JPH0355224A - Forming method of three dimensional shape - Google Patents

Forming method of three dimensional shape

Info

Publication number
JPH0355224A
JPH0355224A JP1191671A JP19167189A JPH0355224A JP H0355224 A JPH0355224 A JP H0355224A JP 1191671 A JP1191671 A JP 1191671A JP 19167189 A JP19167189 A JP 19167189A JP H0355224 A JPH0355224 A JP H0355224A
Authority
JP
Japan
Prior art keywords
resin liquid
base
layer
photocured
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1191671A
Other languages
Japanese (ja)
Other versions
JP2558355B2 (en
Inventor
Yoshikazu Azuma
喜万 東
Yoshimitsu Nakamura
良光 中村
Yoshiyuki Uchinono
良幸 内野々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1191671A priority Critical patent/JP2558355B2/en
Publication of JPH0355224A publication Critical patent/JPH0355224A/en
Application granted granted Critical
Publication of JP2558355B2 publication Critical patent/JP2558355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the three dimensional product of high accuracy to be produced by diffusing forcedly photocurable resin dripped on the surface of a base holder from dripped position to peripheral part by moving the base holder. CONSTITUTION:Photocurable resin liquid 30 is dripped on the surface of a base holder 10, and the photocurable resin liquid 30 is diffused on the surface of the holder 10 by moving the base holder 10, thereby forming the thin layer 31 of the photocurable resin liquid 30. As the photocurable resin liquid 30, the photocurable resin material such as UV curable resin used for forming an usual model etc., may be freely used. The base holder 10 is composed of e.g. glass, ceramic, metal, synthetic resin or other material. Consequently the photocured layer 31 has thin thickness and is quickly formed. The three dimensional shape of high accuracy is effectively formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、三次元形状の形成方法に関し、光の照射に
よって硬化する光硬化性樹脂を用いて、立体的な三次元
形状を有する物品を戊形製造する方法に関するものであ
る。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for forming a three-dimensional shape, and relates to a method for forming an article having a three-dimensional three-dimensional shape using a photocurable resin that is cured by irradiation with light. The present invention relates to a method for manufacturing a round shape.

〔従来の技術〕[Conventional technology]

光硬化性樹脂を用いて三次元形状を形成する方法は、複
雑な三次元形状を、戒形型や特別な工具等を用いること
なく、簡単かつ正確に形成することができる方法として
、各種の製品モデルや立体模型の製造に利用することが
考えられており、例えば、特開昭56−144478号
公報や特開昭62−35966号公報等に開示された先
行技術がある。この先行技術を、第8図に、従来の一般
的な、光硬化性樹脂を用いた三次元形状の形成方法の一
例として示している。
The method of forming three-dimensional shapes using photocurable resin is a method that can easily and accurately form complex three-dimensional shapes without using molds or special tools. It has been considered to be used for manufacturing product models and three-dimensional models, and there are prior art techniques disclosed in, for example, Japanese Patent Laid-Open No. 56-144478 and Japanese Patent Laid-Open No. 62-35966. This prior art is shown in FIG. 8 as an example of a conventional general method for forming a three-dimensional shape using a photocurable resin.

光硬化性樹脂液2を収容した樹脂液槽1に、昇降自在な
戒形台5が備えられ、樹脂液槽lの上方には、レンズ3
aその他の光学系等からなる光ビーム照射機構が設けら
れている。戒形台5は、昇降腕5aを介して、樹脂液槽
1外に設置された昇降作動装置に連結されている。光硬
化性樹脂液2の液面に光ビーム3を照射すると、光ビー
ム3の焦点位置近傍の液面から一定厚みの光硬化仕樹脂
液2が硬化して光硬化J’ti4aが形成される。光硬
化層4aは成形台5に載せれた状態になっているので、
戊形台5を下降させれば、光硬化層4aは液面下に沈み
、光硬化層4aの上が未硬化の光硬化性樹脂液2で覆わ
れる。その後、前記同様に光硬化性樹脂液2の液面に光
ビーム3を照射すると、第2JWの光硬化層4aが形成
される。このような、光ビーム3の照射による光硬化F
J4aの形成、および、戒形台5の下降による光硬化層
4aの上への新たな光硬化性樹脂液2の供給を繰り返す
ことによって、複数層の光硬化層4aが積み重ねられた
所望の三次元形状を有する戒形品4が或形されることに
なる。
A resin liquid tank 1 containing a photocurable resin liquid 2 is provided with a movable stand 5 that can be raised and lowered, and a lens 3 is placed above the resin liquid tank 1.
A light beam irradiation mechanism consisting of other optical systems and the like is provided. The guide table 5 is connected to an elevating actuator installed outside the resin liquid tank 1 via an elevating arm 5a. When the liquid surface of the photocurable resin liquid 2 is irradiated with the light beam 3, a certain thickness of the photocurable resin liquid 2 is cured from the liquid surface near the focal position of the light beam 3, forming a photocured J'ti4a. . Since the photocured layer 4a is placed on the molding table 5,
When the oval table 5 is lowered, the photocurable layer 4a sinks below the liquid surface, and the top of the photocurable layer 4a is covered with the uncured photocurable resin liquid 2. Thereafter, when the liquid surface of the photocurable resin liquid 2 is irradiated with the light beam 3 in the same manner as described above, the photocurable layer 4a of the second JW is formed. Such photocuring F by irradiation with the light beam 3
By repeating the formation of J4a and the supply of new photocurable resin liquid 2 onto the photocurable layer 4a by lowering the curable base 5, a desired tertiary layer in which a plurality of photocurable layers 4a are stacked is formed. The precept 4 having the original shape will be shaped into a certain shape.

上記のように、複数層の光硬化層4aの積み重ねによっ
て三次元形状を形成する場合には、{固々の光硬化層4
aの厚みが薄い程、滑らかで正確な三次元形状が形成で
きる。すなわち、三次元形状において、上下に積み重ね
られた光硬化EW4aの平面形状は段階的に変化してい
るので、涸々の光硬化層4aの厚みが分厚いど、上下の
光硬化層4aの平面形状の変化に伴う段差が三次元形状
の外形に明確に表れて、三次元形状の外観が滑らかにな
らず見苦しい。個々の光硬化i4aが充分に薄ければ、
上下の光硬化層4aにおける平面形状の変化量は少なく
、実質的に連続的に変化しているような滑らかな曲線外
形を有する三次元形状も形成できるのである。
As mentioned above, when forming a three-dimensional shape by stacking a plurality of photocured layers 4a, {solid photocured layer 4
The thinner the thickness of a, the smoother and more accurate the three-dimensional shape can be formed. That is, in the three-dimensional shape, the planar shape of the photo-cured EW 4a stacked one above the other changes in stages, so even if the dry photo-cured layer 4a is thick, the planar shape of the upper and lower photo-cured layers 4a changes in a stepwise manner. The difference in level caused by the change in shape clearly appears in the outer shape of the three-dimensional shape, and the appearance of the three-dimensional shape is not smooth and unsightly. If the individual photocured i4a is thin enough,
The amount of change in the planar shape of the upper and lower photocured layers 4a is small, and it is possible to form a three-dimensional shape with a smooth curved outline that changes substantially continuously.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前記先行技術では、光硬化層4aを薄く形或
することができず、三次元形状の外形に段差がついて形
状精度に劣るという問題があったすなわち、光硬化性樹
脂液2の中に光硬化層4aを沈めたときに、光硬化層4
aの上に周囲の樹脂液2が流れ込むには、樹脂液2の粘
性にもよるが、光硬化層4aと周囲の液面との間にかな
りの落差がなければならない。光硬化層4aと液面との
間に大きな落差すなわち間隔があるということは、次の
段階で光ビーム3を照射される樹脂液2の厚みか分厚く
なるということであり、その結果、各股毎の光硬化1’
t!4aの厚みが分厚くなってしまうのであった。
However, in the prior art, the photocurable layer 4a cannot be formed into a thin shape, and there is a problem in that the three-dimensional outer shape has steps, resulting in poor shape accuracy. When the photo-cured layer 4a is submerged, the photo-cured layer 4
In order for the surrounding resin liquid 2 to flow onto the photocurable layer 4a, there must be a considerable head difference between the photocurable layer 4a and the surrounding liquid level, although it depends on the viscosity of the resin liquid 2. The fact that there is a large drop or gap between the photocuring layer 4a and the liquid level means that the resin liquid 2 that is irradiated with the light beam 3 in the next step becomes thicker, and as a result, each leg becomes thicker. Light curing per 1'
T! This resulted in the thickness of 4a becoming thicker.

また、前記先行技術の場合、光硬化層4aおよび戊形台
5を沈めて、周囲の樹脂液2を光硬化層4aの上に流れ
込ませるときに、液面に波打ちが生じるという問題もあ
った。液面が波打ったままで光ビーム3を照射すると、
光ビーム3が乱反射されたり、硬化される光硬化層4a
の表面に凹凸がついたりするので、液面の波打ちが完全
に収束してから光ビーム3を照射する必要があり、その
ための待ち時間が余分にかかり、作業の能率化を妨げる
という問題が生じていた。
Further, in the case of the prior art, when the photo-cured layer 4a and the oval base 5 are submerged and the surrounding resin liquid 2 is allowed to flow onto the photo-cured layer 4a, there is a problem in that the liquid surface is undulated. . If the light beam 3 is irradiated while the liquid surface remains wavy,
A photocuring layer 4a on which the light beam 3 is diffusely reflected and cured
Since the surface of the liquid may be uneven, it is necessary to irradiate the light beam 3 after the undulations on the liquid surface have completely converged, resulting in an additional waiting time and the problem of hindering work efficiency. was.

このような問題があるため、従来の方法では、滑らかな
外形を有する高精度な三次元形状を形成することが出来
ず、作業時間も長くかかるという問題があった。
Due to these problems, conventional methods cannot form a highly accurate three-dimensional shape with a smooth outer shape and take a long time to work.

