WO2016144141A1 - 비면허 대역에서의 하향링크 전송 방법 - Google Patents

비면허 대역에서의 하향링크 전송 방법 Download PDF

Info

Publication number
WO2016144141A1
WO2016144141A1 PCT/KR2016/002477 KR2016002477W WO2016144141A1 WO 2016144141 A1 WO2016144141 A1 WO 2016144141A1 KR 2016002477 W KR2016002477 W KR 2016002477W WO 2016144141 A1 WO2016144141 A1 WO 2016144141A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca
delay time
channel
unlicensed band
group
Prior art date
Application number
PCT/KR2016/002477
Other languages
English (en)
French (fr)
Inventor
안준기
김기준
박한준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/557,325 priority Critical patent/US10412759B2/en
Priority to EP16762028.5A priority patent/EP3270653B1/en
Publication of WO2016144141A1 publication Critical patent/WO2016144141A1/ko
Priority to US16/524,612 priority patent/US20190349984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for downlink transmission and an uplink transmission in an unlicensed band.
  • WLANs wireless local area networks
  • QoS quality of service
  • LTE-U LTE in Unlicensed spectrum
  • LAA Licensed-Assisted Access using LTE
  • CA carrier aggregation
  • the terminal first accesses the network in the licensed band.
  • the base station may offload the traffic of the licensed band to the unlicensed band by combining the licensed band and the unlicensed band according to the situation.
  • LTE-U can extend the advantages of LTE to unlicensed bands to provide improved mobility, security, and communication quality.
  • LTE-U is more efficient in frequency than existing radio access technologies, resulting in increased throughput. Can be.
  • unlicensed bands are shared with various radio access technologies such as WLANs. Accordingly, each communication node acquires channel usage in the unlicensed band based on competition, which is called carrier sense multiple access with collision avoidance (CSMA / CA). Each communication node needs to perform channel sensing before transmitting a signal to check whether the channel is idle. This is called clear channel assessment (CCA).
  • CCA clear channel assessment
  • the present invention provides a method for downlink transmission in an unlicensed band.
  • the present invention also provides a method for uplink transmission in an unlicensed band and a device using the same.
  • a method for downlink transmission in an unlicensed band determines a first delay time for a plurality of base stations in a first group to initiate a clear channel assessment (CCA) in the unlicensed band from a reference time point, and the reference time point From the first delay time after the CCA period, the plurality of base stations perform CCA to determine whether the channel is idle, and if the channel is idle, the plurality of base stations simultaneously performs downlink transmission .
  • CCA clear channel assessment
  • a method for uplink transmission in an unlicensed band includes: receiving, by a wireless device, an uplink grant for uplink transmission in an unlicensed band from a base station and initiating a clear channel assessment (CCA) from a reference time point; Determine a delay time, determine whether a channel is idle by performing a CCA during the CCA period after the delay time from the reference time; and, if the channel is idle, the wireless device transmits the uplink grant It includes performing uplink transmission based on.
  • CCA clear channel assessment
  • a device for uplink transmission in an unlicensed band includes a transceiver for transmitting and receiving wireless signals and a processor coupled to the transceiver.
  • the processor receives an uplink grant for uplink transmission in an unlicensed band from a base station through the transceiver, determines a delay time for initiating a clear channel assessment (CCA) from a reference time point, and determines the delay time from the reference time point. Thereafter, CCA is performed during the CCA period to determine whether the channel is idle through the transceiver. When the channel is idle, uplink transmission is performed through the transceiver based on the uplink grant.
  • CCA clear channel assessment
  • FIG 1 shows an example of an LTE service using an unlicensed band.
  • FIG. 2 shows an example in which a wireless communication system is arranged.
  • FIG. 3 shows a communication method according to an embodiment of the present invention.
  • FIG. 4 shows a communication method according to another embodiment of the present invention.
  • FIG. 5 shows a communication method according to another embodiment of the present invention.
  • FIG. 6 shows a method for uplink transmission according to an embodiment of the present invention.
  • FIG. 7 shows a method for uplink transmission according to another embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device may be fixed or mobile, and the user equipment (UE) may be a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), or a personal digital assistant (PDA). ), A wireless modem, a handheld device, or other terms.
  • the wireless device may be a device that supports only data communication, such as a machine-type communication (MTC) device.
  • MTC machine-type communication
  • a base station generally refers to a fixed station that communicates with a wireless device, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point. Can be.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the present invention is applied based on 3GPP long term evolution (LTE) based on 3rd Generation Partnership Project (3GPP) Technical Specification (TS).
  • LTE long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • the wireless device may be served by a plurality of serving cells.
  • Each serving cell may be defined as a downlink (DL) component carrier (CC) or a pair of DL CC and UL (uplink) CC.
  • DL downlink
  • CC downlink component carrier
  • uplink uplink
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency, performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, may be established after a Radio Resource Control (RRC) connection is established, and may be used to provide additional radio resources.
  • RRC Radio Resource Control
  • At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, radio resource control (RRC) message).
  • RRC Radio Resource Control
  • the cell index (CI) of the primary cell may be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • FIG 1 shows an example of an LTE service using an unlicensed band.
  • the wireless device 130 establishes a connection with the first base station 110 and receives a service through a licensed band. For offloading traffic, the wireless device 130 may be provided with a service through an unlicensed band with the second base station 120.
  • the second base station 120 may support other communication protocols such as a wireless local area network (WLAN) in addition to the LTE.
  • the first base station 110 and the second base station 120 may be combined in a carrier aggregation (CA) environment so that a specific cell of the first base station 110 may be a primary cell.
  • CA carrier aggregation
  • the first base station 110 and the second base station 120 may be combined in a dual connectivity environment so that a specific cell of the first base station 110 may be a primary cell.
  • the first base station 110 having the primary cell has a wider coverage than the second base station 120.
  • the first base station 110 may be referred to as a macro cell.
  • the second base station 120 may be referred to as a small cell, femtocell or microcell.
  • the first base station 110 may operate a primary cell and zero or more secondary cells.
  • the second base station 120 may operate one or more secondary cells.
  • the secondary cell may be activated / deactivated by the indication of the primary cell.
  • the first base station 110 corresponds to the primary cell
  • the second base station 120 corresponds to the secondary cell and may be managed by one base station.
  • the licensed band is a band that guarantees exclusive use for a specific communication protocol or a specific operator.
  • the unlicensed band is a band in which various communication protocols coexist and guarantee shared use.
  • the unlicensed band may include the 2.5 GHz and / or 5 GHz bands used by the WLAN.
  • LBT listen before talk
  • CCA clear channel assessment
  • a base station or a wireless device of an LTE system must first perform LBT to access a channel in an unlicensed band.
  • other communication nodes such as WLAN also perform LBT when a base station or a wireless device of the LTE system transmits a signal
  • interference may be problematic.
  • the CCA threshold is defined as -62 dBm for non-WLAN signals and -82 dBm for WLAN signals. This means that if the LTE signal is received at a power of -62dBm or less, interference with the LTE signal may occur due to another WLAN device.
  • 'performing LBT' or 'performing CCA' refers to accessing a corresponding channel after checking whether the channel is idle or using another channel.
  • LTE and WLAN are exemplarily described as communication protocols used in an unlicensed band. This is merely an example, and it may be said that the first communication protocol and the second communication protocol are used in the unlicensed band.
  • a base station (BS) supports LTE, and a UE is called a device supporting LTE.
  • DL (downlink) transmission is described by a base station (BS) transmission
  • UL (uplink) transmission is described based on user equipment (UE) transmission
  • DL transmission and UL transmission are transmission nodes or node groups in a wireless network. It can be performed by.
  • the UE may mean an individual node existing for each user
  • the BS may mean a central node that transmits and controls data for a plurality of individual nodes.
  • the term DL node instead of BS and UL node instead of UE may be used.
  • a cell (or carrier) operating in an unlicensed band is referred to as an unlicensed cell or an unlicensed carrier.
  • a cell operating in a licensed band is called a licensed cell or licensed carrier.
  • FIG. 2 shows an example in which a wireless communication system is arranged.
  • the operator divides the area into sectors with adequate coverage and the base station operating each sector communicates with the UE belonging to that sector.
  • the overall system throughput can be increased by maximizing frequency reuse in a manner that minimizes interference between different sectors to allow simultaneous transmission between neighboring sectors.
  • the overall system performance can be improved.
  • simultaneous transmission is allowed between UEs connected to base stations of the same operator, but simultaneous transmission is avoided through UEs connected to base stations of different operators through LBT operation, the overall system performance can be improved.
  • nodes eg, base stations, UEs
  • LBT-based radio channel access in the unlicensed band.
  • FIG. 3 shows a communication method according to an embodiment of the present invention.
  • BS1 and BS2 are base stations belonging to the first group, and BS3 is called base stations belonging to the second group.
  • the number of groups or the number of base stations belonging to a group is merely an example.
  • the criteria for dividing the base stations into groups may be operators, geographic characteristics, frequency bands, etc., but are not limited thereto.
  • the reference time point may be a subframe boundary or a boundary of a radio frame.
  • the reference time point may be defined by a specific pattern or may be a time point at which channel occupancy ends.
  • Tdefer Delay time from the time of reference until the start of CCA.
  • Tdefer1 (t1) represents the Tdefer of the first group at t1.
  • Td CCA duration in which CCA is performed.
  • the same delay time Tdefer is defined for each group.
  • the delay time may be a fixed value obtained based on a group-specific parameter (eg, group identifier) or may be obtained based on the group-specific parameter at a specific period or every reference time point.
  • the delay time may be randomly defined at every reference time point.
  • Each base station may perform CCA during the CCA period Td after the delay time at each reference time, and may start DL transmission if it is determined that the channel is not occupied.
  • BS1 and BS2 belonging to the first group start CCA from the same Tdefer1 (t1) at t1. If the CCA result channel is idle, BS1 and BS2 start DL transmission at t1 + Tdefer1 (t1) + Td. Since Tdefer2 (t1) is larger than Tdefer1 (t1), BS3 belonging to the second group performing CCA from Tdefer2 (t1) determines that the channel is busy and waits for transmission.
  • Tdefer1 (t2) is greater than Tdefer2 (t2).
  • BS3 belonging to the second group can detect the idle channel and start transmission.
  • FIG. 4 shows a communication method according to another embodiment of the present invention.
  • the same CCA interval Td is defined for each group.
  • the CCA interval may be a fixed value obtained based on a group-specific parameter (eg, a group identifier) or may be obtained based on the group-specific parameter at a specific period or every reference time point.
  • the CCA interval may be randomly defined at every reference time point.
  • Td1 (t1) represents Td of the first group at t1
  • Td2 (t1) represents Td of the second group at t1.
  • the base station may start transmission from the time t1 + Td (t1).
  • BS1 and BS2 belonging to the first group perform CCA during the same CCA period Td1 (t1) at t1. If the CCA result channel is idle, BS1 and BS2 start DL transmission at t1 + Td1 (t1). Since Td2 (t1) is larger than Td1 (t1), BS3 belonging to the second group performing CCA during Td2 (t1) determines that the channel is busy and waits for transmission.
  • Td1 (t2) is greater than Td2 (t2). Accordingly, BS3 belonging to the second group can detect a channel idle during Td2 (t2) and start transmission.
  • FIG. 5 shows a communication method according to another embodiment of the present invention.
  • the transmission start time T is a time at which the actual transmission can be started after the completion of the CCA.
  • BS1 has a CCA interval Td1 (t1) defined and BS2 Td2 (t1) defined.
  • Td1 T-Td1 (t1)
  • a transmission start time T may be set differently between different groups.
  • Information about a pattern for a reference time point may be shared between base stations of the same group.
  • the base station may provide the UE with information about the pattern.
  • Information about parameters for determining delay time, CCA interval, and / or transmission start time may be shared between base stations of the same group.
  • the base station may provide the UE with information about the parameter.
  • An embodiment for the frequency reuse relates to base stations belonging to different groups. This may also apply to UEs belonging to different groups.
  • FIG. 6 shows a method for uplink transmission according to an embodiment of the present invention.
  • the criteria for dividing the UEs into groups may be carriers, geographic characteristics, frequency bands, etc., but are not limited thereto. More specifically, the first group may be a UE connected to a base station operated by the first operator, and the second group may be a UE connected to a base station operated by the second operator.
  • Uplink transmission may be triggered at the same reference time in a plurality of groups. Assume that UE1 and UE2 in the first group receive the first UL grant, and UE3 in the second group receives the second UL grant. A UL grant may be given for each UE, and UL transmissions for a plurality of UEs may be triggered with one UL grant.
  • the reference time point t1 is a time point at which CCA for UL transmission can be started after receiving the UL grant.
  • the same delay time Tdefer is defined for each group.
  • the delay time may be a fixed value obtained based on a group-specific parameter (eg, group identifier) or may be obtained based on the group-specific parameter at a specific period or every reference time point.
  • the delay time may be randomly defined at every reference time point.
  • the UL grant of each group may include information about the parameters used to determine the corresponding delay time.
  • Each UE may perform CCA during the CCA period Td after the delay time at each reference time, and may start UL transmission if it is determined that the channel is not occupied.
  • UE1 and UE2 belonging to the first group start CCA from the same Tdefer1 (t1) at t1.
  • UE1 and UE2 start UL transmission at t1 + Tdefer1 (t1) + Td. Since Tdefer2 (t1) is larger than Tdefer1 (t1), UE3 belonging to the second group performing CCA from Tdefer2 (t1) determines that the channel is busy and waits for transmission.
  • FIG. 7 shows a method for uplink transmission according to another embodiment of the present invention.
  • the same CCA interval Td is defined for each group.
  • the CCA interval may be a fixed value obtained based on a group-specific parameter (eg, a group identifier) or may be obtained based on the group-specific parameter at a specific period or every reference time point.
  • the CCA interval may be randomly defined at every reference time point.
  • the UL grant of each group may include information about parameters used to determine the corresponding CCA interval.
  • Td1 (t1) represents Td of the first group at t1
  • Td2 (t1) represents Td of the second group at t1.
  • the UE may start transmission from a time t1 + Td (t1).
  • UE1 and UE2 belonging to the first group perform CCA during the same CCA period Td1 (t1) at t1.
  • Td1 (t1) When the CCA result channel is idle, UE1 and UE2 start UL transmission at t1 + Td1 (t1). Since Td2 (t1) is larger than Td1 (t1), UE3 belonging to the second group performing CCA during Td2 (t1) determines that the channel is busy and waits for transmission.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device 50 includes a processor 51, a memory 52, and a transceiver 53.
  • the memory 52 is connected to the processor 51 and stores various instructions executed by the processor 51.
  • the transceiver 53 is connected to the processor 51 to transmit and / or receive a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the UE may be implemented by the processor 51. When the above-described embodiment is implemented as software instructions, the instructions may be stored in the memory 52 and executed by the processor 51 to perform the above-described operations.
  • Base station 60 includes a processor 61, a memory 62, and a transceiver 63.
  • Base station 60 may operate in an unlicensed band.
  • the memory 62 is connected to the processor 61 and stores various instructions executed by the processor 61.
  • the transceiver 63 is connected to the processor 61 to transmit and / or receive a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

비면허 대역에서 하향링크 전송을 위한 방법이 제공된다. 제1 그룹 내의 복수의 기지국이 기준 시점부터 상기 비면허 대역에서 CCA(clear channel assessment)를 개시하기 위한 제1 지연 시간을 결정한다. 상기 기준 시점부터 상기 제1 지연 시간 이후에 CCA 구간 동안 상기 복수의 기지국이 CCA를 수행하여 채널이 아이들한지 여부를 확인한다. 상기 채널이 아이들하면, 상기 복수의 기지국이 동시에 하향링크 전송을 수행한다.

Description

비면허 대역에서의 하향링크 전송 방법
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 비면허 대역(unlicensed band)에서의 하향링크 전송을 위한 방법 및 상향링크 전송을 위한 방법에 관한 것이다.
최근 모바일 데이터 트래픽이 폭발적으로 증가함에 따라 서비스 사업자(service provider)는 WLAN(wireless local area network)을 데이터 트래픽 분산에 활용해왔다. WLAN은 비면허 대역(unlicensed band)를 이용하기 때문에 서비스 사업자는 추가되는 주파수 비용 부담 없이 상당한 양의 데이터 수요를 해결할 수 있었다. 하지만, 사업자 간 경쟁적인 WLAN 설치로 인해 간섭 현상이 심화되고, 사용자가 많을수록 QoS(Quality of Service)를 보장하지 못하며, 이동성이 지원되지 못하는 등 문제점이 있다. 이를 보완하기 위한 방안 중 하나로 비면허 대역에서의 LTE(long term evolution) 서비스가 대두되고 있다.
LTE-U(LTE in Unlicensed spectrum) 또는 LAA(Licensed-Assisted Access using LTE)는 LTE 면허 대역(licensed band)을 앵커(anchor)로 하여, 면허 대역과 비면허 대역을 CA(carrier aggregation)을 이용하여 묶는 기술이다. 단말은 먼저 면허 대역에서 네트워크에 접속한다. 기지국이 상황에 따라 면허 대역과 비면허 대역을 결합하여 면허 대역의 트래픽을 비면허 대역으로 오프로딩(offloading)할 수 있다.
LTE-U는 LTE의 장점을 비면허 대역으로 확장하여 향상된 이동성, 보안성 및 통신 품질을 제공할 수 있고, 기존 무선 접속(radio access) 기술에 비해 LTE가 주파수 효율성이 높아 처리율(throughput)을 증가시킬 수 있다.
독점적 활용이 보장되는 면허 대역과 달리 비면허 대역은 WLAN과 같은 다양한 무선 접속 기술과 공유된다. 따라서, 각 통신 노드는 경쟁을 기반으로 비면허 대역에서 채널 사용을 획득하며, 이를 CSMA/CA(Carrier sense multiple access with collision avoidance)라 한다. 각 통신 노드는 신호를 전송하기 전에 채널 센싱을 수행하여 채널이 아이들한지 여부를 확인해야 하며, 이를 CCA(clear channel assessment)라고 한다.
다양한 무선 접속 기술이 비면허 대역에서 CCA를 수행함에 따라, 간섭을 줄일 수 있는 방법이 요구된다.
본 발명은 비면허 대역에서의 하향링크 전송을 위한 방법을 제공한다.
본 발명은 또한 비면허 대역에서의 상향링크 전송을 위한 방법 및 이를 이용한 기기를 제공한다.
일 양태에서, 비면허 대역에서 하향링크 전송을 위한 방법은 제1 그룹 내의 복수의 기지국이 기준 시점부터 상기 비면허 대역에서 CCA(clear channel assessment)를 개시하기 위한 제1 지연 시간을 결정하고, 상기 기준 시점부터 상기 제1 지연 시간 이후에 CCA 구간 동안 상기 복수의 기지국이 CCA를 수행하여 채널이 아이들한지 여부를 확인하고, 상기 채널이 아이들하면, 상기 복수의 기지국이 동시에 하향링크 전송을 수행하는 것을 포함한다.
다른 양태에서, 비면허 대역에서 상향링크 전송을 위한 방법은 무선 기기가 비면허 대역에서 상향링크 전송을 위한 상향링크 그랜트를 기지국으로부터 수신하고, 상기 무선기기가 기준 시점부터 CCA(clear channel assessment)를 개시하기 위한 지연 시간을 결정하고, 상기 무선기기가 상기 기준 시점부터 상기 지연 시간 이후에 CCA 구간 동안 CCA를 수행하여 채널이 아이들한지 여부를 확인하고, 상기 채널이 아이들하면, 상기 무선기기가 상기 상향링크 그랜트를 기반으로 상향링크 전송을 수행하는 것을 포함한다.
또 다른 양태에서, 비면허 대역에서 상향링크 전송을 위한 기기는 무선 신호를 송신 및 수신하는 송수신기와 상기 송수신기에 연결되는 프로세서를 포함한다. 상기 프로세서는 비면허 대역에서 상향링크 전송을 위한 상향링크 그랜트를 기지국으로부터 상기 송수신기를 통해 수신하고, 기준 시점부터 CCA(clear channel assessment)를 개시하기 위한 지연 시간을 결정하고, 상기 기준 시점부터 상기 지연 시간 이후에 CCA 구간 동안 CCA를 수행하여 채널이 아이들한지 여부를 상기 송수신기를 통해 확인하고, 상기 채널이 아이들하면, 상기 상향링크 그랜트를 기반으로 상기 송수신기를 통해 상향링크 전송을 수행한다.
비면허 대역에서 다양한 통신 프로토콜이 공존하는 환경에서 데이터 수신 품질이 저하되는 것을 방지할 수 있다.
도 1은 비면허 대역을 이용한 LTE 서비스의 일 예를 보여준다.
도 2는 무선 통신 시스템이 배치되는 예를 보여준다.
도 3은 본 발명의 일 실시예에 따른 통신 방법을 보여준다.
도 4는 본 발명의 다른 실시예에 따른 통신 방법을 보여준다.
도 5는 본 발명의 또 다른 실시예에 따른 통신 방법을 보여준다.
도 6은 본 발명의 일 실시예에 따른 상향링크 전송을 위한 방법을 보여준다.
도 7은 본 발명의 다른 실시예에 따른 상향링크 전송을 위한 방법을 보여준다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(wireless device)는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment)은 MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또는, 무선기기는 MTC(Machine-Type Communication) 기기와 같이 데이터 통신만을 지원하는 기기일 수 있다.
기지국(base station, BS)은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) TS(Technical Specification)을 기반으로 하는 3GPP LTE(long term evolution)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다.
CA(carrier aggregation) 환경 또는 이중 접속(dual connectivity) 환경에서 무선기기는 복수의 서빙셀에 의해 서빙될 수 있다. 각 서빙셀은 DL(downlink) CC(component carrier) 또는 DL CC와 UL(uplink) CC의 쌍으로 정의될 수 있다.
서빙셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC(Radio Resource Control) 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC(radio resource control) 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI(cell index)는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
도 1은 비면허 대역을 이용한 LTE 서비스의 일 예를 보여준다.
무선기기(130)는 제1 기지국(110)과 연결을 확립하고, 면허 대역(licensed band)를 통해 서비스를 제공받는다. 트래픽 오프로딩을 위해, 무선기기(130)는 제2 기지국(120)과 비면허 대역(unlicensed band)을 통해 서비스를 제공받을 수 있다.
제1 기지국(110)은 LTE 시스템을 지원하는 기지국이지만, 제2 기지국(120)는 LTE 외에 WLAN(wireless local area network) 등 타 통신 프로토콜을 지원할 수도 있다. 제1 기지국(110)과 제2 기지국(120)는 CA(carrier aggregation) 환경으로 결합되어, 제1 기지국(110)의 특정 셀이 1차셀일 수 있다. 또는, 제1 기지국(110)과 제2 기지국(120)는 이중 접속(dual connectivity) 환경으로 결합되어, 제1 기지국(110)의 특정 셀이 1차셀일 수 있다. 일반적으로 1차셀을 갖는 제1 기지국(110)이 제2 기지국(120) 보다 더 넓은 커버리지를 갖는다. 제1 기지국(110)는 매크로 셀이라고 할 수 있다. 제2 기지국(120)는 스몰셀, 펨토셀 또는 마이크로셀이라고 할 수 있다. 제1 기지국(110)는 1차셀과 영 또는 그 이상의 2차셀을 운용할 수 있다. 제2 기지국(120)는 하나 또는 그 이상의 2차셀을 운용할 수 있다. 2차셀은 1차셀의 지시에 의해 활성화/비활성화될 수 있다.
상기는 예시에 불과하고, 제1 기지국(110)는 1차셀에 해당되고, 제2 기지국(120)은 2차셀에 해당되어, 하나의 기지국에 의해 관리될 수 있다.
면허 대역은 특정 통신 프로토콜 또는 특정 사업자에게 독점적인 사용(exclusive use)을 보장하는 대역이다.
비면허 대역은 다양한 통신 프로토콜이 공존하며, 공유 사용(shared use)을 보장하는 대역이다. 비면허 대역은 WLAN이 사용하는 2.5 GHz 및/또는 5 GHz 대역을 포함할 수 있다.
기본적으로 비면허 대역에서는 각 통신 노드 간의 경쟁을 통한 채널 확보를 가정한다. 따라서, 비면허 대역에서의 통신은 채널 센싱을 수행하여 다른 통신 노드가 신호 전송을 하지 않음을 확인할 것을 요구하고 있다. 이를 편의상 LBT(listen before talk)이라고 하며, 다른 통신노드가 신호 전송을 하지 않는 다고 판단한 경우를 CCA(clear channel assessment)가 확인되었다고 정의한다.
LTE 시스템의 기지국이나 무선기기도 비면허 대역에서의 채널에 액세스하기 위해서는 LBT를 먼저 수행해야 한다. 또한, LTE 시스템의 기지국이나 무선기기가 신호를 전송할 때에 WLAN 등 다른 통신 노드들도 LBT를 수행하므로, 간섭이 문제될 수 있다. 예를 들어, WLAN에서 CCA 한계치(threshold)는 non-WLAN 신호에 대하여 -62dBm, WLAN 신호에 대하여 -82dBm으로 규정되어 있다. 이는 LTE 신호가 -62dBm 이하의 전력으로 수신되면, 타 WLAN 기기로 인해 LTE 신호에 간섭이 발생할 수 있음을 의미한다.
이하에서, 'LBT를 수행한다' 또는 'CCA를 수행한다' 함은 채널이 아이들한지 여부 또는 타 노드의 채널 사용 여부를 확인한 후 해당 채널에 액세스하는 것을 말한다.
이하에서, 비면허 대역에서 사용되는 통신 프로토콜로 LTE과 WLAN을 예시적으로 기술한다. 이는 예시에 불과하고, 제1 통신 프로토콜과 제2 통신 프로토콜이 비면허 대역에서 사용된다고 할 수도 있다. BS(base station)은 LTE를 지원하고, UE는 LTE를 지원하는 기기라고 한다.
이하에서, DL(downlink) 송신은 BS(base station)에 의한 송신, UL(uplink) 송신은 UE(user equipment) 송신을 기준으로 설명하지만, DL 송신과 UL 송신은 무선 네트워크 내의 송신 노드 또는 노드 그룹에 의해 수행될 수 있다. UE는 사용자별로 존재하는 개별 노드, BS는 복수의 개별 노드들에 대한 데이터를 송수신하고 제어하는 중앙 노드(central node)를 의미할 수 있다. 이러한 관점에서 BS 대신 DL 노드, UE 대신 UL 노드라는 용어를 사용하기도 한다.
이하에서, 비면허 대역에서 동작하는 셀(또는 캐리어(carrier))을 비면허셀 또는 비면허 캐리어라 한다. 면허 대역에서 동작하는 셀을 면허셀 또는 면허 캐리어라 한다.
도 2는 무선 통신 시스템이 배치되는 예를 보여준다.
사업자는 영역을 적당한 커버리지를 갖는 섹터들로 나누고 각 섹터를 운영하는 기지국이 해당 섹터에 속하는 UE과 통신한다. 서로 다른 섹터 간의 간섭을 최소화하여 이웃 섹터 간의 동시 송신을 허용하는 방식으로 주파수 재사용(frequency reuse)를 최대화하여 전체 시스템 수율(throughput)을 높일 수 있다.
복수의 사업자 사이에는 섹터 간의 커버리지를 조정하거나 기지국 사이의 거리를 조정하는 것이 어려우므로, 서로 다른 사업자에 속한 인접한 기지국들이 동시에 트래픽을 전송하는 것은 큰 간섭을 야기할 수 있다.
따라서, 동일 무선 사업자의 기지국들 간에는 동시 송신을 허용하되 서로 다른 무선 사업자의 기지국들 간에는 LBT 동작을 통해 동시 송신을 피하게 한다면, 전체 시스템 성능을 높일 수 있다. 마찬가지로, 동일한 사업자의 기지국들에 접속한 UE 간에는 동시 송신을 허용하되 서로 다른 사업자의 기지국들에 접속한 UE 간에는 LBT 동작을 통해 동시 송신을 피하게 한다면 전체 시스템 성능을 높일 수 있다.
이하에서는 비면허 대역에서 LBT에 기반한 무선 채널 액세스(radio channel access) 동작을 하면서도 동일한 그룹에 속한 노드(예, 기지국, UE)들 간에는 동시 송신 확률을 높일 수 있는 방식을 제안한다.
도 3은 본 발명의 일 실시예에 따른 통신 방법을 보여준다.
BS1과 BS2는 제1 그룹에 속하는 기지국이고, BS3는 제2 그룹에 속하는 기지국이라고 한다. 그룹의 개수나 그룹에 속하는 기지국의 수는 예시에 불과하다.
기지국을 그룹별로 나누는 기준은 사업자, 지리적 특성, 주파수 밴드 등일 수 있으며, 제한이 있는 것은 아니다.
먼저 다음과 같이 용어를 정의한다.
- t1, t2 : 전송 또는 CCA의 기준 시점. 기준 시점은 서브프레임 경계 또는 무선 프레임의 경계일 수 있다. 기준 시점은 특정 패턴으로 정의되거나, 채널 점유가 종료된 시점일 수 있다.
- Tdefer : 기준 시점부터 CCA가 개시되기 까지 지연 시간. Tdefer1(t1)은 t1에서 제1 그룹의 Tdefer를 나타낸다.
- Td : CCA가 수행되는 CCA 구간(duration).
일 실시예에 의하면, 각 그룹별로 동일한 지연 시간 Tdefer가 정의된다. 지연 시간은 그룹-특징적 파라미터(예, 그룹 식별자)를 기반으로 얻어진 고정된 값이거나, 특정 주기 또는 매 기준 시점 마다 그룹-특징적 파라미터를 기반으로 얻어질 수 있다. 지연 시간은 매 기준 시점 마다 랜덤하게 정의될 수 있다.
각 기지국은 각 기준 시점에서 지연 시간 이후 CCA 구간 Td 동안 CCA를 수행하여, 채널이 점유되지 않았다고 판단하면 DL 전송을 시작할 수 있다.
제1 그룹에 속하는 BS1과 BS2는 t1에서 동일한 Tdefer1(t1) 부터 CCA가 시작된다. CCA 결과 채널이 아이들하면, BS1과 BS2는 t1 + Tdefer1(t1) + Td에서 DL 전송을 시작한다. Tdefer2(t1)가 Tdefer1(t1) 보다 더 크므로, Tdefer2(t1) 부터 CCA를 수행하는 제2 그룹에 속하는 BS3는 채널이 비지하다고 판단하고 전송을 대기한다.
t2에서는 Tdefer1(t2)가 Tdefer2(t2) 보다 더 크다. 따라서, 제2 그룹에 속하는 BS3이 아이들한 채널을 검출하고, 전송을 시작할 수 있다.
서로 다른 그룹에 속하는 기지국 간에는 CCA 시작 시점이 달라서 서로 다른 그룹에 속한 기지국 간에는 LBT 동작을 통해 서로 전송이 충돌하지 않도록 피하는 동작이 가능해진다.
도 4는 본 발명의 다른 실시예에 따른 통신 방법을 보여준다.
각 그룹별로 동일한 CCA 구간 Td가 정의된다. CCA 구간은 그룹-특징적 파라미터(예, 그룹 식별자)를 기반으로 얻어진 고정된 값이거나, 특정 주기 또는 매 기준 시점 마다 그룹-특징적 파라미터를 기반으로 얻어질 수 있다. CCA 구간은 매 기준 시점 마다 랜덤하게 정의될 수 있다.
Td1(t1)은 t1에서 제1 그룹의 Td를 나타내고, Td2(t1)은 t1에서 제2 그룹의 Td를 나타낸다.
기지국은 t1에서부터 CCA를 시작하여 CCA 구간 Td(t1) 동안 채널이 점유되지 않았다고 판단하면 t1+Td(t1) 시점부터 전송을 시작할 수 있다.
제1 그룹에 속하는 BS1과 BS2는 t1에서 동일한 CCA 구간 Td1(t1) 동안 CCA를 수행한다. CCA 결과 채널이 아이들하면, BS1과 BS2는 t1 + Td1(t1)에서 DL 전송을 시작한다. Td2(t1)가 Td1(t1) 보다 더 크므로, Td2(t1) 동안 CCA를 수행하는 제2 그룹에 속하는 BS3는 채널이 비지하다고 판단하고 전송을 대기한다.
t2에서는 Td1(t2)가 Td2(t2) 보다 더 크다. 따라서, 제2 그룹에 속하는 BS3이 Td2(t2) 동안 아이들한 채널을 검출하고, 전송을 시작할 수 있다.
서로 다른 그룹에 속하는 기지국 간에는 CCA 구간이 달라서 서로 다른 그룹에 속한 기지국 간에는 LBT 동작을 통해 서로 전송이 충돌하지 않도록 피하는 동작이 가능해진다.
도 5는 본 발명의 또 다른 실시예에 따른 통신 방법을 보여준다.
동일한 그룹에 속하는 기지국들에 대해 기준 시점 t1에서 서로 다른 CCA 구간이 정의되고, 지연 시간을 CCA 구간에 반비례하도록 정의하는 것이다. 전송 개시 시간 T는 CCA 완료 후 실제 전송이 개시될 수 있는 시간이다.
t1에서, BS1은 CCA 구간 Td1(t1)이 정의되고, BS2 Td2(t1)이 정의된다고 하자. CCA 시작을 지연하는 지연 시간으로써 BS1은 Tdefer1(t1)=T-Td1(t1)가 되고, BS2는 Tdefer2(t1)=T-Td2(t1)가 된다. 만약 t1에에서 t+T 까지 채널이 점유되지 않으면, BS1과 BS2 모두 t+T 에서 전송을 시작할 수 있다.
서로 다른 그룹에 속하는 기지국들이 동시에 전송을 시작하는 것을 피하기 위해서는 서로 다른 그룹 간에 전송 개시 시간 T가 달리 설정될 수 있다.
기준 시점을 위한 패턴(기준 시점이 나타나는 주기/오프셋 등)에 관한 정보는 동일 그룹의 기지국 간에 공유될 수 있다. 기지국은 UE에게 상기 패턴에 관한 정보를 제공할 수 있다.
지연시간, CCA 구간 및/또는 전송 개시 시간을 결정하기 위한 파라미터에 관한 정보는 동일 그룹의 기지국 간에 공유될 수 있다. 기지국은 UE에게 상기 파라미터에 관한 정보를 제공할 수 있다.
상기 주파수 재사용을 위한 실시예는 서로 다른 그룹에 속하는 기지국에 관한 것이다. 이는 서로 다른 그룹에 속하는 UE에게도 적용될 수 있다.
도 6은 본 발명의 일 실시예에 따른 상향링크 전송을 위한 방법을 보여준다.
UE1과 UE2는 제1 그룹에 속하고, UE3는 제2 그룹에 속한다. UE들을 그룹별로 나누는 기준은 사업자, 지리적 특성, 주파수 밴드 등일 수 있으며, 제한이 있는 것은 아니다. 보다 구체적으로, 제1 그룹은 제1 사업자에 의해 운영되는 기지국에 연결된 UE이고, 제2 그룹은 제2 사업자에 의해 운영되는 기지국에 연결된 UE 일 수 있다.
복수의 그룹이 동일한 기준 시점에 상향링크 전송이 트리거될 수 있다. 제1 그룹 내 UE1과 UE2는 제1 UL 그랜트를 수신하고, 제2 그룹의 UE3는 제2 UL 그랜트를 수신한다고 하자. 각 UE 별로 UL 그랜트가 주어질 수도 있고, 복수의 UE에 대한 UL 전송이 하나의 UL 그랜트로 트리거링될 수도 있다.
기준 시점 t1은 UL 그랜트를 수신한 이후 UL 전송을 위한 CCA가 개시될 수 있는 시점이다.
각 그룹별로 동일한 지연 시간 Tdefer가 정의된다. 지연 시간은 그룹-특징적 파라미터(예, 그룹 식별자)를 기반으로 얻어진 고정된 값이거나, 특정 주기 또는 매 기준 시점 마다 그룹-특징적 파라미터를 기반으로 얻어질 수 있다. 지연 시간은 매 기준 시점 마다 랜덤하게 정의될 수 있다. 각 그룹의 UL 그랜트는 대응하는 지연 시간을 결정하는데 사용되는 파라미터에 관한 정보를 포함할 수 있다.
각 UE은 각 기준 시점에서 지연 시간 이후 CCA 구간 Td 동안 CCA를 수행하여, 채널이 점유되지 않았다고 판단하면 UL 전송을 시작할 수 있다.
제1 그룹에 속하는 UE1과 UE2는 t1에서 동일한 Tdefer1(t1) 부터 CCA가 시작된다. CCA 결과 채널이 아이들하면, UE1과 UE2는 t1 + Tdefer1(t1) + Td에서 UL 전송을 시작한다. Tdefer2(t1)가 Tdefer1(t1) 보다 더 크므로, Tdefer2(t1) 부터 CCA를 수행하는 제2 그룹에 속하는 UE3는 채널이 비지하다고 판단하고 전송을 대기한다.
도 7은 본 발명의 다른 실시예에 따른 상향링크 전송을 위한 방법을 보여준다.
각 그룹별로 동일한 CCA 구간 Td가 정의된다. CCA 구간은 그룹-특징적 파라미터(예, 그룹 식별자)를 기반으로 얻어진 고정된 값이거나, 특정 주기 또는 매 기준 시점 마다 그룹-특징적 파라미터를 기반으로 얻어질 수 있다. CCA 구간은 매 기준 시점 마다 랜덤하게 정의될 수 있다. . 각 그룹의 UL 그랜트는 대응하는 CCA 구간을 결정하는데 사용되는 파라미터에 관한 정보를 포함할 수 있다.
Td1(t1)은 t1에서 제1 그룹의 Td를 나타내고, Td2(t1)은 t1에서 제2 그룹의 Td를 나타낸다.
UE은 t1에서부터 CCA를 시작하여 CCA 구간 Td(t1) 동안 채널이 점유되지 않았다고 판단하면 t1+Td(t1) 시점부터 전송을 시작할 수 있다.
제1 그룹에 속하는 UE1과 UE2는 t1에서 동일한 CCA 구간 Td1(t1) 동안 CCA를 수행한다. CCA 결과 채널이 아이들하면, UE1과 UE2는 t1 + Td1(t1)에서 UL 전송을 시작한다. Td2(t1)가 Td1(t1) 보다 더 크므로, Td2(t1) 동안 CCA를 수행하는 제2 그룹에 속하는 UE3는 채널이 비지하다고 판단하고 전송을 대기한다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 송수신기(transceiver, 53)를 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)에 의해 실행되는 다양한 명령어(instructions)를 저장한다. 송수신기(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 UE의 동작은 프로세서(51)에 의해 구현될 수 있다. 전술한 실시예가 소프트웨어 명령어로 구현될 때, 명령어는 메모리(52)에 저장되고, 프로세서(51)에 의해 실행되어 전술한 동작이 수행될 수 있다.
기지국(60)는 프로세서(61), 메모리(62) 및 송수신기(63)를 포함한다. 기지국(60)은 비면허 대역에서 운용될 수 있다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)에 의해 실행되는 다양한 명령어를 저장한다. 송수신기(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 비면허 대역에서 하향링크 전송을 위한 방법에 있어서,
    제1 그룹 내의 복수의 기지국이 기준 시점부터 상기 비면허 대역에서 CCA(clear channel assessment)를 개시하기 위한 제1 지연 시간을 결정하고,
    상기 기준 시점부터 상기 제1 지연 시간 이후에 CCA 구간 동안 상기 복수의 기지국이 CCA를 수행하여 채널이 아이들한지 여부를 확인하고,
    상기 채널이 아이들하면, 상기 복수의 기지국이 동시에 하향링크 전송을 수행하는 것을 포함하는 방법.
  2. 제 1 항에 있어서,
    제2 그룹 내의 복수의 기지국이 상기 기준 시점부터 상기 CCA를 개시하기 위한 제2 지연 시간을 결정하는 것을 더 포함하고,
    상기 제1 지연 시간과 상기 제2 지연 시간은 다른 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 제1 지연 시간은 상기 제1 그룹에 특정적인 파라미터를 기반으로 결정되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 제1 지연 시간은 매 기준 시점 마다 결정되는 것을 특징으로 하는 방법.
  5. 비면허 대역에서 상향링크 전송을 위한 방법에 있어서,
    무선 기기가 비면허 대역에서 상향링크 전송을 위한 상향링크 그랜트를 기지국으로부터 수신하고,
    상기 무선기기가 기준 시점부터 CCA(clear channel assessment)를 개시하기 위한 지연 시간을 결정하고,
    상기 무선기기가 상기 기준 시점부터 상기 지연 시간 이후에 CCA 구간 동안 CCA를 수행하여 채널이 아이들한지 여부를 확인하고,
    상기 채널이 아이들하면, 상기 무선기기가 상기 상향링크 그랜트를 기반으로 상향링크 전송을 수행하는 것을 포함하는 방법.
  6. 제 5 항에 있어서,
    상기 상향링크 그랜트는 상기 지연 시간을 결정하는데 사용되는 파라미터에 관한 정보를 포함하는 것을 특징으로 하는 방법.
  7. 제 5 항에 있어서,
    상기 기준 시점은 상기 상향링크 그랜트를 수신한 후 일정 시간이 경과한 후 인 것을 특징으로 하는 방법.
  8. 제 5 항에 있어서,
    상기 무선 기기는 기기 그룹에 속하고,
    상기 기기 그룹에 속하는 모든 무선기기들은 동일한 지연 시간을 갖는 것을 특징으로 하는 방법.
  9. 비면허 대역에서 상향링크 전송을 위한 기기에 있어서,
    무선 신호를 송신 및 수신하는 송수신기와
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    비면허 대역에서 상향링크 전송을 위한 상향링크 그랜트를 기지국으로부터 상기 송수신기를 통해 수신하고,
    기준 시점부터 CCA(clear channel assessment)를 개시하기 위한 지연 시간을 결정하고,
    상기 기준 시점부터 상기 지연 시간 이후에 CCA 구간 동안 CCA를 수행하여 채널이 아이들한지 여부를 상기 송수신기를 통해 확인하고,
    상기 채널이 아이들하면, 상기 상향링크 그랜트를 기반으로 상기 송수신기를 통해 상향링크 전송을 수행하는 기기.
  10. 제 9 항에 있어서,
    상기 상향링크 그랜트는 상기 지연 시간을 결정하는데 사용되는 파라미터에 관한 정보를 포함하는 것을 특징으로 하는 기기.
PCT/KR2016/002477 2015-03-12 2016-03-11 비면허 대역에서의 하향링크 전송 방법 WO2016144141A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/557,325 US10412759B2 (en) 2015-03-12 2016-03-11 Method for transmitting downlink in unlicensed band
EP16762028.5A EP3270653B1 (en) 2015-03-12 2016-03-11 Method for transmitting downlink in unlicensed band
US16/524,612 US20190349984A1 (en) 2015-03-12 2019-07-29 Method for transmitting downlink in unlicensed band

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562132477P 2015-03-12 2015-03-12
US62/132,477 2015-03-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/557,325 A-371-Of-International US10412759B2 (en) 2015-03-12 2016-03-11 Method for transmitting downlink in unlicensed band
US16/524,612 Continuation US20190349984A1 (en) 2015-03-12 2019-07-29 Method for transmitting downlink in unlicensed band

Publications (1)

Publication Number Publication Date
WO2016144141A1 true WO2016144141A1 (ko) 2016-09-15

Family

ID=56879207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002477 WO2016144141A1 (ko) 2015-03-12 2016-03-11 비면허 대역에서의 하향링크 전송 방법

Country Status (3)

Country Link
US (2) US10412759B2 (ko)
EP (1) EP3270653B1 (ko)
WO (1) WO2016144141A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194603A1 (ko) * 2018-04-05 2019-10-10 엘지전자 주식회사 비면허 대역에서 간섭을 완화하는 방법 및 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164584A1 (en) 2015-04-08 2016-10-13 Interdigital Patent Holdings, Inc. Systems and methods for lte operation in unlicensed bands
EP3800907A1 (en) * 2016-03-01 2021-04-07 NEC Corporation Mobility management apparatus and method
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
BR112019008609B1 (pt) * 2016-10-29 2024-01-30 Huawei Technologies Co., Ltd Método para transmissão de enlace de descida, método para acesso a um espectro não licenciado, primeiro ponto de transmissão e controlador
US11510241B2 (en) * 2018-08-17 2022-11-22 Huawei Technologies Co., Ltd. Network-assisted clear channel assessment bandwidth adaptation mechanism
CN111615214B (zh) * 2019-02-25 2022-12-13 华为技术有限公司 数据发送方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130017794A1 (en) * 2011-07-15 2013-01-17 Cisco Technology, Inc. Mitigating Effects of Identified Interference with Adaptive CCA Threshold
WO2013119097A1 (ko) * 2012-02-10 2013-08-15 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 방법 및 장치
WO2014111309A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Radio communication in unlicensed band
WO2014178678A1 (ko) * 2013-05-02 2014-11-06 엘지전자 주식회사 무선랜 시스템에서 동적 채널 센싱 방법 및 장치
US20140342745A1 (en) * 2013-05-20 2014-11-20 Qualcomm Incoporated Gating scheme for wireless communication over unlicensed spectrum

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140081321A (ko) 2012-12-21 2014-07-01 삼성전기주식회사 논-비컨 무선네트워크에서의 데이터 통신 방법 및 논-비컨 무선네트워크 통신 시스템
WO2015038930A1 (en) * 2013-09-13 2015-03-19 Interdigital Patent Holdings, Inc. Clear channel assessment (cca) threshold adaptation method
US9681442B2 (en) * 2013-10-31 2017-06-13 Qualcomm Incorporated Systems and methods for scheduling group access in wireless networks
US9565568B2 (en) * 2014-11-14 2017-02-07 Blackberry Limited Sharing channels in a licensed-assisted access in long term evolution operation
US10375714B2 (en) * 2015-08-12 2019-08-06 Blackberry Limited Uplink resource scheduling control in response to channel busy condition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130017794A1 (en) * 2011-07-15 2013-01-17 Cisco Technology, Inc. Mitigating Effects of Identified Interference with Adaptive CCA Threshold
WO2013119097A1 (ko) * 2012-02-10 2013-08-15 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 방법 및 장치
WO2014111309A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Radio communication in unlicensed band
WO2014178678A1 (ko) * 2013-05-02 2014-11-06 엘지전자 주식회사 무선랜 시스템에서 동적 채널 센싱 방법 및 장치
US20140342745A1 (en) * 2013-05-20 2014-11-20 Qualcomm Incoporated Gating scheme for wireless communication over unlicensed spectrum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270653A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194603A1 (ko) * 2018-04-05 2019-10-10 엘지전자 주식회사 비면허 대역에서 간섭을 완화하는 방법 및 장치
US11582797B2 (en) 2018-04-05 2023-02-14 Lg Electronics Inc. Method and device for mitigating interference in unlicensed band

Also Published As

Publication number Publication date
US10412759B2 (en) 2019-09-10
EP3270653A4 (en) 2018-10-24
US20190349984A1 (en) 2019-11-14
EP3270653A1 (en) 2018-01-17
US20180139775A1 (en) 2018-05-17
EP3270653B1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2016153254A1 (ko) 비면허 대역에서의 데이터 전송 방법 및 이를 이용한 기기
WO2016144141A1 (ko) 비면허 대역에서의 하향링크 전송 방법
WO2016182385A1 (ko) 비면허 대역에서의 랜덤 액세스 과정을 수행하는 방법 및 기기
WO2016085287A1 (ko) 랜덤 액세스 방법 및 그 장치
CN105898770B (zh) 一种空频道检测方法及节点设备
WO2016163767A1 (ko) 단말간 직접 통신 방법 및 장치
WO2017026832A1 (ko) 비면허 대역에서 데이터 전송 방법 및 기기
WO2016021945A1 (ko) 비면허 대역에서의 통신 방법 및 장치
WO2013012156A1 (ko) Lte 시스템에서의 핸드오버 방법 및 이를 위한 장치
WO2017191939A1 (ko) 비면허 대역에서 간섭 회피
WO2016072685A2 (ko) 비면허 대역에서의 상향링크 전송 방법 및 이를 이용한 장치
WO2018030768A1 (ko) 파워 헤드룸 보고 방법 및 장치
WO2016105125A1 (ko) 비면허 대역에서의 상향링크 전송 방법 및 이를 이용한 장치
WO2016208927A1 (ko) 비면허 대역에서 상향링크 전송을 위한 방법 및 기기
WO2017023039A1 (ko) 비면허 대역에서 데이터 전송 방법 및 기기
WO2017052252A1 (ko) 비면허 대역에서 drx를 위한 방법 및 이를 이용한 기기
WO2017026831A1 (ko) 비면허 대역에서 측정을 수행하는 방법 및 기기
WO2016208933A1 (ko) 비면허 대역에서 통신 방법 및 이를 이용한 기기
WO2016072782A1 (en) Cellular network access method and apparatus
WO2016047951A1 (ko) 비면허 대역에서의 전송 파워 제어 방법 및 이를 이용한 장치
WO2016144129A1 (ko) 비면허 대역에서의 데이터 수신 방법 및 이를 이용한 기기
WO2019194603A1 (ko) 비면허 대역에서 간섭을 완화하는 방법 및 장치
WO2016036181A1 (ko) 비면허 대역에서의 통신 방법 및 이를 이용한 장치
WO2016117918A1 (ko) 비면허 대역에서 상향링크 전송을 위한 방법 및 장치
WO2016056849A1 (ko) 비면허 대역에서의 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16762028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557325

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016762028

Country of ref document: EP