WO2015072508A1 - Method for producing optical element, and optical element - Google Patents

Method for producing optical element, and optical element Download PDF

Info

Publication number
WO2015072508A1
WO2015072508A1 PCT/JP2014/080054 JP2014080054W WO2015072508A1 WO 2015072508 A1 WO2015072508 A1 WO 2015072508A1 JP 2014080054 W JP2014080054 W JP 2014080054W WO 2015072508 A1 WO2015072508 A1 WO 2015072508A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
mold
optical element
amount
intensity
Prior art date
Application number
PCT/JP2014/080054
Other languages
French (fr)
Japanese (ja)
Inventor
勝己 古田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201480062423.4A priority Critical patent/CN105745056B/en
Priority to JP2015547783A priority patent/JP6380913B2/en
Publication of WO2015072508A1 publication Critical patent/WO2015072508A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • B29C2043/3628Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices moving inside a barrel or container like sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C2043/3676Moulds for making articles of definite length, i.e. discrete articles moulds mounted on rotating supporting constuctions
    • B29C2043/3678Moulds for making articles of definite length, i.e. discrete articles moulds mounted on rotating supporting constuctions on cylindrical supports with moulds or mould cavities provided on the periphery
    • B29C2043/3681Moulds for making articles of definite length, i.e. discrete articles moulds mounted on rotating supporting constuctions on cylindrical supports with moulds or mould cavities provided on the periphery opening and closing axially, i.e. parallel to the rotation axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to an optical element manufacturing method and an optical element suitable for mass production of optical elements.
  • Patent Document 1 discloses a technique for manufacturing an optical element using a photocurable resin.
  • Patent Document 2 relates to a method for manufacturing an optical element of an energy curable resin, in which a plurality of molding steps are sequentially performed at predetermined rotation positions of a support base while rotating the support base at a predetermined time interval.
  • a method for manufacturing a featured optical element is disclosed.
  • Patent Document 3 discloses a manufacturing method for stabilizing the shape of a surface by first weakening and then strengthening the energy for curing the photo-curing resin with respect to the method for producing the energy curable resin.
  • the energy curable resin has a characteristic that the shrinkage rate is relatively large as compared with the thermoplastic resin generally used in the conventional optical element.
  • the shrinkage rate is as high as about 3% to 10%, and curing proceeds from the irradiated surface side. Therefore, in a relatively thick product, sink marks or the like occur as the cured layer progresses inside. There is a risk that the shape of the mold cannot be transferred with high accuracy. Further, even when the external shape is ensured, stress and strain remain inside the optical element, and there is a possibility that the optical characteristics may be deteriorated due to changes in humidity and temperature when mounted on an actual device.
  • An object of the present invention has been made in view of the above-described problems, and an optical element manufacturing method and an optical element capable of mass-producing a homogeneous optical element with a short molding time while considering the characteristics of an energy curable resin. It is to provide an element.
  • a method for manufacturing an optical element reflecting one aspect of the present invention includes: An optical element manufacturing method for forming an optical element by supplying an energy curable resin between a first mold and a second mold, Clamping the first mold and the second mold; Supplying energy from an energy supply source to the energy curable resin between the first mold and the second mold and curing the resin; Opening the first mold and the second mold; and A step of taking out the molded optical element from between the first mold and the second mold, In the step of supplying energy to the energy curable resin and curing it, a first step of supplying energy of a first amount E1 as an energy integral amount obtained by multiplying a supply time and a supply energy intensity, and after the first step And a second step of supplying a second amount E2 of energy larger than the first amount E1 as an energy integral amount obtained by multiplying the supply time and the supply energy intensity (provided that the supply energy of the first step) When the intensity is the same as the supply energy intensity of the second
  • FIG. It is a perspective view which shows the manufacturing apparatus of the optical element in this embodiment. It is a figure which expand
  • FIG. It is a graph which shows the hardening light integral amount (irradiation time x irradiation intensity) which photocurable resin PL receives by hatching. It is a graph which shows the hardening light integration amount (irradiation time x irradiation intensity) which photocurable resin PL receives by pulse-shaped irradiation. It is a figure which shows the modification of lower metal mold
  • optical element there are a mirror part for a projector, an optical element for illumination, and the like in addition to a chip part for medical examination and an optical element for imaging.
  • the optical element is not limited to a lens, but when it is a lens, for example, it may be a flange-integrated type or a flange-separated type. Further, an integrated lens having a plurality of optical axes may be used.
  • the lens shape include, for example, a convex lens, a concave lens, a thin lens, a decentered lens, a Fresnel lens, and a diffractive lens.
  • the first mold and the second mold may include not only a transfer surface for molding a single optical element but also a transfer surface for molding a plurality of optical elements.
  • a structure such as fine irregularities, a water-repellent film, or the like may be formed in order to improve the releasability of the optical element.
  • Such a positioning portion may be provided on a holding body that holds the first mold and the second mold, or may be provided on the first mold and the second mold itself.
  • Examples of the “energy curable resin” that can be used in the present embodiment include a photocurable resin and a mature curable resin.
  • the resin is cured by supplying light of a predetermined wavelength as energy
  • the resin is cured by supplying heat as energy.
  • At least one of the first mold and the second mold is formed of a light transmissive material. If the mold is a light transmissive material, light can be supplied to the photocurable resin through the mold, so that the efficiency of curing is improved.
  • the mold material is, for example, PET (polyethylene terephthalate) resin, PMMA (polymethyl methacrylate) resin, COC (cycloolefin copolymer) resin, COP (cycloolefin polymer) resin, PC (polycarbonate) resin, PE
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • COC cycloolefin copolymer
  • COP cycloolefin polymer
  • PC polycarbonate
  • PE A thermoplastic resin such as a (polyethylene) resin, a PP (polypropylene) resin, or a fluororesin
  • a photocurable resin such as an epoxy resin, an acrylic resin, or a vinyl resin, or glass
  • the shape material can be produced by glass molding, droplet molding, reheating molding, or the like.
  • the mold material it is preferable to use a material that easily transmits a wavelength for curing a photocurable resin used as a material of the
  • thermosetting resin When a thermosetting resin is used as the energy curable resin, an electric heater or a halogen heater can be used as an energy supply source.
  • the first mold and the second mold are preferably made of metal or glass having good heat resistance. Further, when a glass mold and a halogen heater are used in combination, it is desirable that an infrared absorbing material is formed on the mold transfer surface (optical surface transfer surface) because heat generation is effectively generated.
  • the energy curable resin When supplying the energy curable resin with the first mold and the second mold open, the energy curable resin may be supplied to any mold, but when using a dispenser or the like, the mold is located below the gravitational direction. It is desirable to supply.
  • the mold to which the energy curable resin is supplied may be rotated, and the energy curable resin may be spread on the transfer surface of the mold by centrifugal force.
  • the energy curable resin can be supplied after the first mold and the second mold are clamped as in injection molding.
  • energy can be supplied to the energy curable resin while clamping the first mold and the second mold. It is preferable to supply such energy from both the first mold and the second mold.
  • a structure for projecting the molded optical element with a core or a pin or a structure for applying ultrasonic vibration to the mold may be provided as a mold release assisting structure.
  • various forms such as an air chuck, a robot chuck, and air blowing can be used.
  • various pre-molding processes for pre-molding may be performed.
  • a camera is used to monitor whether there is an abnormality in the mold, and if there is an abnormality, a process for stopping the production of the optical element by issuing an alarm, or a process for cleaning the mold used for molding
  • a process silicon coating
  • a post-molding step for performing post-processing after molding may be performed.
  • the post-molding process include a post-cure for heating and the like, and a process for annealing in order to completely cure the molded optical element.
  • the preceding first mold and the second mold and the following first mold and the second mold are arranged at equal intervals. It is desirable to move at a constant speed. However, the interval between the molds may be locally changed for timing adjustment.
  • the “closed trajectory” refers to the movement trajectories of the first mold and the second mold that go in order to the processing section that faces a plurality of processes in order, and go back to the first processing section, regardless of the shape. It means a closed loop.
  • a branch may be provided in the movement trajectory in order to eliminate abnormal molds, or another route that is coupled to a closed trajectory may be inserted in order to insert a mold without abnormality that has been waiting.
  • the “step of supplying energy to the energy curable resin for curing” includes a first step and a second step.
  • energy of the first amount E1 is supplied as an energy integration amount obtained by multiplying the supply time and the supply energy intensity.
  • energy of a second amount E2 larger than the first amount E1 is supplied as an energy integral amount obtained by multiplying the supply time and the supply energy intensity.
  • the average supply energy intensity per unit time in the first step is preferably 1/20 or more and 1/2 or less of the average supply energy intensity per unit time in the second step.
  • a third step of supplying energy of a third amount E3 larger than the second amount E2 as an energy integration amount obtained by multiplying the supply time and the supply energy intensity may be provided.
  • the intensity of energy per unit time supplied during the first step from the energy supply source is constant, and the intensity of energy per unit time supplied during the second step is constant. Thereby, the curing reaction rate of the energy curable resin can be made constant.
  • Constant includes variations within ⁇ 5% of the average value of energy intensity.
  • the energy intensity per unit time supplied during the first step from the energy supply source gradually increases, and the energy intensity per unit time supplied during the second step increases gradually. Thereby, the curing reaction rate of the energy curable resin can be gradually increased.
  • the intensity of energy per unit time supplied from the energy supply source is constant, and the accumulated time during which energy is supplied during the first step is greater than the accumulated time during which energy is supplied during the second step. Short is preferable. Thereby, after the first step, the energy of the second amount E2 larger than the first amount E1 can be supplied as an energy integration amount obtained by multiplying the supply time and the supply energy intensity.
  • FIG. 1 is a perspective view showing an optical element manufacturing apparatus according to this embodiment.
  • FIG. 2 is a diagram showing an essential part of the optical element manufacturing apparatus shown in FIG. 1 developed in the circumferential direction.
  • a first disk DC1 that is a first holding body and a second disk DC2 that is a second holding body are arranged coaxially with a gap therebetween.
  • the center of the first disk DC1 and the second disk DC2 is connected to the rotation shaft SFT through a spline or the like so as not to rotate relative to the rotation shaft SFT.
  • the first disk DC1 and the second disk DC2 are driven to rotate synchronously.
  • a plurality of circular openings DC1a are formed in the first disk DC1, and a cylindrical upper mold (first mold) MD1 is fixed in the circular opening DC1a.
  • the upper mold MD1 has a transfer surface MD1a on the lower surface.
  • the upper mold MD1 is made of light transmissive plastic or transparent glass. Here, the upper mold MD1 manufactured by injection molding of light-transmitting plastic was used.
  • a plurality (eight in this case) of circular openings DC2a are formed so as to be arranged in the same manner as the circular opening DC1a.
  • 2 type) MD2 is arranged so as to be movable in the axial direction of the rotation axis SFT.
  • the lower mold MD2 has a transfer surface MD2a on the upper surface.
  • the lower mold MD2 manufactured by injection molding of light-transmitting plastic was used.
  • the upper mold MD1 and the lower mold MD2 can be formed by injection molding of a light-transmitting resin, whereby the upper mold MD1 and the lower mold MD2 having the same shape can be produced in large quantities with high accuracy.
  • the durability is excellent.
  • the upper mold MD1 and the lower mold MD2 are formed by transferring glass to a mold because the upper mold MD1 and the lower mold MD2 having the same shape can be produced in large quantities with high accuracy.
  • the shielding part SH is formed so as to cover a part of the first disk DC1 and the second disk DC2 in the circumferential direction.
  • a plurality of light sources OPS are provided as energy supply sources for curing the energy curable resin that is the material of the optical element. It arrange
  • the light source OPS is preferably provided directly above the center locus of the upper mold MD1 that rotates.
  • a plurality of light sources OPS are arranged below the second disk DC2 so as to face the shielding part SH. Yes.
  • the upper and lower light sources OPS are opposed to each other, the emission intensity of the first light source OPS is the smallest, the emission intensity of the second light source OPS is the next smallest, and the emission intensity of the third light source OPS is the highest.
  • the light source OPS is preferably an LED that can irradiate ultraviolet rays having a peak wavelength of 365 nm.
  • the term “curing light” will be used to represent “ultraviolet rays” and the like.
  • the light source OPS is controlled by the control circuit CONT, and the irradiation time of the curing light and the angular position of the first disk DC1 and the second disk DC2 (positional relationship between the upper mold MD1 and the lower mold MD2 to be irradiated) and It is preferable to adjust at least one of the intensity of the curing light.
  • the irradiation intensities of the three light sources OPS are individually made different, and the control circuit CONT controls only on / off according to the rotation of the first disk DC1 and the second disk DC2.
  • the cam surface CPa of the cam plate CP has a low portion CPb, an ascending slope CPc, a high portion CPd, and a descending slope CPe according to the position in the circumferential direction.
  • FIG. 3 is a perspective view showing the periphery of the lower mold MD2 in the second processing unit B.
  • FIG. 3 On the lower surface of the lower mold MD2, there are formed a wheel-shaped follower FW that rolls on the cam surface CPa of the parallel cam plate CP and a support portion SP that rotatably supports the follower FW.
  • a plurality of light sources OPS (only one is shown in FIG. 3) are arranged between the pair of cam plates CP. The light emitted from the light source OPS is incident from the lower surface between the support portions SP of the light-transmissive lower mold MD2, and is emitted from the upper transfer surface MD2a.
  • the first processing unit A, the second processing unit B, the third processing unit C, and the fourth processing unit D according to the rotational positions of the first disk DC1 and the second disk DC2. It has become.
  • dispenser DSP which can discharge a suitable quantity of photocurable resin is arrange
  • light sources OPS are arranged in the circumferential direction.
  • an arm type robot RB for taking out the molded optical element OE is arranged.
  • the operation of the manufacturing apparatus and the optical element manufacturing process in the present embodiment will be described here with a focus on a pair of upper mold MD1 and lower mold MD2.
  • the actuator AC is driven by power supply from a power source (not shown) and the rotation shaft SFT is rotated
  • the first disk DC1 and the second disk DC2 rotate in synchronization.
  • the follower FW of the lower mold MD2 is in the lower portion CPb on the cam surface CPa of the cam plate CP, and therefore the upper mold MD1 and the lower mold MD2 are in an open state.
  • the photocurable resin PL can be dropped on the transfer surface MD2a of the lower mold MD2 via the dispenser DSP.
  • the upper mold MD1 and the lower mold MD2 supplied with the photocurable resin PL therebetween move by the synchronous rotation of the first disk DC1 and the second disk DC2.
  • the follower FW of the lower mold MD2 rolls on the climbing slope CPc on the cam surface CPa of the cam plate CP
  • the lower mold MD2 gradually approaches the upper mold MD1.
  • the follower FW reaches the high portion CPd on the cam surface CPa of the cam plate CP, the two are brought into close contact with each other and are clamped (the latter stage in the first processing portion A). Further, while the follower FW rolls on the high portion CPd, the mold clamping state of the upper mold MD1 and the lower mold MD2 is maintained.
  • the second processing unit B includes a first process, a second process, and a third process.
  • FIG. 4 is a graph showing the integrated amount of curing light (irradiation time ⁇ irradiation intensity) received by the photocurable resin PL by hatching, the horizontal axis is the irradiation time (seconds), and the vertical axis is the irradiation intensity per unit area. (MW / cm 2 ).
  • the curing light integral amount necessary for curing the entire photocurable resin PL is, for example, a curing light integral amount 4500 (mJ / cm 2 ) obtained by irradiation for 25 seconds at an intensity of 180 (mW / cm 2 ).
  • mJ / cm 2 curing light integral amount 4500
  • the upper mold MD1 and the lower mold MD2 pass between the upper and lower light sources OPS closest to the first processing unit A.
  • the curing light is irradiated to the photocurable resin PL through the upper mold MD1 and the lower mold MD2 having light transmittance.
  • the curing light integration amount E1 supplied to the photocurable resin PL. Is 144 (mJ / cm 2 ) because irradiation is performed for 8 seconds at a constant intensity of 18 (mW / cm 2 ). Thereby, only the surface of the photocurable resin PL is cured in the first step.
  • the upper mold MD1 and the lower mold MD2 pass between the first upper and lower light sources OPS from the first processing unit A.
  • the curing light is irradiated to the photocurable resin PL through the upper mold MD1 and the lower mold MD2 having light transmittance.
  • the curing light integration amount E2 supplied to the photocurable resin PL. Is 1440 (mJ / cm 2 ) because irradiation is performed at a constant intensity of 180 (mW / cm 2 ) for 8 seconds. Thereby, it hardens
  • the upper mold MD1 and the lower mold MD2 pass between the upper and lower light sources OPS farthest from the first processing unit A.
  • the curing light is irradiated to the photocurable resin PL through the upper mold MD1 and the lower mold MD2 having light transmittance.
  • the curing light integration amount E3 supplied to the photocurable resin PL. Is 2916 (mJ / cm 2 ) because 9 is irradiated at a constant intensity of 324 (mW / cm 2 ).
  • the center of the photocurable resin PL is obtained through the third step. It will be completely cured to the part. As is apparent from the figure, the average supply energy intensity per unit time in the first process is lower than the average supply energy intensity per unit time in the second process, and the average supply energy intensity per unit time in the second process. Is lower than the average supply energy intensity per unit time in the third step.
  • the curing reaction rate near the surface is slowed down by suppressing the amount of integration of the curing light to be supplied.
  • the flow inside the resin can be secured while ensuring the transfer accuracy of the surface. If a relatively large curing light integration amount is applied from the initial stage of supplying curing light to the photocurable resin PL, the curing reaction speed from the surface is increased, and the flow inside the resin is hindered, thus causing problems such as sink marks. It is.
  • the initial stage (first step) of supplying curing light to the photocurable resin PL by suppressing the amount of curing light to be supplied to a small level, the residual stress and strain inside the resin can be reduced by gradually curing from the surface. It is possible to reduce the optical performance due to environmental changes and deterioration over time. Such an effect is more effectively exhibited by gradually increasing the curing light integration amount from the first step to the second step and the third step. Also, in the latter stage (third step) in which the curing light is supplied to the photocurable resin PL, the curing proceeds relatively deeply into the resin, so that even if the curing light integration amount is increased, the influence of sink marks, residual stress, etc.
  • the tact time of the product can be effectively reduced by increasing the curing reaction rate.
  • the maximum thickness is preferably 300 ⁇ m or more and 10 mm or less. If it is 300 ⁇ m or less, it will be too thin and difficult to mold, and sink marks will be difficult. On the other hand, if the thickness is 10 mm or more, the product is too thick and the product may be incompletely cured, or it may take too long to cure.
  • the upper mold MD1 and the lower mold MD2 that have passed through the second processing section B move to the third processing section C by the synchronous rotation of the first disk DC1 and the second disk DC2.
  • the follower FW of the lower mold MD2 rolls on the downward slope Cpe on the cam surface CPa of the cam plate CP, the lower mold MD2 is gradually separated from the upper mold MD1 to open the mold. Is done.
  • the arm of the robot RB can be expanded and contracted to take out the optical element OE formed by the transfer surfaces MD1a and MD2a and transport it to another process.
  • the operation of the manufacturing apparatus and the optical element manufacturing process have been described above focusing on the pair of the upper mold MD1 and the lower mold MD2.
  • the other upper mold MD1 and lower mold MD2 are also sequentially manufactured in the same manner at different timings. Therefore, high-precision optical elements OE can be produced in large quantities.
  • the curing process which takes a relatively long time in the manufacturing process, is divided into a plurality of processes, and the energy for curing is increased in the subsequent processes in each process. Eliminate bottlenecks and improve the quality of resin molded products, enabling mass production of high-precision resin products.
  • a plurality of first molds MD1 and second molds MD2 provided along a closed locus (circle) respectively along the locus. Since the dispenser DSP as a supply device for supplying the photocurable resin can be used in common for the first mold MD1 and the second mold MD2 that move, the space can be saved and the equipment cost can be reduced. it can.
  • the moving first mold MD1 and the second mold MD2 Since light can be supplied from the light source OPS as a common energy supply source to the photocurable resin PL supplied during the manufacturing process, the manufacturing conditions are the same, and manufacturing variations can be suppressed. Furthermore, since the first mold MD1 and the second mold MD2 move along the closed locus with respect to the fourth processing unit C, the first mold MD1 and the second mold MD2 that move are moved. Since the robot RB as a device for taking out the manufactured optical element can be used in common, the space can be saved and the equipment cost can be reduced. Thereby, it is possible to produce a large amount of homogeneous optical elements OE at low cost.
  • the first mold MD1 and the second mold MD2 can gradually approach with movement along the closed locus. Accordingly, by gradually bringing the first mold MD1 and the second mold MD2 closer to each other, entrainment of bubbles and the like can be suppressed, and a highly accurate optical element OE can be manufactured. Further, the relative movement along the locus during mold clamping does not obstruct the movement of the subsequent first mold MD1 and second mold MD2.
  • the second processing unit B is provided with a light source OPS as an energy supply source.
  • a light source OPS as an energy supply source.
  • the first mold MD1 and the second mold MD2 are gradually separated along with the movement along the closed locus.
  • the mold is not damaged. Opening is possible.
  • the first mold MD1 and the second mold MD2 move along the trajectory, so that the subsequent movement of the first mold MD1 and the second mold MD2 is not disturbed.
  • the second mold MD2 is moved closer to the first mold MD1 in response to entering the first processing unit A, and enters the third processing unit C.
  • it has a ring-shaped cam plate CP and a follower FW as a mold drive unit that is separated from the first mold MD1.
  • the irradiation intensity of the curing light is gradually increased in the first process, the second process, and the third process in the second processing unit B. May be.
  • the curing reaction rate of the photocurable resin PL can be gradually increased.
  • the total curing light integration amount is preferably the same as in the above-described embodiment.
  • the average supply energy intensity per unit time in the first process is lower than the average supply energy intensity per unit time in the second process, and the average supply energy intensity per unit time in the second process is the third process. Lower than the average supply energy intensity per unit time.
  • curing light is irradiated in a pulse shape indicated by hatching in the first process, the second process, and the third process in the second processing unit B.
  • the irradiation intensity of the three light sources OPS is fixed to 500 (mW / cm 2 ), and a shutter that can be driven independently is provided so that the upper mold MD1 and the lower mold MD2 are positioned at predetermined positions.
  • curing light can be irradiated in pulses by opening the shutter for 0.2 seconds.
  • the energy intensity may be changed for each pulse irradiation.
  • one irradiation is performed in the first step, two irradiations are intermittently performed in the second step, and five irradiations are continuously performed in the third step.
  • the average supply energy intensity per unit time in the first process is lower than the average supply energy intensity per unit time in the second process, and the average supply energy intensity per unit time in the second process is the unit in the third process. Lower than average supply energy intensity per hour.
  • the curing light integration amount is preferably the same as that in the above-described embodiment.
  • FIG. 6 is a cross-sectional view showing a modified example of the lower mold MD2 moved to the second processing section B.
  • the lower mold MD2 made of a light-transmitting material has a reflecting mirror MR inside.
  • a light source OPS is fixedly disposed at a position adjacent to the side surface of the lower mold MD2 and facing the reflecting mirror MR so that the curing light can be irradiated to the side.
  • Other configurations are the same as those of the above-described embodiment.
  • the curing light emitted from the light source OPS enters the reflecting mirror MR through the side surface of the lower mold MD2. Further, the light is further reflected toward the upper transfer surface MD2a. Thereby, the photocurable resin supplied to the transfer surface MD2a can be cured. According to this example, since the curing light is not incident from the lower surface of the lower mold MD2, the support portion SP can be provided at the center of the lower surface of the lower mold MD2.
  • a 1st processing part B 2nd processing part C 3rd processing part D 4th processing part AC Actuator CP Cam plate CPa Cam surface CPb Low part CPc Climbing slope CPd High part CPe Down slope CR Conveying part DC1 1st Disc DC1a Circular aperture DC2 Second disc DC2a Circular aperture SP Support portion DSP Dispenser FW Follower MD1 Upper mold MD1a Transfer surface MD1b Planar portion MD1c Tapered surface MD1d Cylindrical inner surface MD2 Lower mold MD2a Transfer surface MD2b Planar portion MD2c Tapered surface MD2d Cylinder Outer surface OE Optical element OPS Light source PL Photocurable resin RB Robot SFT Rotating shaft SH Shielding part

Abstract

Provided are: a method for producing an optical element, which is capable of mass-producing uniform optical elements with consideration for the characteristics of an energy-curable resin; and an optical element. This method for producing an optical element comprises steps for: supplying an energy-curable resin between a first mold and a second mold; curing the energy-curable resin by supplying an energy in a first amount (E1) as an energy integral quantity and then supplying an energy in a second amount (E2) that is larger than the first amount (E1); and taking out a resin component that is cured by the curing step. The curing step is divided into a first curing step wherein at least the energy in the first amount (E1) is supplied and a second curing step wherein the energy in the second amount (E2) is supplied.

Description

光学素子の製造方法及び光学素子Optical element manufacturing method and optical element
 本発明は、光学素子を大量生産するのに適した光学素子の製造方法及び光学素子に関する。 The present invention relates to an optical element manufacturing method and an optical element suitable for mass production of optical elements.
 一般的に医療検査用のチップ部品や光ピックアップ装置や撮像装置等に用いられる光学素子は、高精度を必要とされる一方、よりコストを抑制することが求められている。このような要求に対し、近年、光硬化性樹脂や熱硬化性樹脂等のエネルギー硬化性樹脂が注目されている。エネルギー硬化性樹脂は、エネルギーを付与することにより短時間で硬化する特性を有するため、これを用いることで光学素子を安価に量産できると期待されている。特許文献1には、光硬化性樹脂を用いて光学素子を製造する技術が開示されている。また、特許文献2には、エネルギー硬化性樹脂の光学素子の製造方法に関して、支持台を決まった時間間隔で回転させながら、複数の成形工程を、支持台の所定の回転位置で順次行うことを特徴とする光学素子の製造方法が開示されている。 Generally, an optical element used for a chip part for medical examination, an optical pickup device, an imaging device or the like is required to have high accuracy, but is required to further reduce cost. In recent years, energy curable resins such as photocurable resins and thermosetting resins have attracted attention in response to such demands. Since the energy curable resin has a property of being cured in a short time by applying energy, it is expected that the optical element can be mass-produced at low cost by using this energy curable resin. Patent Document 1 discloses a technique for manufacturing an optical element using a photocurable resin. In addition, Patent Document 2 relates to a method for manufacturing an optical element of an energy curable resin, in which a plurality of molding steps are sequentially performed at predetermined rotation positions of a support base while rotating the support base at a predetermined time interval. A method for manufacturing a featured optical element is disclosed.
 特許文献3には、エネルギー硬化性樹脂の製造方法に関して、光硬化樹脂を硬化させるエネルギーを最初は弱くし、次に強くすることにより面の形状を安定させる製造方法が開示されている。 Patent Document 3 discloses a manufacturing method for stabilizing the shape of a surface by first weakening and then strengthening the energy for curing the photo-curing resin with respect to the method for producing the energy curable resin.
特開2011-242478号公報JP 2011-242478 A 特開2007-147679号公報JP 2007-147679 A 特公平7-82121号公報Japanese Patent Publication No. 7-82121
 ところで、従来,光学素子に一般的に用いられていた熱可塑性樹脂と比較すると、エネルギー硬化性樹脂は収縮率が比較的大きいという特性がある。特に、紫外線硬化性樹脂の場合、収縮率が3%~10%程度と高く、被照射表面側から硬化が進行するので、比較的肉厚の製品においては硬化層の内部進行とともにヒケ等が生じ、型の形状を高精度に転写できない恐れがある。又、外観形状が確保されていた場合でも光学素子の内部に応力や歪みが残留し、実機に搭載された際に湿度や温度変化で光学特性を劣化させる恐れがある。これに対し、紫外線等の照射強度を低めればヒケなどの不具合をある程度抑制できるが、それにより硬化に必要な時間が増大し、成形時間が長くなるという問題がある。特許文献3では、光硬化樹脂を硬化させるエネルギーを最初は弱くし、次に強くすることにより面の形状を安定させているが、成形時間が長くなることは解消できていない。 By the way, the energy curable resin has a characteristic that the shrinkage rate is relatively large as compared with the thermoplastic resin generally used in the conventional optical element. In particular, in the case of an ultraviolet curable resin, the shrinkage rate is as high as about 3% to 10%, and curing proceeds from the irradiated surface side. Therefore, in a relatively thick product, sink marks or the like occur as the cured layer progresses inside. There is a risk that the shape of the mold cannot be transferred with high accuracy. Further, even when the external shape is ensured, stress and strain remain inside the optical element, and there is a possibility that the optical characteristics may be deteriorated due to changes in humidity and temperature when mounted on an actual device. On the other hand, if the irradiation intensity of ultraviolet rays or the like is lowered, defects such as sink marks can be suppressed to some extent, but there is a problem that the time required for curing increases and the molding time becomes longer. In Patent Document 3, the shape of the surface is stabilized by weakening the energy for curing the photo-curing resin at first and then strengthening it, but it cannot be solved that the molding time becomes long.
 これに対し特許文献1の技術によれば、光学素子の中心部から周辺部にかけて光量分布を漸減させているが、任意の一カ所に注目すれば依然として硬化層の内部進行が起こっているので、依然としてヒケを生じ易いという問題がある。又、残留応力や歪みも生じやすいことから、実機搭載時の光学特性の劣化が懸念される。 On the other hand, according to the technique of Patent Document 1, the light amount distribution is gradually reduced from the center part to the peripheral part of the optical element. However, if attention is paid to any one place, the internal progress of the cured layer still occurs. There is still a problem that sink marks are likely to occur. Moreover, since residual stress and distortion are likely to occur, there is a concern about deterioration of optical characteristics when mounted on an actual machine.
 本発明の目的は、上述した課題に鑑みてなされたものであり、エネルギー硬化性樹脂の特性を考慮しつつ、均質な光学素子を成形時間を短くして大量生産できる光学素子の製造方法及び光学素子を提供することである。 An object of the present invention has been made in view of the above-described problems, and an optical element manufacturing method and an optical element capable of mass-producing a homogeneous optical element with a short molding time while considering the characteristics of an energy curable resin. It is to provide an element.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子の製造方法は、
 第1の型と第2の型との間にエネルギー硬化性樹脂を供給して光学素子を成形する光学素子の製造方法であって、
 前記第1の型と前記第2の型とを型締めする工程と、
 前記第1の型と前記第2の型との間のエネルギー硬化性樹脂にエネルギー供給源よりエネルギーを供給して硬化させる工程と、
 前記第1の型と前記第2の型とを型開きする工程と、
 前記第1の型と前記第2の型との間から、成形された光学素子を取り出す工程とを有し、
 前記エネルギー硬化性樹脂にエネルギーを供給して硬化させる工程において、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として第1の量E1のエネルギーを供給する第1工程と、前記第1工程後において、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として前記第1の量E1より大きい第2の量E2のエネルギーを供給する第2工程とを有する(但し、前記第1工程の供給エネルギー強度が前記第2工程の供給エネルギー強度と同じである場合には、単位時間当たりの前記第2の量E2が単位時間当たりの前記第1の量E1よりも大きい)。
In order to achieve at least one of the above-described objects, a method for manufacturing an optical element reflecting one aspect of the present invention includes:
An optical element manufacturing method for forming an optical element by supplying an energy curable resin between a first mold and a second mold,
Clamping the first mold and the second mold;
Supplying energy from an energy supply source to the energy curable resin between the first mold and the second mold and curing the resin;
Opening the first mold and the second mold; and
A step of taking out the molded optical element from between the first mold and the second mold,
In the step of supplying energy to the energy curable resin and curing it, a first step of supplying energy of a first amount E1 as an energy integral amount obtained by multiplying a supply time and a supply energy intensity, and after the first step And a second step of supplying a second amount E2 of energy larger than the first amount E1 as an energy integral amount obtained by multiplying the supply time and the supply energy intensity (provided that the supply energy of the first step) When the intensity is the same as the supply energy intensity of the second step, the second amount E2 per unit time is larger than the first amount E1 per unit time).
 本発明によれば、エネルギー硬化性樹脂の特性を考慮しつつ、均質な光学素子を大量生産できる光学素子の製造方法及び光学素子を提供することができる。 According to the present invention, it is possible to provide an optical element manufacturing method and an optical element capable of mass-producing homogeneous optical elements in consideration of the characteristics of the energy curable resin.
本実施形態における光学素子の製造装置を示す斜視図である。It is a perspective view which shows the manufacturing apparatus of the optical element in this embodiment. 光学素子の製造装置を周方向に展開して示す図である。It is a figure which expand | deploys and shows the manufacturing apparatus of an optical element in the circumferential direction. 第2の処理部Bにおける下型MD2の周辺を示す斜視図である。It is a perspective view which shows the periphery of lower mold | type MD2 in the 2nd process part B. FIG. 光硬化性樹脂PLが受ける硬化光積分量(照射時間×照射強度)をハッチングで示すグラフである。It is a graph which shows the hardening light integral amount (irradiation time x irradiation intensity) which photocurable resin PL receives by hatching. パルス状の照射により光硬化性樹脂PLが受ける硬化光積分量(照射時間×照射強度)を示すグラフである。It is a graph which shows the hardening light integration amount (irradiation time x irradiation intensity) which photocurable resin PL receives by pulse-shaped irradiation. 下金型MD2の変形例を示す図である。It is a figure which shows the modification of lower metal mold | die MD2.
 本実施形態において製造される「光学素子」としては、医療検査用のチップ部品や、撮像用の光学素子以外に、プロジェクタ用のミラー、照明用の光学素子などがある。光学素子はレンズに限られないが、例えばレンズである場合、フランジ一体タイプでも、フランジ別体タイプでも良い。又、複数の光軸を有する一体型レンズであっても良い。レンズ形状としては種々の形態が考えられ、例えば凸レンズ、凹レンズ、薄肉レンズ、偏肉レンズ、フレネルレンズ、回折レンズなどを含む。 As the “optical element” manufactured in the present embodiment, there are a mirror part for a projector, an optical element for illumination, and the like in addition to a chip part for medical examination and an optical element for imaging. The optical element is not limited to a lens, but when it is a lens, for example, it may be a flange-integrated type or a flange-separated type. Further, an integrated lens having a plurality of optical axes may be used. Various forms are conceivable as the lens shape, and include, for example, a convex lens, a concave lens, a thin lens, a decentered lens, a Fresnel lens, and a diffractive lens.
 第1の型と第2の型は、単一の光学素子を成形する転写面を備えている場合のみならず、複数の光学素子を成形する転写面を備えていても良い。型の転写面などの表面には、光学素子の離型性を高める為に、微細な凹凸などの構造や、撥水性の膜などを形成しても良い。又、第1の型と第2の型とを位置合わせする位置決め部を設けると、高精度に位置決めを行えるので好ましい。かかる位置決め部は、第1の型と第2の型とを保持する保持体に設けても良いし、第1の型と第2の型自体に設けても良い。 The first mold and the second mold may include not only a transfer surface for molding a single optical element but also a transfer surface for molding a plurality of optical elements. On the surface such as the transfer surface of the mold, a structure such as fine irregularities, a water-repellent film, or the like may be formed in order to improve the releasability of the optical element. In addition, it is preferable to provide a positioning portion for aligning the first mold and the second mold because positioning can be performed with high accuracy. Such a positioning portion may be provided on a holding body that holds the first mold and the second mold, or may be provided on the first mold and the second mold itself.
 本実施形態において用いることができる「エネルギー硬化性樹脂」としては、光硬化性樹脂、熟硬化性樹脂などが挙げられる。光硬化性樹脂の場合、エネルギーとして所定波長の光を供給することで樹脂が硬化し、熱硬化性樹脂の場合、エネルギーとして熱を供給することで樹脂が硬化する。 Examples of the “energy curable resin” that can be used in the present embodiment include a photocurable resin and a mature curable resin. In the case of a photocurable resin, the resin is cured by supplying light of a predetermined wavelength as energy, and in the case of a thermosetting resin, the resin is cured by supplying heat as energy.
 エネルギー硬化性樹脂として光硬化性樹脂を用いる場合、第1の型と第2の型のうち少なくとも一方が光透過性の素材から形成されていれば好ましい。型が光透過性の素材ならば、型を介して光を光硬化性樹脂に供給できるため、硬化の効率が良くなる。光硬化性樹脂を用いる場合、型材は例えば、PET(ポリエチレンテレフタレート)樹脂、PMMA(ポリメチルメタクリレート)樹脂、COC(シクロオレフィンコポリマー)樹脂、COP(シクロオレフィンポリマー)樹脂、PC(ポリカーボネイト)樹脂、PE(ポリエチレン)樹脂、PP(ポリプロピレン)樹脂、フッ素樹脂等の熱可塑性樹脂、或いは、エポキシ系樹脂、アクリル系樹脂、ビニル系樹脂等の光硬化性樹脂、或いは、ガラスなどを用いることができる。形材としてガラスを用いる場合は、形材をガラスモールド成形、液滴成形又は再加熱成形等により製造することができる。型材には、光学素子の材料として使用する光硬化性樹脂を硬化させる波長を透過しやすい素材を用いるのが好ましい。 In the case where a photocurable resin is used as the energy curable resin, it is preferable that at least one of the first mold and the second mold is formed of a light transmissive material. If the mold is a light transmissive material, light can be supplied to the photocurable resin through the mold, so that the efficiency of curing is improved. In the case of using a photocurable resin, for example, the mold material is, for example, PET (polyethylene terephthalate) resin, PMMA (polymethyl methacrylate) resin, COC (cycloolefin copolymer) resin, COP (cycloolefin polymer) resin, PC (polycarbonate) resin, PE A thermoplastic resin such as a (polyethylene) resin, a PP (polypropylene) resin, or a fluororesin, a photocurable resin such as an epoxy resin, an acrylic resin, or a vinyl resin, or glass can be used. When glass is used as the shape material, the shape material can be produced by glass molding, droplet molding, reheating molding, or the like. As the mold material, it is preferable to use a material that easily transmits a wavelength for curing a photocurable resin used as a material of the optical element.
 エネルギー硬化性樹脂として熱硬化性樹脂を用いる場合、エネルギー供給源として電熱ヒータやハロゲンヒータなどを用いることができる。この場合、第1の型と第2の型は耐熱性がよい金属製もしくはガラス製であることが望ましい。更に、ガラス製の型とハロゲンヒータとを組み合わせて用いる場合、型の転写面(光学面転写面)に赤外線吸収材料が成膜されていると、発熱が効果的に生じるので望ましい。 When a thermosetting resin is used as the energy curable resin, an electric heater or a halogen heater can be used as an energy supply source. In this case, the first mold and the second mold are preferably made of metal or glass having good heat resistance. Further, when a glass mold and a halogen heater are used in combination, it is desirable that an infrared absorbing material is formed on the mold transfer surface (optical surface transfer surface) because heat generation is effectively generated.
 第1の型と第2の型とを型開きした状態で、エネルギー硬化性樹脂を供給する場合、いずれの型に供給しても良いが、ディスペンサなどを用いる場合、重力方向下方にある型に供給することが望ましい。エネルギー硬化性樹脂を供給した型を回転させて、遠心力でエネルギー硬化性樹脂を型の転写面上に展開させても良い。 When supplying the energy curable resin with the first mold and the second mold open, the energy curable resin may be supplied to any mold, but when using a dispenser or the like, the mold is located below the gravitational direction. It is desirable to supply. The mold to which the energy curable resin is supplied may be rotated, and the energy curable resin may be spread on the transfer surface of the mold by centrifugal force.
 また、例えば射出成形のように、第1の型と第2の型とを型締めした後に、エネルギー硬化性樹脂を供給することもできる。 Further, for example, the energy curable resin can be supplied after the first mold and the second mold are clamped as in injection molding.
 一方、第1の型と第2の型とを型締めしながら、エネルギー硬化性樹脂にエネルギーを供給することもできる。かかるエネルギーの供給は、第1の型と第2の型の両方から行うことが好ましい。 On the other hand, energy can be supplied to the energy curable resin while clamping the first mold and the second mold. It is preferable to supply such energy from both the first mold and the second mold.
 成形された光学素子を型と容易に離型するため、離型補助構造として、成形された光学素子をコアやピンで突き出す構造や、型に超音波振動を付与する構造を設けても良い。成形された光学素子を型から取り出すには、エアーチャック、ロボットチャック、エアー吹き飛ばしなど種々の形態を用いることができる。 In order to easily release the molded optical element from the mold, a structure for projecting the molded optical element with a core or a pin or a structure for applying ultrasonic vibration to the mold may be provided as a mold release assisting structure. In order to take out the molded optical element from the mold, various forms such as an air chuck, a robot chuck, and air blowing can be used.
 型締め工程において、成形前の前処理を行う成形前工程を各種行っても良い。成形前工程には、例えば型に異常がないかをカメラ等で監視して、異常がある場合にはアラームを発して光学素子の製造を停止する工程や、成形に用いた型を洗浄する工程や、型に光学素子の離型を促す処理(シリコン塗布)などを行う工程がある。 In the mold clamping process, various pre-molding processes for pre-molding may be performed. In the pre-molding process, for example, a camera is used to monitor whether there is an abnormality in the mold, and if there is an abnormality, a process for stopping the production of the optical element by issuing an alarm, or a process for cleaning the mold used for molding In addition, there is a step of performing a process (silicon coating) for urging the mold to release the optical element.
 また、成形された光学素子を取り出す工程において、成形後の後処理を行う成形後工程を行っても良い。成形後工程には、成形された光学素子を完全に硬化させるため、加熱等を行うポストキュア、アニールを行う工程などが挙げられる。尚、これらの成形後工程は、型から取り出された光学素子に対して別の場所で行っても良い。 Further, in the step of taking out the molded optical element, a post-molding step for performing post-processing after molding may be performed. Examples of the post-molding process include a post-cure for heating and the like, and a process for annealing in order to completely cure the molded optical element. In addition, you may perform these post-molding processes in another place with respect to the optical element taken out from the type | mold.
 複数の型を用いて閉じた軌跡に沿って連続成形を行う場合、先行する第1の型及び第2の型と、後続する第1の型及び第2の型とは、等間隔で配置され、等速で移動することが望ましい。但し、タイミング調整のため、局所的に型間の間隔を変更することはあり得る。 When continuous molding is performed along a closed locus using a plurality of molds, the preceding first mold and the second mold and the following first mold and the second mold are arranged at equal intervals. It is desirable to move at a constant speed. However, the interval between the molds may be locally changed for timing adjustment.
 更に「閉じた軌跡」とは、形状にはこだわらず、複数の工程に対向する処理部へと順に向かい、再び最初の処理部に向かうまでの第1の型と第2の型の移動軌跡が閉ループとなっていることをいう。但し、異常のある型を排除するために移動軌跡に分岐を設けたり、待機させていた異常のない型を軌跡に挿入するために閉じた軌跡に結合する別ルートを設けていても良い。 Furthermore, the “closed trajectory” refers to the movement trajectories of the first mold and the second mold that go in order to the processing section that faces a plurality of processes in order, and go back to the first processing section, regardless of the shape. It means a closed loop. However, a branch may be provided in the movement trajectory in order to eliminate abnormal molds, or another route that is coupled to a closed trajectory may be inserted in order to insert a mold without abnormality that has been waiting.
 本実施形態において、「エネルギー硬化性樹脂にエネルギーを供給して硬化させる工程」は、第1工程と第2工程とを有する。第1工程は、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として第1の量E1のエネルギーを供給する。第2工程は、第1工程後において、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として前記第1の量E1より大きい第2の量E2のエネルギーを供給する。第1工程における単位時間当たりの平均供給エネルギー強度は、第2工程における単位時間当たりの平均供給エネルギー強度の1/20以上1/2以下であると好ましい。1/20より小さいと、第1工程でエネルギー強度が小さすぎるので、表面にヒケは発生しにくくなるが、第2工程での硬化時間がかかり、第2工程がサイクルタイムのボトルネックになってしまう。1/2より大きいと第1工程と第2工程の強度の差異がないので、第1工程でのエネルギー強度が大きくヒケが発生しやすい。又、第2工程後において、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として第2の量E2より大きい第3の量E3のエネルギーを供給する第3工程を設けても良い。 In the present embodiment, the “step of supplying energy to the energy curable resin for curing” includes a first step and a second step. In the first step, energy of the first amount E1 is supplied as an energy integration amount obtained by multiplying the supply time and the supply energy intensity. In the second step, after the first step, energy of a second amount E2 larger than the first amount E1 is supplied as an energy integral amount obtained by multiplying the supply time and the supply energy intensity. The average supply energy intensity per unit time in the first step is preferably 1/20 or more and 1/2 or less of the average supply energy intensity per unit time in the second step. If it is less than 1/20, the energy intensity is too small in the first step, so it is difficult for sink marks to occur on the surface, but it takes time to cure in the second step, and the second step becomes the bottleneck of cycle time. End up. If it is greater than 1/2, there is no difference in strength between the first step and the second step, so the energy strength in the first step is large and sink marks are likely to occur. In addition, after the second step, a third step of supplying energy of a third amount E3 larger than the second amount E2 as an energy integration amount obtained by multiplying the supply time and the supply energy intensity may be provided.
 エネルギー供給源より、第1工程の間に供給される単位時間当たりのエネルギーの強度は一定であり、第2工程の間に供給される単位時間当たりのエネルギーの強度は一定であると好ましい。これにより、エネルギー硬化性樹脂の硬化反応速度を一定にすることができる。なお、「一定」とは、エネルギーの強度の平均値に対して±5%以内のバラツキを含むものとする。 It is preferable that the intensity of energy per unit time supplied during the first step from the energy supply source is constant, and the intensity of energy per unit time supplied during the second step is constant. Thereby, the curing reaction rate of the energy curable resin can be made constant. “Constant” includes variations within ± 5% of the average value of energy intensity.
 エネルギー供給源より、第1工程の間に供給される単位時間当たりのエネルギーの強度は漸次増加し、第2工程の間に供給される単位時間当たりのエネルギー強度は漸次増加すると好ましい。これにより、エネルギー硬化性樹脂の硬化反応速度を漸次上昇させることができる。 It is preferable that the energy intensity per unit time supplied during the first step from the energy supply source gradually increases, and the energy intensity per unit time supplied during the second step increases gradually. Thereby, the curing reaction rate of the energy curable resin can be gradually increased.
 エネルギー供給源より供給される単位時間当たりのエネルギーの強度は一定であり、前記第1工程の間にエネルギーが供給される積算時間は、前記第2工程の間にエネルギーが供給される積算時間より短いと好ましい。これにより、第1工程後において、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として第1の量E1より大きい第2の量E2のエネルギーを供給することができる。 The intensity of energy per unit time supplied from the energy supply source is constant, and the accumulated time during which energy is supplied during the first step is greater than the accumulated time during which energy is supplied during the second step. Short is preferable. Thereby, after the first step, the energy of the second amount E2 larger than the first amount E1 can be supplied as an energy integration amount obtained by multiplying the supply time and the supply energy intensity.
 以下、図面を参照しながら本発明にかかる実施形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定されるものではない。 Embodiments according to the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for carrying out the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.
 図1は、本実施形態における光学素子の製造装置を示す斜視図である。図2は、図1に示した光学素子の製造装置の要部を周方向に展開して示す図である。製造装置は、第1の保持体である第1円盤DC1と、第2の保持体である第2円盤DC2とを、隙間を空けて同軸に配置している。第1円盤DC1と第2円盤DC2の中央は、スプライン等を介して回転軸SFTに相対回転不能に連結されており、更に回転軸SFTを介して、固定された駆動部であるアクチュエータACにより、第1円盤DC1と第2円盤DC2は同期して回転駆動されるようになっている。 FIG. 1 is a perspective view showing an optical element manufacturing apparatus according to this embodiment. FIG. 2 is a diagram showing an essential part of the optical element manufacturing apparatus shown in FIG. 1 developed in the circumferential direction. In the manufacturing apparatus, a first disk DC1 that is a first holding body and a second disk DC2 that is a second holding body are arranged coaxially with a gap therebetween. The center of the first disk DC1 and the second disk DC2 is connected to the rotation shaft SFT through a spline or the like so as not to rotate relative to the rotation shaft SFT. The first disk DC1 and the second disk DC2 are driven to rotate synchronously.
 第1円盤DC1には、円形開口DC1aが複数個(ここでは8個)形成されており、円形開口DC1a内には、円柱状の上型(第1の型)MD1が固定されている。上型MD1は、下面に転写面MD1aを有する。上型MD1は、光透過性のプラスチック又は透明なガラスにより形成されている。ここでは、光透過性のプラスチックの射出成形により製造した上型MD1を用いた。 A plurality of circular openings DC1a (eight in this case) are formed in the first disk DC1, and a cylindrical upper mold (first mold) MD1 is fixed in the circular opening DC1a. The upper mold MD1 has a transfer surface MD1a on the lower surface. The upper mold MD1 is made of light transmissive plastic or transparent glass. Here, the upper mold MD1 manufactured by injection molding of light-transmitting plastic was used.
 第2円盤DC2には、円形開口DC1aと同じ配置になるようにして、円形開口DC2aが複数個(ここでは8個)形成されており、円形開口DC2a内には、円柱状の下型(第2の型)MD2が、回転軸SFTの軸線方向に移動可能に配置されている。下型MD2は、上面に転写面MD2aを有する。ここでは、光透過性のプラスチックの射出成形により製造した下型MD2を用いた。 In the second disk DC2, a plurality (eight in this case) of circular openings DC2a are formed so as to be arranged in the same manner as the circular opening DC1a. 2 type) MD2 is arranged so as to be movable in the axial direction of the rotation axis SFT. The lower mold MD2 has a transfer surface MD2a on the upper surface. Here, the lower mold MD2 manufactured by injection molding of light-transmitting plastic was used.
 尚、上型MD1及び下型MD2を、光透過性樹脂の射出成形により形成することができ、これにより同じ形状の上型MD1及び下型MD2を高精度に大量に生産できる。 In addition, the upper mold MD1 and the lower mold MD2 can be formed by injection molding of a light-transmitting resin, whereby the upper mold MD1 and the lower mold MD2 having the same shape can be produced in large quantities with high accuracy.
 また特に、上型MD1及び下型MD2の素材がガラスであると耐久性に優れる。又、ガラスで型を製造することで、同じ形状の型を高精度に生産できる。更に、上型MD1及び下型MD2が、ガラスを金型に転写することにより形成されていると、同じ形状の上型MD1及び下型MD2を高精度に大量に生産できるので好ましい。 Particularly, when the material of the upper mold MD1 and the lower mold MD2 is glass, the durability is excellent. In addition, by manufacturing a mold using glass, a mold having the same shape can be produced with high accuracy. Furthermore, it is preferable that the upper mold MD1 and the lower mold MD2 are formed by transferring glass to a mold because the upper mold MD1 and the lower mold MD2 having the same shape can be produced in large quantities with high accuracy.
 第1円盤DC1と第2円盤DC2の周方向の一部を覆うようにして、遮蔽部SHが形成されている。遮蔽部SHの頂面には、光学素子の材料であるエネルギー硬化性樹脂を硬化させるためのエネルギー供給源として複数の(図2では2つ示したが実際には3つの)光源OPSが、第1円盤DC1と第2円盤DC2の周方向に沿って配置され,発光面を下方に向けている。尚、光源OPSは、回転移動する上型MD1の中心の軌跡の直上に設けると好ましい。 The shielding part SH is formed so as to cover a part of the first disk DC1 and the second disk DC2 in the circumferential direction. On the top surface of the shielding part SH, a plurality of light sources OPS (two actually shown in FIG. 2 but three actually) are provided as energy supply sources for curing the energy curable resin that is the material of the optical element. It arrange | positions along the circumferential direction of 1 disk DC1 and 2nd disk DC2, and has faced the light emission surface below. The light source OPS is preferably provided directly above the center locus of the upper mold MD1 that rotates.
 一方、図2に示すように、遮蔽部SHに対向するようにして、第2円盤DC2の下方に、複数の(図2では2つ示したが実際には3つの)光源OPSを配置している。上下の光源OPSは、互いに対向しており、1番目の光源OPSの出射強度が最も小さく、2番目の光源OPSの出射強度が次に小さく、3番目の光源OPSの出射強度が最も大きくなっている。光源OPSとしては、ピーク波長365nmの紫外線を照射できるLEDが好ましい。尚、以下、「紫外線」等を代表して「硬化光」という用語を用いる。 On the other hand, as shown in FIG. 2, a plurality of light sources OPS (two actually shown in FIG. 2 but three actually) are arranged below the second disk DC2 so as to face the shielding part SH. Yes. The upper and lower light sources OPS are opposed to each other, the emission intensity of the first light source OPS is the smallest, the emission intensity of the second light source OPS is the next smallest, and the emission intensity of the third light source OPS is the highest. Yes. The light source OPS is preferably an LED that can irradiate ultraviolet rays having a peak wavelength of 365 nm. Hereinafter, the term “curing light” will be used to represent “ultraviolet rays” and the like.
 光源OPSは、制御回路CONTにより制御され、第1円盤DC1と第2円盤DC2の角度位置(照射対象となる上型MD1及び下型MD2との位置関係)に応じて、硬化光の照射時間及び硬化光の強度の少なくとも一方を調整するようになっていると好ましい。但し、ここでは、3つの光源OPSの照射強度を個別に異ならせることとし、制御回路CONTは、第1円盤DC1と第2円盤DC2の回転に応じてオン/オフのみを制御するものとする。 The light source OPS is controlled by the control circuit CONT, and the irradiation time of the curing light and the angular position of the first disk DC1 and the second disk DC2 (positional relationship between the upper mold MD1 and the lower mold MD2 to be irradiated) and It is preferable to adjust at least one of the intensity of the curing light. However, here, the irradiation intensities of the three light sources OPS are individually made different, and the control circuit CONT controls only on / off according to the rotation of the first disk DC1 and the second disk DC2.
 第2円盤DC2の下方には、型駆動部を構成する一対のリング状のカム板CPが固定配置されている。図2に示すように、カム板CPのカム面CPaは、周方向の位置に応じて、低部CPb、登り斜面CPc、高部CPd、下り斜面CPeを有している。 Below the second disk DC2, a pair of ring-shaped cam plates CP constituting the mold drive unit are fixedly arranged. As shown in FIG. 2, the cam surface CPa of the cam plate CP has a low portion CPb, an ascending slope CPc, a high portion CPd, and a descending slope CPe according to the position in the circumferential direction.
 図3は、第2の処理部Bにおける下型MD2の周辺を示す斜視図である。下型MD2の下面には、平行するカム板CPのカム面CPa上をそれぞれ転動する車輪状のフォロワFWと、フォロワFWを回転可能に支持する支持部SPとが形成されている。一対のカム板CPの間に複数の(図3では1つのみ示す)光源OPSが配置されている。光源OPSから出射された光は、光透過性の下型MD2の支持部SP間の下面から入射し、上面の転写面MD2aから出射するようになっている。 FIG. 3 is a perspective view showing the periphery of the lower mold MD2 in the second processing unit B. FIG. On the lower surface of the lower mold MD2, there are formed a wheel-shaped follower FW that rolls on the cam surface CPa of the parallel cam plate CP and a support portion SP that rotatably supports the follower FW. A plurality of light sources OPS (only one is shown in FIG. 3) are arranged between the pair of cam plates CP. The light emitted from the light source OPS is incident from the lower surface between the support portions SP of the light-transmissive lower mold MD2, and is emitted from the upper transfer surface MD2a.
 図2に示すように、第1円盤DC1と第2円盤DC2の回転位置に応じて、第1の処理部A、第2の処理部B,第3の処理部C,第4の処理部Dとなっている。第1の処理部Aにおいては、光硬化性樹脂を適量吐出できるディスペンサDSPが配置されている。第2の処理部Bには、周方向に並べて光源OPSが配置されている。第4の処理部Dには、成形された光学素子OEを取り出すアーム式ロボットRBが配置されている。 As shown in FIG. 2, the first processing unit A, the second processing unit B, the third processing unit C, and the fourth processing unit D according to the rotational positions of the first disk DC1 and the second disk DC2. It has become. In the 1st process part A, dispenser DSP which can discharge a suitable quantity of photocurable resin is arrange | positioned. In the second processing unit B, light sources OPS are arranged in the circumferential direction. In the fourth processing unit D, an arm type robot RB for taking out the molded optical element OE is arranged.
 本実施の形態における製造装置の動作及び光学素子の製造工程について、ここでは、一対の上型MD1と下型MD2に着目しながら説明する。まず、不図示の電源からの給電によりアクチュエータACが駆動され、回転軸SFTを回転させると、第1円盤DC1と第2円盤DC2が同期して回転する。ここで、第1の処理部Aにおける前段では、下型MD2のフォロワFWは、カム板CPのカム面CPaにおける低部CPbにあるので、上型MD1と下型MD2とが開いた状態にあり、よってディスペンサDSPを介して、下型MD2の転写面MD2a上に光硬化性樹脂PLを滴下させることができる。 The operation of the manufacturing apparatus and the optical element manufacturing process in the present embodiment will be described here with a focus on a pair of upper mold MD1 and lower mold MD2. First, when the actuator AC is driven by power supply from a power source (not shown) and the rotation shaft SFT is rotated, the first disk DC1 and the second disk DC2 rotate in synchronization. Here, in the former stage in the first processing section A, the follower FW of the lower mold MD2 is in the lower portion CPb on the cam surface CPa of the cam plate CP, and therefore the upper mold MD1 and the lower mold MD2 are in an open state. Thus, the photocurable resin PL can be dropped on the transfer surface MD2a of the lower mold MD2 via the dispenser DSP.
 次いで、光硬化性樹脂PLを間に供給された上型MD1と下型MD2は、第1円盤DC1と第2円盤DC2の同期回転により移動する。ここで、下型MD2のフォロワFWは、カム板CPのカム面CPaにおける登り斜面CPc上を転動するようになるので、上型MD1に対して下型MD2が徐々に接近する。フォロワFWが、カム板CPのカム面CPaにおける高部CPdに到達した時点で、両者が密着して型締めがなされる(第1の処理部Aにおける後段)。又、フォロワFWが、高部CPdを転動する間、上型MD1と下型MD2の型締め状態が維持される。 Next, the upper mold MD1 and the lower mold MD2 supplied with the photocurable resin PL therebetween move by the synchronous rotation of the first disk DC1 and the second disk DC2. Here, since the follower FW of the lower mold MD2 rolls on the climbing slope CPc on the cam surface CPa of the cam plate CP, the lower mold MD2 gradually approaches the upper mold MD1. When the follower FW reaches the high portion CPd on the cam surface CPa of the cam plate CP, the two are brought into close contact with each other and are clamped (the latter stage in the first processing portion A). Further, while the follower FW rolls on the high portion CPd, the mold clamping state of the upper mold MD1 and the lower mold MD2 is maintained.
 その後、上型MD1と下型MD2は、型締め状態を維持しつつ、第1円盤DC1と第2円盤DC2の同期回転により第2の処理部Bへと移動する。第2の処理部Bにおいては、本実施の形態では、第1工程と第2工程と第3工程からなる。 Thereafter, the upper mold MD1 and the lower mold MD2 move to the second processing unit B by the synchronous rotation of the first disk DC1 and the second disk DC2 while maintaining the mold clamping state. In the second processing unit B, in the present embodiment, the second processing unit B includes a first process, a second process, and a third process.
 図4は、光硬化性樹脂PLが受ける硬化光積分量(照射時間×照射強度)をハッチングで示すグラフであり、横軸は照射時間(秒)であり、縦軸は単位面積当たりの照射強度(mW/cm2)である。尚、光硬化性樹脂PL全体を硬化させるに必要な硬化光積分量は、例えば強度180(mW/cm2)で25秒照射してなる硬化光積分量4500(mJ/cm2)であるものとする。 FIG. 4 is a graph showing the integrated amount of curing light (irradiation time × irradiation intensity) received by the photocurable resin PL by hatching, the horizontal axis is the irradiation time (seconds), and the vertical axis is the irradiation intensity per unit area. (MW / cm 2 ). Note that the curing light integral amount necessary for curing the entire photocurable resin PL is, for example, a curing light integral amount 4500 (mJ / cm 2 ) obtained by irradiation for 25 seconds at an intensity of 180 (mW / cm 2 ). And
 まず第1工程では、最も第1の処理部Aに近い上下の光源OPSの間を、上型MD1と下型MD2が通過する。このとき、光透過性を有する上型MD1と下型MD2を介して、硬化光が光硬化性樹脂PLに照射されるが、その際に光硬化性樹脂PLに供給される硬化光積分量E1は、一定の強度18(mW/cm2)で8秒の照射が行われるから、144(mJ/cm2)である。これにより、第1工程では光硬化性樹脂PLの表面のみが硬化する。 First, in the first step, the upper mold MD1 and the lower mold MD2 pass between the upper and lower light sources OPS closest to the first processing unit A. At this time, the curing light is irradiated to the photocurable resin PL through the upper mold MD1 and the lower mold MD2 having light transmittance. At this time, the curing light integration amount E1 supplied to the photocurable resin PL. Is 144 (mJ / cm 2 ) because irradiation is performed for 8 seconds at a constant intensity of 18 (mW / cm 2 ). Thereby, only the surface of the photocurable resin PL is cured in the first step.
 ついで、第2工程では、第1の処理部Aから2番目の上下の光源OPSの間を、上型MD1と下型MD2が通過する。このとき、光透過性を有する上型MD1と下型MD2を介して、硬化光が光硬化性樹脂PLに照射されるが、その際に光硬化性樹脂PLに供給される硬化光積分量E2は、一定の強度180(mW/cm2)で8秒の照射が行われるから、1440(mJ/cm2)である。これにより、第2工程では光硬化性樹脂PLの表面から奥まった位置まで硬化する。 Next, in the second step, the upper mold MD1 and the lower mold MD2 pass between the first upper and lower light sources OPS from the first processing unit A. At this time, the curing light is irradiated to the photocurable resin PL through the upper mold MD1 and the lower mold MD2 having light transmittance. At this time, the curing light integration amount E2 supplied to the photocurable resin PL. Is 1440 (mJ / cm 2 ) because irradiation is performed at a constant intensity of 180 (mW / cm 2 ) for 8 seconds. Thereby, it hardens | cures from the surface of photocurable resin PL to the back | inner position in a 2nd process.
 最後に、第3工程では、第1の処理部Aから最も遠い上下の光源OPSの間を、上型MD1と下型MD2が通過する。このとき、光透過性を有する上型MD1と下型MD2を介して、硬化光が光硬化性樹脂PLに照射されるが、その際に光硬化性樹脂PLに供給される硬化光積分量E3は、一定の強度324(mW/cm2)で9の照射が行われるから、2916(mJ/cm2)である。全てのOPSから光硬化性樹脂PLが受けたトータルの硬化光積分量は、E1+E2+E3=144+1440+2916=4500(mJ/cm2)であるから、第3工程を経ることで、光硬化性樹脂PLの中心部まで完全に硬化することとなる。なお、図から明らかであるが、第1工程における単位時間当たりの平均供給エネルギー強度は、第2工程における単位時間当たりの平均供給エネルギー強度より低く、第2工程における単位時間当たりの平均供給エネルギー強度は、第3工程における単位時間当たりの平均供給エネルギー強度より低い。 Finally, in the third step, the upper mold MD1 and the lower mold MD2 pass between the upper and lower light sources OPS farthest from the first processing unit A. At this time, the curing light is irradiated to the photocurable resin PL through the upper mold MD1 and the lower mold MD2 having light transmittance. At this time, the curing light integration amount E3 supplied to the photocurable resin PL. Is 2916 (mJ / cm 2 ) because 9 is irradiated at a constant intensity of 324 (mW / cm 2 ). Since the total amount of cured light received by the photocurable resin PL from all the OPSs is E1 + E2 + E3 = 144 + 1440 + 2916 = 4500 (mJ / cm 2 ), the center of the photocurable resin PL is obtained through the third step. It will be completely cured to the part. As is apparent from the figure, the average supply energy intensity per unit time in the first process is lower than the average supply energy intensity per unit time in the second process, and the average supply energy intensity per unit time in the second process. Is lower than the average supply energy intensity per unit time in the third step.
 本実施形態によれば、光硬化性樹脂PLに硬化光を供給する初期(第1工程)に、供給する硬化光積分量を小さく抑えることで、表面付近での硬化反応速度を遅くし、光学面の転写精度を確保しつつ、その樹脂内部の流動を確保できる。光硬化性樹脂PLに硬化光を供給する初期から比較的大きな硬化光積分量を与えると、表面からの硬化反応速度が速まり、樹脂内部の流動が妨げられてヒケなどの不具合が生じやすいからである。又、光硬化性樹脂PLに硬化光を供給する初期(第1工程)に、供給する硬化光積分量を小さく抑えることで、表面からの硬化を徐々に行うことで樹脂内部の残留応力や歪みを低減でき、環境変化や経時劣化により光学性能が低下することを抑制できる。このような効果は、第1工程から、第2工程、第3工程へと、硬化光積分量を徐々に増大させることで、より有効に発揮される。又、光硬化性樹脂PLに硬化光を供給する後期(第3工程)では、比較的樹脂の奥まで硬化が進んでいるので、硬化光積分量を増大させてもヒケや残留応力などの影響が少なく、更には硬化反応速度を高めることで製品のタクトタイムを有効に減少できる。製品の厚さとしては、最大厚さが300μm以上10mm以下であると好ましい。300μ以下だと、薄すぎて成形しにくくヒケ自体がでにくい。一方10mm以上だと、厚すぎて製品の硬化が不完全にとなるか、硬化に時間がかかりすぎてしまう。 According to the present embodiment, in the initial stage (first step) of supplying curing light to the photocurable resin PL, the curing reaction rate near the surface is slowed down by suppressing the amount of integration of the curing light to be supplied. The flow inside the resin can be secured while ensuring the transfer accuracy of the surface. If a relatively large curing light integration amount is applied from the initial stage of supplying curing light to the photocurable resin PL, the curing reaction speed from the surface is increased, and the flow inside the resin is hindered, thus causing problems such as sink marks. It is. Also, in the initial stage (first step) of supplying curing light to the photocurable resin PL, by suppressing the amount of curing light to be supplied to a small level, the residual stress and strain inside the resin can be reduced by gradually curing from the surface. It is possible to reduce the optical performance due to environmental changes and deterioration over time. Such an effect is more effectively exhibited by gradually increasing the curing light integration amount from the first step to the second step and the third step. Also, in the latter stage (third step) in which the curing light is supplied to the photocurable resin PL, the curing proceeds relatively deeply into the resin, so that even if the curing light integration amount is increased, the influence of sink marks, residual stress, etc. The tact time of the product can be effectively reduced by increasing the curing reaction rate. As the thickness of the product, the maximum thickness is preferably 300 μm or more and 10 mm or less. If it is 300 μm or less, it will be too thin and difficult to mold, and sink marks will be difficult. On the other hand, if the thickness is 10 mm or more, the product is too thick and the product may be incompletely cured, or it may take too long to cure.
 図1,2において、第2の処理部Bを通過した、上型MD1と下型MD2は、第1円盤DC1と第2円盤DC2の同期回転により第3の処理部Cへと移動する。ここで、下型MD2のフォロワFWは、カム板CPのカム面CPaにおける下り斜面CPe上を転動するようになるので、上型MD1に対して下型MD2が徐々に離間することで型開きが行われる。 1 and 2, the upper mold MD1 and the lower mold MD2 that have passed through the second processing section B move to the third processing section C by the synchronous rotation of the first disk DC1 and the second disk DC2. Here, since the follower FW of the lower mold MD2 rolls on the downward slope Cpe on the cam surface CPa of the cam plate CP, the lower mold MD2 is gradually separated from the upper mold MD1 to open the mold. Is done.
 フォロワFWが、下り斜面CPeを転動し終わった後、再び低部CPbを転動するようになるので、上型MD1に対して下型MD2が開いた状態に維持されるから、続く第4の処理部Dにて、ロボットRBのアームを伸縮させることで、転写面MD1a、MD2aで成形された光学素子OEを取り出し、別工程に搬送することができる。以上、一対の上型MD1と下型MD2に着目して製造装置の動作及び光学素子の製造工程を説明したが、別の上型MD1と下型MD2も、タイミングをずらして順次同様な製造工程をたどるので、高精度な光学素子OEを大量に生産できる。 After the follower FW has finished rolling on the downward slope Cpe, the lower part CPb rolls again, so that the lower mold MD2 is maintained open with respect to the upper mold MD1, and the following fourth In the processing section D, the arm of the robot RB can be expanded and contracted to take out the optical element OE formed by the transfer surfaces MD1a and MD2a and transport it to another process. The operation of the manufacturing apparatus and the optical element manufacturing process have been described above focusing on the pair of the upper mold MD1 and the lower mold MD2. The other upper mold MD1 and lower mold MD2 are also sequentially manufactured in the same manner at different timings. Therefore, high-precision optical elements OE can be produced in large quantities.
 本実施の形態によれば、製造工程のなかで比較的時間を要する硬化の工程を、複数の工程に分けるとともに、それぞれの工程で硬化のエネルギーを後の工程のほうを大きくしたため、製造工程のボトルネックの解消と樹脂成型品の品質向上を達成でき、項精度な樹脂製品を大量に生産できる。 According to the present embodiment, the curing process, which takes a relatively long time in the manufacturing process, is divided into a plurality of processes, and the energy for curing is increased in the subsequent processes in each process. Eliminate bottlenecks and improve the quality of resin molded products, enabling mass production of high-precision resin products.
 本実施の形態によれば、保持体DC1,DC2の回転に応じて、閉じた軌跡(円)に沿ってそれぞれ複数個設けられた第1の型MD1と第2の型MD2が該軌跡に沿って移動するので、移動してくる第1の型MD1と第2の型MD2に、光硬化性樹脂を供給する供給装置としてのディスペンサDSPを共通化できるから、省スペースを図れ、設備コストを低減できる。又、第2の処理部Bに対して、閉じた軌跡に沿って第1の型MD1と第2の型MD2が移動するので、移動してくる第1の型MD1と第2の型MD2との間に供給された光硬化性樹脂PLに、共通化されたエネルギー供給源としての光源OPSより光を供給することができるから、製造条件が同一になり、製造バラツキを抑制できる。更に、第4の処理部Cに対して、閉じた軌跡に沿って第1の型MD1と第2の型MD2が移動するので、移動してくる第1の型MD1と第2の型MD2から、製造された光学素子を取り出す装置としてのロボットRBを共通化できるから、省スペースを図れ、設備コストを低減できる。これにより、低コストで均質な光学素子OEを大量に生産できる。 According to the present embodiment, according to the rotation of the holding bodies DC1 and DC2, a plurality of first molds MD1 and second molds MD2 provided along a closed locus (circle) respectively along the locus. Since the dispenser DSP as a supply device for supplying the photocurable resin can be used in common for the first mold MD1 and the second mold MD2 that move, the space can be saved and the equipment cost can be reduced. it can. Further, since the first mold MD1 and the second mold MD2 move along the closed locus with respect to the second processing unit B, the moving first mold MD1 and second mold MD2 Since light can be supplied from the light source OPS as a common energy supply source to the photocurable resin PL supplied during the manufacturing process, the manufacturing conditions are the same, and manufacturing variations can be suppressed. Furthermore, since the first mold MD1 and the second mold MD2 move along the closed locus with respect to the fourth processing unit C, the first mold MD1 and the second mold MD2 that move are moved. Since the robot RB as a device for taking out the manufactured optical element can be used in common, the space can be saved and the equipment cost can be reduced. Thereby, it is possible to produce a large amount of homogeneous optical elements OE at low cost.
 本実施の形態によれば、第1の処理部Aにおいて、第1の型MD1と第2の型MD2とは閉じた軌跡に沿った移動に伴って徐々に接近することができる。これにより、第1の型MD1と第2の型MD2とを徐々に接近させることで、気泡の巻き込みなどを抑制し、高精度な光学素子OEを製造できる。又、型締め時に該軌跡に沿って相対移動することで、後続の第1の型MD1と第2の型MD2の移動を邪魔することがない。 According to the present embodiment, in the first processing unit A, the first mold MD1 and the second mold MD2 can gradually approach with movement along the closed locus. Accordingly, by gradually bringing the first mold MD1 and the second mold MD2 closer to each other, entrainment of bubbles and the like can be suppressed, and a highly accurate optical element OE can be manufactured. Further, the relative movement along the locus during mold clamping does not obstruct the movement of the subsequent first mold MD1 and second mold MD2.
 本実施の形態によれば、第2の処理部Bには、エネルギー供給源としての光源OPSが設けられている。光源OPSに対して、第1の型MD1と第2の型MD2が相対移動することで、ムラなくエネルギーを、第1の型MD1と第2の型MD2の間の光硬化性樹脂に供給することができる。特に、光源OPSから光を照射する場合、場所によって影ができやすいので、光源OPSに対して第1の型MD1と第2の型MD2を相対移動させることが、安定した製造を行う上で望ましい。 According to the present embodiment, the second processing unit B is provided with a light source OPS as an energy supply source. By the relative movement of the first mold MD1 and the second mold MD2 with respect to the light source OPS, energy is supplied uniformly to the photocurable resin between the first mold MD1 and the second mold MD2. be able to. In particular, when light is emitted from the light source OPS, shadows are easily generated depending on the location. Therefore, it is desirable to move the first mold MD1 and the second mold MD2 relative to the light source OPS for stable production. .
 本実施の形態によれば、第3の処理部Cにおいて第1の型MD1と第2の型MD2とは閉じた軌跡に沿った移動に伴って徐々に離間する。第1の型MD1と第2の型MD2とを徐々に離間させることで、例えば製造した光学素子OEに微細な回折構造などが形成されている場合にも、回折構造を損傷させることなく、型開きが可能になる。又、型開き時に軌跡に沿って第1の型MD1と第2の型MD2が移動することで、後続の第1の型MD1と第2の型MD2の移動を邪魔することがない。 According to the present embodiment, in the third processing unit C, the first mold MD1 and the second mold MD2 are gradually separated along with the movement along the closed locus. By gradually separating the first mold MD1 and the second mold MD2, for example, even when a fine diffractive structure is formed on the manufactured optical element OE, the mold is not damaged. Opening is possible. Further, when the mold is opened, the first mold MD1 and the second mold MD2 move along the trajectory, so that the subsequent movement of the first mold MD1 and the second mold MD2 is not disturbed.
 本実施の形態によれば、第2の型MD2を、第1の処理部Aに入ったことに応動して、第1の型MD1に対して接近させ、また第3の処理部Cに入ったことに応動して、第1の型MD1に対して離間させる型駆動部としての、リング状のカム板CPと、フォロワFWとを有する。これにより、最適のタイミングで第1の型MD1と第2の型MD2の接近、離間を制御できる。 According to the present embodiment, the second mold MD2 is moved closer to the first mold MD1 in response to entering the first processing unit A, and enters the third processing unit C. In response to this, it has a ring-shaped cam plate CP and a follower FW as a mold drive unit that is separated from the first mold MD1. Thereby, the approach and separation of the first mold MD1 and the second mold MD2 can be controlled at an optimal timing.
 本実施形態の変形例としては、図4に点線で示すように、第2の処理部Bにおける第1工程、第2工程、第3工程内において、硬化光の照射強度を漸次増大するようにしてもよい。これにより、光硬化性樹脂PLの硬化反応速度を漸次上昇できる。尚、トータルの硬化光積分量は、上述した実施の形態と同様であると好ましい。この場合も、第1工程における単位時間当たりの平均供給エネルギー強度は、第2工程における単位時間当たりの平均供給エネルギー強度より低く、第2工程における単位時間当たりの平均供給エネルギー強度は、第3工程における単位時間当たりの平均供給エネルギー強度より低い。 As a modification of the present embodiment, as indicated by a dotted line in FIG. 4, the irradiation intensity of the curing light is gradually increased in the first process, the second process, and the third process in the second processing unit B. May be. Thereby, the curing reaction rate of the photocurable resin PL can be gradually increased. It should be noted that the total curing light integration amount is preferably the same as in the above-described embodiment. Also in this case, the average supply energy intensity per unit time in the first process is lower than the average supply energy intensity per unit time in the second process, and the average supply energy intensity per unit time in the second process is the third process. Lower than the average supply energy intensity per unit time.
 更に、別の変形例としては、図5に示すように、第2の処理部Bにおける第1工程、第2工程、第3工程内において、ハッチングで示すパルス状に硬化光の照射を行っても良い。ここでは、例えば3つの光源OPSの照射強度を500(mW/cm2)に固定しておき、それぞれを覆い独立して駆動できるシャッタなどを設け、上型MD1と下型MD2とが所定の位置に来たときに、シャッタを0.2秒だけ開放することで、パルス状に硬化光の照射を行うことができる。尚、パルス照射毎にエネルギー強度を変えても良い。 Furthermore, as another modified example, as shown in FIG. 5, curing light is irradiated in a pulse shape indicated by hatching in the first process, the second process, and the third process in the second processing unit B. Also good. Here, for example, the irradiation intensity of the three light sources OPS is fixed to 500 (mW / cm 2 ), and a shutter that can be driven independently is provided so that the upper mold MD1 and the lower mold MD2 are positioned at predetermined positions. When it comes to, curing light can be irradiated in pulses by opening the shutter for 0.2 seconds. The energy intensity may be changed for each pulse irradiation.
 図5の例では、第1工程では1回の照射、第2工程では間欠的に2回の照射、第3工程では、連続して5回の照射を行っている。尚、第1工程における単位時間当たりの平均供給エネルギー強度は、第2工程における単位時間当たりの平均供給エネルギー強度より低く、第2工程における単位時間当たりの平均供給エネルギー強度は、第3工程における単位時間当たりの平均供給エネルギー強度より低い。又、硬化光積分量は、上述した実施の形態と同様であると好ましい。 In the example of FIG. 5, one irradiation is performed in the first step, two irradiations are intermittently performed in the second step, and five irradiations are continuously performed in the third step. The average supply energy intensity per unit time in the first process is lower than the average supply energy intensity per unit time in the second process, and the average supply energy intensity per unit time in the second process is the unit in the third process. Lower than average supply energy intensity per hour. Further, the curing light integration amount is preferably the same as that in the above-described embodiment.
 図6は、第2の処理部Bに移動した下型MD2の変形例を示す断面図である。本例では、光透過性の素材からなる下型MD2は、内部に反射鏡MRを設けている。第2の処理部Bには、下型MD2の側面に隣接し反射鏡MRに対向する位置に光源OPSが、側方に硬化光を照射可能に固定配置されている。それ以外の構成は上述した実施の形態と同様である。 FIG. 6 is a cross-sectional view showing a modified example of the lower mold MD2 moved to the second processing section B. In this example, the lower mold MD2 made of a light-transmitting material has a reflecting mirror MR inside. In the second processing unit B, a light source OPS is fixedly disposed at a position adjacent to the side surface of the lower mold MD2 and facing the reflecting mirror MR so that the curing light can be irradiated to the side. Other configurations are the same as those of the above-described embodiment.
 成形時、第2円盤DC2の回転により下型MD2が第2の処理部Bへと移動すると、光源OPSから出射した硬化光が下型MD2の側面を介して反射鏡MRに入射するようになり、更に反射して上方の転写面MD2aに向かうようになる。これにより、転写面MD2aに供給された光硬化性樹脂を硬化させることができる。本例によれば、下型MD2の下面より硬化光を入射しないので、支持部SPを下型MD2の下面中央に設けることができる。 At the time of molding, when the lower mold MD2 moves to the second processing section B by the rotation of the second disk DC2, the curing light emitted from the light source OPS enters the reflecting mirror MR through the side surface of the lower mold MD2. Further, the light is further reflected toward the upper transfer surface MD2a. Thereby, the photocurable resin supplied to the transfer surface MD2a can be cured. According to this example, since the curing light is not incident from the lower surface of the lower mold MD2, the support portion SP can be provided at the center of the lower surface of the lower mold MD2.
 本発明は、本明細書に記載の実施形態に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。 The present invention is not limited to the embodiments described in the present specification, and includes other embodiments and modifications based on the embodiments and technical ideas described in the present specification. It is obvious to
A      第1の処理部
B      第2の処理部
C      第3の処理部
D      第4の処理部
AC     アクチュエータ
CP     カム板
CPa    カム面
CPb    低部
CPc    登り斜面
CPd    高部
CPe    下り斜面
CR     搬送部
DC1    第1の円盤
DC1a   円形開口
DC2    第2の円盤
DC2a   円形開口
SP     支持部
DSP    ディスペンサ
FW     フォロワ
MD1    上型
MD1a   転写面
MD1b   平面部
MD1c   テーパ面
MD1d   円筒状内面
MD2    下型
MD2a   転写面
MD2b   平面部
MD2c   テーパ面
MD2d   円筒状外面
OE     光学素子
OPS    光源
PL     光硬化性樹脂
RB     ロボット
SFT    回転軸
SH     遮蔽部
A 1st processing part B 2nd processing part C 3rd processing part D 4th processing part AC Actuator CP Cam plate CPa Cam surface CPb Low part CPc Climbing slope CPd High part CPe Down slope CR Conveying part DC1 1st Disc DC1a Circular aperture DC2 Second disc DC2a Circular aperture SP Support portion DSP Dispenser FW Follower MD1 Upper mold MD1a Transfer surface MD1b Planar portion MD1c Tapered surface MD1d Cylindrical inner surface MD2 Lower mold MD2a Transfer surface MD2b Planar portion MD2c Tapered surface MD2d Cylinder Outer surface OE Optical element OPS Light source PL Photocurable resin RB Robot SFT Rotating shaft SH Shielding part

Claims (9)

  1.  第1の型と第2の型との間にエネルギー硬化性樹脂を供給する工程と、
     前記エネルギー硬化性樹脂に、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として第1の量E1のエネルギーを供給したのち、前記第1のエネルギー供給後に、供給時間と供給エネルギー強度とを乗じたエネルギー積分量として前記第1の量E1より大きい第2の量E2のエネルギーを供給する硬化の工程と、
    前記硬化の工程で硬化された樹脂部品を取り出す工程を有し、
    前記硬化の工程は、少なくとも前記第1の量E1のエネルギーを供給する第1硬化工程と、前記第2の量E2のエネルギーを供給する第2硬化工程に分かれていることを特徴とする光学素子の製造方法。
    Supplying an energy curable resin between the first mold and the second mold;
    After supplying energy of the first amount E1 as an energy integral amount obtained by multiplying the energy curable resin by the supply time and the supply energy intensity, the supply time and the supply energy intensity are multiplied after the first energy supply. A curing step of supplying a second amount E2 of energy larger than the first amount E1 as an energy integration amount;
    A step of taking out the resin component cured in the curing step;
    The curing step is divided into a first curing step for supplying at least the first amount E1 of energy and a second curing step for supplying the second amount of energy E2. Manufacturing method.
  2.  前記第1の量E1は、前記第2の量E2の1/20以上1/2以下であることを特徴とする請求項1に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the first amount E1 is 1/20 or more and 1/2 or less of the second amount E2.
  3.  前記エネルギー供給源より、前記第1工程の間に供給される単位時間当たりのエネルギーの強度は一定であり、前記第2工程の間に供給される単位時間当たりのエネルギーの強度は一定であることを特徴とする請求項1又は2に記載の光学素子の製造方法。 The intensity of energy per unit time supplied during the first step from the energy supply source is constant, and the intensity of energy per unit time supplied during the second step is constant. The method of manufacturing an optical element according to claim 1 or 2.
  4.  前記エネルギー供給源より、前記第1工程の間に供給される単位時間当たりのエネルギーの強度は漸次増加し、前記第2工程の間に供給される単位時間当たりのエネルギー強度は漸次増加することを特徴とする請求項1又は2に記載の光学素子の製造方法。 The energy intensity per unit time supplied during the first step from the energy supply source is gradually increased, and the energy intensity per unit time supplied during the second step is gradually increased. The method of manufacturing an optical element according to claim 1 or 2,
  5.  前記エネルギー供給源より供給される単位時間当たりのエネルギーの強度は一定であり、前記第1工程の間にエネルギーが供給される積算時間は、前記第2工程の間にエネルギーが供給される積算時間より短いことを特徴とする請求項1又は2に記載の光学素子の製造方法。 The intensity of energy per unit time supplied from the energy supply source is constant, and the accumulated time during which energy is supplied during the first step is the accumulated time during which energy is supplied during the second step. 3. The method of manufacturing an optical element according to claim 1, wherein the optical element is shorter.
  6.  前記第1の型と前記第2の型は、それぞれ閉じた軌跡を移動するように設けられていると共に、それぞれ閉じた軌跡に沿ってそれぞれ複数個設けられ、先行する前記第1の型と前記第2の型とが前記工程のうち或る一つの工程を経た後に、後続する前記第1の型と前記第2の型とが前記或る一つの工程を経るようになっており、
     前記閉じた軌跡に沿って、前記第1の型及び前記第2の型が前記エネルギー供給源に接近することでエネルギーを供給することを特徴とする請求項1~6のいずれかに記載の光学素子の製造方法。
    The first mold and the second mold are provided so as to move along a closed locus, and a plurality of the first die and the second die are provided along the closed locus, respectively, and the preceding first mold and the second die After the second mold has undergone one of the processes, the subsequent first mold and the second mold have undergone the one process,
    The optical system according to claim 1, wherein the first mold and the second mold supply energy along the closed locus by approaching the energy supply source. Device manufacturing method.
  7.  エネルギー硬化性樹脂が光硬化性樹脂であり、前記第1の型と前記第2の型が光硬化性樹脂を硬化させる光に対して光透過性を有することを特徴とする請求項1~7のいずれかに記載の光学素子の製造方法。 The energy curable resin is a photocurable resin, and the first mold and the second mold are light transmissive to light that cures the photocurable resin. The manufacturing method of the optical element in any one of.
  8.  前記エネルギー供給源は、前記第1の型と前記第2の型との位置関係に応じて、エネルギーの供給時間及びエネルギーの強度の少なくとも一方を調整することを特徴とする請求項1~8のいずれかに記載の光学素子の製造方法。 9. The energy supply source according to claim 1, wherein the energy supply source adjusts at least one of an energy supply time and an energy intensity according to a positional relationship between the first mold and the second mold. The manufacturing method of the optical element in any one.
  9.  請求項1~9の製造方法により製造された光学素子であって、200μm以上10mm以下の最大厚さを有することを特徴とする光学素子。 10. An optical element manufactured by the manufacturing method according to claim 1 having a maximum thickness of 200 μm or more and 10 mm or less.
PCT/JP2014/080054 2013-11-14 2014-11-13 Method for producing optical element, and optical element WO2015072508A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480062423.4A CN105745056B (en) 2013-11-14 2014-11-13 The manufacturing method and optical element of optical element
JP2015547783A JP6380913B2 (en) 2013-11-14 2014-11-13 Optical element manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235735 2013-11-14
JP2013-235735 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072508A1 true WO2015072508A1 (en) 2015-05-21

Family

ID=53057442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080054 WO2015072508A1 (en) 2013-11-14 2014-11-13 Method for producing optical element, and optical element

Country Status (3)

Country Link
JP (1) JP6380913B2 (en)
CN (1) CN105745056B (en)
WO (1) WO2015072508A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220763A (en) * 1992-02-14 1993-08-31 Olympus Optical Co Ltd Method for molding composite optical element
JP2005088430A (en) * 2003-09-18 2005-04-07 Seiko Epson Corp Plastic lens manufacturing device
JP2005305691A (en) * 2004-04-19 2005-11-04 Olympus Corp Optical element manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531736A (en) * 1991-08-02 1993-02-09 Canon Inc Apparatus for molding optical element
ATE178255T1 (en) * 1993-07-19 1999-04-15 Novartis Erfind Verwalt Gmbh METHOD AND DEVICE FOR PRODUCING CONTACT LENSES
JP3713945B2 (en) * 1998-03-16 2005-11-09 セイコーエプソン株式会社 Contact lens manufacturing method and manufacturing apparatus
US6439870B1 (en) * 2000-05-26 2002-08-27 Johnson & Johnson Vision Care, Inc. Apparatus for automated ophthalmic lens fabrication
JP2006110920A (en) * 2004-10-18 2006-04-27 Institute Of Physical & Chemical Research Micro forming and processing apparatus and method
US20060192306A1 (en) * 2005-02-25 2006-08-31 The Microoptical Corporation Manufacturing methods for embedded optical system
JP2011148264A (en) * 2010-01-25 2011-08-04 Nissha Printing Co Ltd Method for manufacturing resin molded article
JP5525860B2 (en) * 2010-02-26 2014-06-18 東芝機械株式会社 Lens manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220763A (en) * 1992-02-14 1993-08-31 Olympus Optical Co Ltd Method for molding composite optical element
JP2005088430A (en) * 2003-09-18 2005-04-07 Seiko Epson Corp Plastic lens manufacturing device
JP2005305691A (en) * 2004-04-19 2005-11-04 Olympus Corp Optical element manufacturing method

Also Published As

Publication number Publication date
CN105745056B (en) 2018-09-04
JP6380913B2 (en) 2018-08-29
JPWO2015072508A1 (en) 2017-03-16
CN105745056A (en) 2016-07-06

Similar Documents

Publication Publication Date Title
KR100861145B1 (en) Process for producing molded item and apparatus therefor
TW200815176A (en) Optical element and production device for producing same
JP2009018578A (en) Shaping method, lens manufacturing method and shaping device
JP2010240865A (en) Optical shaping apparatus
WO2009069940A1 (en) Device and method for fabricating lens
JP6380913B2 (en) Optical element manufacturing method
WO2014175059A1 (en) Optical element manufacturing method and optical element manufacturing device
JP5503115B2 (en) Manufacturing method of modeling object and manufacturing system of modeling object
JP2023104989A (en) Imprint apparatus and article manufacturing method
JP6465021B2 (en) Optical element manufacturing method
WO2015068795A1 (en) Method for producing resin molded article, and resin molded article
JP5793330B2 (en) Molded article manufacturing method and molded article manufacturing apparatus
JP6447817B2 (en) Molding method and molded product
JPH0355224A (en) Forming method of three dimensional shape
JP6651716B2 (en) Method for manufacturing molded article and apparatus for producing molded article
JP2007076178A (en) Manufacturing equipment and manufacturing method for molded body
JP2014226845A (en) Method of manufacturing optical element and apparatus for manufacturing optical element
KR20190024702A (en) Molding apparatus for molding composition on substrate using mold and method of manufacturing article
TW202337676A (en) Resin-stacked optical body and method of manufacture therefor
JP2006224342A (en) Manufacturing method of hybrid lens
JP5768300B2 (en) Stamp manufacturing method and stamp manufacturing apparatus
WO2015068796A1 (en) Method for manufacturing optical element, and device for manufacturing optical element
JPH02304505A (en) Production of optical element having aspherical face
JP4786085B2 (en) Apparatus for molding minute parts and molding method of minute parts
JP2011062962A (en) Manufacturing equipment of laminated optical component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861648

Country of ref document: EP

Kind code of ref document: A1