そこで、この発明の課題は、上記した従来の三次元形状
の形成方法における問題点を解消し、光硬化層の厚みを
薄くかつ迅速に形底でき、高精度な三次元形状を能率的
に形成できる方法を提供することにある。
Therefore, the object of this invention is to solve the above-mentioned problems with the conventional three-dimensional shape forming method, to reduce the thickness of the photocured layer and quickly form the bottom, and to efficiently form a highly accurate three-dimensional shape. The goal is to provide a way to do so.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する、この発明にかかる三次元形状の形
成方法のうち、請求項1記載の方広は、光硬化性樹脂液
の薄層に光を照射して所定形状の光硬化層を形成し、こ
の光硬化層を複数層積み重ねて所望の三次元形状を形成
する方法において、基台表面に光硬化性樹脂液を滴下し
、基台を動かすことによって前記光硬化性樹脂液を基台
表面上に拡散させて光硬化性樹脂液の薄層に形成するよ
● うにしている. 光硬化性樹脂液は、通常のモデル威形等に利用されてい
るUV硬化型樹脂等の光硬化性樹脂材料が自由に使用で
きる。ひとつの三次元形状を構戊する複数層の光硬化層
を、複数の異なる光硬化性材料からなる樹脂液で形成す
ることもできる。
Among the methods for forming a three-dimensional shape according to the present invention that solve the above problems, the method according to claim 1 forms a photocured layer of a predetermined shape by irradiating a thin layer of a photocurable resin liquid with light. In this method of stacking a plurality of photocurable layers to form a desired three-dimensional shape, the photocurable resin liquid is dropped onto the surface of the base and the photocurable resin liquid is applied to the base by moving the base. The resin is diffused onto the surface to form a thin layer of photocurable resin. As the photocurable resin liquid, any photocurable resin material such as UV curable resin that is used for normal model shapes can be freely used. It is also possible to form a plurality of photocurable layers constituting one three-dimensional shape using a resin liquid made of a plurality of different photocurable materials.

基台は、表面に光硬化性樹脂液の薄層すなわち樹脂液薄
層を形成でき、この樹脂液薄層に光を照射して形成され
た光硬化層を基台表面から取り剥がすことができるよう
な材料からなり、例えば、ガラス、セラ文ツタ、金属、
合或樹脂その他の材料からなるものである。基台表面に
フッ素樹脂(例えば、テフロン:デュポン社製)等をコ
ーティングしておけば、光硬化層を剥がし易くなる。基
台の表面は、平坦かつ平滑なものが好ましいが、完全な
水平面状のもののほか、曲率半径の大きな円筒曲面状の
ものなど、緩やかな曲面状のものであってもよい。曲面
は、凹曲面の場合も凸曲面の場合もある。
The base can form a thin layer of photocurable resin liquid, that is, a thin resin liquid layer, on the surface, and the photocured layer formed by irradiating this resin liquid thin layer with light can be peeled off from the base surface. Made of materials such as glass, ceramic ivy, metal,
It is made of resin or other materials. If the surface of the base is coated with a fluororesin (for example, Teflon, manufactured by DuPont), the photocured layer will be easier to peel off. The surface of the base is preferably flat and smooth, but in addition to a completely horizontal surface, it may also be a gently curved surface such as a cylindrical curved surface with a large radius of curvature. The curved surface may be a concave curved surface or a convex curved surface.

基台の動きとしては、基台の表面に対して水平面内で直
線的に1方向に揺動もしくは振動させたり、水平面内で
直線的に縦横両方向に揺動もしくは振動させたり、水平
面内で曲線的に動かせたり、水平面内で基台の中心軸回
りに1方向に回転させたり、正逆両方向に揺動もしくは
振動させたりすればよい。また、基台が円筒状等の回転
曲面体であれば、曲面体の中心軸回りに一定の角速度で
回転させたり、正逆両方向に揺動もしくは振動させたり
する等、必要に応じて任意の動きを行わせる。さらに、
基台の表面に対して垂直方向の振動を加えたり、上記し
た各動きを複数種類組み合わせて実施することもできる
。何れの方法でも、基台の動きによって、基台の表面に
滴下された光硬化性樹脂液が、滴下位置から周辺へと均
等に拡散していって樹脂液薄層が形成されるように、基
台の動きの方向および速度等を設定しておく。
The movement of the base can be made to swing or vibrate linearly in one direction within a horizontal plane, swing or vibrate linearly in both vertical and horizontal directions within a horizontal plane, or move in a curved line within a horizontal plane. It may be moved in a horizontal direction, rotated in one direction around the central axis of the base in a horizontal plane, or rocked or vibrated in both forward and reverse directions. In addition, if the base is a rotating curved surface such as a cylinder, it can be rotated at a constant angular velocity around the central axis of the curved surface, or oscillated or vibrated in both forward and reverse directions. make the movement take place. moreover,
It is also possible to apply vibration in the vertical direction to the surface of the base, or to perform a combination of multiple types of each of the above-mentioned movements. In either method, the movement of the base causes the photocurable resin liquid dropped on the surface of the base to spread evenly from the dropping position to the surrounding area, forming a thin layer of resin liquid. The direction and speed of the movement of the base are set in advance.

基台を動かす手段としては、モータを直接基台に連結し
て回転させたり、モータの回転を直線方向の運動や振動
に変換する機械的な伝達機構を介して基台に伝達したり
、その他の電磁的な揺動もしくは振動機構を用いる等、
通常の機械装置で利用されている各種駆動手段を組み合
わせて実施することができる。
The means to move the base include connecting a motor directly to the base to rotate it, transmitting the rotation of the motor to the base via a mechanical transmission mechanism that converts the rotation into linear motion or vibration, and other methods. using an electromagnetic rocking or vibration mechanism, etc.
It can be implemented by combining various driving means used in ordinary mechanical devices.

上記のような、基台の動き、基台上への樹脂液の滴下位
置等を適当に選定することによって、均一な厚みの樹脂
液薄層を形成することができる。
By appropriately selecting the movement of the base, the dropping position of the resin liquid onto the base, etc. as described above, it is possible to form a thin layer of resin liquid with a uniform thickness.

また、基台の動きを調整することによって、樹脂液薄層
の厚みが制御できる。目的とする三次元形状の形状精度
や仕上げ品質に応じて、所望の厚みの光硬化層が形成で
きるように、樹脂液薄層の厚みを制御するが、基台の揺
動距離や振動数、回転数等の条件を変えることによって
樹脂液薄層の厚みが変わる。樹脂液薄層の厚みを正確に
制御するには、樹脂液薄層の厚みを適当なセンサ等で検
知して、その情報を元にして基台を動かす駆動機構を調
整もしくは制御することが好ましい。
Furthermore, by adjusting the movement of the base, the thickness of the thin resin liquid layer can be controlled. The thickness of the resin liquid thin layer is controlled so that a photocured layer of the desired thickness can be formed according to the shape accuracy and finish quality of the desired three-dimensional shape, but the swing distance of the base, the vibration frequency, The thickness of the resin liquid layer changes by changing conditions such as the rotation speed. In order to accurately control the thickness of the thin resin liquid layer, it is preferable to detect the thickness of the thin resin liquid layer using an appropriate sensor, etc., and adjust or control the drive mechanism that moves the base based on that information. .

基台の表面に所定厚みの樹脂液薄層が形成されるまでの
時間の経過によって、樹脂液薄層の流動性が失われて、
ある程度固化すれば、基台の動きを止めても、それ以上
樹脂液N層が移動したり変形して厚みが変わることはな
い。但し、後述する光の照射工程の間も基台の動きを継
続して行う場合もある。
As time passes until a thin resin liquid layer of a predetermined thickness is formed on the surface of the base, the fluidity of the resin liquid thin layer is lost.
Once solidified to a certain extent, even if the movement of the base is stopped, the resin liquid N layer will not move or deform any further and its thickness will not change. However, the movement of the base may be continued during the light irradiation step, which will be described later.

樹脂液薄層9に光を照射する手段は、レーザ発生装置や
光学系等からなる、通常の光ビーム照射手段が用いられ
る,照射する光ビームは、光硬化性樹脂の材質によって
可視光線、紫外線その他の任意の波長或分を含むものが
用いられる。
The means for irradiating the resin liquid thin layer 9 with light is a normal light beam irradiation means consisting of a laser generator, an optical system, etc. The irradiated light beam may be visible light or ultraviolet light depending on the material of the photocurable resin. Other arbitrary wavelengths can be used.

光硬化層を積み重ねて三次元形状を形成させるには、樹
脂液薄層に光を照射して光硬化層を形成した後、基台表
面から光硬化層を取り外し、再び基台表面に樹脂液薄層
を形成して次層の光硬化層を形或するとともに、取り外
した光硬化層を順次積み重ねていく方法と、光硬化層が
形成された樹脂液薄層の表面に新たな光硬化性樹脂1夜
を供給して樹脂液薄層を形成し、光硬化層を順次形成し
ながらそのままの場所で積み重ねていく方法の何れでも
実施できる。
To stack photocured layers to form a three-dimensional shape, first irradiate a thin layer of resin liquid to form a photocured layer, remove the photocured layer from the base surface, and apply resin liquid again to the base surface. A method of forming a thin layer to form the next photo-curing layer, and sequentially stacking the removed photo-curing layers, and adding new photo-curing properties to the surface of the resin liquid thin layer on which the photo-curing layer has been formed. It is possible to carry out any of the following methods: supplying resin overnight to form a thin layer of resin liquid, and stacking the resin at the same place while sequentially forming photocured layers.

基台表面から光硬化層を取り外す場合には、取り外した
光硬化層を積み重ねていく手段が必要となるが、例えば
、基台表面の上方に昇降自在な引き上げ台を設けておく
ことができる。この引き上げ台を樹脂液薄層の上面に接
触させて、引き上げ台の下面に光硬化層を付着させ、引
き上げ台の上昇と同時に光硬化層を基台表面から取り外
し、このような、引き上げ台への光硬化層の付着を順次
繰り返すことによって、引き上げ台の下面に複数層の光
硬化層からなる三次元形状を有する戊形品を吊り下げた
状態で形成することができる。
When removing the photocured layer from the base surface, a means for stacking the removed photocured layers is required; for example, a lifting platform that can be raised and lowered can be provided above the base surface. This pulling table is brought into contact with the upper surface of the thin resin liquid layer, the photocuring layer is attached to the lower surface of the pulling table, and the photocuring layer is removed from the base surface at the same time as the lifting table is raised. By sequentially repeating the deposition of the photocured layers, it is possible to form a three-dimensional shaped article made of a plurality of photocured layers suspended from the lower surface of the pulling table.

以上に説明した各構戊のほか、この発明の範囲内で、通
常の三次元形状の形成方法で採用されている各種の手段
装置を組み合わせて実施することができる。
In addition to the above-described structures, various means and devices employed in ordinary three-dimensional shape forming methods can be combined and implemented within the scope of the present invention.

この発明の方法によって形成される三次元形状の製品と
しては、前記したモデルや製品模型等のほか、複雑で正
確な三次元形状を要求させる各種の樹脂製品に通用する
ことが可能である。
Three-dimensional products formed by the method of the present invention can be used not only for the above-mentioned models and product models, but also for various resin products that require complex and accurate three-dimensional shapes.

請求項2記載の方法は、請求項1記載の発明において、
基台を水平方向に揺動させるようにしている。
The method according to claim 2, in the invention according to claim 1,
The base is made to swing horizontally.

基台を水平方向に揺動させるには、モータの回転を機械
的な揺動機横を介して基台に伝達したり、電磁力等の作
用で直接に揺動運動を発生させて基台を動かしてもよい
。揺動は、1方向であってもよいし、縦横両方向の揺動
を組み合わせてもよい。
To swing the base in the horizontal direction, the rotation of the motor can be transmitted to the base via a mechanical rocker, or the base can be moved by directly generating rocking motion using electromagnetic force, etc. You can move it. The swinging may be in one direction, or may be a combination of swinging in both vertical and horizontal directions.

基台の表面は、揺動力向に沿・う平坦な平面状のものが
好ましいが、比較的大きな曲率半径の曲面状のものであ
ってもよい。例えば、基台の中心付近に光硬化性樹脂液
の滴下位置を設定しておき、この滴下位置から周辺にか
けて徐々に低くなるような曲面が考えられる。
The surface of the base is preferably flat and planar along the direction of the swinging force, but may be curved with a relatively large radius of curvature. For example, a curved surface can be considered in which the drop position of the photocurable resin liquid is set near the center of the base, and the height gradually decreases from the drop position to the periphery.

請求項3記載の発明は、請求項1記載の発明において、
基台を水平面内で回転させるよ・うにしている。
The invention according to claim 3 is the invention according to claim 1,
The base is rotated in a horizontal plane.

基台を回転させる手段としては、モータ等の回転駆動機
構が用いられる。回転の角速度が大きい程、基台表面に
滴下された樹脂液に作用する遠心力が大きくなって、樹
脂液を周辺へと迅速に拡散させることができるとともに
、厚みの薄い樹脂液薄層を形成することができる。そこ
で、基台の回転角速度を調整することによって、樹脂7
夜薄層の厚みを制御することができる。
A rotation drive mechanism such as a motor is used as a means for rotating the base. The higher the angular speed of rotation, the greater the centrifugal force acting on the resin liquid dropped on the base surface, allowing the resin liquid to quickly spread to the surrounding area and forming a thin layer of resin liquid. can do. Therefore, by adjusting the rotational angular velocity of the base, the resin 7
The thickness of the night thin layer can be controlled.

基台の表面は、平坦な水平面のほか、回転中心から周辺
にかけて低くなる曲率半径の大きな凸曲面でも実施でき
、基台表面の傾斜と回転遠心力の両方の作用で樹脂〆夜
を周辺まで拡散させることができる。また、回転中心か
ら周辺にかけて高くなる凹曲面に形成するとともに、こ
の凹曲面の曲率と回転角速度を適当に設定すれば、傾斜
方向に沿って樹脂岐を動かす重力と遠心力との釣り合い
によって、基台表面全体で薄く均一な薄層が形成できる
The surface of the base can be a flat horizontal surface or a convex curved surface with a large radius of curvature that decreases from the center of rotation to the periphery, and the resin paste can be spread to the surrounding area by both the tilt of the base surface and the centrifugal force of rotation. can be done. In addition, by forming a concave curved surface that increases in height from the center of rotation to the periphery, and by appropriately setting the curvature of this concave curved surface and the rotational angular velocity, the balance between gravity and centrifugal force that moves the resin branch along the inclination direction can be applied to the base. A thin, uniform layer can be formed over the entire table surface.

基台に対して、円周方向の一定個所に光の照射範囲を設
定しておき、基台の回転に伴って、表面の樹脂液薄層が
光の照射範囲を順次通過するようにしておけば、基台表
面の樹脂液薄層に対して、円周方向の複数個所に、別の
光硬化層を順次形成することができ、多数の光硬化層か
らなる三次元形状の形成が能率的に行える。
Set the light irradiation range at a certain location in the circumferential direction of the base so that as the base rotates, the thin layer of resin liquid on the surface passes through the light irradiation range one after another. For example, it is possible to sequentially form different photo-cured layers at multiple locations in the circumferential direction on the thin resin liquid layer on the surface of the base, making it possible to efficiently form a three-dimensional shape consisting of a large number of photo-cured layers. can be done.

請求項4記載の発明は、請求項1記載の発明において、
ほぼ円筒状をなす基台の内周面に光硬化性樹脂液を滴下
し、基台を中心軸回りに回転させるようにしている。
The invention according to claim 4 is the invention according to claim 1,
A photocurable resin liquid is dropped onto the inner circumferential surface of a substantially cylindrical base, and the base is rotated around its central axis.

基台は、内周空間に樹脂液の滴下機構や光の照射機構の
一部が収容できる程度の、比較的大きな曲率半径を有す
る円筒状をなすものが好ましい。
The base preferably has a cylindrical shape with a relatively large radius of curvature, so that a part of the resin liquid dripping mechanism and the light irradiation mechanism can be accommodated in the inner peripheral space.

円筒状基台の内周面は、中心軸方向に沿って一様な直円
筒面であってもよいし、軸方向の中央から両端方向にか
けて曲率半径が大きくなっていく、円錐曲面等いわゆる
鼓状の曲面を有するものであってもよい。この鼓状円筒
面の場合、円筒状基台全体を一定の回転数で回転させた
ときに、基台の内周面では、曲率半径の小さな中央部分
から曲率半径の大きな両端部分へと回転角速度が徐々に
大きくなり、円筒面の軸方向の中央付近に滴下された樹
脂液が、鼓状円筒面の回転に伴って、中央から両端周辺
部分へと良好に拡散されて、厚みの薄い樹脂液薄層を迅
速に形成することが可能になる樹脂液の滴下機構は、円
筒状基台の中心付近から半径方向に向かって樹脂l夜を
滴下するように設ける。円筒状基台の軸方向では、中央
付近のみに樹脂液を滴下して、それを両端方向に拡散さ
せるようにしてもよいし、軸方向に沿って適当間隔毎も
しくは全長にわたって連続的に樹脂液を滴下するように
してもよい。
The inner peripheral surface of the cylindrical base may be a right cylindrical surface that is uniform along the central axis direction, or it may be a so-called drum surface such as a conical curved surface with a radius of curvature that increases from the center in the axial direction toward both ends. It may have a curved surface like that. In the case of this drum-shaped cylindrical surface, when the entire cylindrical base is rotated at a constant rotation speed, the rotational angular velocity of the inner circumferential surface of the base increases from the center part with a small radius of curvature to both end parts with a large radius of curvature. gradually increases, and the resin liquid dropped near the axial center of the cylindrical surface is well diffused from the center to the areas around both ends as the drum-shaped cylindrical surface rotates, forming a thin resin liquid. A resin liquid dropping mechanism that enables rapid formation of a thin layer is provided to drip the resin liquid from near the center of the cylindrical base in the radial direction. In the axial direction of the cylindrical base, the resin liquid may be dropped only near the center and dispersed toward both ends, or the resin liquid may be dripped at appropriate intervals along the axial direction or continuously over the entire length. may be dripped.

光の照射機構は、基台を回転させながら、円筒状基台の
内周面に向かって光を照射できれば、任意の構造および
配置で実施できるが、例えば、円筒状基台の内周空間に
、集光レンズや回転鏡等の光学系の一部を設置し、円筒
状基台の外部に設置されたレーザ光の発生装置等から導
入された光を、基台の内周面に向かって照射できるよう
にしておけばよい。また、光ファイバ等の光伝送機構を
通じて円筒状基台の内周空間に光を導入することもでき
るし、照射光の発生装置が小型であれば、光照射機構全
体を基台内周空間に設置することもできる。
The light irradiation mechanism can be implemented in any structure and arrangement as long as it can irradiate light toward the inner peripheral surface of the cylindrical base while rotating the base. , a part of the optical system such as a condensing lens or a rotating mirror is installed, and light introduced from a laser beam generator installed outside the cylindrical base is directed toward the inner peripheral surface of the base. All you have to do is make sure it can be irradiated. Additionally, light can be introduced into the inner space of the cylindrical base through an optical transmission mechanism such as an optical fiber, or if the irradiation light generator is small, the entire light irradiation mechanism can be introduced into the inner space of the base. It can also be installed.

〔作  用〕[For production]

請求項1記載の発明の作用を説明する。 The operation of the invention according to claim 1 will be explained.

この発明では、従来の方法のように、光硬化性樹脂液を
樹脂液槽に大量に溜めて、その液面付近に光を照射して
光硬化層を形成するのでなく、光硬化性樹脂液自体を薄
層に形成して、この樹脂岐薄層に光を照射するので、樹
脂液薄層が薄く形成できれば出来る程、薄い光硬化層が
形成でき、三次元形状の戒形品の外形に段差がなくなり
、滑らかな曲面が得られる。
In this invention, instead of storing a large amount of photocurable resin liquid in a resin liquid tank and irradiating light near the liquid surface to form a photocurable layer, as in the conventional method, the photocurable resin liquid Since the resin itself is formed into a thin layer and light is irradiated to this resin thin layer, the thinner the resin liquid layer can be formed, the thinner the photo-cured layer can be formed, and the more the outer shape of the three-dimensional shaped product can be formed. There are no steps and a smooth curved surface is obtained.

しかし、光硬化性樹脂液は、ある程度の粘性を有し、そ
れほど流動性の高いものではない。そのため、基台表面
に光硬化性樹脂液を滴下するだけであれば、単に重力の
作用で周辺部分へと流れていくだけであり、基台表面全
体に一様な樹脂液薄層ができるまでに長い時間がかかっ
て作業能率が低下するとともに、滴下位置と周辺部分と
の厚みの差も残ってしまい、基台表面全体の樹脂液薄層
を均一な厚みに形成することができない。
However, the photocurable resin liquid has a certain degree of viscosity and is not very fluid. Therefore, if you just drop the photocurable resin liquid onto the base surface, it will simply flow to the surrounding area due to the action of gravity, and it will take a while to form a uniform thin layer of resin liquid on the entire base surface. It takes a long time, which reduces work efficiency, and also leaves a difference in thickness between the dropping position and the surrounding area, making it impossible to form a thin layer of resin liquid over the entire base surface to a uniform thickness.

そこで、基台に、揺動、振動、回転、その他の動きを与
えることによって、基台表面の樹脂液の移動が活発にな
り、樹脂液が滴下位置から周辺まで迅速に拡散していく
ことになる。また、基台の動きや樹脂液の滴下位置を適
当に選定することによって、樹脂戒の滴下位置と周辺部
分との厚みも平均化させることができる。特に、基台の
外周に堰を設けたりして樹脂液の厚みを規制しなくても
、樹脂液の粘性や表面張力等の性質と、基台からの作用
力との関係で、一定の厚みの樹脂液薄層を形成すること
ができるので、樹脂液薄層の厚みの制御も容易である。
Therefore, by applying rocking, vibration, rotation, and other movements to the base, the movement of the resin liquid on the base surface becomes active, and the resin liquid quickly spreads from the dropping position to the surrounding area. Become. Furthermore, by appropriately selecting the movement of the base and the position at which the resin liquid is dropped, it is possible to equalize the thickness between the position at which the resin liquid is dropped and the surrounding area. In particular, even if the thickness of the resin liquid is not regulated by providing a weir around the outer periphery of the base, a certain thickness can be maintained due to the relationship between the properties such as the viscosity and surface tension of the resin liquid and the acting force from the base. Since a thin layer of resin liquid can be formed, the thickness of the thin layer of resin liquid can be easily controlled.

また、上記のような、樹脂液の性質と基台の動きを適当
に設定することによって、形成される樹脂渣薄層の厚み
を変更することもでき、樹脂液薄層の厚みを簡単かつ正
確に制御することができる。
In addition, by appropriately setting the properties of the resin liquid and the movement of the base as described above, the thickness of the thin layer of resin residue that is formed can be changed, making it possible to easily and accurately adjust the thickness of the thin layer of resin liquid. can be controlled.

基台表面に滴下する光硬化性樹脂液の種類を変更すれば
、形或される樹脂液層および光硬化層の材質も簡単に変
更でき、ひとつの三次元形状威形品を複数の材料からな
る光硬化層で+i戒することも可能になる。
By changing the type of photocurable resin liquid dripped onto the base surface, you can easily change the materials of the resin liquid layer and photocurable layer that are formed, making it possible to create a single three-dimensional shape from multiple materials. It is also possible to use the photo-cured layer.

請求項2記載の発明では、基台を水平方向に揺動させる
ことによって、基台表面に滴下された樹脂液は、滴下位
置から水平方向に移動して周辺部分へと迅速に拡散して
いき、厚みの非常に薄い樹脂液薄層を迅速に形成するこ
とができる。基台を水平方向に揺動させるだけであれば
、揺動させるための駆動機構も簡単で、基台表面に形成
された樹脂/&薄層に光を照射するための光照射機構の
邪魔にもならない。
In the invention according to claim 2, by horizontally swinging the base, the resin liquid dropped on the base surface moves horizontally from the dropping position and quickly diffuses to the surrounding area. , it is possible to quickly form a very thin resin liquid layer. If you only want to swing the base in the horizontal direction, the drive mechanism for swinging it is simple, and it does not interfere with the light irradiation mechanism that irradiates the resin/& thin layer formed on the base surface. Not even.

請求項3記載の発明では、基台を水平面内で回転させる
ことによって、基台表面に滴下された樹脂液は、回転に
伴う遠心力の作用で、滴下位置から水平方向に移動して
放射状に周辺部分へと迅速に拡敗していき、厚みの極め
て薄い樹脂液薄層を迅速に形成することができる。基台
を回転させるだけであれば、回転駆動機構はモータ等の
簡屯な機構で構戒できる。光照射機構を基台の回転範囲
内で一定の場所に設置しておけば、基台の回転に伴って
、樹脂液薄層が順次光照射機構の照射範囲に移動してく
るので、樹脂液薄層の複数個所に、それぞれ三次元形状
を形成するための光硬化層を形成することができ、光硬
化層の形成を能率的に行うことができる。
In the invention according to claim 3, by rotating the base in a horizontal plane, the resin liquid dripped onto the base surface moves horizontally from the dripping position and radially due to the action of centrifugal force accompanying the rotation. It quickly spreads to the surrounding areas and can quickly form an extremely thin layer of resin liquid. If only the base is rotated, the rotational drive mechanism can be a simple mechanism such as a motor. If the light irradiation mechanism is installed at a fixed location within the rotation range of the base, the thin layer of resin liquid will sequentially move to the irradiation range of the light irradiation mechanism as the base rotates. A photocured layer for forming a three-dimensional shape can be formed at a plurality of locations on the thin layer, and the photocured layer can be formed efficiently.

請求項4記載の発明では、ほぼ円筒状をなす基台の内周
面に光硬化性樹脂液を滴下し、基台を中心軸回りに回転
させることによって.,樹脂液は、回転に伴う重力およ
び遠心力の作用で、内周面の円周方向に沿って全周に迅
速に拡散していって、厚みが極めて薄い樹脂液薄層を迅
速に形成することができる。樹脂液の供給量および回転
角速度を適当に調整することによって、形成される樹脂
液薄層の厚みを変更したり正確に調整することができ、
樹脂液薄層の厚み制御が容易に行える。
In the invention according to claim 4, the photocuring resin liquid is dropped onto the inner circumferential surface of the base having a substantially cylindrical shape, and the base is rotated around the central axis. , Due to the effects of gravity and centrifugal force associated with rotation, the resin liquid quickly spreads around the entire circumference along the circumferential direction of the inner peripheral surface, quickly forming an extremely thin layer of resin liquid. be able to. By appropriately adjusting the amount of resin liquid supplied and the rotational angular speed, the thickness of the thin resin liquid layer formed can be changed or precisely adjusted.
The thickness of the resin liquid thin layer can be easily controlled.

〔実 施 例〕〔Example〕

つぎに、本願発明の実施例について図面を参照しながら
詳しく説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、三次元形状の形成装置の概略構造を示してお
り、透明なガラス等からなり、表面がほぼ平坦な水平面
状の基台lOの上方に、基台10のほぼ幅方向全体にわ
たる樹脂液滴下機構20が設けられており、この樹脂液
滴下機構20から基台10表面に光硬化性樹脂液30が
滴下供給される.樹脂液滴下機構20には、別な場所に
設置された樹脂液槽(図示せず)等から樹脂液30を供
給する供給配管21が接続されている。基台10は、前
記樹脂液滴下#R構20と直交する方向に揺動自在にな
っている。具体的には、例えば、モー夕等の駆動装置に
ギヤ機構やカムta構を介して基台10が連結されてい
る。基台10表面のうち、樹脂液滴下機構20の両端に
相当する辺に沿って、樹脂液30の排出溝11が設けら
れており、基台lO表面で樹脂液薄層を形成したときに
余分な樹脂液30が排出溝l1から排出されるようにな
っている。図示していないが、透明なガラスからなる基
台10の下方には、レーザビーム等の光照射機構が設け
られている。
FIG. 1 shows a schematic structure of a three-dimensional shape forming device, which is made of transparent glass or the like and extends over almost the entire width direction of the base 10 above the horizontal base 10 with a nearly flat surface. A resin liquid dropping mechanism 20 is provided, and a photocurable resin liquid 30 is dripped onto the surface of the base 10 from this resin liquid dropping mechanism 20. A supply pipe 21 that supplies resin liquid 30 from a resin liquid tank (not shown) or the like installed at another location is connected to the resin liquid dropping mechanism 20. The base 10 is swingable in a direction perpendicular to the resin drop #R mechanism 20. Specifically, the base 10 is connected to a drive device such as a motor through a gear mechanism or a cam mechanism. On the surface of the base 10, drainage grooves 11 for the resin liquid 30 are provided along the sides corresponding to both ends of the resin liquid dripping mechanism 20, so that when a thin layer of resin liquid is formed on the surface of the base 10, excess The resin liquid 30 is discharged from the discharge groove l1. Although not shown, a light irradiation mechanism such as a laser beam is provided below the base 10 made of transparent glass.

上記のような装置を使用して三次元形状を形成する方法
を説明する。
A method of forming a three-dimensional shape using the above-mentioned apparatus will be explained.

第2図に示すように、樹脂液滴下機構20から基台10
表面に滴下された樹脂液30は、自らの自重による重力
の作用で水平方向に流れて拡散するとともに、基台10
が揺動しているために、樹脂液30の移動もしくは拡散
がより促進される。
As shown in FIG. 2, from the resin liquid dropping mechanism 20 to the base 10,
The resin liquid 30 dropped on the surface flows horizontally and spreads due to the effect of gravity due to its own weight, and the resin liquid 30 drops onto the base 10.
Since the resin liquid 30 is oscillated, the movement or diffusion of the resin liquid 30 is further promoted.

樹脂液30は、基台10の揺動に伴って、前記した重力
の作用と、粘性や表面張力等の樹脂岐3o自身の性質に
よって、一定の厚みになろうとする。樹脂液30のうち
、基台10の外縁を超えて落下した余分な樹脂液30は
、基台10の両端下方に設置された樹脂液回収槽40へ
と回収される。
As the base 10 swings, the resin liquid 30 tends to have a constant thickness due to the above-mentioned effect of gravity and the properties of the resin branch 3o itself, such as viscosity and surface tension. Of the resin liquid 30, excess resin liquid 30 that has fallen beyond the outer edge of the base 10 is collected into resin liquid recovery tanks 40 installed below both ends of the base 10.

また、余分な樹脂液30の一部は、前記樹脂液排出溝1
1を経て排出もしくは回収される。
Further, a part of the excess resin liquid 30 is removed from the resin liquid discharge groove 1.
1 and then discharged or collected.

第3図に示すように、基台100表面に、所定の厚みを
有する樹脂液薄層31が形成された状態で、基台10の
下方側から、透明な基台10を通して樹脂液薄層31の
所定パターン範囲にレーザ光線40を照射する。レーザ
光線40で照射された部分の樹脂液薄層31は光硬化し
て光硬化層32となる。
As shown in FIG. 3, with a resin liquid thin layer 31 having a predetermined thickness formed on the surface of the base 100, the resin liquid thin layer 31 is passed from the lower side of the base 10 through the transparent base 10. A laser beam 40 is irradiated onto a predetermined pattern range. The resin liquid thin layer 31 in the portion irradiated with the laser beam 40 is photocured and becomes a photocured layer 32 .

こうして形成された光硬化層32を、従来の通常の三次
元形状の形成方法と同様の手段で積み重ねて積層一体化
させれば、所望の三次元形状を有する戒形品Mが形成さ
れる。
By stacking and laminating the photocured layers 32 thus formed in a manner similar to a conventional method for forming a three-dimensional shape, a shaped article M having a desired three-dimensional shape is formed.

第3図では、光硬化1’ii32を積み重ねる手段とし
て、基台10の上方に平坦な下面を有する引き上げ台6
0を昇降自在に設けている。この引き上げ台60を基台
10表面の樹脂液薄層31の上面に付着させておけば、
形成された光硬化層32は引き上げ台60の下面に付着
する。引き上げ台60を、下面に光硬化[32を付着さ
せたまま上昇させた後、再び、前記第2図に示したよう
な、田脂液30の滴下、樹脂液薄層31の形成、および
、光の照射を行えば、次層の光硬化層32が形成される
.次層の光硬化層32は、前層の光硬化層32の下面に
付着して引き上げ台60側に取り上げられる。このよう
な工程を繰り返すことによって、引き上げ台60の下面
に多数の光硬化眉32が積み重なって吊り下げられた状
態で、三次元形状を有する成形品Mが形成される。
In FIG. 3, a pulling table 6 having a flat lower surface above the base 10 is used as a means for stacking the photocured 1'ii32.
0 can be raised and lowered freely. If this pulling table 60 is attached to the upper surface of the resin liquid thin layer 31 on the surface of the base 10,
The formed photocuring layer 32 is attached to the lower surface of the pulling table 60. After raising the pulling table 60 with the photocured resin 32 attached to the lower surface, the resin liquid 30 is again dropped, a thin resin liquid layer 31 is formed, and When light is irradiated, a photocured layer 32 as the next layer is formed. The next layer, the photocurable layer 32, adheres to the lower surface of the previous layer, the photocurable layer 32, and is picked up on the pulling table 60 side. By repeating such steps, a molded product M having a three-dimensional shape is formed with a large number of photocured eyebrows 32 stacked and suspended on the lower surface of the pulling table 60.

但し、光硬化WI32を積み重ねて三次元形状を形或す
る手段は、上記以外にも、既知の方法を適用することが
可能である。
However, as a means for forming a three-dimensional shape by stacking the photo-cured WIs 32, known methods other than those described above can be applied.

上記実施例の方法では、透明な基台10の裏面側から、
基台10の表面位置の樹脂液薄層31に光ビーム40を
照射しているので、光ビーム4oの焦点位置が常に一定
であり、樹脂液のl夜面で光が散乱されることもないの
で、焦点を正確に樹脂液薄Ni31に合わせて、正確な
形状の光硬化層32を形成することができる。光硬化層
32が平滑な基台10に接触した状態で形成されるので
、光硬化層32の表面が平滑になる。
In the method of the above embodiment, from the back side of the transparent base 10,
Since the light beam 40 is irradiated onto the resin liquid thin layer 31 at the surface position of the base 10, the focal position of the light beam 4o is always constant, and the light is not scattered on the night surface of the resin liquid. Therefore, the photocured layer 32 can be formed in an accurate shape by accurately focusing on the resin liquid thin Ni 31. Since the photocured layer 32 is formed in contact with the smooth base 10, the surface of the photocured layer 32 becomes smooth.

また、透明な基台10の裏面に、適当な遮光性材料から
なるマスクを設置した状態で、全体に一様な光を照射し
て、光硬化層32全体を一度に硬化させることも可能で
ある。
It is also possible to cure the entire photocurable layer 32 at once by irradiating uniform light onto the entire surface with a mask made of a suitable light-shielding material placed on the back surface of the transparent base 10. be.

つぎに、第4図および第5図には別の実施例を示してい
る。
Next, FIGS. 4 and 5 show another embodiment.

この実施例でも、平坦な透明ガラス等からなる基台10
の表面に樹脂液30を滴下して、基台10表面に樹脂液
薄i31を形成し、基台10の裏面から光ビーム40を
照射して、樹脂液薄層31を硬化させ光理化層32を形
成する。
In this embodiment as well, the base 10 is made of flat transparent glass or the like.
A resin liquid 30 is dropped onto the surface of the base 10 to form a thin resin liquid i31, and a light beam 40 is irradiated from the back side of the base 10 to harden the resin liquid thin layer 31 and form a photochemical layer 32. form.

但し、基台10は円板状をなし、光硬化層32を剥がし
易いように、表面には極薄のテフロン(商標名:デュポ
ン社製)コーティングが施されている。基台10下面の
回転軸12にモータ等の回転駆動機構を連結して、基台
10全体を水平面内で回転自在に構威している。
However, the base 10 has a disk shape, and its surface is coated with an extremely thin Teflon (trade name: manufactured by DuPont) so that the photocured layer 32 can be easily peeled off. A rotational drive mechanism such as a motor is connected to a rotating shaft 12 on the lower surface of the base 10, so that the entire base 10 can be freely rotated within a horizontal plane.

光照射機構としては、回転鏡41を備えたガルバノスキ
ャナ42を、X軸およびY軸用にそれぞれ設置してあり
、レーザ発生装置(図示せず)から照射されたレーザビ
ーム40を、X.Y両方向のガルバノスキャナ42.4
2で反射させて、上方に向きを変えさせて、基台10の
円周方向の一定範囲を照射できるようにしている。ガル
バノスキャナ42の回転鏡4lの向きを制御することに
よって、基台10表面でX,Y軸の任意の方向にレーザ
ビーム40を照射して、樹脂液薄層3lを所望のパター
ンで硬化させて光硬化層32を形成できるようになって
いる。
As a light irradiation mechanism, galvano scanners 42 each equipped with a rotating mirror 41 are installed for the X-axis and the Y-axis, and a laser beam 40 irradiated from a laser generator (not shown) is transmitted to the X-axis. Galvano scanner in both Y directions 42.4
2 and changes the direction upward so that a certain range in the circumferential direction of the base 10 can be irradiated. By controlling the direction of the rotating mirror 4l of the galvano scanner 42, the laser beam 40 is irradiated on the surface of the base 10 in arbitrary directions of the X and Y axes to harden the resin liquid thin layer 3l in a desired pattern. A photocurable layer 32 can be formed.

上記のような装置を用いた三次元形状の形成方法を説明
する。
A method for forming a three-dimensional shape using the above-mentioned apparatus will be explained.

第5図(alに示すように、基台10表面に滴下された
樹脂1&30は、基台10の回転に伴う遠心力で、中心
から放射方向へと強制的に拡散させられて、基台10の
表面全体に薄く均一な厚みΔLの樹脂液WI#層3lが
形成される。余分の樹脂液30は、遠心力によって基台
10の外縁から放出排除させられる。
As shown in FIG. 5 (al), the resins 1 & 30 dropped onto the surface of the base 10 are forcibly diffused in the radial direction from the center due to the centrifugal force accompanying the rotation of the base 10, and A resin liquid WI# layer 3l having a thin and uniform thickness ΔL is formed over the entire surface of the base 10.Excess resin liquid 30 is discharged and removed from the outer edge of the base 10 by centrifugal force.

この樹脂液薄r@31の厚みΔtは、樹脂液30の比重
、粘度、基台10に対する濡れ性等の樹脂液30の性質
と、基台10の回転数もしくは回転角速度によって、一
定の値になる。したがって、厚みΔtを変えるには、基
台lOを駆動するモータ等の回転数を制御すればよい。
The thickness Δt of the resin liquid thin r@31 is set to a constant value depending on the properties of the resin liquid 30 such as the specific gravity, viscosity, and wettability of the resin liquid 30 to the base 10, and the rotational speed or rotational angular velocity of the base 10. Become. Therefore, in order to change the thickness Δt, it is sufficient to control the rotation speed of the motor etc. that drives the base lO.

基台10の回転角速度ど形成される樹脂液薄1ii31
の厚みΔtの関係を精密を制御すれば、くクロンオーダ
ーの厚み制御も可能である。
Resin liquid thin 1ii31 formed by the rotational angular velocity of the base 10
If the relationship between the thickness Δt and the thickness Δt is precisely controlled, it is also possible to control the thickness on the order of several thousandths of a meter.

第5図(b)に示すように、樹脂液薄層31の上面に引
き上げ台60を接触させた状態で、基台10の下面側か
ら光ビーム40を所定パターンで照射して光硬化1’i
i32を形底する。第4図に示すように、光ビーム40
の照射範囲は、円形基台lOの一方向の四半円部分に設
定されており、残りの3方向の四半円部分にも、それぞ
れ別のパターンで光硬化Iii32を形成する。すなわ
ち、基台10を90’づつ間歇的に回転させる、いわゆ
るインデックス送りを行いながら、各光硬化層32を形
成するのである.なお、円形基台10の4個所に形成さ
れる光硬化層32は、基台10の回転方向に沿って、第
1i目の光硬化liJ3 2 a 、第2層目の光硬化
層32b、第3層目の光硬化層32c・・・と順番に形
成されていく。
As shown in FIG. 5(b), with the pulling table 60 in contact with the upper surface of the resin liquid thin layer 31, a light beam 40 is irradiated in a predetermined pattern from the lower surface side of the base 10 to perform photocuring. i
Shape i32. As shown in FIG.
The irradiation range is set to a quadrant in one direction of the circular base lO, and photocuring Iiii32 is also formed in different patterns in the remaining three quadrants. That is, each photocuring layer 32 is formed while rotating the base 10 intermittently by 90', or so-called index feeding. The photo-cured layers 32 formed at four locations on the circular base 10 are the 1st photo-cured layer 32a, the 2nd photo-cured layer 32b, and the 1st photo-cured layer 32b along the rotation direction of the base 10. A third photocured layer 32c, etc. are formed in order.

光ビーム40の照射によって形成された光硬化層32は
、引き上げ台60に付着したまま、引き上げ台60とと
もに上昇して、基台10表面の樹脂液薄層31から取り
外される。
The photocured layer 32 formed by the irradiation with the light beam 40 remains attached to the pulling table 60 and rises together with the pulling table 60, and is removed from the resin liquid thin layer 31 on the surface of the base 10.

第5図(C)に示すように、第1層目の光硬化層32a
を引き上げ台60に付着させた状態で、基台10を90
゜間歇同動させて、新たな樹脂液薄層31を光照射位置
に移動させる。この状態で、引き上げ台60の光硬化層
32aを樹脂液薄層31の上面に付着させた状態で、第
21ii目の光硬化層32bを形成すると、第2層目の
光硬化層32bと第IN目の光硬化N 3 2 aが接
合一体化されるこのようにして、複数層の光硬化層32
・・・を順番に引き上げ台60の下面に積み徂ねて接合
一体化させていく。光硬化層32・・・が引き上げ台6
0に引き上げられ取り外された部分の樹脂液薄層31に
は、空孔部33があいている。
As shown in FIG. 5(C), the first photocuring layer 32a
90 with the base 10 attached to the pull-up stand 60.
The new resin liquid thin layer 31 is moved to the light irradiation position by intermittent movement. In this state, when the 21iith photocured layer 32b is formed with the photocured layer 32a of the pulling table 60 attached to the upper surface of the resin liquid thin layer 31, the second photocured layer 32b and the second photocured layer 32b are formed. In this way, the photocured N 3 2 a of the IN eye is bonded and integrated, and the plurality of photocured layers 32
. . are sequentially stacked on the lower surface of the pulling table 60 and joined together. The photocuring layer 32... is the pulling table 6
Holes 33 are formed in the portion of the resin liquid thin layer 31 that has been pulled up to zero and removed.

基台10の回転が一巡すれば、再び第5図(a)に示す
ように、樹脂液30の滴下供給による樹脂液薄]’it
31の形成から、光ビーム40の照射による光硬化層3
2の形或、光硬化層32の引き上げ台60への取り上げ
の各工程を順次繰り返す。
Once the base 10 has rotated once, as shown in FIG. 5(a), the resin liquid 30 is thinned by dropping the resin liquid 30.
From the formation of 31, the photocured layer 3 is formed by irradiation with a light beam 40.
Steps 2 and 3 of picking up the photocured layer 32 onto the pulling table 60 are repeated in sequence.

第5図に示すように、所定の層数の光硬化層32が引き
上げ台60の下面に積み重ねられれば、目的とする三次
元形状の戒形品Mが完戒する。
As shown in FIG. 5, when a predetermined number of photocuring layers 32 are stacked on the lower surface of the pulling table 60, the desired three-dimensional shaped article M is completed.

上記方法において、途中の段階で、基台10の上に滴下
する光硬化性樹脂液30の種類や色を変えれば、ひとつ
の成形品Mを、異なる樹脂材料もしくは異なる色の部分
の組み合わせによって一体構威されたものを製造するこ
とも可能である。
In the above method, if the type or color of the photocurable resin liquid 30 dropped onto the base 10 is changed at an intermediate stage, one molded product M can be integrated by combining parts of different resin materials or different colors. It is also possible to manufacture structured products.

つぎに、第6図〜第8図に示す実施例について説明する
Next, the embodiment shown in FIGS. 6 to 8 will be described.

この実施例では、円筒状の基台10の内周面に樹脂液薄
層31を形成して、内周空間側から光ヒ一ム40を照射
して光硬化層32を形底し、内周面上に三次元形状を有
する戒形品Mを形成している。
In this embodiment, a resin liquid thin layer 31 is formed on the inner circumferential surface of a cylindrical base 10, and a light beam 40 is irradiated from the inner circumferential space side to form a photocured layer 32. A precept M having a three-dimensional shape is formed on the circumferential surface.

円筒状基台10の内周空間には、光ビーム40の向きを
変える、前記同様の回転鏡を備えたスキャナ42が設け
られている。このスキャナ42は、円筒状基台10の中
心軸方向と平行に導入された光ビーム40を、中心軸方
向と直交する直経方向に変向させるとともに、その変向
角度を任意に変えられるようになっており、光ビーム4
0を照射する円筒状基台lOの内周面に対して、中心軸
方向に光ビーム40を走査できるようになっている.す
なわち、基台lO内周面の回転方向と直交する方向に光
ビーム40を走査ずるのである。
In the inner peripheral space of the cylindrical base 10, a scanner 42 equipped with a rotating mirror similar to the above-described one for changing the direction of the light beam 40 is provided. This scanner 42 deflects a light beam 40 introduced parallel to the central axis direction of the cylindrical base 10 in a perpendicular direction perpendicular to the central axis direction, and can change the deflection angle arbitrarily. and light beam 4
The light beam 40 can be scanned in the direction of the central axis with respect to the inner circumferential surface of the cylindrical base lO, which is irradiated with zero. That is, the light beam 40 is scanned in a direction perpendicular to the direction of rotation of the inner circumferential surface of the base lO.

スキャナ42と円筒状基台lOの内周面との間には、中
心軸方向につづくシリンドリカルレンズ43が設置され
ており、スキャナ42で変向された光ビーム40を内周
面の樹脂液薄層3lに倶点を合わせて集光照射できるよ
うになっている。
A cylindrical lens 43 extending in the direction of the central axis is installed between the scanner 42 and the inner peripheral surface of the cylindrical base lO, and a cylindrical lens 43 is installed to direct the light beam 40 deflected by the scanner 42 to the resin liquid on the inner peripheral surface. It is possible to irradiate the layer 3l with focused light.

図示していないが、円筒状基台10の内周空間には、樹
脂液30を内周面に滴下させるための樹脂液滴下機構も
設けられている。
Although not shown, a resin liquid dropping mechanism is also provided in the inner peripheral space of the cylindrical base 10 for dripping the resin liquid 30 onto the inner peripheral surface.

上記のような装置を用いた三次元形状の形成方法につい
て説明する。
A method for forming a three-dimensional shape using the above-mentioned apparatus will be explained.

円筒状基台IOを回転させながら、円筒状基台10の内
周空間から内周面上に樹脂肢30を滴下すると、円筒状
基台10の回転に伴って、遠心力で樹脂液30が内周面
に押し付けられて内周面全体に樹脂液30が拡散してい
き、円筒状基台10の内周面に一定の厚みで樹脂液薄1
’5i31が形或される.樹脂液30は、中心軸方向に
沿って適当な間隔をあけて複数個所から滴下したり、中
心軸方向の全長にわたって連続的に滴下させれば、内周
面の中心軸方向にも均一な厚みを有する樹脂液薄層31
を形或することができる。
When the resin limb 30 is dropped onto the inner peripheral surface from the inner peripheral space of the cylindrical base 10 while rotating the cylindrical base IO, the resin liquid 30 is caused by centrifugal force as the cylindrical base 10 rotates. The resin liquid 30 is pressed against the inner peripheral surface and spreads over the entire inner peripheral surface, and a thin resin liquid 1 is applied to the inner peripheral surface of the cylindrical base 10 with a constant thickness.
'5i31 is formed. If the resin liquid 30 is dropped from multiple locations at appropriate intervals along the central axis direction or continuously over the entire length of the central axis direction, the resin liquid 30 can be made to have a uniform thickness on the inner circumferential surface in the central axis direction. A resin liquid thin layer 31 having
can be shaped.

なお、内周面の円周方向には、上記のような樹脂液30
の滴下および遠心力による拡散作用で、充分に円周全体
に樹脂液30が拡散するが、中心軸方向全体には、樹脂
液30が充分に拡散し難い場合がある。そこで、第8図
に示すように、基台IOの内周面を、鼓状の曲面をなす
鼓状円筒面に形成しておくことが好ましい。鼓状円筒面
とは、中心軸方向で、中央部分の内径D1が両端部分の
内径D3よりも小さくなっており、中央部分から両端部
分へと滑らかな曲面を構威しているものである。上記曲
面は、円錐曲面と言われる曲面であるが、必ずしも数学
的に正確な円錐曲面でなくても、いわゆる鼓状をなして
いればよい。
Note that the resin liquid 30 as described above is applied in the circumferential direction of the inner peripheral surface.
Although the resin liquid 30 is sufficiently diffused over the entire circumference due to the dripping and the diffusion effect due to the centrifugal force, it may be difficult for the resin liquid 30 to be sufficiently diffused over the entire central axis direction. Therefore, as shown in FIG. 8, it is preferable that the inner circumferential surface of the base IO be formed into a drum-shaped cylindrical surface that forms a drum-shaped curved surface. The drum-shaped cylindrical surface is such that the inner diameter D1 of the center portion is smaller than the inner diameter D3 of both end portions in the central axis direction, and a smooth curved surface is formed from the center portion to both end portions. The above-mentioned curved surface is a curved surface called a conical curved surface, but it does not necessarily have to be a mathematically accurate conical curved surface, but may be in the shape of a so-called drum.

このような鼓状円筒面を有する基台10を回転させると
、中央部分よりも内径の大きな両端部分では遠心力が大
きくなる。そのため、内周面の中央部分に樹脂液30を
滴下すると、樹脂液30は遠心力の大きな両端側へと移
動させられる。その結果、樹脂液30は迅速に両端{1
リまで拡散していき、余分な樹脂液30は両端から基台
10の外部に飛び出していくので、厚みの薄い樹脂液薄
Fi3lを迅速かつ正確に形成することが可能になる。
When the base 10 having such a drum-shaped cylindrical surface is rotated, the centrifugal force becomes larger at both end portions where the inner diameter is larger than the center portion. Therefore, when the resin liquid 30 is dropped onto the central portion of the inner circumferential surface, the resin liquid 30 is moved toward both ends where centrifugal force is greater. As a result, the resin liquid 30 quickly turns to both ends {1
Since the excess resin liquid 30 flows out of the base 10 from both ends, it becomes possible to quickly and accurately form a thin resin liquid Fi3l.

基台10の内周面の曲面形状すなわち内径の変化具合と
回転速度とを適当に設定すれば、樹脂液30に作用する
力を厳密に制御でき、中心部分から両端部分まで極めて
均一な厚みの樹脂液?s屓31を形成することが可能に
なる。また、基台loの回転速度と、樹脂液30の比重
や粘度等の性質および供給量、ならびに、基台1oの内
周面の曲面形状の条件設定によって、形成される樹脂液
薄層31の厚みを任意に制御することができる。
By appropriately setting the curved shape of the inner circumferential surface of the base 10, that is, the degree of change in the inner diameter, and the rotational speed, the force acting on the resin liquid 30 can be strictly controlled, resulting in an extremely uniform thickness from the center to both ends. Resin liquid? It becomes possible to form the sill 31. In addition, the thickness of the resin liquid thin layer 31 to be formed is determined by the rotational speed of the base lo, the properties such as the specific gravity and viscosity of the resin liquid 30, the supply amount, and the curved shape of the inner circumferential surface of the base 1o. The thickness can be controlled arbitrarily.

上記のようにして樹脂液薄層31が形成された後、樹脂
液薄層31に光ビーム40を照射すれば光硬化層32が
形成される。なお、光ビーム40を照射する間も基台1
00回転は継続させておき、樹脂液薄層31の所定部分
が光ビーム40の照射面を通過するのに同期させて、光
ビーム40の照射をオンオフ制御する。すなわち、光ビ
ーム40の走査は中心軸方向のみであっても、基台10
の回転と組み合わせることによって、中心軸方向と直交
する方向にも光ビー・ム40を走査しているのと間じ状
態になり、任意の平面パターンを有する光硬化層32を
形成することができる。
After the resin liquid thin layer 31 is formed as described above, a photocured layer 32 is formed by irradiating the resin liquid thin layer 31 with a light beam 40. Note that the base 1 is also
00 rotation is continued, and the irradiation of the light beam 40 is controlled on and off in synchronization with the passage of a predetermined portion of the resin liquid thin layer 31 through the irradiation surface of the light beam 40. That is, even if the light beam 40 scans only in the central axis direction, the base 10
By combining this with the rotation of , it becomes almost like scanning the light beam 40 in a direction perpendicular to the central axis direction, and it is possible to form a photocured layer 32 having an arbitrary planar pattern. .

第1層目の光硬化層32が形成された後、新たな樹脂液
30を滴下させて、樹脂液薄層31を形成し、光ビーム
40を照射して光硬化層32を形成する。このように、
基台10の内周面に樹脂液薄層31を順次形成しながら
、光硬化層32を積み重ねて、所望の三次元形状を備え
た威形品Mを戒形する.なお、樹脂液薄I′W31の層
数が増えるほど、光ビーム40の照射位置が中心側に近
づくので、それに合わせて、光ビーム40の焦点位置を
変えるようにする. 以上のようにして、基台IOの内周面に戒形品Mが形成
された後、周囲の樹脂液薄層3lとともに戒形品Mを取
り出し、通常の光硬化性樹脂用の溶剤で、余分の樹脂液
薄JW31を除去してしまえば、戒形品Mが完戒する。
After the first photocured layer 32 is formed, a new resin liquid 30 is dropped to form a thin resin liquid layer 31, and a light beam 40 is irradiated to form the photocured layer 32. in this way,
While sequentially forming resin liquid thin layers 31 on the inner circumferential surface of the base 10, photocuring layers 32 are stacked to form an impressive article M having a desired three-dimensional shape. Note that as the number of layers of the thin resin liquid I'W31 increases, the irradiation position of the light beam 40 approaches the center, so the focal position of the light beam 40 is changed accordingly. After the shaped article M is formed on the inner circumferential surface of the base IO in the above manner, the shaped article M is taken out together with the surrounding resin liquid thin layer 3l, and treated with a normal solvent for photocurable resin. Once the excess resin liquid thin JW31 is removed, the precept-shaped article M is completely prepared.

図示した実施例では、基台の内周面全体の樹脂液薄層3
lに対して、−{固所のみに光硬化Iii32および戒
形品Mを形成しているが、円周方向の複数個所にそれぞ
れ別の戒形品Mを形成したり、中心軸方向に複数の戒形
品Mを並べて形成することも可能である.このような場
合には、光ビーム40の照射制御ε基台lOの回転速度
を制御することによって、ひとつの光ビーム40で複数
個所の光硬化1’i32を形成してもよいし、複数本の
光ビーム40を照射して、それぞれの戒形品Mに対応す
る光硬化層32を形成してもよい。
In the illustrated embodiment, the resin liquid thin layer 3 covers the entire inner circumferential surface of the base.
For l, -{light-curing III32 and a pre-shaped article M are formed only at fixed points, but different pre-curable articles M are formed at multiple locations in the circumferential direction, or multiple pre-cured articles M are formed in the central axis direction. It is also possible to form the precepts M by arranging them. In such a case, by controlling the rotational speed of the irradiation control ε base lO of the light beam 40, one light beam 40 may form a plurality of photocured 1'i32, or a plurality of light cures 1'i32 may be formed. The light beam 40 may be irradiated to form the photocured layer 32 corresponding to each of the precepts M.

〔発明の効果〕〔Effect of the invention〕

以上に述べた、この発明にかかる三次元形状の形成方法
のうち、請求項1記載の発明は、基台表面に滴下された
光硬化性樹脂液を、基台の動きによって強制的に滴下位
置から周辺部分へと拡散させるので、厚みの薄い樹脂液
薄層を迅速に形成することができる。薄い樹脂液薄層が
形或できれば、この樹脂液薄層に光を照射して得られる
光硬化層の厚みも薄くなり、このような光硬化層を積み
電ねて形成される三次元形状の戊形品は、光硬化層毎の
段差が目立たず、極めて滑らかな外形を有する正確な三
次元形状を備えたものとなる。したがって、従来の方法
では不可能であった精密な三次元形状製品を製造するこ
とができる。基台の形状や動き、あるいは、樹脂液の滴
下位置を適当に選定することによって、樹脂液薄層の厚
みを均一に形成することができ、その結果、光硬化層お
よび三次元形状の精度を一層向上させることができる。
Among the methods for forming a three-dimensional shape according to the present invention described above, the invention according to claim 1 is such that the photocurable resin liquid dropped onto the surface of the base is forcibly moved to the dropping position by the movement of the base. Since the resin is diffused from the resin to the surrounding area, a thin layer of resin liquid can be quickly formed. If a thin resin liquid layer can be formed, the thickness of the photocured layer obtained by irradiating this resin liquid thin layer with light will also become thinner, and the three-dimensional shape formed by stacking such photocured layers will become thinner. The shaped product has an accurate three-dimensional shape with an extremely smooth outer shape and inconspicuous steps between the photocured layers. Therefore, it is possible to manufacture products with precise three-dimensional shapes that were impossible with conventional methods. By appropriately selecting the shape and movement of the base or the dropping position of the resin liquid, the thickness of the thin resin liquid layer can be formed uniformly, and as a result, the accuracy of the photocured layer and three-dimensional shape can be improved. This can be further improved.

樹脂液の性質と基台の構造や動きによって、形成される
樹脂液薄層の厚みが変わるので、基台の動き方を制御す
ることによって、樹脂7fL層すなわち光硬化層の厚み
を任意に設定することができ、目的に応じて最通な厚み
の光硬化層を形或することができる。
The thickness of the thin layer of resin liquid that is formed changes depending on the properties of the resin liquid and the structure and movement of the base, so by controlling the way the base moves, the thickness of the resin 7fL layer, that is, the photocured layer, can be set arbitrarily. It is possible to form a photocured layer with a suitable thickness depending on the purpose.

また、材料の異なる複数種類の樹脂液薄層に光硬化層を
形成して、この材質の異なる光硬化層を積み重ねて、ひ
とつの三次元形状を構成することもできるので、樹脂液
槽内で三次元形状を形成する従来の方法では不可能な、
異種材質部分が一体化された戒形品を製造することも可
能になる。
In addition, it is possible to form a photocured layer on thin layers of resin liquid made of multiple types of different materials, and then stack the photocured layers made of different materials to form a single three-dimensional shape. This is impossible with traditional methods of forming three-dimensional shapes.
It also becomes possible to manufacture a precept-shaped article in which parts made of different materials are integrated.

このように、この発明によれば、光硬化による三次元形
状製品の性能向上および用途拡大に大きく貢献できる。
As described above, the present invention can greatly contribute to improving the performance and expanding the applications of three-dimensional shaped products by photocuring.

請求項2記載の発明によれば、基台を水平方向に揺動さ
せることによって、請求項1記載の発明による前記効果
を良好に発揮できる。特に、基台を水平方向に揺動させ
るだけであるので、装置の構戒が簡単であり、光照射等
の作業工程も、通常の三次元形状の形或方法と同様で容
易である。
According to the invention set forth in claim 2, the effect of the invention set forth in claim 1 can be satisfactorily exhibited by swinging the base in the horizontal direction. In particular, since the base is simply swung in the horizontal direction, the apparatus is easy to assemble, and the work steps such as light irradiation are easy, as they are the same as those for forming a three-dimensional shape.

請求項3記載の発明によれば、基台を水平面内で回転さ
せることによって、回転に伴う遠心力を利用して、厚み
が非常に薄い樹脂液薄層を迅速につくることが可能にな
り、請求項1記載の発明による前記効果を一層良好に発
揮でき為。基台を回転させるのは、モータ等の簡単な機
構で実現できるので、装置全体の構造は簡単である。
According to the invention as set forth in claim 3, by rotating the base in a horizontal plane, it becomes possible to quickly create a very thin resin liquid layer using the centrifugal force accompanying the rotation, The above-mentioned effects according to the invention according to claim 1 can be exhibited even better. Since the base can be rotated by a simple mechanism such as a motor, the structure of the entire device is simple.

光照射位置を、回転する基台表面の樹脂液薄層が順次通
過していくように設定しておけば、l個所の光照射機構
で、樹脂液薄層の複数個所にそれぞれ別の光硬化層を形
成することができ、光硬化層の形成能率を大きく向上さ
せ得る。
If the light irradiation position is set so that the thin layer of resin liquid on the surface of the rotating base passes through sequentially, the light irradiation mechanism at 1 locations will apply different light curing to multiple locations on the thin layer of resin liquid. layer can be formed, and the formation efficiency of the photocurable layer can be greatly improved.

請求項4記載の発明によれば、円筒状基台を回転させな
がら、内周面に樹脂液を滴下することによって、重力と
遠心力との作用で、樹脂液を内周面に沿って迅速に拡散
させることができ、厚みが非常に薄い樹脂液薄層が迅速
に得られる。円筒状基台の回転方向に直交して光を走査
すれば、光をl方向に走査するだけで、任意のパターン
形状を有する光硬化層を形成したり、複数個所の光硬化
層を形成することができるようになり、光の走査機構を
簡単にできるとともに光硬化層の形$.能率も向上する
According to the invention set forth in claim 4, by dripping the resin liquid onto the inner circumferential surface while rotating the cylindrical base, the resin liquid is quickly moved along the inner circumferential surface by the action of gravity and centrifugal force. A very thin layer of resin liquid can be quickly obtained. If the light is scanned orthogonally to the direction of rotation of the cylindrical base, a photocured layer with an arbitrary pattern shape or multiple locations can be formed just by scanning the light in the l direction. This makes it possible to simplify the light scanning mechanism and reduce the shape of the photocuring layer. Efficiency will also improve.

【図面の簡単な説明】[Brief explanation of drawings]

第l図はこの発明の実施例を示す斜視図、第2図および
第3図は使用状態を順次示す断面図、第4図は別の実施
例の斜視図、第5図(a)〜(dlは作動状態を工程順
に示す断面図、第6図は別の実施例を示す一部切欠斜視
図、第7図は要部拡大断面図、第8図は円筒状基台の形
状の1例を模式的に示す断面図、第9図は従来例の概略
断面図である。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIGS. 2 and 3 are sectional views sequentially showing usage conditions, FIG. 4 is a perspective view of another embodiment, and FIGS. dl is a sectional view showing the operating state in the order of steps, Fig. 6 is a partially cutaway perspective view showing another embodiment, Fig. 7 is an enlarged sectional view of the main part, and Fig. 8 is an example of the shape of the cylindrical base. FIG. 9 is a schematic cross-sectional view of a conventional example.

Claims (1)

【特許請求の範囲】 1 光硬化性樹脂液の薄層に光を照射して所定形状の光
硬化層を形成し、この光硬化層を複数層積み重ねて所望
の三次元形状を形成する方法において、基台表面に光硬
化性樹脂液を滴下し、基台を動かすことによって、前記
光硬化性樹脂液を基台表面上に拡散させて光硬化性樹脂
液の薄層を形成することを特徴とする三次元形状の形成
方法。 2 請求項1記載の発明において、基台を水平方向に揺
動させる三次元形状の形成方法。 3 請求項1記載の発明において、基台を水平面内で回
転させる三次元形状の形成方法。 4 請求項1記載の発明において、ほぼ円筒状をなす基
台の内周面に光硬化性樹脂液を滴下し、基台を中心軸回
りに回転させる三次元形状の形成方法。
[Claims] 1. A method of irradiating a thin layer of a photocurable resin liquid with light to form a photocured layer of a predetermined shape, and stacking a plurality of photocured layers to form a desired three-dimensional shape. , by dropping a photocurable resin liquid onto the surface of the base and moving the base, the photocurable resin liquid is diffused onto the base surface to form a thin layer of the photocurable resin liquid. A method for forming a three-dimensional shape. 2. A method for forming a three-dimensional shape according to the invention according to claim 1, in which the base is horizontally swung. 3. A method for forming a three-dimensional shape according to the invention according to claim 1, wherein the base is rotated in a horizontal plane. 4. A method for forming a three-dimensional shape according to the invention according to claim 1, comprising dropping a photocurable resin liquid onto the inner circumferential surface of a substantially cylindrical base and rotating the base around a central axis.
JP1191671A 1989-07-24 1989-07-24 Three-dimensional shape forming method Expired - Fee Related JP2558355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191671A JP2558355B2 (en) 1989-07-24 1989-07-24 Three-dimensional shape forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191671A JP2558355B2 (en) 1989-07-24 1989-07-24 Three-dimensional shape forming method

Publications (2)

Publication Number Publication Date
JPH0355224A true JPH0355224A (en) 1991-03-11
JP2558355B2 JP2558355B2 (en) 1996-11-27

Family

ID=16278523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191671A Expired - Fee Related JP2558355B2 (en) 1989-07-24 1989-07-24 Three-dimensional shape forming method

Country Status (1)

Country Link
JP (1) JP2558355B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054192A (en) * 1997-01-29 2000-04-25 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
JP2001347572A (en) * 2000-06-06 2001-12-18 Sanyo Electric Co Ltd Apparatus for optical shaping
WO2006109355A1 (en) * 2005-04-11 2006-10-19 Japan Science And Technology Agency Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength
JP2012505773A (en) * 2008-10-20 2012-03-08 イフォクレール ヴィヴァデント アクチェンゲゼルシャフト Devices and methods for processing photopolymerizable materials to build objects in layers
JP2018515377A (en) * 2015-05-29 2018-06-14 フィリップス ライティング ホールディング ビー ヴィ 3D printing apparatus and method
WO2019130734A1 (en) * 2017-12-25 2019-07-04 コニカミノルタ株式会社 Three-dimensional shaping device and three-dimensional shaped article manufacturing method
JP2019181950A (en) * 2018-04-13 2019-10-24 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for additively manufacturing at least one three-dimensional object
JP2020163738A (en) * 2019-03-29 2020-10-08 新東工業株式会社 Addition manufacturing apparatus and addition manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054192A (en) * 1997-01-29 2000-04-25 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
JP2001347572A (en) * 2000-06-06 2001-12-18 Sanyo Electric Co Ltd Apparatus for optical shaping
WO2006109355A1 (en) * 2005-04-11 2006-10-19 Japan Science And Technology Agency Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength
JP2012505773A (en) * 2008-10-20 2012-03-08 イフォクレール ヴィヴァデント アクチェンゲゼルシャフト Devices and methods for processing photopolymerizable materials to build objects in layers
JP2018515377A (en) * 2015-05-29 2018-06-14 フィリップス ライティング ホールディング ビー ヴィ 3D printing apparatus and method
WO2019130734A1 (en) * 2017-12-25 2019-07-04 コニカミノルタ株式会社 Three-dimensional shaping device and three-dimensional shaped article manufacturing method
JP2019181950A (en) * 2018-04-13 2019-10-24 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for additively manufacturing at least one three-dimensional object
JP2020163738A (en) * 2019-03-29 2020-10-08 新東工業株式会社 Addition manufacturing apparatus and addition manufacturing method
CN111745957A (en) * 2019-03-29 2020-10-09 新东工业株式会社 Additive manufacturing device and additive manufacturing method

Also Published As

Publication number Publication date
JP2558355B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US5198159A (en) Process of fabricating three-dimensional objects from a light curable resin liquid
US4988274A (en) Method and apparatus for producing an optical element
US5536467A (en) Method and apparatus for producing a three-dimensional object
KR20060123746A (en) Seamless holographic embossing substrate produced by laser ablation
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
JPH0355224A (en) Forming method of three dimensional shape
JPH0295830A (en) Forming method of three dimensional shape
WO2009069940A1 (en) Device and method for fabricating lens
US20220371272A1 (en) Increasing throughput in additive manufacturing using a rotating build platform
GB2262817A (en) Making 3-d resin images
TW201821244A (en) Stereolithography machine with improved optical group
JPH0523588B2 (en)
JPH01228828A (en) Optical shaping method
JPS61217219A (en) Three-dimensional configuration forming device
JP2613929B2 (en) Method and apparatus for forming a three-dimensional shape
JPH0295831A (en) Forming method and apparatus of three dimensional shape
TWI269885B (en) Manufacturing method of micro lens mold and micro concave lens
JPS63145016A (en) Device for forming solid shape
JPH04241929A (en) Forming method for three-dimensional body and its device
JP2613928B2 (en) Method and apparatus for forming a three-dimensional shape
JP7183763B2 (en) Three-dimensional object modeling apparatus and modeling method
JPS6299753A (en) Formation of three-dimensional shape
JP2000043150A (en) Photo fabrication method, apparatus therefor and composite machine component
JPH11170377A (en) Method for photo-shaping and movable device and photo-shaping apparatus using the method
JP2000167939A (en) Method for optical molding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees