support DL / UL separation connection
  • the PRACH configuration value for terminals whose DL / UL connection is not separated is also included in system information (eg, SIB). Must be sent.
  • FIG. 4 is a diagram illustrating an uplink synchronization acquisition method according to another embodiment of the present invention.
  • a method for obtaining UL synchronization even when the terminal does not receive a DL signal following the above-described PRACH configuration process will be described.
  • the terminal transmits the PRACH to the RRH of which the strength of the received DL signal is strong. At this time, the terminal sets the PRACH based on the PRACH configuration information included in the system information broadcasted by the RRH whose strength of the DL signal is strong, and transmits the PRACH to the RRH.
  • RRH # 1 located adjacent to RRH # 0 transmits the PRACH1 signal transmitted by the UE to RRH # 0. Overhear.
  • FIG. 4 a case in which the connection relationship between the BBU and the RRH is illustrated by a solid line and a case illustrated by a dotted line will be described.
  • each of the RRHs already knows information about a PRACH resource and a random access preamble configured for different RRHs. Accordingly, each RRH may overhear the PRACH transmitted by the UE with respect to the other RRH, and may transmit the received PRACH to BBU # 0 connected to the RRH by overhearing. In this case, BBU # 0 may not schedule DL transmission or UL reception of RRH # 1 for a resource of PRACH 1 configured in RRH # 0 to overhear PRACH 1 transmitted to RRH # 0.
  • the UE acquires system information from RRH # 0, which is an RRH to establish a DL connection, and powers RRH # 0 to receive a random access preamble to be transmitted through a higher layer signal to RRH # 0 at a specific power.
  • the preamble is transmitted through an adjustment process.
  • BBU # 0 measures the reception power of the random access preamble transmitted to RRH # 0 and the random access preamble overlaid with RRH # 1.
  • the BBU # 0 receives the random access preamble transmitted by the UE through the RRH # 0 and the RRH # 1, the UE transmits the PRACH targeting the RRH # 0 and the DL signal transmitted from the RRH # 0 to the UE. It can be seen that the strength is the largest (or the best DL channel situation with the UE).
  • the BBU # 0 may know that the RRH # 1 overhears the PRACH transmitted by the UE for the RRH # 0.
  • BBU # 0 determines that the RRH received with the larger size of the PRACH transmitted by the UE is set to the UL connection with the UE by measuring the signal strength of the PRACH through the two received RRHs. This is because receiving a PRACH transmitted by the UE at a large strength means that a short distance from the UE or a UL channel situation with the UE is good.
  • FIG. 5 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention.
  • FIG. 5 an embodiment (when RRH # 0 is connected to BBU # 1 and RRH # 1 is connected to BBU # 2), which is illustrated by a dotted line in FIG. 4, will be described in more detail.
  • BBU # 1 and BBU # 2 set PRACHs 1 and 2 for RRH # 0 and RRH # 1, respectively.
  • the UE acquires system information on the RRH of which the strength of the received DL signal is strong from the BBU, and transmits the PRACH with the adjusted transmission power for the RRH (for example, RRH # 0) (S562).
  • the UE transmits PRACH 1 to RRH # 0, not only RRH # 0 but also RRH # 1 neighboring RRH # 0 may be overheared (S564).
  • the RRH # 0 and the RRH # 1 transmit the PRACHs they receive to the BBU # 1 and the BBU # 2, respectively.
  • the BBU # 1 and the BBU # 2 that received the PRACH from the RRH # 0 and the RRH # 1, respectively, may know that the PRACH transmitted by the UE is transmitted for the RRH # 0.
  • at least one of the received random access preamble information (preamble index, etc.), the received power received by each RRH, and the RRH ID (the ID of the RRH overhearing the PRACH of the terminal) is stored in BBU # 1 and BBU #. It may be exchanged between the two, the BBU # 2 may transmit the corresponding information to the BBU # 1 (S566).
  • the BBU # 1 receiving this information compares the received power of the PRACH transmitted by the UE to RRH # 0 and the received power of the PRACH overlaid by RRH # 1 to determine which RRH to UL to be connected to the UE (S568). ). BBU # 1 may connect the UL of the UE to receive the PRACH at a greater strength to improve the UL performance of the UE.
  • the BBU # 2 transmits an UL connection request message (UL connection request message) requesting to support the UL of the terminal (S570).
  • the UL connection request message includes a 'field indicating a message type, a field indicating a preamble index transmitted by the UE, a field indicating a target RRH ID (RRH # 0) to which the preamble is transmitted, and an RRH ID (RRH overhearing the preamble).
  • # 1) a field indicating a source BBU ID (BBU # 1), a field indicating a destination BBU ID (BBU # 2) ', and an interface between the BBUs (X2 or X2 similar). Interface).
  • BBU # 2 Upon receiving the UL connection request message, BBU # 2 knows that it supports the UL of the UE and informs that the UL connection request message has been normally received by transmitting an UL connection response message to BBU # 1. (S572).
  • the UL connection response message includes a 'field indicating a message type, a field indicating a preamble index transmitted by the UE, a field indicating a target RRH ID (RRH # 0) to which the preamble is transmitted, and an RRH ID (RRH overhearing the preamble).
  • the UL connection response message may also include a field indicating information on the UL carrier for the terminal to perform UL communication with the RRH # 1.
  • Such information may include some (rach-ConfigCommon and prach-Config information may be omitted) information transmitted through DL SIB2 in the conventional LTE / LTE-A system, and specific examples thereof are described in Table 1 below.
  • the UL connection response message may also include scheduling information for transmitting an RRC connection request message to the RRH # 1 and UL timing related information to the RRH # 1.
  • the BBU # 1 receiving the UL connection response message recognizes that the BBU # 2 normally receives the UL connection request message, and it can be seen that the BBU # 2 will support the UL of the UE.
  • BBU # 1 may also know information about a carrier to be transmitted to the terminal in relation to UL.
  • the terminal may determine the RRH to establish the UL connection.
  • FIG. 6 to 10 illustrate a method for acquiring UL synchronization after the terminal establishes an UL connection.
  • FIG. 6 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention, and describes timing advance in a conventional LTE / LTE-A system.
  • a base station transmits a DL signal to a terminal, and the DL signal is received by the terminal through a propagation delay according to a relative distance from the base station.
  • the UE may calculate an appropriate DL reception timing in consideration of a propagation delay using the DL synchronization signal.
  • the terminal for which the initial UL transmission timing is not set performs an initial random access procedure for obtaining the UL transmission timing.
  • the UE assumes UL transmission timing in the same manner as the DL reception timing (eg, DL subframe or subframe boundary) and transmits a PRACH at the predicted UL transmission timing.
  • a predetermined offset value may be applied to the DL reception timing and the UL transmission timing.
  • the PRACH transmitted from the terminal is received by the base station through a propagation delay according to the distance between the terminal and the base station, and the base station receives the PRACH that has passed the delay by the time of combining the DL propagation delay and the UL propagation delay.
  • the base station estimates the total delay through the PRACH detection and determines and indicates how the terminal should adjust the UL transmission timing.
  • the adjusted transmission time point is referred to as timing advance (TA).
  • FIG. 7 to 10 are diagrams illustrating an uplink synchronization acquisition method according to another embodiment of the present invention, and FIG. 7 illustrates timing advance in a C-RAN environment.
  • the UE cannot receive a DL channel from the RRH and cannot synchronize DL. Accordingly, even if the terminal does not acquire the DL synchronization, a method for obtaining the UL synchronization to the corresponding RRH is proposed.
  • the case where the RRHs adjacent to the terminal is synchronized with each other and will be described separately.
  • the terminal transmits the PRACH to the RRH (for example, RRH # 0) where the strength of the DL signal is strong
  • the BBU connected to the target RRH estimates the total propagation delay between the terminal and the target RRH through the PRACH and calculates the TA of the terminal. .
  • FIG. 8 is a diagram illustrating an uplink synchronization acquisition method according to another embodiment of the present invention.
  • BBU # 0 may calculate a TA with RRH # 0, which is the RRH to which the UE is connected, as (T0 + T1) / 2. If the DL propagation delay T0 between the UE and the RRH # 0 can be approximated to be the same as the UL propagation delay T1, the BBU # 0 may also calculate the UL propagation delay T2 between the UE and the RRH # 1. The TA value calculated through the above process and the RRH # 1 is calculated as about T2.
  • BBU # 0 schedules a random access response to the UE using a PDCCH of a common search space configured with a random access radio network temporary ID (RA-RNTI).
  • RA-RNTI random access radio network temporary ID
  • BBU # 0 transmits a random access response message to the terminal through the PDSCH indicated by the PDCCH (S852).
  • the RA-RNTI may use the same or similar method used in the conventional LTE / LTE-A system, and the UE performs blind decoding on the PDCCH using the RA-RNTI during a specific window size.
  • the random access response message may include information on the RRH # 1 UL-connected to the terminal, in addition to the information transmitted in the conventional LTE / LTE-A system.
  • Information about the RRH # 1 is information about the carrier frequency of the RRH # 1, bandwidth information, RRC SIB information related to the uplink, information on the TA value to RRH # 1 (about T2), RRH ID (RRH Information about # 1), information indicating DL / UL separation connection, information on C-RNTI, and information on RA-preamble identifier.
  • BBU # 0 transmits an uplink grant so that the UE can transmit an RRC connection request message to the RRH # 1 using the C-RNTI value of the UE.
  • the terminal transmits UL data scheduled by the UL grant (S854).
  • the terminal may also set the UL connection to RRH # 0.
  • BBU # 0 may transmit a message having the same or similar form as the random access response message described with reference to FIG. 7 to the terminal.
  • the UE Upon receiving the random access response message, the UE recognizes that a UL connection is established with RRH # 0.
  • the BBU # 0 is the terminal to the RRH # 0 by using the C-RNTI of the terminal.
  • the UL grant is transmitted to transmit the RRC connection request message.
  • BBU # 0 may not transmit a UL grant for the UE to transmit the RRC connection request message to the RRH # 1.
  • the UE transmits the random access preamble and blindly decodes the PDCCH using the RA-RNTI during a time interval of a specific window size. If the DCI format scrambled using the RA-RNTI is detected, the UE may receive a random access response message transmitted through the PDSCH using the UE.
  • the UL is configured to connect the UL to the RRH # 1 by separating the DL. The UE acquires the TA value of the RRH # 1 to know when to transmit the UL data to the RRH # 1. have.
  • the UE performs blind decoding using a C-RNTI (or a temporary C-RNTI) for a search period of the PDCCH received from RRH # 0. Subsequently, the terminal receiving the UL grant transmits an RRC connection request message using a carrier of RRH # 1 transmitted through a random access response message defined according to the received UL grant.
  • a C-RNTI or a temporary C-RNTI
  • the UE receives a random access response message from the RRH # 0, and then C-RNTI (or temporary C-RNTI) for the search interval of the PDCCH received from the RRH # 1 within the interval of a predetermined window size after a specific time Blind decoding is performed.
  • the terminal that has received the UL grant from the carrier of the RRH # 1 transmits an RRC connection request message according to the received UL grant.
  • the terminal may transmit an RRC connection re-establishment request message.
  • the RRC connection request message and the RRC connection reestablishment request message may be implemented in the same or similar form.
  • the above-described RRC connection request message includes information indicating the DL / UL split connection, information on the ID (RRH # 0) of the RRH to which the UE will establish the DL connection, and ID (RRH # 1) of the RRH to which the UE will establish the UL connection. Information may be included.
  • the RRC connection request message may be transmitted at a time determined using the TA value and resource configuration information included in the random access response message received by the terminal. Receiving such an RRC connection request message, RRH # 1 delivers a message to BBU # 0, BBU # 0 transmits an RRC connection setup message (RRC connectoin setup mesasge) to the terminal.
  • BBU # 0 transmits a DL DCI format for RRC connection setup as a DL grant using a C-RNTI (or a temporary C-RNTI), and the terminal receiving the RRC connection setup message receives a C-RNTI ( Alternatively, the temporary C-RNTI) can be utilized as a subsequent C-RNTI.
  • FIG. 9 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention.
  • FIG. 9 a connection relationship (in the case where RRH # 0 is connected to BBU # 1 and RRH # 1 is connected to BBU # 2) illustrated as a dotted line in FIG. 4 will be described as an example.
  • FIG. 9 as in FIG. 8, synchronization between two RRHs is described.
  • the UL connection response message S572 transmitted by the BBU # 2 described with reference to FIG. 5 to the BBU # 1 may additionally include information on the TA between the RRH # 1 calculated in the BBU # 2 and the UE. .
  • BBU # 1 transmits a random access response message to the UE (S962), and informs the BBU # 2 of a C-RNTI (or temporary C-RNTI) value allocated to the UE by transmitting a UL information message to BBU # 2. It may be (S964).
  • the BBU # 2 may receive the RRC connection request message transmitted by the UE to the RRH # 1 (S966).
  • BBU # 2 transmits the RRC connection request message transmitted by the UE to BBU # 1 (S968), and informs BBU # 1 of ID information (eg, S-TMSI) of the UE included in the RRC connection request message. have.
  • ID information eg, S-TMSI
  • the BBU # 1 receiving the RRC connection request message can know that the UE that has been allocated the C-RNTI has transmitted the RRC connection request message, and is able to dedicate the UL resource related information to be used by the terminal and use a signal radio bearer (SRB). ) Is set and included in the RRC connection setup message and transmitted to the terminal (S970).
  • BBU # 1 may inform BBU # 2 about the radio bearer allocated to the terminal.
  • the UE may use the C-RNTI used after the random access procedure is normally performed, and may perform an attach procedure.
  • the UE receives a random access response message from the BBU to perform UL connection with the RRH # 1.
  • the UE having received the UL carrier frequency, bandwidth, and PRACH setting values as the UL carrier information transmits the RRC connection request to the RRH # 1, the RRC connection setup message is not received from the RRH # 0.
  • a random access preamble may be sent directly to one.
  • the UE may perform two PRACH transmission processes to more accurately estimate the TA value with the RRH # 1.
  • the UE can know the difference between the subframe synchronization of RRH # 0 and RRH # 1, but can not know the index of each subframe. Accordingly, in order for the UE to directly transmit the PRACH to the RRH # 1, the UE must know information about a synchronization gap between the RRH # 0 and the RRH # 1.
  • the random access response message transmitted from the BBU # 0 or the BBU # 1 to the RRH # 0 is included in the subframe index of the RRH # 1 at the time of having the subframe # 0 index of the RRH # 0, or the RRH # 1 may inform the UE of the subframe index at the time when the UE overhears the preamble transmitted to RRH # 0. Or, since such timing related information may be needed even when a BBU connected to two RRHs coordinates PRACH-related resources, a process of adjusting the timing transmitted by the two RRHs may be required.
  • the subframe index when the BBU # 2 connected to the RRH # 1 overloads the random access preamble by the RRH # 1 may be transmitted through a UL connection response message.
  • the BBU # 1 receiving the same may transmit the received information to the terminal by transmitting a random access response message to the terminal.
  • FIG. 10 is a diagram for explaining a method of obtaining uplink sync according to another embodiment of the present invention. Unlike the embodiment described with reference to FIGS. 7 to 9, FIG. 10 illustrates a case where synchronization is not synchronized between RRHs.
  • FIG. 10 when synchronization is not synchronized between the RRHs, the above-described TA estimation method between the RRH # 1 and the UE cannot be applied.
  • the case illustrated by the solid line of FIG. 4 and the dotted line will be described. Explain separately.
  • a TA value between RRH # 1 and the UE is' between the UE and RRH # 0 at a time when the PRACH is overheard. Calculated by subtracting TA. Since the BBU # 0 knows both values required for the TA calculation between the RRH # 1 and the UE, the TA between the RRH # 1 and the UE can be easily calculated. The calculated TA value is transmitted from the BBU # 0 to the terminal through the RRH # 0. Subsequently, the random access process may be the same or similar to the process described above with reference to FIGS. 7 to 9.
  • the TA value between RRH # 1 and the UE is also overheared by PRACH. It can be calculated by subtracting TA between RRH # 0 and UE from time.
  • BBU # 2 can only know the value of X2 shown in FIG. 10, and BBU # 1 can know only the value of X3.
  • BBU # 1 can transmit the values of X1 and X3 to BBU # 2, or BBU # 2 can transmit the values of X1 and X2 to BBU # 1.
  • BBU # 1 or BBU # 2 May calculate a TA value between the RRH # 1 and the UE. Meanwhile, the process of transmitting B1 # 1 to the BBU # 2 by X1 and X3 may be transmitted while the BBU # 1 transmits a UL connection request message to the BBU # 2. If BBU # 1 sends X1 and X3 to BBU # 2 and BBU # 2 calculates the TA value, BBU # 2 sends the calculated TA value to BBU # 1.
  • the calculated TA value may be transmitted in a UL connection response message transmitted from BBU # 2 to BBU # 1.
  • the BBU # 1 receiving the UL connection response message may include a TA value while transmitting a random access response message to the terminal.
  • the random access process may be the same or similar to the processes of FIGS. 7 to 9 described above.
  • FIG. 11 is a block diagram illustrating a configuration of a terminal 100, an RRH 200, and a BBU 300 according to an embodiment of the present disclosure.
  • FIG. 11 illustrates a 1: 1 communication environment between the terminal 100 and the RRH 200, a communication environment may be established between a plurality of terminals and the RRH.
  • the terminal 100 may include a radio frequency (RF) unit 110, a processor 120, and a memory 130.
  • the conventional base station 150 is implemented to include a transmitter 212, a receiver 214, a processor 310, and a memory 320.
  • the components included in the conventional base station 150 are implemented by being separated into the RRH 200 and the BBU 300.
  • the RRH 200 serving as a simple antenna includes only the transmitter 212 and the receiver 214.
  • the overall process of communication is controlled by the processor 310 and the memory 320 included in the BBU 300.
  • various connection relationships such as 1: 1, 1: N, M: 1, M: N (M and N are natural numbers) may be formed between the RRH 200 and the BBU 300.
  • the RF unit 110 included in the terminal 100 may include a transmitter 112 and a receiver 114.
  • Transmitter 112 and receiver 114 are configured to transmit and receive signals with RRH 200.
  • the processor 120 may be configured to be functionally connected to the transmitter 112 and the receiver 114 to control a process in which the transmitter 112 and the receiver 114 transmit and receive signals to and from the RRH 200 and other devices.
  • the processor 120 may perform various processing on a signal to be transmitted and then transmit the signal to the transmitter 112, and may perform a process on the signal received by the receiver 114.
  • the processor 120 may store information included in the exchanged message in the memory 130.
  • the terminal 100 can perform the method of various embodiments of the present invention described above.
  • the transmitter 212 and the receiver 214 of the RRH 200 are configured to transmit and receive signals with the terminal 100.
  • the processor 310 of the BBU 300 connected to the RRH 200 is functionally connected to the transmitter 212 and the receiver 214 of the RRH 200 so that the transmitter 212 and the receiver 214 are different devices. It may be configured to control the process of transmitting and receiving a signal with.
  • the processor 310 may perform various processing on a signal to be transmitted, transmit the same to the transmitter 212, and may perform a process on the signal received by the receiver 214. If necessary, the processor 310 may store information included in the exchanged message in the memory 320. With such a structure, the RRH 200 and the BBU 300 may perform the method of the various embodiments described above.
  • Processors 120 and 310 of the terminal 100 and the BBU 300 direct (eg, control, coordinate, manage, etc.) operations in the terminal 100, the RRH 200, and the BBU 300.
  • Each of the processors 120 and 310 may be connected to memories 130 and 320 that store program codes and data.
  • the memories 130 and 320 are coupled to the processors 120 and 310 to store operating systems, applications, and general files.
  • the processors 120 and 310 of the present invention may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like.
  • the processors 120 and 310 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the above-described method may be written as a program executable on a computer, and may be implemented in a general-purpose digital computer which operates the program using a computer readable medium.
  • the structure of the data used in the above-described method can be recorded on the computer-readable medium through various means.
  • Program storage devices that may be used to describe storage devices that include executable computer code for performing the various methods of the present invention should not be understood to include transient objects, such as carrier waves or signals. do.
  • the computer readable medium includes a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (eg, a CD-ROM, a DVD, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer Security & Cryptography (AREA)

Abstract

복수의 RRH로부터 하향링크 신호를 수신하고, 복수의 RRH 중에서 수신된 하향링크 신호의 세기가 임계값 이상인 어느 하나의 대상 RRH로 랜덤 액세스 프리엠블을 전송하고, 대상 RRH가 수신한 랜덤 액세스 프리엠블의 수신 전력과 대상 RRH에 인접한 이웃 RRH가 오버히어(overhear)한 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여 선택된 RRH와 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 수신하고, 선택된 RRH와의 상향링크 연결을 설정하는 단말 및 상향링크 연결 설정 방법이 개시된다.

Description

상향링크 동기를 획득하고 상향링크 연결을 설정하는 방법
본 발명은 RRH와 BBU가 분리 구현되는 환경에서 단말, RRH, BBU 간의 상향링크 연결을 설정하는 방법과 관련된 기술이다.
무선 접속망(Radio Access Network, RAN) 구조가 피코 셀(pico cell), 펨토 셀(femto cell) 등 다양한 형태의 스몰 셀(small cell)들이 매크로 셀(macro cell)과 연동하는 형태로 변화하고 있다. 이러한 무선 접속망 구조는 종래의 매크로 셀 기반의 동종(homogeneous) 망에 더하여 저전력/근거리 통신을 위한 스몰 셀들이 혼재하는 계층적(hierarchical) 셀 구조 또는 이기종(heterogeneous) 셀 구조를 의미한다. 새로운 무선 접속망 구조는 최종 사용자에게 높은 데이터 전송율을 제공함으로써 체감 품질(Quality of Experience, QoE)을 증진하는 것을 목적으로 한다.
3GPP(3rd Generation Partnership Project) 표준화 범주 중 하나인 Small Cell Enhancements for E-UTRA and E-UTRAN SI(Study Item)에서는, 저전력 노드들을 사용하는 실내/실외(indoor/outdoor) 시나리오들을 개선하기 위한 논의가 이루어지고 있으며, 이러한 시나리오들과 요구사항들이 TR 36.932에 기술되어 있다. 또한, Small Cell Enhancements for E-UTRA and E-UTRAN SI 에서는 사용자가 동일한 혹은 다른 캐리어(carrier)를 사용하는 매크로 셀 레이어(Macro Cell Layer)와 스몰 셀 레이어(Small Cell Layer)들에 동시적 연결성을 갖는 이중 연결성(Dual Connectivity) 개념에 대한 장점들을 도출하는 작업이 논의되고 있다.
상술한 흐름을 고려할 때, 다양한 스몰 셀들이 배치(deploy)됨에 따라 사용자들은 네트워크에 물리적으로 더 가까이 위치하게 된다. 따라서, 개선된 5G 무선 접속망에서는 종래와 같은 기지국의 셀에 기반한 통신이 아닌 사용자 중심의 가상 영역(zone)을 통한 통신이 이루어질 것으로 예상된다. 나아가, 사용자 중심의 가상 영역을 통한 통신이 가능하기 위해서는 종래의 셀 기반의 서비스 제공 단위와는 차별화되는 서비스 제공 단위가 도출되어야 한다. 즉, 사용자 중심의 영역과 같은 서비스 제공 단위를 구현할 수 있는 기술적인 이슈들이 도출되고 해결되어야 하며, 이는 현재의 무선 접속망에 큰 변화를 야기할 수 있다.
본 발명은 상기한 바와 같은 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 단말이 RRH로부터 상향링크 동기 획득을 위한 직접적인 하향링크 신호를 수신하지 않더라도 상향링크 연결을 설정하게끔 하는 것이다.
본 발명의 또 다른 목적은 RRH와 BBU 간의 연결 관계가 시변하는 C-RAN 환경에서도 능동적으로 단말의 상향링크 연결을 설정하는 것이다.
본 발명의 또 다른 목적은 하향링크 연결과 상향링크 연결을 분리하여 비대칭적으로 설정함으로써 단말에 효율적으로 서비스를 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
상기 기술적 과제를 해결하기 위한 상향링크 연결 설정 방법은 복수의 RRH로부터 하향링크 신호를 수신하는 단계, 복수의 RRH 중에서 수신된 하향링크 신호의 세기가 임계값 이상인 어느 하나의 대상 RRH로 랜덤 액세스 프리엠블을 전송하는 단계, 대상 RRH가 수신한 랜덤 액세스 프리엠블의 수신 전력과 대상 RRH에 인접한 이웃 RRH가 오버히어(overhear)한 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여 선택된 RRH와 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 수신하는 단계, 및 선택된 RRH와의 상향링크 연결을 설정하는 단계를 포함한다.
랜덤 액세스 프리엠블을 전송하는 단계는 하향링크 신호에 포함된 PRACH(Physical Random Access CHannel) 설정 정보에 기초하여 생성된 랜덤 액세스 프리엠블을 전송할 수 있다.
PRACH 설정 정보는 PRACH 설정 인덱스, PRACH 주파수 오프셋 및 루트 시퀀스 인덱스 중 적어도 하나에 대한 정보를 포함할 수 있다.
랜덤 액세스 응답 메시지는 대상 RRH와 이웃 RRH 중에서 랜덤 액세스 프리엠블을 더 큰 세기의 전력으로 수신한 RRH와의 연결을 지시하고, 대상 RRH와 매핑된 BBU로부터 수신될 수 있다.
대상 RRH와 이웃 RRH가 하나의 BBU에 연결된 경우, BBU가 대상 RRH 및 이웃 RRH가 수신한 랜덤 액세스 프리엠블들의 수신 전력을 비교하고, 대상 RRH 및 이웃 RRH가 서로 다른 제 1 BBU 및 제 2 BBU에 각각 연결된 경우 제 1 BBU 및 제 2 BBU는 대상 RRH 및 이웃 RRH가 수신한 랜덤 액세스 프리엠블들에 대한 정보를 교환하여 비교할 수 있다.
대상 RRH 및 이웃 RRH가 서로 다른 제 1 BBU 및 제 2 BBU에 각각 연결된 경우, 제 1 BBU 및 제 2 BBU 중 어느 하나의 BBU는 선택된 RRH와의 연결을 통해 단말을 지원해줄 것을 요청하는 상향링크 연결 요청 메시지를 제 1 BBU 및 제 2 BBU 중 다른 하나의 BBU로 전송할 수 있다.
상향링크 연결 설정 방법은 선택된 RRH와 단말 간의 타이밍 어드밴스 값에 대한 정보를 수신하는 단계를 더 포함하고, 타이밍 어드밴스 값은 대상 RRH 및 이웃 RRH 중에서 선택된 RRH가 아닌 RRH와 단말 간의 타이밍 어드밴스 값으로부터 계산될 수 있다.
상기 기술적 과제를 해결하기 위한 단말은 송신부, 수신부, 및 송신부 및 수신부와 연결되어 상향링크 연결을 설정하도록 동작하는 프로세서를 포함하되, 프로세서는 복수의 RRH로부터 하향링크 신호를 수신하도록 수신부를 제어하고, 복수의 RRH 중에서 수신된 하향링크 신호의 세기가 임계값 이상인 어느 하나의 대상 RRH로 랜덤 액세스 프리엠블을 전송하도록 송신부를 제어하고, 대상 RRH가 수신한 랜덤 액세스 프리엠블의 수신 전력과 대상 RRH에 인접한 이웃 RRH가 오버히어(overhear)한 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여 선택된 RRH와 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 수신하도록 수신부를 제어하고, 선택된 RRH와의 상향링크 연결을 설정한다.
상기 기술적 과제를 해결하기 위한 또 다른 상향링크 연결 설정 방법은 단말이 대상 RRH를 통해 전송한 제 1 랜덤 액세스 프리엠블을 수신하는 단계, 대상 RRH에 인접한 이웃 RRH가 랜덤 액세스 프리엠블을 오버히어(overhear)하여 전달한 제 2 랜덤 액세스 프리엠블을 수신하는 단계, 제 1 랜덤 액세스 프리엠블의 수신 전력과 제 2 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여, 대상 RRH 및 이웃 RRH 중 단말과 연결될 어느 하나의 RRH를 선택하는 단계, 및 선택된 RRH와의 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 단말로 전송하는 단계를 포함한다.
대상 RRH와 이웃 RRH가 BBU에 모두 연결된 경우, BBU는 제 1 랜덤 액세스 프리엠블 및 제 2 랜덤 액세스 프리엠블의 수신 전력을 비교하고, 대상 RRH가 BBU에 연결되고 이웃 RRH는 다른 BBU에 연결된 경우, BBU는 다른 BBU가 수신한 제 2 랜덤 액세스 프리엠블에 대한 정보를 수신하여 제 1 랜덤 액세스 프리엠블의 수신 전력과 비교할 수 있다.
대상 RRH가 BBU에 연결되고 이웃 RRH는 다른 BBU에 연결된 경우, BBU는 선택된 RRH와의 연결을 통해 단말을 지원해줄 것을 요청하는 상향링크 연결 요청 메시지를 다른 BBU로 전송할 수 있다.
상기 기술적 과제를 해결하기 위한 BBU는 송신부, 수신부, 및 송신부 및 수신부와 연결되어 상향링크 연결을 설정하도록 동작하는 프로세서를 포함하되, 프로세서는 단말이 대상 RRH를 통해 전송한 제 1 랜덤 액세스 프리엠블을 수신하고 대상 RRH에 인접한 이웃 RRH가 랜덤 액세스 프리엠블을 오버히어(overhear)하여 전달한 제 2 랜덤 액세스 프리엠블을 수신하도록 수신부를 제어하고, 제 1 랜덤 액세스 프리엠블의 수신 전력과 제 2 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여, 대상 RRH 및 이웃 RRH 중 단말과 연결될 어느 하나의 RRH를 선택하고, 선택된 RRH와의 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 단말로 전송하도록 송신부를 제어한다.
이상에서 설명한 실시 예들은 본 발명의 바람직한 실시 예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명과 도면을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시 예들에 따르면 다음과 같은 효과를 기대할 수 있다.
첫째로, RRH와 BBU가 분리되는 C-RAN 환경에서 단말이 상향링크 연결을 효율적으로 설정할 수 있게 되어, 단말과 RRH 간의 채널 상황 변화나 RRH의 전력이 불충분한 경우에도 정상적인 서비스를 제공할 수 있다.
둘째로, 단말에 하향링크 연결과 상향링크 연결을 분리하여 설정할 수 있게 되어 사용자에게 최적의 서비스 성능을 제공할 수 있게 된다.
셋째로, C-RAN 환경에서 RRH와 BBU 간의 연결 관계가 변화하더라도 단말에 안정적인 상향링크 연결을 설정해줄 수 있게 된다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 본 발명의 일 실시 예와 관련된 이기종 네트워크 환경을 도시하는 도면이다.
도 2는 본 발명의 일 실시 예와 관련된 클라우드 랜 환경을 도시하는 도면이다.
도 3은 본 발명의 일 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 4는 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 5는 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 6은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 7은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 8은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 9는 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 10은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 11은 본 발명의 일 실시 예와 관련된 단말, RRH 및 BBU의 구성을 도시한 블록도이다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함(comprising 또는 including)”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서 어떠한 구성이 다른 구성에 “연결”된다고 할 때, 이는 물리적 연결뿐 아니라 전기적 연결 또한 포함할 수 있으며, 나아가 논리적인 연결 관계에 있음을 의미할 수도 있다. 또한, 명세서에 기재된 “…부”, “…기”, “모듈” 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, “일(a 또는 an)”, “하나(one)”, “그(the)” 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시 예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, ‘기지국’은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(Advanced Base Station, ABS) 또는 액세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, ‘이동국(Mobile Station, MS)’은 UE(User Equipment), SS(Subscriber Station), MSS(Mobile Subscriber Station), 이동 단말(Mobile Terminal), 발전된 이동단말(Advanced Mobile Station, AMS) 또는 단말(Terminal) 등의 용어로 대체될 수 있다. 특히, 본 발명에서는 이동국은 M2M 기기와 동일한 의미로 사용될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시 예들은 IEEE 802.16 시스템의 표준 문서인 P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p 및 P802.16.1b 표준 문서들 중 하나 이상에 의해 뒷받침될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시 예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
1. 이기종 네트워크 환경
도 1은 본 발명의 일 실시 예와 관련된 이기종 네트워크 환경을 도시하는 도면이다.
차세대 이동통신에서는 멀티미디어 등의 데이터 서비스를 보다 안정적으로 보장 하기 위해서 매크로 셀 기반의 동종 망에 저전력/근거리 통신을 위한 스몰 셀(예를 들어, 피코 셀 또는 펨토 셀)이 혼재하는 계층적 셀 구조 혹은 이기종 셀 구조에 관한 관심이 높아지고 있다. 이는 매크로 셀의 기지국의 추가적 설치는 시스템 성능 향상 대비 비용 및 복잡도 측면에서 비효율적이기 때문이다.
차세대 통신 망에서 고려되는 이기종 망의 구조는 도 1에 도시된 형태로 형성될 수 있다. 하나의 매크로 셀 안에는 다수의 스몰 셀이 공존하게 되며, 각 스몰 셀 기지국들은 셀 지정(cell coordination) 방식에 따라 자원을 할당 받아 단말들을 서비스 하게 된다. 상술한 이기종 네트워크 환경을 구현하기 위한 핵심 기술 중의 하나로서 원격 무선 유닛(Remote Radio Head, RRH)과 기저대역 유닛(BaseBand Unit, BBU)의 분리 구현을 들 수 있다.
2. RRH 와 BBU가 분리되는 클라우드 랜 환경
도 2는 본 발명의 일 실시 예와 관련된 클라우드 랜(Cloud Radio Acess Network, C-RAN) 환경을 도시하는 도면이다. 클라우드 랜 환경은 다수의 RRH(200a, 200b)와 소프트웨어 기반의 가상 BBU 풀(Virtual BBU Pool, 350a, 350b) 또는 가상 기지국(Virtual Base Station, VBS) 및 이를 제어하는 접속 제어/자원 관리/인증 서버 등으로 구성될 수 있다. 클라우드 랜 환경에서는 핵심망의 요소들이 개방형 IP 망으로 변화되면서, 클라우드 랜의 여러 요소들은 핵심망의 요소들과 유기적인 관계로 직접 연동된다.
한편, 클라우드 랜 환경이 구현되는 예시로써 상술한 바와 같이 RRH(200a, 200b) 및 BBU(300a, 300b)가 분리되는 환경을 들 수 있다. RRH 및 BBU의 분리에 따라 아래와 같은 특징을 갖는 클라우드 랜 환경이 조성될 수 있다.
첫째로, 가상 BBU 풀(350a, 350b)이 존재하여 다수의 BBU(300a, 300b)들을 포함하며, 가상 BBU 풀(350a, 350b)은 액세스 게이트웨이(Access GW, 250a, 250b)를 통해서 다중 무선 접속 방식(Multi Radio Access Technology, Multi-RAT)을 지원하는 SAS(Shared Antenna System) RRH(200a, 200b)들과 연계되는 구조를 갖는다. 가상 BBU 풀(350a, 350b)은 다양한 무선 접속 기술을 지원하는 복수의 BBU(300a, 300b)들을 포함하며, 하나의 RRH(200a, 200b)는 하나 이상의 BBU(300a, 300b)들과 연계될 수 있고, 반대로 하나의 BBU(300a, 300b)는 하나 이상의 RRH(200a, 200b)들과 연계될 수 있다. 가상 BBU 풀(350a, 350b) 내의 BBU(300a, 300b)들은 RRH(200a, 200b)들과 아이디얼/비-아이디얼 백홀(Ideal/non-Ideal Backhaul)로 연결될 수 있다. 또한, 하나의 가상 BBU 풀(350a)에는 고유한 서비스 영역이 할당되며, 다른 서비스 영역이 할당된 다른 가상 BBU 풀(350b)과 X2 인터페이스 또는 X2와 유사한 인터페이스를 통해 연결될 수 있다.
둘째로, 가상 BBU 풀(350a, 350b) 내의 모든 RRH(200a, 200b)들은 동일한 가상 셀 ID(Virtual Cell ID)를 가지며, 가상 BBU 풀(350a, 350b) 내의 모든 BBU(300a, 300b)들과 모든 RRH(200a, 200b)들은 아이디얼 백홀로 연결되어 RRH(200a, 200b)는 자신과 연계된 BBU(300a, 300b)의 제어를 받는다.
셋째로, 하향링크 동기 획득을 위해 사용되는 동기 신호(Sync Signal)는 각각의 RRH(200a, 200b)들에 의해 전송되며, 동기 신호에는 RRH(200a, 200b)들이 소속된 가상 BBU 풀(350a, 350b)을 대표할 수 있는 가상 셀 ID 뿐만 아니라 각각의 RRH(200a, 2000b)를 구분할 수 있는 RRH ID가 포함되어 전송될 수 있다.
넷째로, 각각의 RRH(200a, 200b)들은 단순한 안테나를 가정하며, L1/L2/L3 계층 처리 과정(Layer Processing)은 가상 BBU 풀(350a, 350b) 내에 존재하는 BBU들(300a, 300b)에 의해 이루어진다. 또한, RRH(200a, 200b)들은 SAS의 속성을 가지며, 이는 RRH(200a, 200b)가 자신의 소속을 가상 BBU 풀 (350a, 350b)내의 한 BBU에서 다른 BBU로 변경할 수 있음을 의미한다. 즉, RRH(200a, 200b)의 시변적인 소속은 BBU(300a, 300b)의 상황(예를 들어, BBU의 부하(Load), 가용 자원(Resource) 상황 등)에 따라 하나의 BBU에서 다른 BBU로 변경될 수 있다.
종래에는 물리적인 셀이 존재하고 사용자들이 셀에 접속하여 서비스를 제공받는 형태로 구현되었다. 그러나, 상술한 바와 같이 RRH와 BBU가 분리 구현되는 경우, 네트워크가 사용자 단위로 최적의 통신 환경을 제공할 수 있는 영역(zone) 또는 커버리지(coverage)를 구성하여 해당 영역 기반의 서비스를 제공할 수 있게 된다.
3. 상향링크(UL) 연결 설정 방법
도 3은 본 발명의 일 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다. 도 3에서 BBU와 RRH들 간에 실선으로 도시된 실시 예는 BBU #0이 두 개의 RRH #0, RRH #1에 연결되는 경우를 도시한다. 도 3에서 BBU와 RRH 간에 점선으로 도시된 실시 예는 BBU #1이 RRH #0에, BBU #2가 RRH #1에 각각 연결되는 경우를 도시한다.
종래의 LTE/LTE-A 시스템에서 단말은 하향링크(DL) 수신 신호가 큰 셀로 접속하고 해당 셀을 통해 하향링크 및 상향링크 통신을 수행하였다. 그러나, 매크로 셀과 스몰 셀이 혼재하는 셀 구조에서는 매크로 셀과 스몰 셀의 전송 전력이 차이가 난다. 즉, 일반적으로 매크로 셀의 전송 전력이 스몰 셀의 전송 전력 보다 크기 때문에, 스몰 셀에 인접하여 위치한 단말에 매크로 셀의 하향링크 신호가 스몰 셀의 하향링크 신호보다 더 큰 세기로 수신될 수 있다. 이러한 경우, 단말은 매크로 셀로 하향링크 연결을 설정하면서, 상향링크(UL) 연결은 단말과 기지국 간의 거리가 더 가까운 셀인 스몰 셀로 연결될 수 있다. 이와 같이 DL/UL 간의 비대칭적인 연결이 단말에 제공되는 서비스의 수율을 향상시키기 위한 방법으로 제안되고 있다.
C-RAN SAS 환경에서도 RRH 마다 전송 전력(구체적으로는 각 캐리어 마다의 전송 전력)이 다르기 설정될 수 있다. 이러한 경우, 단말은 DL 수신 신호의 세기가 큰 RRH로 연결되어 DL 통신을 수행하고, 단말의 UL 신호를 큰 세기로 수신하는 RRH로 연결되어 UL 통신을 수행하는 것이 단말의 성능 향상을 위해 좋다.
도 3에 도시된 바와 같이, 서로 인접한 RRH #0 과 RRH #1의 전송 전력은 서로 다르며, 단말은 RRH #0의 커버리지 내에서 RRH #1에 인접하여 위치한다. 단말은 RRH #0 커버리지 내에 위치하기는 하지만, RRH #1과의 거리가 RRH #0와의 거리보다 짧아 RRH #1을 통해 UL 통신을 수행하는 것이 단말의 UL 수율 향상을 위해 좋을 수 있다. 또는, 단말이 RRH #1과의 DL 채널 상황이 좋지 않아서 RRH #1로부터 DL 신호를 수신할 수는 없지만, 수율 향상을 위해 RRH #1과 연결되어 UL 신호를 전송하는 경우도 생각해볼 수 있다.
이와 같이 단말이 수율 이득을 얻기 위해 비대칭적인 DL/UL 연결을 갖는 경우, 단말은 UL 전송에 앞서 UL 연결의 동기(synchronization)를 획득해야 한다. 이에 따라, 이하에서는 단말이 DL 연결된 특정 RRH로부터 DL 신호를 수신하지 못하는 경우에 있어서, UL 전송을 위한 UL 동기를 획득하는 방법에 대해 제안한다. 이하에서 설명할 내용들은 C-RAN SAS 상황을 예로 들어 설명하나, 이러한 내용에 한정되는 것은 아니며 매크로 셀과 스몰 셀이 혼재하는 여러 가지 네트워크 환경에 동일하거나 유사하게 적용될 수 있다.
상술한 비대칭적인 DL/UL 연결 관계, 즉 DL/UL 분리 연결(split connection)은 통신 성능 향상을 위해 항시 수행될 수도 있고, 특정 조건이 트리거될 때만 수행될 수도 있다. 예를 들어, 단말이 RRH에 대한 측정 보고를 수행함으로써 획득한 소정의 RRH에 대한 정보는 단말의 서빙 RRH를 통해 서빙 BBU로 전송될 수 있다. 단말의 서빙 BBU는 단말로부터의 측정 보고 메시지에 기초하여 단말의 서빙 RRH에 이웃한 RRH들의 존재와 정보에 대해 확인할 수 있으며, RRH와 BBU를 연결하는 A-GW 또는 단말의 측정 보고 메시지로부터 해당 이웃 RRH들에 연결된 BBU들에 대해서도 알 수 있다.
이때, 단말의 서빙 RRH에 이웃한 RRH들 중에서 임의의 RRH들의 전력 값이 임계 이상으로 차이가 나는 경우가 앞서 설명한 DL/UL 분리 연결의 트리거 조건이 될 수 있다. 즉, 여러 RRH들이 하나의 BBU에 연결되어 있는 경우, 하나의 BBU는 RRH들의 DL 전송 전력에 대한 정보를 알 수 있고, BBU는 이와 같은 전송 전력의 차이가 임계 이상이 되는 경우에 DL/UL 분리 연결을 결정할 수 있다. 또는, RRH들이 둘 이상의 BBU에 연결되어 있는 경우, RRH들의 정보를 교환하기 위한 BBU들 간의 인터페이스(X2 인터페이스 또는 X2 유사 인터페이스)가 형성될 수 있다. BBU들은 상술한 BBU간 인터페이스를 통해서 종래 LTE/LTE-A의 X2 셋업 요청 메시지(X2 setup request message)를 활용하거나 기지국 설정 갱신 메시지(eNB configuration update message)에 전송 전력에 대한 정보를 나타내는 필드를 추가하여 RRH 간의 정보를 교환할 수 있다.
BBU들이 수신한 RRH들의 전송 전력이 기설정된 임계값이나 셀의 부하 상황에 따라 결정되는 값 이상으로 차이가 나는 경우, 각각의 BBU들은 이러한 정보에 따라 RRH들을 단말에 대한 DL/UL 분리하여 연결해야 함을 알 수 있다.
한편, 이하에서는 단말에 DL/UL 연결이 분리되어 설정되는 경우, RRH들의 PRACH(Physical Random Access CHannel)를 설정하는 방법에 대해 설명한다. 이러한 PRACH 설정 과정은 앞서 설명한 DL/UL 분리 연결의 트리거 조건이 충족되는 경우에 수행될 수 있으며, BBU 풀 또는 BBU 등 네트워크의 결정에 따라 수행될 수도 있다. 종래의 LTE/LTE-A에서는 기지국 간의 X2 인터페이스를 셋업할 때 또는 기지국 설정 갱신 메시지의 ‘served cell information 필드’를 사용하여 RPACH 설정에 관한 정보가 전송되었다. 이러한 정보들은 C-RAN SAS 환경에서 동일하거나 유사하게 적용될 수 있으며, 이러한 정보와 함께 각 BBU들 사이에서 자신과 연결된 RRH에 대한 정보가 전송될 수 있다. 특히, 서로 이웃한 RRH들에 연결된 BBU들 사이에서 상술한 PRACH 설정에 관한 정보를 전송함으로써 RRH들 간의 간섭 제어나 CoMP 기법을 효과적으로 적용할 수 있다.
PRACH 설정 방법과 관련하여, 먼저 복수의 RRH들에서 동일한 캐리어를 사용하는 경우를 생각해볼 수 있다. 즉, RRH들의 커버리지 내에 위치한 단말의 PRACH 전송을 위한 자원이 복수의 RRH들에 대하여 동일하게 설정될 수 있다. 이러한 경우, 복수의 RRH들은 자신의 커버리지 내에 있는 단말이 서로 다른 랜덤 액세스 프리엠블(random access preamble)을 사용하도록 설정한다.
구체적으로 설명하면, 상술한 특정 트리거 조건 또는 네트워크 설정에 따라 복수의 RRH들이 특정 BBU와 매핑되어 단말을 지원하는 경우에 있어서, BBU는 PRACH의 설정을 위한 PRACH 설정 인덱스(PRACH configuration index) 및 PRACH 주파수 오프셋(PRACH frequency offset)을 동일하게 설정함으로써 PRACH에 적용될 자원을 동일하게 설정한다. 한편, 루트 시퀀스 인덱스(root sequence index) 값이 다르게 설정됨으로써 64 개의 서로 다른 랜덤 액세스 프리엠블이 활용될 수 있다. 또는, 동일한 루트 시퀀스 인덱스를 사용하면서 32개의 서로 다른 랜덤 액세스 프리엠블을 사용하도록 설정될 수도 있으며, 이하에서는 설명의 편의상 전자의 방식으로 구현된 실시 예에 기초하여 설명한다.
이에 따라, RRH들은 단말이 RRH들로 각각 전송하는 PRACH가 같은 자원을 이용하더라도 랜덤 액세스 프리엠블이 서로 충돌(collision)되지 않도록 할뿐만 아니라, 단말로부터 수신된 PRACH가 단말이 어떠한 RRH로 전송한 PRACH인지도 알 수 있다.
도 3에서 실선으로 도시된 실시 예(BBU #0에 RRH #0, RRH #1이 모두 연결되는 경우)를 설명한다. RRH #0의 단말로의 전송 전력이 RRH #1의 전송 전력 보다 기설정된 임계값 이상 큰(또는 작은) 경우, BBU #0는 단말의 DL/UL 연결을 분리하여 비대칭적으로 설정할 것을 결정할 수 있다. 이에 따라, BBU #0는 RRH #0 및 RRH #1의 PRACH 자원을 동일하게 설정하기 위해서, 두 RRH에 대한 PRACH 설정 인덱스를 ‘0’으로, PRACH 주파수 오프셋을 ‘0’으로 동일하게 설정한다. 이에 더하여, BBU #0는 두 RRH의 랜덤 액세스 프리엠블은 다르게 설정하기 위하여 RRH #0에 대한 루트 시퀀스 인덱스는 ‘0’으로, RRH #1에 대한 루트 시퀀스 인덱스는 ‘64’로 설정할 수 있다.
한편, RRH의 전송 전력은 동적으로 변경될 수 있으므로, BBU #0는 특정 RRH의 PRACH 설정에 맞추어 다른 RRH의 PRACH 설정을 변경할 수 있다. 이러한 경우, 어느 하나의 RRH에서 PRACH 설정이 변경되면 BBU는 변경된 시스템 정보를 다른 RRH로 알려주며, 변경된 시스템 정보를 획득한 RRH는 단말에 변경 사항을 알리기 위하여 시스템 정보를 변경하여 전송한다. 또한, 변경된 시스템 정보를 획득한 RRH는 유휴(idle) 단말을 위해 페이징 메시지의 시스템 정보 변경 메시지(system information modification message)를 단말에 전송할 수 있다.
이어서, 복수의 RRH들이 복수의 BBU에 각각 연결되는 도 3의 점선으로 도시된 실시 예(BBU #1과 RRH #0이 연결되고 BBU #2와 RRH #1이 연결되는 경우)에 대해 설명한다. 전송 전력 차이로 인한 트리거 조건이 만족되거나 네트워크의 설정에 의해서, 각각의 BBU들은 자신과 연결된 RRH의 특정 캐리어에 대한 PRACH 설정 인덱스 값과 PRACH 주파수 오프셋을 동일하게 설정할 수 있다. 즉, BBU들은 자신과 매핑되어 동작하는 RRH에 대하여 PRACH를 위한 자원을 동일하게 할당할 수 있다.
이때, 단말이 64개의 랜덤 액세스 프리엠블 중에서 하나를 선택하여 경쟁 기반(contention based) 방식을 적용할 수 있다는 점을 고려하여, 루트 시퀀스 인덱스는 단말 간에 서로 충돌되지 않고 단말이 전송한 PRACH를 식별할 수 있도록 설정된다. 다시 말해서, BBU들은 연결된 RRH에 대하여 PRACH 설정 인덱스와 PRACH 주파수 오프셋을 동일하게 설정하되, 루트 시퀀스 인덱스는 서로 다르게 설정한다. 특정 BBU에서 PRACH 설정 인덱스와 PRACH 주파수 오프셋, 루트 시퀀스 인덱스를 결정하면, 결정된 정보를 다른 BBU(자신과 연결된 RRH에 이웃한 RRH와 연결된 BBU)에 전송하여 PRACH 설정이 변경되었음을 알린다.
도시된 예를 참고하여 설명하면, RRH #0의 전송 전력이 RRH #1의 전송 전력보다 임계 이상으로 큰(또는 작은) 경우, BBU #1은 단말의 DL/UL 연결을 분리하여 설정할 것을 결정한다. 이어서, BBU #1은 RRH #0, RRH #1에 대하여 PRACH를 설정하기에 앞서 BBU #2와 인터페이스를 형성할 때 교환했었던 PRACH 설정 정보를 활용한다. 즉, BBU #1은 BBU #2로부터 수신했던 RRH #1에 대한 PRACH 설정 정보를 참고하여, RRH #1에 대하여 설정되어 있는 PRACH 설정 인덱스와 PRACH 주파수 오프셋을 RRH #0에 대해 동일하게 설정한다. 또한, BBU #1은 RRH #0과 RRH #1을 위한 랜덤 액세스 프리엠블을 다르게 설정하기 위하여, RRH #0에 대한 루트 시퀀스 인덱스는 0으로, RRH #1의 루트 시퀀스 인덱스는 64로 설정할 수 있다. 즉, BBU #1은 두 RRH에 대하여 PRACH 자원은 동일하게 할당하나, 랜덤 액세스 프리엠블은 다르게 설정할 수 있다.
한편, RRH #0 또는 RRH #1의 전송 전력이 동적으로 변경되는 경우, BBU #1은 RRH #0에 대하여 PRACH 설정 값들을 변경할 수 있다. 이어서, BBU #1은 RRH #0에 대해 변경된 시스템 정보를 SIB로 전송하고, 유휴 단말을 위해서 페이지 메시지를 통해 시스템 정보의 변경 여부를 알릴 수 있다.
한편, 상술한 실시 예와는 달리, 복수의 RRH들에서 서로 다른 캐리어 또는 동일한 캐리어를 사용하는 경우, 단말의 PRACH 전송을 위한 자원이 복수의 RRH에 대해 서로 다르게 설정될 수 있다. 이때, 복수의 RRH들에 연결된 단말들이 사용할 랜덤 액세스 프리엠블들은 동일하거나 다르게 설정될 수 있다.
구체적으로 설명하면, 복수의 RRH들이 각각 서로 다른 BBU에 연결되어 단말과 통신하는 경우, BBU들은 앞서 설명한 RRH들의 전송 전력 차이 등의 트리거 조건이 만족되거나 네트워크 설정에 기초하여 RRH들의 PRACH 설정 인덱스 및/또는 PRACH 주파수 오프셋을 서로 다르게 설정할 수 있다. 한편, 만일 RRH들이 PRACH를 위해 서로 다른 캐리어를 할당받아 사용하는 경우, 두 값은 같게 설정될 수도 있다(즉, 캐리어가 다른 경우에는 PRACH 설정 값이 같게 설정되더라도 서로 구별이 가능하므로). 이때, 복수의 RRH를 위한 PRACH는 할당된 자원으로 구별이 가능하므로 루트 시퀀스 인덱스는 같거나 다르게 설정될 수 있다.
도시된 예를 들어 설명하면, 도 3에서 실선으로 도시된 실시 예(두 RRH가 BBU #0에 연결된 경우)에서 두 RRH의 전송 전력에 대한 트리거 조건이 만족되는 경우, BBU #0은 RRH #0 및 RRH #1의 PRACH 자원을 다르게 설정할 것을 결정한다. 즉, BBU #0은 RRH #0을 위한 PRACH 설정 인덱스를 0으로 PRACH 주파수 오프셋을 0으로 설정하며, RRH #1을 위한 PRACH 설정 인덱스는 1로 PRACH 주파수 오프셋은 0으로 설정할 수 있다. 또한, BBU #0은 RRH #0과 RRH #1의 랜덤 액세스 프리엠블을 다르게 설정하기 위하여 RRH #0의 루트 시퀀스 인덱스는 0으로, RRH #1의 루트 시퀀스 인덱스는 64 또는 0으로 설정할 수도 있다. 즉, BBU #0은 두 RRH의 PRACH 자원이 다르게 설정되면 랜덤 액세스 프리엠블을 위한 인덱스 값은 같거나 다르게 설정할 수 있다.
한편, RRH #0의 전송 전력이 상황에 따라 변경되면 BBU #0은 전송 전력이 변경된 RRH #0의 PRACH 설정뿐 아니라 다른 RRH의 PRACH 설정 또한 변경할 수 있다. 이러한 경우, BBU #0은 RRH #1에 연결된 단말에 변경된 시스템 정보를 SIB로 전송하고, 유휴 단말을 위해 페이지를 통해 시스템 정보의 변경 여부를 알릴 수 있다.
또한, 도 3에서 점선으로 도시된 실시 예(RRH #0이 BBU #1에 연결되고 RRH #1이 BBU #2에 연결되는 경우)를 설명하면, 각각의 BBU들은 트리거 조건이나 네트워크 설정에 따라 자신에 연결된 RRH들의 PRACH 설정 인덱스 및 PRACH 주파수 오프셋 중 적어도 하나를 서로 다르게 설정할 수 있다. 즉, 각 BBU들은 두 RRH가 PRACH를 위해 서로 다른 자원을 사용하도록 설정할 수 있다. 이때, 루트 시퀀스 인덱스는 서로 같거나 다를 수 있음은 앞서 설명한 바와 같다.
또한, 각 BBU들은 두 RRH에서 사용하는 PRACH 자원을 예약(reserve)해야 한다. 예를 들어, RRH #1가 RRH #0로 전송되는 PRACH를 오버히어(overhear)할 수 있도록, RRH #1에 대해서 RRH #0의 PRACH 자원과 동일한 자원이 예약되어야 한다. 이는, RRH #0에 대해서도 동일하게 적용된다.
BBU #1은 두 RRH의 PRACH 자원을 서로 다르게 설정하고, 루트 시퀀스 인덱스는 같거나 다르게 설정한다. 이러한 과정에서 BBU #1은 BBU #1과 BBU #2 간의 인터페이스가 형성될 때 BBU #2로부터 수신하였던 PRACH 설정 값을 활용할 수 있다. 이어서, BBU #1은 RRH #0의 PRACH 설정 값이 변경되었음을 BBU #2에 알리고 변경된 설정 값을 BBU #2로 전송할 수 있다. RRH #0 의 전송 전력이 동적으로 변경되는 상황에 대해서는 전술한 실시 예가 유사하게 적용될 수 있다.
이상에서 설명한 PRACH 설정 과정에 다른 PRACH 설정 값들은 특정 RRH의 커버리지 내에 위치하는 모든 단말을 위해 전송될 수도 있고 DL/UL이 분리 연결이 지원되는 단말에 대해서만 전송될 수도 있다. RRH가 DL/UL 분리 연결이 지원되는 단말들만을 위해서 PRACH 설정 값을 전송하는 경우에는, DL/UL 연결이 분리되지 않는 단말들을 위한 PRACH 설정 값 또한 시스템 정보(예를 들어, SIB 등)에 포함시켜 전송해야 한다.
도 4는 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다. 이하에서는, 앞서 설명한 PRACH 설정 과정에 이어서 단말이 DL 신호를 수신하지 못하는 경우에도 UL 동기를 획득하는 방법에 대해 설명한다.
단말은 수신되는 DL 신호의 세기가 센 RRH로 PRACH를 전송한다. 이때, 단말은 DL 신호의 세기가 센 RRH에 의해 브로드캐스팅되는 시스템 정보에 포함된 PRACH 설정 정보(PRACH configuration information)를 기반으로 PRACH를 설정하여 RRH로 전송한다.
도 3에서 설명한 과정에 따라 RRH #0 및 RRH #1를 위한 PRACH가 각각 PRACH 1 및 PRACH 2로 설정되면, RRH #0에 이웃하여 위치한 RRH #1은 단말이 RRH #0으로 전송하는 PRACH1 신호를 오버히어(overhear)한다. 이하에서는 도 4에서 BBU와 RRH 간의 연결 관계가 실선으로 도시된 경우와 점선으로 도시된 경우를 나누어 설명한다.
먼저, 도 4에 실선으로 도시된 경우(이웃한 두 RRH 가 BBU #0에 연결된 경우), 각각의 RRH들은 서로 다른 RRH를 위해 설정된 PRACH 자원과 랜덤 액세스 프리엠블에 대한 정보를 이미 알고 있다. 이에 따라, 각각의 RRH는 다른 RRH에 대하여 단말이 전송한 PRACH를 오버히어할 수 있고, 오버히어됨으로써 수신된 PRACH를 자신과 연결된 BBU #0로 전송할 수 있다. 이때, BBU #0은 RRH #0로 전송되는 PRACH 1을 오버히어하기 위하여, RRH #0에 설정된 PRACH 1의 자원에 대한 RRH #1의 DL 전송 또는 UL 수신을 스케쥴링하지 않을 수 있다.
한편, 단말은 DL 연결을 설정하고자 하는 RRH인 RRH #0로부터 시스템 정보를 획득하고, RRH #0로 상위 계층 신호를 통해 전송될 랜덤 액세스 프리엠블을 RRH #0가 특정 전력으로 수신할 수 있도록 전력 조절 과정을 거쳐 프리엠블을 전송한다. BBU #0은 RRH #0로 전송된 랜덤 액세스 프리엠블과 RRH #1이 오버히어한 랜덤 액세스 프리엠블의 수신 전력을 측정한다. BBU #0은 RRH #0 및 RRH #1을 통해 단말이 전송한 랜덤 액세스 프리엠블을 전달받은 경우, 단말이 RRH #0을 대상으로 하여 PRACH를 전송하였으며 RRH #0로부터 단말에 전송된 DL 신호의 세기가 가장 큼(또는 단말과의 DL 채널 상황이 가장 좋음)을 알 수 있다. 이어서, BBU #0은 단말이 RRH #0을 대상으로 하여 전송한 PRACH를 RRH #1이 오버히어 했음을 알 수 있다.
이는, 앞서 설명한 바와 같이 PRACH 설정 과정을 통해 각각의 RRH에 대한 PRACH가 서로 구별되도록 지정되기 때문이다. BBU #0은 수신된 두 RRH를 통해 PRACH의 신호 세기를 측정함으로써 단말이 전송한 PRACH를 더 큰 크기로 수신한 RRH를 단말과의 UL 연결로 설정할 것을 결정한다. 단말이 전송한 PRACH를 큰 세기로 수신하였다는 것이 결국 단말과의 거리가 짧거나 단말과의 UL 채널 상황이 좋은 것을 의미하기 때문이다.
도 5는 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다. 도 5에서는 도 4에서 점선으로 도시되었던 실시 예(RRH #0이 BBU #1에 연결되고 RRH #1이 BBU #2에 연결되는 경우)를 더 구체적으로 설명한다.
상술한 실시 예에 따라 BBU #1과 BBU #2는 각각 RRH #0 및 RRH #1에 대한 PRACH 1, 2를 설정한다. 단말은 자신이 수신한 DL 신호의 세기가 센 RRH에 대한 시스템 정보를 BBU로부터 획득하고, 이러한 RRH(예를 들어, RRH #0)를 대상으로 PRACH를 조절된 전송 전력으로 전송한다(S562). 단말이 PRACH 1을 RRH #0로 전송하는 경우, RRH #0뿐 아니라 RRH #0에 이웃한 RRH #1 또한 오버히어할 수 있다(S564). RRH #0와 RRH #1은 자신이 수신한 PRACH를 각각 BBU #1 및 BBU #2로 전송한다.
RRH #0 및 RRH #1로부터 각각 PRACH를 전달 받은 BBU #1, BBU #2는 단말이 전송한 PRACH가 RRH #0을 대상으로 하여 전송된 것임을 알 수 있다. 이때, 수신된 랜덤 액세스 프리엠블 정보(프리엠블 인덱스 등), 각 RRH가 수신한 수신 전력 및 RRH ID(단말의 PRACH를 오버히어 한 RRH 의 ID) 중 적어도 하나의 정보가 BBU #1 및 BBU #2 간에 교환될 수 있으며, BBU #2가 해당 정보들을 BBU #1으로 전송할 수도 있다(S566). 이러한 정보를 수신한 BBU #1은 단말이 RRH #0으로 전송한 PRACH의 수신 전력과 RRH #1가 오버히어한 PRACH의 수신 전력 값을 비교하여 단말에 어떠한 RRH를 UL로 연결할 것인지 결정한다(S568). BBU #1은 단말의 UL 성능 향상을 위해 PRACH를 더 큰 세기로 수신한 쪽으로 단말의 UL을 연결해줄 수 있다.
BBU #1가 단말에 RRH #1을 연결하기로 결정한 경우 BBU #2로 단말의 UL을 지원해줄 것을 요청하는 UL 연결 요청 메시지(UL connection request message)를 전송한다(S570). UL 연결 요청 메시지는 ‘메시지 타입을 나타내는 필드, 단말이 전송한 프리엠블 인덱스를 나타내는 필드, 프리엠블이 전송된 대상 RRH ID(RRH #0)를 나타내는 필드, 프리엠블을 오버히어한 RRH ID(RRH #1)를 나타내는 필드, 소스 BBU ID(BBU #1)를 나타내는 필드, 목적 BBU ID(BBU #2)를 나타내는 필드’ 중 적어도 하나를 포함하여 구성될 수 있으며, BBU 간의 인터페이스(X2 또는 X2 유사 인터페이스)를 통해 전송될 수 있다.
UL 연결 요청 메시지를 수신한 BBU #2는 자신이 단말의 UL을 지원해줄 것을 알게 되며, UL 연결 응답 메시지(UL connection response message)를 BBU #1에 전송함으로써 UL 연결 요청 메시지를 정상적으로 수신하였음을 알린다(S572). UL 연결 응답 메시지는 ‘메시지 타입을 나타내는 필드, 단말이 전송한 프리엠블 인덱스를 나타내는 필드, 프리엠블이 전송된 대상 RRH ID(RRH #0)를 나타내는 필드, 프리엠블을 오버히어한 RRH ID(RRH #1)를 나타내는 필드, 소스 BBU ID(BBU #2)를 나타내는 필드, 목적 BBU ID(BBU #1)를 나타내는 필드’ 중 적어도 하나를 포함하여 구성될 수 있다. 또한, UL 연결 응답 메시지는 단말이 RRH #1와의 UL 통신을 수행하기 위한 UL 캐리어에 대한 정보를 나타내는 필드도 포함할 수 있다. 이러한 정보는 종래의 LTE/LTE-A 시스템에서 DL SIB2를 통해 전송되던 정보 중에서 일부(rach-ConfigCommon 과 prach-Config 정보는 생략될 수 있음)가 포함될 수 있으며, 구체적인 예가 표 1에 기술된다. 또한, UL 연결 응답 메시지는 단말이 RRH #1으로 RRC 연결 요청 메시지를 전송하기 위한 스케쥴링 정보 및 RRH #1로의 UL 타이밍 관련 정보 또한 포함할 수 있다.
표 1
freqInfo SEQUENCE { ul-CarrierFreq ARFCN-ValueEUTRA OPTIONAL, -- Need OP ul-Bandwidth ENUMERATED {n6, n15, n25, n50, n75, n100}OPTIONAL, -- Need OP additionalSpectrumEmission AdditionalSpectrumEmission
RadioResourceConfigCommonSIB ::= SEQUENCE { rach-ConfigCommon RACH-ConfigCommon, prach-Config PRACH-ConfigSIB, pusch-ConfigCommon PUSCH-ConfigCommon, pucch-ConfigCommon PUCCH-ConfigCommon, soundingRS-UL-ConfigCommon SoundingRS-UL-ConfigCommon, uplinkPowerControlCommon UplinkPowerControlCommon, ul-CyclicPrefixLength UL-CyclicPrefixLength, ..., [[ uplinkPowerControlCommon-v1020 UplinkPowerControlCommon-v1020 OPTIONAL -- Need OR ]]}
UL 연결 응답 메시지를 수신한 BBU #1은 BBU #2가 UL 연결 요청 메시지를 정상적으로 수신하였음을 인지하고, BBU #2에서 단말의 UL을 지원해줄 것임을 알 수 있다. 또한, BBU #1은 UL 관련하여 단말에 전송해 줄 캐리어에 관한 정보도 알 수 있다.
이상에서 설명한 실시 예에 의하면, 단말은 RRH로부터 직접적으로 DL 신호를 수신하지 않는 경우라 하더라도 UL 연결을 설정할 RRH를 결정할 수 있다.
도 6 내지 도 10에서는 단말이 UL 연결을 설정한 뒤 UL 동기를 획득하는 방법에 대해 설명한다. 도 6은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이며, 종래의 LTE/LTE-A 시스템에서의 타이밍 어드밴스에 대해 설명한다.
종래의 LTE/LTE-A 시스템에서 기지국은 단말로 DL 신호를 전송하고, DL 신호는 기지국과의 상대적 거리에 따른 전달 지연(propagation delay)을 거쳐 단말에 수신된다. 단말은 DL 동기화 신호를 이용하여 전달 지연을 고려한 적절한 DL 수신 타이밍(DL reception timing)을 계산할 수 있다. 이후, 초기 UL 전송 타이밍이 설정되지 않은 단말은 UL 전송 타이밍을 획득하기 위한 초기 랜덤 액세스 절차(initial random access procedure)를 수행한다. 단말은 DL 수신 타이밍과 동일하게 UL 전송 타이밍을 가정하고(예를 들어, DL 서브프레임 또는 서브프레임 경계(boundary)), 예측된 UL 전송 타이밍에 PRACH를 전송한다. 이때, DL 수신 타이밍과 UL 전송 타이밍에 미리 결정된 오프셋 값이 적용될 수도 있다. 단말로부터 전송된 PRACH가 단말과 기지국 간의 거리에 따라 전달 지연을 거쳐 기지국에 수신되며, 기지국은 DL 전달 지연과 UL 전달 지연을 합친 시간만큼의 지연을 거친 PRACH를 수신하게 된다. 이때, 기지국은 PRACH 검출을 통해 전체 지연을 추정하며 단말이 이후 UL 전송 타이밍을 어떻게 조절해야 하는지 결정하여 지시한다. 이와 같이 조절된 전송 시점을 타이밍 어드밴스(timing advance, TA)라 한다.
도 7 내지 도 10은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이며, 도 7은 C-RAN 환경에서의 타이밍 어드밴스에 대해 설명한다.
C-RAN 환경에서 단말과 특정 RRH 간의 DL 채널 상황이 좋지 않은 경우, 단말은 RRH로부터 DL 채널을 수신하지 못하고 DL 동기를 맞출 수 없게 된다. 이에 따라, 단말이 DL 동기를 획득하지 못하더라도 해당 RRH로의 UL 동기를 획득하기 위한 방법을 제안한다. 이하에서는, 단말에 인접한 RRH들이 서로 동기화된 경우와 그렇지 않은 경우를 나누어 설명한다.
먼저, RRH들 간에 서로 동기가 맞춰져 있는 경우, 즉 네트워크가 동기화된 경우를 설명한다. 단말이 DL 신호의 세기가 센 RRH(예를 들어, RRH #0)로 PRACH를 전송하면 대상 RRH에 연결된 BBU는 PRACH를 통해 단말과 대상 RRH 간의 전체 전달 지연을 추정하여, 단말의 TA를 계산한다.
도 8은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 4에서 실선으로 도시된 연결 관계(RRH #0과 RRH #1이 BBU #0에 연결된 경우)를 예로 들어 설명한다. 먼저, BBU #0은 단말이 연결된 RRH인 RRH #0와의 TA를 (T0+T1)/2 로 계산할 수 있다. 만일 단말과 RRH #0 간의 DL 전달 지연(T0)이 UL 전달 지연(T1)과 동일한 것으로 근사화할 수 있는 경우, BBU #0은 단말과 RRH #1 간의 UL 전달 지연(T2) 또한 계산할 수 있다. 이러한 과정을 거쳐 계산된 단말과 RRH #1 간의 TA 값은 약 T2로 계산된다.
RRH #1과 단말 간의 TA가 계산되면, BBU #0은 RA-RNTI(Random Access Radio Network Temporary ID)로 구성된 공통 검색 공간(common search space)의 PDCCH를 이용하여 단말에 랜덤 액세스 응답을 스케쥴링하며, BBU #0은 PDCCH가 지시하는 PDSCH를 통해서 단말에 랜덤 액세스 응답 메시지를 전송한다(S852). 이때, RA-RNTI는 종래의 LTE/LTE-A 시스템에서 사용된 방법을 동일하거나 유사하게 활용할 수 있으며, 단말은 특정 윈도우 사이즈의 구간 동안 RA-RNTI를 이용하여 PDCCH에 대한 블라인드 디코딩을 수행한다.
랜덤 액세스 응답 메시지는 종래의 LTE/LTE-A 시스템에서 전송되던 정보에 더하여, 단말과 UL 연결된 RRH #1에 대한 정보도 포함할 수 있다. RRH #1에 대한 정보는 앞서 설명한 RRH #1의 캐리어 주파수에 대한 정보, 대역폭에 대한 정보, 상향링크에 관련된 RRC SIB 정보, RRH #1로의 TA 값에 대한 정보(약 T2), RRH ID(RRH #1)에 대한 정보, DL/UL 분리 연결을 지시하는 정보, C-RNTI에 대한 정보, RA-프리엠블 식별자에 대한 정보 중 적어도 하나를 포함할 수 있다.
또한, BBU #0는 단말의 C-RNTI 값을 이용하여 단말이 RRH #1로 RRC 연결 요청 메시지를 전송할 수 있도록 상향링크 그랜트를 전송한다. 단말은 UL 그랜트에 의해 스케쥴링된 UL 데이터를 전송하게 된다(S854).
한편, 단말이 RRH #0로 전송한 PRACH의 신호 세기 역시 임계값 이상이라면, 단말은 RRH #0로도 UL 연결을 설정할 수 있다. 이러한 경우, BBU #0은 도 7에서 설명한 랜덤 액세스 응답 메시지와 동일하거나 유사한 형태의 메시지를 단말로 전송할 수 있다. 랜덤 액세스 응답 메시지를 수신한 단말은 RRH #0과 UL 연결을 형성할 것을 인지하게 된다. 한편, RRH #0과 단말 간의 채널 상황이 충분히 좋은 경우(단말이 전송한 랜덤 액세스 프리엠블의 수신 전력이 임계 이상인 경우), BBU #0은 단말의 C-RNTI를 이용하여 단말이 RRH #0로 RRC 연결 요청 메시지를 전송할 수 있도록 UL 그랜트를 전송한다. 이러한 경우, 앞서 설명한 실시 예와는 달리, BBU #0은 단말이 RRH #1으로 RRC 연결 요청 메시지를 전송하기 위한 UL 그랜트는 전송하지 않을 수 있다.
이어서, 단말은 랜덤 액세스 프리엠블을 전송하고 특정 윈도우 사이즈의 시간 구간 동안 RA-RNTI를 이용하여 PDCCH를 블라인드 디코딩한다. RA-RNTI를 이용하여 스크램블링 된 DCI 포맷이 검출되면, 단말은 이를 이용하여 PDSCH를 통해 전송되는 랜덤 액세스 응답 메시지를 수신할 수 있다. 단말은 랜덤 액세스 응답 메시지를 수신하게 되면 RRH #1로 UL을 DL과 분리하여 연결하도록 설정되었음을 알 수 있으며, RRH #1로의 TA 값을 획득하여 RRH #1로 UL 데이터를 전송할 시점에 대해 알 수 있다. 또한, 단말은 RRH #0로부터 수신되는 PDCCH의 검색 구간에 대하여 C-RNTI(또는, 임시(temporary) C-RNTI)를 이용하여 블라인드 디코딩을 수행한다. 이어서, UL 그랜트를 수신한 단말은 수신한 UL 그랜트에 따라 정의된 랜덤 액세스 응답 메시지를 통해서 전송된 RRH #1의 캐리어를 이용하여 RRC 연결 요청 메시지를 전송한다.
또는, 단말은 RRH #0로부터 랜덤 액세스 응답 메시지를 수신 받은 후 특정 시간 이후로부터 기설정된 윈도우 사이즈의 구간 내에서 RRH #1로부터 수신되는 PDCCH의 검색 구간에 대해 C-RNTI(또는, 임시 C-RNTI)를 이용한 블라인드 디코딩을 수행한다. RRH #1의 캐리어에서 UL 그랜트를 수신한 단말은 수신한 UL 그랜트에 따라 RRC 연결 요청 메시지를 전송한다. 또는, 단말은 이전에 RRH #0와의 RRC 연결이 설정되었던 경우, RRC 연결 재수립 요청 메시지(RRC connection re-establishment request message)를 전송할 수 있다. RRC 연결 요청 메시지와 RRC 연결 재수립 요청 메시지는 동일하거나 유사한 형태로 구현될 수 있다.
상술한 RRC 연결 요청 메시지는 DL/UL 분리 연결을 지시하는 정보, 단말이 DL 연결을 설정할 RRH의 ID(RRH #0)에 대한 정보, 단말이 UL 연결을 설정할 RRH의 ID(RRH #1)에 대한 정보 등이 포함될 수 있다. RRC 연결 요청 메시지는 앞서 단말이 수신한 랜덤 액세스 응답 메시지에 포함된 TA 값, 자원 설정 정보를 이용하여 결정된 시점에 전송될 수 있다. 이러한 RRC 연결 요청 메시지를 수신한 RRH #1은 BBU #0로 메시지를 전달하고, BBU #0은 단말에 RRC 연결 셋업 메시지(RRC connectoin setup mesasge)를 전송한다. 이때, BBU #0은 RRC 연결 셋업을 위한 DL DCI 포맷을 C-RNTI(또는, 임시 C-RNTI)를 이용하여 DL 그랜트로서 전송하며, RRC 연결 셋업 메시지를 수신한 단말은 수신한 C-RNTI(또는, 임시 C-RNTI)를 이후의 C-RNTI로서 활용할 수 있다.
도 9는 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다.
도 9에서는 도 4에서 점선으로 도시된 연결 관계(RRH #0이 BBU #1에 연결되고 RRH #1이 BBU #2에 연결된 경우)를 예로 들어 설명한다. 도 9에서는 도 8과 마찬가지로 두 RRH 간에 동기가 맞춰져 있는 경우를 설명한다.
도 9의 실시 예에서, 도 5에서 설명한 BBU #2가 BBU #1에 전송하는 UL 연결 응답 메시지(S572)는 BBU #2에서 계산한 RRH #1과 단말 간의 TA에 대한 정보가 추가적으로 포함될 수 있다. 도 5에 이어서, BBU #1은 단말에 랜덤 액세스 응답 메시지를 전송하고(S962), 단말에 할당해준 C-RNTI (또는, 임시 C-RNTI) 값을 BBU #2에 UL 정보 메시지를 전송함으로써 알려줄 수 있다(S964). BBU #2는 단말이 RRH #1로 전송한 RRC 연결 요청 메시지를 수신할 수 있게 된다(S966).
BBU #2는 단말이 전송한 RRC 연결 요청 메시지를 BBU #1에 전달하며(S968), RRC 연결 요청 메시지에 포함된 단말의 ID 정보(예를 들어, S-TMSI)를 BBU #1에 알릴 수 있다. RRC 연결 요청 메시지를 전달 받은 BBU #1은 C-RNTI를 할당 받은 단말이 RRC 연결 요청 메시지를 전송하였음을 알 수 있고, 단말이 사용할 UL 자원 관련 정보 및 전용으로(dedicated) 사용할 SRB(Signal Radio Bearer)를 설정하고 RRC 연결 셋업 메시지에 포함시켜 단말에 전송한다(S970). 또한, BBU #1은 BBU #2에게 단말에 할당한 무선 베어러에 대한 정보를 알려줄 수도 있다. RRC 연결 셋업 메시지를 수신한 단말은 랜덤 액세스 과정이 정상적으로 수행되었으며 사용했던 C-RNTI를 계속하여 사용하며, 이후의 접속 절차(attach procedure)를 수행할 수 있다.
이상에서 설명한 바와 같이, RRH들이 하나의 BBU에 연결된 경우, 또는 RRH들이 각각 서로 다른 BBU에 연결된 경우 모두 단말은 BBU로부터 랜덤 액세스 응답 메시지를 수신하여 RRH #1와의 UL 연결을 수행하기 위한 캐리어의 정보에 대해 알 수 있다. 이러한 UL 캐리어 정보로서 UL 캐리어의 주파수, 대역폭, PRACH 설정 값을 수신한 단말이 RRC 연결 요청을 RRH #1로 전송하였음에도 불구하고 RRC 연결 셋업 메시지가 RRH #0로부터 수신되지 않는 경우, 단말은 RRH #1로 직접 랜덤 액세스 프리엠블을 전송할 수도 있다.
또는, 단말은 RRH #1와의 TA 값을 보다 정확하게 추정하기 위해서 두 번의 PRACH 전송 과정을 수행할 수도 있다. 이때, 단말은 RRH #0와 RRH #1의 서브프레임 동기의 차이에 대해서 알수는 있으나, 각각의 서브프레임의 인덱스에 대해서는 알 수가 없다. 이에 따라, 단말이 RRH #1로 PRACH를 직접 전송하기 위해서는 단말이 RRH #0 및 RRH #1 간의 동기 차이(synchronization gap)에 대한 정보를 알 수 있어야 한다. 따라서, BBU #0 또는 BBU #1로부터 RRH #0에 전송되는 랜덤 액세스 응답 메시지에 RRH #0의 서브프레임 #0 인덱스를 가지는 시점에 RRH #1의 서브프레임 인덱스가 무엇인지 포함시켜 알려주거나, RRH #1은 단말이 RRH #0로 전송한 프리엠블을 오버히어 한 시점의 서브프레임 인덱스를 단말에 알려줄 수도 있다. 또는, 이러한 타이밍 관련 정보는 두 개의 RRH에 연결된 BBU가 PRACH 관련 자원을 지정(coordinate)할 때에도 필요할 수 있기 때문에, 미리 두 개의 RRH에서 전송하는 타이밍을 조절하는 과정이 요구될 수 있다.
이때, RRH들이 서로 다른 BBU에 각각 연결된 경우, RRH #1에 연결된 BBU #2가 RRH #1이 랜덤 액세스 프리엠블을 오버히어 한 시점의 서브프레임 인덱스는 UL 연결 응답 메시지를 통해 전송될 수 있다. 또한, 이를 수신한 BBU #1은 단말에 랜덤 액세스 응답 메시지를 전송함으로써 수신한 정보를 단말에 전달해줄 수 있다.
도 10은 본 발명의 또 다른 실시 예와 관련된 상향링크 동기 획득 방법을 설명하는 도면이다. 이상의 도 7 내지 도 9에서 설명한 실시 예와는 달리, 도 10에서는 RRH 간에 동기가 맞춰져 있지 않은 경우를 설명한다. 도 10의 실시 예에서, RRH들 간에 동기가 맞추어지지 않은 경우에는 상술한 RRH #1과 단말 간의 TA 추정 방법이 적용될 수 없으며, 이하에서는 도 4의 실선으로 도시된 경우와 점선으로 도시된 경우를 각각 나누어 설명한다.
먼저, 도 4의 실선으로 도시된 경우(RRH #0과 RRH #1가 BBU #0에 연결된 경우), RRH #1와 단말 간의 TA 값은 ‘PRACH를 오버히어 한 시간에서 단말과 RRH #0 간의 TA를 뺀 값’으로 계산될 수 있다. BBU #0은 RRH #1와 단말 간의 TA 계산을 위해 요구되는 두 가지 값들을 모두 알고 있기 때문에, RRH #1과 단말 간의 TA를 쉽게 계산할 수 있다. 계산된 TA 값은 BBU #0로부터 RRH #0을 통해 단말에 전송된다. 이후의 랜덤 액세스 과정은 앞서 도 7 내지 도 9에서 설명한 과정이 동일하거나 유사하게 적용될 수 있다.
둘째로, 도 4의 점선으로 도시된 경우(RRH #0가 BBU #1에 연결되고 RRH #1이 BBU #2에 연결되는 경우), RRH #1와 단말 간의 TA 값 또한 ‘PRACH를 오버히어 한 시간에서 RRH #0과 단말 간의 TA를 뺀 값’으로 계산될 수 있다. 그러나, BBU #2는 도 10에 도시된 X2의 값만을 알 수 있으며, BBU #1은 X3의 값만을 알 수 있다. RRH #1과 단말 간의 TA 값은 도시된 실시 예에서 X4로 계산될 수 있으며, “X4=X1+X2-(X3)/2”로 계산될 수 있다. 따라서, BBU #1이 BBU #2에게 X1, X3의 값을 전송해주거나, BBU #2가 BBU #1에게 X1, X2의 값을 전송해줄 수 있으며, 두 가지 경우 모두 BBU #1 또는 BBU #2는 RRH #1와 단말 간의 TA 값을 계산할 수 있다. 한편, BBU #1이 BBU #2에 X1, X3 값을 전송하는 과정은 BBU #1이 BBU #2에 UL 연결 요청 메시지를 전송하는 과정에서 전송될 수 있다. 만일 BBU #1이 BBU #2로 X1, X3을 전송하고 BBU #2가 TA 값을 계산하는 경우, BBU #2는 계산된 TA 값을 BBU #1에 전송해준다.
이와 같이 계산된 TA 값은 BBU #2가 BBU #1에 전송하는 UL 연결 응답 메시지에 포함되어 전송될 수 있다. UL 연결 응답 메시지를 수신한 BBU #1은 단말에 랜덤 액세스 응답 메시지를 전송하면서 TA 값을 포함시켜 전송할 수 있다. 이후의 랜덤 액세스 과정은 앞서 설명한 도 7 내지 도 9의 과정이 동일 또는 유사하게 적용될 수 있다.
4. 장치 구성
도 11은 본 발명의 일 실시 예와 관련된 단말(100), RRH(200) 및 BBU(300)의 구성을 도시한 블록도이다. 도 11에서는 단말(100)과 RRH(200) 간의 1:1 통신 환경을 도시하였으나, 다수의 단말과 RRH 간에도 통신 환경이 구축될 수 있다.
도 11에서 단말(100)은 무선 주파수(RF) 유닛(110), 프로세서(120), 및 메모리(130)를 포함할 수 있다. 종래의 기지국(150)은 송신부(212), 수신부(214), 프로세서(310), 및 메모리(320)를 모두 포함하도록 구현된다. 반면에, 일 실시 예에 따른 클라우드 랜 환경에서는 종래의 기지국(150)에 포함된 구성들이 RRH(200)와 BBU(300)로 분리되어 구현된다.
이에 따라, 단순한 안테나의 역할을 하는 RRH(200)는 송신부(212) 및 수신부(214)만을 포함한다. 신호 처리, 계층 처리 등 통신의 전반적인 과정은 BBU(300)에 포함된 프로세서(310) 및 메모리(320)에 의해 제어된다. 또한, RRH(200)와 BBU(300) 간에는 1:1, 1:N, M:1, M:N (M, N 은 자연수) 등 다양한 연결 관계가 형성될 수 있다.
단말(100)에 포함된 RF 유닛(110)은 송신부(112) 및 수신부(114)를 포함할 수 있다. 송신부(112) 및 수신부(114)는 RRH(200)와 신호를 송신 및 수신하도록 구성된다. 프로세서(120)는 송신부(112) 및 수신부(114)와 기능적으로 연결되어 송신부(112) 및 수신부(114)가 RRH(200) 및 다른 디바이스에 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(120)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(112)로 전송하며, 수신부(114)가 수신한 신호에 대한 처리를 수행할 수 있다.
필요한 경우 프로세서(120)는 교환된 메시지에 포함된 정보를 메모리(130)에 저장할 수 있다. 이와 같은 구조를 가지고 단말(100)은 이상에서 설명한 본 발명의 다양한 실시 형태의 방법을 수행할 수 있다.
RRH(200)의 송신부(212) 및 수신부(214)는 단말(100)과 신호를 송신 및 수신하도록 구성된다. 또한, RRH(200)에 연결된 BBU(300)의 프로세서(310)는 RRH(200)의 송신부(212) 및 수신부(214)와 기능적으로 연결되어 송신부(212) 및 수신부(214)가 다른 기기들과 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(310)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(212)로 전송하며 수신부(214)가 수신한 신호에 대한 처리를 수행할 수 있다. 필요한 경우 프로세서(310)는 교환된 메시지에 포함된 정보를 메모리(320)에 저장할 수 있다. 이와 같은 구조를 가지고 RRH(200) 및 BBU(300)는 앞서 설명한 다양한 실시 형태의 방법을 수행할 수 있다.
단말(100) 및 BBU(300)의 프로세서(120, 310)는 단말(100), RRH(200) 및 BBU(300)에서의 동작들을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(120, 310)은 프로그램 코드들 및 데이터를 저장하는 메모리(130, 320)들과 연결될 수 있다. 메모리(130, 320)는 프로세서(120, 310)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
본 발명의 프로세서(120, 310)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(120, 310)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시 예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(120, 310)에 구비될 수 있다.
한편, 상술한 방법은, 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터 판독 가능 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 또한, 상술한 방법에서 사용된 데이터의 구조는 컴퓨터 판독 가능 매체에 여러 수단을 통하여 기록될 수 있다. 본 발명의 다양한 방법들을 수행하기 위한 실행 가능한 컴퓨터 코드를 포함하는 저장 디바이스를 설명하기 위해 사용될 수 있는 프로그램 저장 디바이스들은, 반송파(carrier waves)나 신호들과 같이 일시적인 대상들은 포함하는 것으로 이해되지는 않아야 한다. 상기 컴퓨터 판독 가능 매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, DVD 등)와 같은 저장 매체를 포함한다.
본원 발명의 실시 예 들과 관련된 기술 분야에서 통상의 지식을 가진 자는 상기 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 방법들은 한정적인 관점이 아닌 설명적 관점에서 고려되어야 한다. 본 발명의 범위는 발명의 상세한 설명이 아닌 특허청구 범위에 나타나며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. 원격 무선 유닛(Remote Radio Head, RRH)과 기저대역 유닛(BaseBand Unit, BBU)이 분리되는 클라우드 랜(Cloud Radio Access Network, C-RAN) 환경에서 단말이 BBU와의 상향링크 연결을 설정하는 방법에 있어서,
    복수의 RRH로부터 하향링크 신호를 수신하는 단계;
    상기 복수의 RRH 중에서 상기 수신된 하향링크 신호의 세기가 임계값 이상인 어느 하나의 대상 RRH로 랜덤 액세스 프리엠블을 전송하는 단계;
    상기 대상 RRH가 수신한 상기 랜덤 액세스 프리엠블의 수신 전력과 상기 대상 RRH에 인접한 이웃 RRH가 오버히어(overhear)한 상기 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여 선택된 RRH와 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 수신하는 단계; 및
    상기 선택된 RRH와의 상향링크 연결을 설정하는 단계를 포함하는, 상향링크 연결 설정 방법.
  2. 제 1 항에 있어서,
    상기 랜덤 액세스 프리엠블을 전송하는 단계는
    상기 하향링크 신호에 포함된 PRACH(Physical Random Access CHannel) 설정 정보에 기초하여 생성된 상기 랜덤 액세스 프리엠블을 전송하는 것인, 상향링크 연결 설정 방법.
  3. 제 2 항에 있어서,
    상기 PRACH 설정 정보는 PRACH 설정 인덱스, PRACH 주파수 오프셋 및 루트 시퀀스 인덱스 중 적어도 하나에 대한 정보를 포함하는 것인, 상향링크 연결 설정 방법.
  4. 제 1 항에 있어서,
    상기 랜덤 액세스 응답 메시지는
    상기 대상 RRH와 상기 이웃 RRH 중에서 상기 랜덤 액세스 프리엠블을 더 큰 세기의 전력으로 수신한 RRH와의 연결을 지시하고, 상기 대상 RRH와 매핑된 BBU로부터 수신되는 것인, 상향링크 연결 설정 방법.
  5. 제 1 항에 있어서,
    상기 대상 RRH와 상기 이웃 RRH가 하나의 BBU에 연결된 경우, 상기 BBU가 상기 대상 RRH 및 상기 이웃 RRH가 수신한 랜덤 액세스 프리엠블들의 수신 전력을 비교하고,
    상기 대상 RRH 및 상기 이웃 RRH가 서로 다른 제 1 BBU 및 제 2 BBU에 각각 연결된 경우, 상기 제 1 BBU 및 상기 제 2 BBU는 상기 대상 RRH 및 상기 이웃 RRH가 수신한 랜덤 액세스 프리엠블들에 대한 정보를 교환하여 비교하는 것인, 상향링크 연결 설정 방법.
  6. 제 5 항에 있어서,
    상기 대상 RRH 및 상기 이웃 RRH가 서로 다른 제 1 BBU 및 제 2 BBU에 각각 연결된 경우,
    상기 제 1 BBU 및 상기 제 2 BBU 중 어느 하나의 BBU는 상기 선택된 RRH와의 연결을 통해 상기 단말을 지원해줄 것을 요청하는 상향링크 연결 요청 메시지를 상기 제 1 BBU 및 상기 제 2 BBU 중 다른 하나의 BBU로 전송하는 것인, 상향링크 연결 설정 방법.
  7. 제 1 항에 있어서,
    상기 상향링크 연결 설정 방법은
    상기 선택된 RRH와 상기 단말 간의 타이밍 어드밴스 값에 대한 정보를 수신하는 단계를 더 포함하고,
    상기 타이밍 어드밴스 값은 상기 대상 RRH 및 상기 이웃 RRH 중에서 상기 선택된 RRH가 아닌 RRH와 상기 단말 간의 타이밍 어드밴스 값으로부터 계산되는 것인, 상향링크 연결 설정 방법.
  8. 원격 무선 유닛(Remote Radio Head, RRH)과 기저대역 유닛(BaseBand Unit, BBU)이 분리되는 클라우드 랜(Cloud Radio Access Network, C-RAN) 환경에서 BBU와의 상향링크 연결을 설정하는 단말에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 상기 수신부와 연결되어 상향링크 연결을 설정하도록 동작하는 프로세서를 포함하되,
    상기 프로세서는
    복수의 RRH로부터 하향링크 신호를 수신하도록 상기 수신부를 제어하고,
    상기 복수의 RRH 중에서 상기 수신된 하향링크 신호의 세기가 임계값 이상인 어느 하나의 대상 RRH로 랜덤 액세스 프리엠블을 전송하도록 상기 송신부를 제어하고,
    상기 대상 RRH가 수신한 상기 랜덤 액세스 프리엠블의 수신 전력과 상기 대상 RRH에 인접한 이웃 RRH가 오버히어(overhear)한 상기 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여 선택된 RRH와 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 수신하도록 상기 수신부를 제어하고,
    상기 선택된 RRH와의 상향링크 연결을 설정하는 것인, 단말.
  9. 원격 무선 유닛(Remote Radio Head, RRH)과 기저대역 유닛(BaseBand Unit, BBU)이 분리되는 클라우드 랜(Cloud Radio Access Network, C-RAN) 환경에서 BBU가 단말과의 상향링크 연결을 설정하는 방법에 있어서,
    단말이 대상 RRH를 통해 전송한 제 1 랜덤 액세스 프리엠블을 수신하는 단계;
    상기 대상 RRH에 인접한 이웃 RRH가 상기 랜덤 액세스 프리엠블을 오버히어(overhear)하여 전달한 제 2 랜덤 액세스 프리엠블을 수신하는 단계;
    상기 제 1 랜덤 액세스 프리엠블의 수신 전력과 상기 제 2 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여, 상기 대상 RRH 및 상기 이웃 RRH 중 상기 단말과 연결될 어느 하나의 RRH를 선택하는 단계; 및
    상기 선택된 RRH와의 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 상기 단말로 전송하는 단계를 포함하는, 상향링크 연결 설정 방법.
  10. 제 9 항에 있어서,
    상기 대상 RRH와 상기 이웃 RRH가 상기 BBU에 모두 연결된 경우, 상기 BBU는 상기 제 1 랜덤 액세스 프리엠블 및 상기 제 2 랜덤 액세스 프리엠블의 수신 전력을 비교하고,
    상기 대상 RRH가 상기 BBU에 연결되고 상기 이웃 RRH는 다른 BBU에 연결된 경우, 상기 BBU는 상기 다른 BBU가 수신한 상기 제 2 랜덤 액세스 프리엠블에 대한 정보를 수신하여 상기 제 1 랜덤 액세스 프리엠블의 수신 전력과 비교하는 것인, 상향링크 연결 설정 방법.
  11. 제 10 항에 있어서,
    상기 대상 RRH가 상기 BBU에 연결되고 상기 이웃 RRH는 다른 BBU에 연결된 경우, 상기 BBU는 상기 선택된 RRH와의 연결을 통해 상기 단말을 지원해줄 것을 요청하는 상향링크 연결 요청 메시지를 상기 다른 BBU로 전송하는 것인, 상향링크 연결 설정 방법.
  12. 원격 무선 유닛(Remote Radio Head, RRH)과 기저대역 유닛(BaseBand Unit, BBU)이 분리되는 클라우드 랜(Cloud Radio Access Network, C-RAN) 환경에서 단말과의 상향링크 연결을 설정하는 BBU에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 상기 수신부와 연결되어 상향링크 연결을 설정하도록 동작하는 프로세서를 포함하되,
    상기 프로세서는
    단말이 대상 RRH를 통해 전송한 제 1 랜덤 액세스 프리엠블을 수신하고 상기 대상 RRH에 인접한 이웃 RRH가 상기 랜덤 액세스 프리엠블을 오버히어(overhear)하여 전달한 제 2 랜덤 액세스 프리엠블을 수신하도록 상기 수신부를 제어하고,
    상기 제 1 랜덤 액세스 프리엠블의 수신 전력과 상기 제 2 랜덤 액세스 프리엠블의 수신 전력 차이에 기초하여, 상기 대상 RRH 및 상기 이웃 RRH 중 상기 단말과 연결될 어느 하나의 RRH를 선택하고,
    상기 선택된 RRH와의 상향링크 연결을 설정할 것을 지시하는 랜덤 액세스 응답 메시지를 상기 단말로 전송하도록 상기 송신부를 제어하는, BBU.
PCT/KR2014/010670 2013-11-12 2014-11-07 상향링크 동기를 획득하고 상향링크 연결을 설정하는 방법 WO2015072703A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167006971A KR101789639B1 (ko) 2013-11-12 2014-11-07 상향링크 동기를 획득하고 상향링크 연결을 설정하는 방법
CN201480061860.4A CN105765882B (zh) 2013-11-12 2014-11-07 获得上行链路同步并且配置上行链路连接的方法
EP14862025.5A EP3070859B1 (en) 2013-11-12 2014-11-07 Method for obtaining uplink synchronization and configuring uplink connection
US15/033,213 US10362599B2 (en) 2013-11-12 2014-11-07 Method for obtaining uplink synchronization and configuring uplink connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361902797P 2013-11-12 2013-11-12
US61/902,797 2013-11-12

Publications (1)

Publication Number Publication Date
WO2015072703A1 true WO2015072703A1 (ko) 2015-05-21

Family

ID=53057596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010670 WO2015072703A1 (ko) 2013-11-12 2014-11-07 상향링크 동기를 획득하고 상향링크 연결을 설정하는 방법

Country Status (5)

Country Link
US (1) US10362599B2 (ko)
EP (1) EP3070859B1 (ko)
KR (1) KR101789639B1 (ko)
CN (1) CN105765882B (ko)
WO (1) WO2015072703A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017151435A1 (en) * 2016-02-29 2017-09-08 Commscope Technologies Llc Automatic power configuration for a point-to-multipoint distributed radio access network
WO2017175780A1 (ja) * 2016-04-08 2017-10-12 株式会社Nttドコモ 無線基地局及び通信制御方法
CN107690760A (zh) * 2015-06-04 2018-02-13 莱特普茵特公司 用于在无线信号环境中测试射频(rf)数据包信号收发器的方法
CN109196943A (zh) * 2016-05-27 2019-01-11 株式会社Ntt都科摩 通信装置及随机接入控制方法
CN109315019A (zh) * 2016-04-08 2019-02-05 株式会社Ntt都科摩 中央汇聚装置与延伸装置之间的接口方法和无线网络控制系统
US11716694B2 (en) 2019-01-31 2023-08-01 Commscope Technologies Llc Estimating and controlling transmit power of user equipment by a base station

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250362B2 (en) 2014-03-20 2019-04-02 Interdigital Patent Holdings, Inc. Method and apparatus for non-orthogonal access in LTE systems
CN112087794B (zh) * 2014-12-23 2024-06-18 交互数字专利控股公司 通过无线发射/接收单元wtru执行的用于传达数据的方法
CN106804043B (zh) * 2015-11-26 2020-12-15 华为技术有限公司 一种上行接入的方法、用户设备和基站
JPWO2017170678A1 (ja) * 2016-03-31 2019-02-14 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3504811A1 (en) * 2016-08-24 2019-07-03 Nokia Technologies Oy Radio link monitoring test procedures for wireless devices
US20190342802A1 (en) * 2016-12-27 2019-11-07 Nokia Solutions And Networks System Technology (Beijing) Co., Ltd. A connection setup method, user equipment, common central control node and communication system
US10893550B2 (en) * 2017-03-11 2021-01-12 Qualcomm Incorporated Numerology dependent random access timing
EP3379886A1 (en) * 2017-03-20 2018-09-26 ASUSTek Computer Inc. Method and apparatus for random access procedure for system information request in a wireless communication system
US10772060B2 (en) 2017-04-20 2020-09-08 Huawei Technologies Co., Ltd. Remote radio head equipped with user equipment terminal capability
FI3616467T3 (fi) 2017-04-25 2023-03-22 Apple Inc GNB:n hallinta verkkotoimintojen virtualisointikehyksessä
JP7083849B2 (ja) * 2017-06-06 2022-06-13 華為技術有限公司 通信方法、装置、およびシステム
CN110447254B (zh) * 2017-09-11 2022-10-21 联发科技股份有限公司 波束故障恢复请求传输的方法及其用户设备
MX2020003264A (es) 2017-10-06 2020-07-20 Fg innovation co ltd Seleccion de recursos del canal de acceso aleatorio en un entorno multihaz.
US11317469B2 (en) * 2017-11-28 2022-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Radio access network node technology
TWI650037B (zh) * 2017-12-05 2019-02-01 財團法人工業技術研究院 一種集中式無線存取網路控制方法
KR102414677B1 (ko) * 2017-12-14 2022-06-29 삼성전자주식회사 무선통신시스템에서 신호를 송수신하는 방법 및 장치
WO2019119257A1 (zh) * 2017-12-19 2019-06-27 华为技术有限公司 一种随机接入方法及装置
CN110557978B (zh) * 2018-04-04 2024-02-06 北京小米移动软件有限公司 上行传输方法、装置及存储介质
KR102036450B1 (ko) * 2018-05-25 2019-11-15 삼원에프에이 (주) 음영 지역 해소를 위한 동일 주파수 무전기 상호간 통신 방법
WO2020009510A1 (ko) * 2018-07-04 2020-01-09 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치
WO2020092513A1 (en) * 2018-10-31 2020-05-07 John Mezzalingua Associates, LLC Orchestrator and interconnection fabric mapper for a virtual wireless base station
CN113892301B (zh) * 2019-10-17 2024-06-04 华为技术有限公司 通信方法及装置
EP4068646A4 (en) * 2019-11-25 2024-01-03 SOLiD, INC. COMMUNICATION SYSTEM AND OPERATING PROCEDURES THEREOF
US11382027B2 (en) 2020-08-17 2022-07-05 Qualcomm Incorporated Layer 2 remote radio head configuration
US11943705B2 (en) * 2021-06-11 2024-03-26 Skylo Technologies, Inc. RF (radio frequency) virtualization architecture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120088815A (ko) * 2009-11-03 2012-08-08 모토로라 모빌리티, 인크. 무선 단말기들을 중계기들로서 사용하는 이종 네트워크들에서의 간섭 조정
US20130072191A1 (en) * 2008-05-01 2013-03-21 Broadcom Corporation Determining a Handoff Metric
WO2013123670A1 (en) * 2012-02-24 2013-08-29 Guangjie Li Cooperative radio access network with centralized base station baseband unit (bbu) processing pool
WO2013125900A1 (ko) * 2012-02-23 2013-08-29 엘지전자 주식회사 C-ran 시스템에서 핸드오버를 수행하는 방법 및 이를 위한 장치
US20130231147A1 (en) * 2010-03-17 2013-09-05 Qualcomm Incorporated Apparatus and method for interference mitigation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101618172B1 (ko) 2009-04-30 2016-05-04 삼성전자주식회사 이동통신시스템의 rach 채널 정보 전송 방법
KR101803015B1 (ko) * 2010-02-10 2017-12-01 주식회사 골드피크이노베이션즈 다수의 요소 반송파를 운영하는 무선 통신 시스템에서 업링크 동기를 설정하는 방법 및 장치
KR101810121B1 (ko) * 2011-05-27 2017-12-18 애플 인크. 무선 통신 시스템에서 랜덤 액세스의 수행장치 및 방법
EP2727305A4 (en) * 2011-07-01 2015-01-07 Intel Corp LAYER SHIFTING IN MULTIPLE INPUT COMMUNICATIONS, MULTIPLE OPEN LOOP OUTPUTS
EP2761920A1 (en) * 2011-09-28 2014-08-06 Fujitsu Limited Activation of supplementary transmission unit
WO2013048526A1 (en) 2011-10-01 2013-04-04 Intel Corporation Remote radio unit (rru) and base band unit (bbu)
US10681736B2 (en) * 2011-10-27 2020-06-09 Lg Electronics Inc. Method for allowing terminal to perform random access step in wireless communication system and device therefor
USRE48458E1 (en) 2012-03-19 2021-03-02 Lg Electronics Inc. Method for performing high-speed handover in base station cooperative wireless communication system, and device for same
US20130294418A1 (en) * 2012-05-04 2013-11-07 Nokia Siemens Networks Oy Switching Between Remote Radio Heads
US9161299B2 (en) * 2013-01-28 2015-10-13 Transpacific Ip Management Group Ltd. Remote radio header selection
JP2014216697A (ja) * 2013-04-23 2014-11-17 ソニー株式会社 通信制御装置、通信制御方法、無線通信システム及び端末装置
US9380614B2 (en) * 2013-05-23 2016-06-28 Lg Electronics Inc. Method of performing communication by user equipment in cloud radio access network environment and apparatus therefor
US20150030496A1 (en) * 2013-07-26 2015-01-29 M&C Corporation Aluminum alloy wire and wire assembly parts
KR101635665B1 (ko) * 2013-10-31 2016-07-01 주식회사 엘지화학 응용 모듈 데이터제어장치 및 그 데이터제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072191A1 (en) * 2008-05-01 2013-03-21 Broadcom Corporation Determining a Handoff Metric
KR20120088815A (ko) * 2009-11-03 2012-08-08 모토로라 모빌리티, 인크. 무선 단말기들을 중계기들로서 사용하는 이종 네트워크들에서의 간섭 조정
US20130231147A1 (en) * 2010-03-17 2013-09-05 Qualcomm Incorporated Apparatus and method for interference mitigation
WO2013125900A1 (ko) * 2012-02-23 2013-08-29 엘지전자 주식회사 C-ran 시스템에서 핸드오버를 수행하는 방법 및 이를 위한 장치
WO2013123670A1 (en) * 2012-02-24 2013-08-29 Guangjie Li Cooperative radio access network with centralized base station baseband unit (bbu) processing pool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070859A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690760A (zh) * 2015-06-04 2018-02-13 莱特普茵特公司 用于在无线信号环境中测试射频(rf)数据包信号收发器的方法
WO2017151435A1 (en) * 2016-02-29 2017-09-08 Commscope Technologies Llc Automatic power configuration for a point-to-multipoint distributed radio access network
US10244472B2 (en) 2016-02-29 2019-03-26 Commscope Technologies Llc Automatic power configuration for a point-to-multipoint distributed radio access network
CN109315019B (zh) * 2016-04-08 2024-02-20 株式会社Ntt都科摩 中央汇聚装置与延伸装置之间的接口方法和无线网络控制系统
WO2017175780A1 (ja) * 2016-04-08 2017-10-12 株式会社Nttドコモ 無線基地局及び通信制御方法
CN109315019A (zh) * 2016-04-08 2019-02-05 株式会社Ntt都科摩 中央汇聚装置与延伸装置之间的接口方法和无线网络控制系统
JPWO2017175780A1 (ja) * 2016-04-08 2019-02-14 株式会社Nttドコモ 無線基地局及び通信制御方法
EP3442289A4 (en) * 2016-04-08 2019-11-13 NTT DoCoMo, Inc. WIRELESS BASE STATION AND COMMUNICATION CONTROL METHOD
CN109196943A (zh) * 2016-05-27 2019-01-11 株式会社Ntt都科摩 通信装置及随机接入控制方法
CN109196943B (zh) * 2016-05-27 2022-10-25 株式会社Ntt都科摩 通信装置及随机接入控制方法
EP3468284B1 (en) * 2016-05-27 2023-08-23 Ntt Docomo, Inc. Communication device and random access control method
US11277866B2 (en) 2016-05-27 2022-03-15 Ntt Docomo, Inc. Communication device and random access control method
US11716694B2 (en) 2019-01-31 2023-08-01 Commscope Technologies Llc Estimating and controlling transmit power of user equipment by a base station

Also Published As

Publication number Publication date
KR101789639B1 (ko) 2017-10-25
EP3070859A4 (en) 2017-06-21
EP3070859B1 (en) 2019-08-21
CN105765882A (zh) 2016-07-13
US10362599B2 (en) 2019-07-23
KR20160051789A (ko) 2016-05-11
EP3070859A1 (en) 2016-09-21
CN105765882B (zh) 2019-04-12
US20160262179A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2015072703A1 (ko) 상향링크 동기를 획득하고 상향링크 연결을 설정하는 방법
WO2018062898A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2018062735A1 (ko) 통신 시스템에서 공통 자원에 기초한 접속 제어 방법 및 장치
WO2015156641A1 (en) Method and apparatus for using unlicensed band channel in cellular wireless communication system
WO2018097497A1 (ko) 통신 시스템에서 접속 방법 및 이를 수행하는 장치
WO2018062846A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2016171495A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 릴레이 선택 및 신호 송수신 방법 및 장치
WO2016085287A1 (ko) 랜덤 액세스 방법 및 그 장치
WO2015060562A1 (ko) 클라우드 랜 환경에서 rrh를 통한 하향링크 전송 전력을 설정하는 방법
WO2015037924A1 (ko) 무선 통신 시스템의 단말에서 전송 신호 전력 제어 방법 및 장치
WO2014058221A2 (ko) 무선 통신 시스템에서 단말간 통신을 수행하는 방법 및 장치
WO2018174684A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 전송하는 방법 및 장치
WO2016144084A1 (en) Method for operating a fast random access procedure in a wireless communication system and a device therefor
WO2018131935A1 (ko) 근접 기반 무선 통신 방법 및 사용자기기
WO2014196741A1 (ko) 무선 통신 시스템에서 타이밍 동기화를 수행하는 방법 및 장치
WO2015034202A1 (ko) 멀티 rat 환경에서 셀 선택 방법
WO2016043376A1 (ko) 이종 무선 통신 기술이 적용되는 시스템에서 단말의 버퍼 상태 보고 방법 및 이를 위한 장치
WO2015002389A1 (ko) 이기종 셀 환경에서 단말이 통신을 수행하는 방법 및 단말
WO2015020394A1 (ko) 무선 통신 시스템에서 빠른 다중 기지국 검색 및 접속 방법 및 장치
WO2020162726A1 (en) Method and apparatus for indicating two-step random access procedure in wireless communication system
WO2014182131A1 (ko) 이중연결을 지원하는 무선 통신 시스템에서 단말 식별자 구성 방법 및 그 장치
WO2023038332A1 (ko) 무선 이동 통신 시스템에서 기지국이 복수의 공통 설정 정보와 하나의 시간정렬타이머를 이용해서 축소된 성능의 단말과 랜덤 액세스를 수행하는 방법 및 장치.
WO2017209433A1 (ko) 무선 통신 시스템에서 하향링크 동기를 측정하는 방법 및 장치
WO2016144141A1 (ko) 비면허 대역에서의 하향링크 전송 방법
WO2019098702A1 (en) Method for reporting measurement result and device supporting the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006971

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014862025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15033213

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE