TWI269885B - Manufacturing method of micro lens mold and micro concave lens - Google Patents

Manufacturing method of micro lens mold and micro concave lens Download PDF

Info

Publication number
TWI269885B
TWI269885B TW94117934A TW94117934A TWI269885B TW I269885 B TWI269885 B TW I269885B TW 94117934 A TW94117934 A TW 94117934A TW 94117934 A TW94117934 A TW 94117934A TW I269885 B TWI269885 B TW I269885B
Authority
TW
Taiwan
Prior art keywords
manufacturing
microlens
thick film
concave
glue
Prior art date
Application number
TW94117934A
Other languages
Chinese (zh)
Other versions
TW200641386A (en
Inventor
Jen-Chin Wu
His-Hang Yang
Chia-Hua Chang
Chih-Hao Chiang
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW94117934A priority Critical patent/TWI269885B/en
Publication of TW200641386A publication Critical patent/TW200641386A/en
Application granted granted Critical
Publication of TWI269885B publication Critical patent/TWI269885B/en

Links

Abstract

This invention relates to a manufacturing method of micro lens mold. It comprises the following procedures: firstly, it forms a thick film on a substrate. Further, it patterns the thickfilm to form microtubes. Furthermore, it fills thermosetting adhesive into the microtubes. Afterwards, it rotates the substrate so that the adhesive inside the microtubes exhibit an arc-like shape. Moreover, it resembles a micro lens by virtue of the surface tension of the material. Subsequently, it rotates the substrate, after rotating by means of surface tension and adhesive force of the microtubes, it makes the liquid in the tube appear arc-shaped as micro-lens. Using light source to irradiate or heat up the thermosetting adhesive, finally, it solidifies and forms the micro lens.

Description

1269885 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種微透鏡的製造方法,特別係關於一種微透 鏡模具及凹微透鏡之製造方法。 【先前技術】 在光電產品的發展中,微光學透鏡因可在小面積產生光學效 • 果’故成為該產業需求甚殷的基礎元件,例如液晶顯示器(Liquid Crystal Display,LCD )之背光板即使用光學透鏡陣列,以造成背光 均勻的效果;另外隨著雷射二極體、發光二極體、光偵測器等光 . 電半導體元件的推陳出新,因而讓單一元件進步到陣列形式,而 •其應射賊的增加,如光計算(Qptieal _puting)和光通訊(〇ptical communication)系統,非常需要使用到陣列形式的微透鏡;故製作 陣列微光學透鏡之技術為產學各界競相發展的技術。兹就傳統微 透鏡陣列之製造方法簡介如下·· • 1·熱熔法: /熱溶法為製造折射歧鏡方法之―,是將絲或高分子材料 的U小圓柱經由回溫將其軟化(refl〇w)。高分子微結構在高於玻璃 W^/m^(Glass Transition Temp , =狀〜、同刀子間之聚合鏈開始滑動,使得高分子本身 響慢慢的藉由擴散:;===態表面張力之影 半球形,絲赌翻物,蜮材㈣會整形成 曰匕達到改善,進而達到光學等級的要求。 1269885 ,缺點為需使用熱雛高分子獅,通纽觀·得之膜厚較 薄亦即難以製出高曲率之透鏡,且材料機械性質較為不足。 2·熱壓回熔法: “此法是以LIGA技補㈣形的難,然後將此模具以熱壓 機在聚合塑膠薄板上以高壓及高温壓出微圓柱;目為熱壓成型加 /加熱0顿陳7|端形成半製造丨微魏。非接繼模成 开優點為利用熱溶效果使成品形狀(半球型微透鏡)和模具形狀 圓柱)不必相同,因此不需要形狀精準的模具就可獲得近似 、,形的微魏’並提出此模具麵定的拔模肖度,可獲得最佳 ^透鏡域絲面。獨賴透鏡之缺點在於纽㈣曲率大 二nr數值孔徑就會變小,且_具本身有寬度,故無 法做出非常緊密的陣列結構。 3·微液滴法: ^是利_似喷筆姻印刷之技術,対出複數個微液 難以沖Γΐ上,進而形成反射式之微透鏡陣列。同樣地,此法 =:r之一大小、高度、焦距等)。 :*光U衫製程所使用之光罩功能多為是否讓曝光光 形至光阻上的目的,然而灰階光罩不像石英玻璃 罩之曝光光束穿僅有擔住或穿透兩種可能’灰階光 之瞧弁旦,,、、連、t又化,藉由光阻層不同厚度間所獲得 ''里°,在顯影時會因為曝光量不同而有著不同的顯影效 1269885 果^此紅鮮轉—搞級經由顯影可產生多層次高度或 連㈣賴形,亦可_此難設計並製作折料微透鏡。為此 灰仏光罩法製作成本極為昂#,將無法降低量產成本。 、以往微透鏡大量製造的方法,以凸透鏡來說,必先運用光阻 熱溶法、熱壓爾法、微液滴法«凸透鏡製程製作,之後再結 合微電鏵技娜奴_賴具,最後私鍾枝翻模製造, 成品才為—凸形微透鏡_。若以傳統微透鏡模具及微透鏡大量 製造方法而言’其製程仍屬繁續;而電鑄步驟為精密技術,且之 後的熱壓製程參數亦需相t考究,這都會增加傳賴程的不穩定 【發明内容】 、鑒於以上的問題,本發明的主要目的在於提供一種微透鏡(微 透鏡陣列)模具之製造方法,利用LIG織之厚膜光崎程搭配 ''«用I外光固化膠(UV-cunng)之技術’直接製出凹型微模呈,之 後便能翻鋪造凸職透嫌透猶職品,或是_微模具結 募本身使用5乎光學性質之材料,若使其從基板脫離,亦可直接 作為凹形微賴(微魏相)仏制,藉此碰城上解決先前 技術所存在之問題。 “鑒於以上的問題,本發明的主要目的在於提供一種凹微透鏡 (从透鏡陣列)之製造方法’彻上述方法製作而成之微細管(微陣 h、田S )作為彳政透鏡(微透鏡陣列)模具,將紫外光固化膠填入其 中’微鏡片可藉紫外光固化材料自身的表面張力和細管附著力形 1269885 成,此乃是最自然的透鏡成型法,會使得管内液體呈現如微透鏡 ,的圓弧形狀,至於凹面形狀之曲率,將取決於填入固化膠之多 寡,藉以便能大體上解決先前技術所存在之問題。 因此,為達上述目的,本發明所揭露之一種微透鏡模具之製 造綠,包括下列步驟:形成厚膜於—基板;圖案化厚膜,以形 成u細官,將熱目化驗填人微細管内;及翻光源照射或加熱 _ 該熱固化膠液以使其固化成形。 、因此,為達上述目的,本發明所揭露之一種凹微透鏡之製造 方ί \包括下列步驟··形成厚膜於—基板;®案傾厚膜,以形 成“s,將熱㈣驗填人微細管内;侧絲照射或加熱該 、熱固化膠液以使其固化成形;及將厚膜自基板脫離以作為一凹微 上述形成厚膜以及圖案化厚膜之步驟係利用深刻模造技術 (LIGA)或類深刻模造技術(LIGA4ike)。 上述厚膜為具有光學性質之高分子材料或光阻。 以下在實施方式中詳細敘述本翻之詳細特徵以及優點,並 =谷足以使任何熟習相關技藝者了解本發明切術内容並據以實 施,且根據本說明書所揭露之内容、_請專利範圍及圖式,任何 熟習相關技蟄者可輕易地理解本發明相關之目的及優點。 【實施方式】 支…、 及其功能有進一步的瞭 關於本發明内容之說明 為使對本發明的目的、構造、特徵、 解,茲配合實施例詳細說明如下。以上之 ^269885 及以下之實施方式之說明係用以示範與解釋本發明之原理,並且 提供本發明之專利申請範圍更進一步之解釋。 本發明旨在簡化傳統微透鏡模具及微透鏡量產製程,自行開 發一種新式微透鏡模具製程,以LiGA-like之厚膜(光阻:丨掣鞀技啦 應用紫外光固化膠(UV.ing)之技術,便可直接製出如第^圖所 示之凹型微模具1,之後便能翻模製造出如第1B圖所示之凸形微 透鏡(微透鏡陣列)產品3,且凹型微模具結構本身使用合乎光學性 質之材料,若使其從基板脫離,亦可直接作為如第lc圖所示之凹 形微透鏡(微透鏡陣列)產品5使用。LIGA是德文‘‘深刻模造,,技術 之縮寫,其中LI為深刻術,利用同步輻射χ光在厚膜(光阻)上刻 ‘出高深寬比的微結構。G代表精密電鑄模仁技術,Α代表射出量 產技術。其中同步輻射光源X_ray由於建置昂貴,取得不易,不 僅光罩^作彳H 4膜(光阻)材料及技術亦較特殊;目此乃有採用 Excimer Laser取代X,進行深刻技術,發展深刻模造之[纖 馨LIGA相關技術的發展。LIGA-like技術首先須在基板上黏貼一層 細或塗佈—層高分子材料,厚度祖卫件厚度或微結構深度而 疋,由數十um至數百um。再利用ExcimerLaser加工時,須將雷 射投射出來的光源’經由數道鏡片調整成均勻的平行光後,通過 光罩及透過聚焦鏡片加工基板上的高分子材料,而達到深刻的功 能;此即所謂雷射深飾刻。 、本發明藉以场想,設計-透明光學性質良好的陣列微細管 狀結構,此結構以具有光學性質之厚膜高分子或光崎作,先將 10 1269885 Γ=Γ!Τ纖材料(_ …入4細吕中’使s中之固化膠液體因表面張力效應 而形成如透鏡般的圓弧形狀,再經紫外光照射或加熱固化二 凹形微透鏡(微透鏡_ ’之後概以高分子翻翻化膠如〒二甲 基石夕氧烧㈣MSM UV固化膠等具光學性質之材料,翻模把凸 形微透鏡(微透鏡陣列)光學膜片產品,若必要,則凹形微透鏡(微 透鏡陣列顺柯使其從基板·,可當凹频透鏡(微透鏡陣列) 成品應用。 第2A圖至第2G圖,係用以顯示本發明之製作流程以及第3 圖’為本發明之方締額。本㈣之實施方式包括下列步驟: 如第2A ®與第2B圖所示,在基板1〇上塗佈具光學性質之 厚膜12(步驟301);運用黃光微影步驟,經軟烤、曝光、顯影、硬 烤’歧时射加王高分子·#機械加工闕案傾厚膜以製 作出單一或陣列態樣之微細管結構14(步驟3〇2)。 上述基板可以是一矽基板。 上述厚膜可以是高分子材料或光阻材料。 如第2C圖所示,以光學性質之紫外光或熱固化膠液16,完 全覆盍於圖中陣列態樣之微細管表面,用抽真空機台18,以抽真 空方式,使膠16能完全被吸入微細管内,以增加熱固化膠液體 16與微細管之密合度,如此可將原先存於微細管中之氣體排出(步 驟 303)。 如第2D圖所示,然後用旋轉塗佈機2〇,以旋轉的方式,將 11 Ϊ269885 ^卜光或熱固化膠均勻的旋出微細管外,凹面形狀之曲率,將取 決於剩餘管内熱固化膠液體16之多寡(步驟304)。 如第2E圖所示,微細管内的現象,使得固化膠液體表面形成 凹面狀型以紫外光源照射或加熱此固化驗體,固化後即成 凹透鏡形態22,可作為凹型微透鏡模具(步驟3〇s)。 如第2F圖所示,將凹型微透鏡模具22直接從基板1〇剝離, _微透鏡模具22可直接细或以高分子翻麵化膠如聚二甲 基石夕氧燒⑽MS)或UV固化膠等具光學性質之材料翻模製造凸 型微透鏡產品24(步驟306)。 细光阻材料自身的表面張力和微細管附著力之變化,得到 不同鱗的微透鏡級透鏡_,所形成之微透鏡可藉由紫外光 固化,此乃是最方便的透鏡成型法。 _本發明之實驗,我們欲設計卩物的微崎結構時,因六 ㈣管柱能作出較_細管更密合(無接缝)的陣列結構,即蜂^ 等式結構’故本發明實驗採六角形細管陣列設計。為便於實驗證明 其可行性,依尺寸不同分別設計對六肖形細對肖線為⑽ //m與75#m兩種結構,而另外依細管間隔(即管壁厚)不同又分 別設計間距為5,、1〇m、15㈣、2〇M四種尺寸;而在w刀固 化膠旋開時,改變其不同的轉速,在此實驗分別以轉速為 4500rpm、500〇rpm、550〇rpm三段轉速,其目的是在探討在這三 種參數下,將對後續凹形微透鏡陣列模仁成形有何影響。 於此,我們再度列出三種實驗參數,以便於後續說明: 12 1269885 (1) 將uv固化膠旋開時,改變其不同的轉速,在此實驗分別以_ 速為4500rpm、5000rpm、5500rpm三段轉速,以求得轉速對其 後續成形之影響。 〃 (2) 利用前述之光罩設計,在黃光製程時,將微細管陣列之間的間 距製作不同,分別以間距約5//m、10/zm、15/zm與20//m,探 时其在間距不同時,對其後續成形之影響。 ⑶改變六角微細管陣列之對角線寬,分別以75_與1〇〇_開 口探"寸其在管之對角線寬不同時,對其後續成形之影響。 附件(一)為已完成之旋轉參數5500rpm,管之開口對角線寬 f 100/zm,間距約為10//m之模具圖,而第4圖為其透鏡劭 高度輪廓趨勢圖。 完成之各參數製作出的每一凹形透鏡模具,利用所量得之凹 孔深度h及凹孔直徑D,以及縣身的折鱗n(refractlve index),透過下列公式(1)及(2) 2h ⑴ 與 ⑵ 刀別计鼻出曲率半徑r d · 卞仫 KcCradius of curvature)及焦距 而 f(focus)。實驗所做參數的量測結果示於以下之表1與表2 曲率半控計算結果示於以下之表3與表4。 表1 13 1269885 六角管對角線長100 # m h :凹形檄透鏡高廑(sag),〆m 間隔距離 旋膠轉速^ 5 // m 10 // m 15 “ m 20 /i m 5500rpm 10.82 10.3 8.31 7.3 5000rpm Γ 9.17 8.84 5.92 4.44 4500rpm 7.69 4.78 2.8 2.3 表2 六角管對角線長7 5以m h :凹形微透鏡高度(sag),#!!! 間隔距 離 5 // m 10 ^ m 15 // m 20 // m 5500rpm 10.02 9.03 6.3 3.78 5000rpm 7.76 5.97 3.98 2.66 4500rpm 卜4.16 Π 3.9 2.13 1.36 _ 表3 六角管對角線長100“ ir R:凹形微透鏡之曲率丰徑,χ/m 間隔距離 旋膠轉速 5 u m 10 // m 15 μ τη 20 β m 5500rpm 98.98671 103.451 125.9962 142.3486 5000rpm 1 14.9994 1 18.9562 173.9904 230.2605 4500rpm 1^35.5095 214.2101 363.0071 441.3674 表4 六角管對角線長75 u m κ :凹形微透鏡之曲率车源 m -----次^間隔距離 旋膠轉速 5 “ m 10 // m 15 // m 20 // m 5500rpm 49.92018 54.34889 74.57857 120.9376 5000rpm 61.86969 78.36188 115.0553 170.5029 4500rpm 110.2531 117.3346 212.3326 331.5624 •由本發明實驗之結果中,我們可明顯看出一些趨勢,歸納於 如下: (1)在旋雜速與陣顺六肖管柱間_同下,若微六肖管開口之 對角線長越大,將可得到較深之凹形微透鏡,即翻模後微透鏡 高度較高。 ⑵若微六角管柱間距與微六角管之對角線開口長相同,則我們可 明顯看出’郷轉速触,輪得_深之卿微透鏡高度。 ⑶在旋膠轉速與微六角管之對角線開口長之下,則微六角管 14 1269885 挺陣歹!/間距越小者,可得 判鼢—π θ 伃勾季乂冰之凹形微透鏡高度。 一項不錯的方:之2狀優奶2除了基本量測之外,翻模觀察亦是 利用翻槿成。二本發明並非在探討後續翻模成品構思,而是 成品硯察模具之幾_狀是 整性。始内谷租明此發明之可行性與完 之材_ ㈣則晴具光學性質 之對rrt為選擇翻模模具為旋轉參數测,管 _100卿間距約為L之翻模SEM圖。 本知1案可達到之效益/優點: (1)適合大量複製: 利用她可大量直接作_微透鏡模具,料搭配亦或 補不經電鑄成模步驟,便能以高分子材料如簡s或uv固化膝 T製造凸型微透鏡或凸型微透鏡陣列產品,且微透鏡模具結構 本身使用合乎光學性質之材料,若使其從基板脫離,亦可當作凹 形微透鏡或凹型微透鏡陣列產品使用。 (2)製程極為簡易: 藉由旋出·膠轉速、微細管陣列之間的間距與微細管陣列 開口大小,可以穩定的控制微透鏡模具之形狀與尺寸。 (3)生產設備成本低: 本發明無需_又昂貴之生產設備,只需细價廉之旋轉機 、抽真空5又備與固化膠使用之加熱平板或紫外光照射燈即可。 雖然本發明以前述之實施例揭露如上,然其並非用以限定本 15 1269885 树明之精神和範㈣,所為之更動與潤飾,均 屬本發明之專利保護範圍。關於本發明所界定之币勺 所附之申請專利範圍。 /、口靶圍明多考 【圖式簡單說明】 «透:Γ㈣他晴撕峨之凸形微透鏡 魏物㈣跡第 第从圖至第2G圖,顯示 具之製作方法。 種凹型微透鏡模 程圖弟3圖’為根據本發明’_種凹型微透鏡模具之製作方法流 =圖為附件一中之透鏡心高度輪廊趨勢圖。 附件(一)為已完成之旋轉表 一 為⑽心一間距約為·m之模具sem圖rpm ’官之開口對角線寬 寬為1G0 ()為雜翻㈣具騎轉參數55GGrpm,管之對角飧 見马100“m,間距約A e又對角線 【主要元件符物Γ之翻模随圖。 1 3 凹型微模具 & $德1透鏡(微透鏡陣列)產品 1269885 5 凹形微透鏡(微透鏡陣列)產品 10 基板 12 厚膜 14 微細管結構 16 熱固化膠液 18 抽真空機台 20 旋轉塗佈機 22 凹透鏡形態 24 凸型微透鏡產品1269885 IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a method of manufacturing a microlens, and more particularly to a method of manufacturing a microlens mold and a concave microlens. [Prior Art] In the development of optoelectronic products, micro-optical lenses have become the basic components of the industry because they can produce optical effects in a small area, such as the backlight of a liquid crystal display (LCD). The use of an optical lens array to create a uniform backlight effect; in addition, with the development of optical semiconductor components such as laser diodes, light-emitting diodes, and photodetectors, a single component is advanced to an array form, and The increase of thieves, such as Qptieal _puting and 〇ptical communication systems, requires the use of microlenses in the form of arrays; therefore, the technology for fabricating array micro-optical lenses is a technology that is developed by industry and academia. The following is a brief introduction to the manufacturing method of the conventional microlens array. 1. Hot melt method: / The hot melt method is a method for manufacturing a refractive mirror. It is to soften the U small cylinder of silk or polymer material by rewarming. (refl〇w). The polymer microstructure is higher than the glass W ^ / m ^ (Glass Transition Temp, = shape ~, the polymer chain between the knife starts to slide, so that the polymer itself is slowly diffused by:; === state surface tension The shadow of the hemisphere, the silk gambling material, the coffin (four) will form the enamel to achieve improvement, and then achieve the optical grade requirements. 1269885, the disadvantage is the need to use the hot chick lion, Tonglu view · get the film thickness is thin That is, it is difficult to produce a lens with high curvature, and the mechanical properties of the material are insufficient. 2. Hot pressing back-melting method: "This method is difficult to make up the shape of LIGA technology, and then the mold is hot-pressed on the polymer plastic sheet. The micro-cylinder is extruded at high pressure and high temperature; the purpose is hot press forming plus/heating 0 ton Chen 7|end forming semi-finished weiwei Wei. The advantage of non-continuous mold opening is to use hot melt effect to make the finished shape (hemispherical micro The lens) and the mold shape cylinder are not necessarily the same, so that the shape of the mold can be obtained without the need for a precise shape, and the shape of the mold can be obtained. The disadvantage of the lens alone is that the New (four) curvature is the second largest nr number. The aperture will become smaller, and _ has its own width, so it can not make a very tight array structure. 3. Microdroplet method: ^ is a technology like the printing of inkjet printing, it is difficult to punch a plurality of micro-liquids On the cymbal, a reflective microlens array is formed. Similarly, this method =: r size, height, focal length, etc.) : * The function of the reticle used in the light U-shirt process is whether to expose the light to The purpose of the photoresist, however, the gray-scale reticle does not wear or penetrate the two possible 'gray-order light', only the exposure beam of the quartz glass cover, by, and The photoresist layer obtained between different thicknesses of the photoresist layer will have different development effects due to different exposure amounts during the development. 1268885 Fruits/Redness--The level of development can produce multi-level height or even (4) Lai shape. It is also difficult to design and manufacture a folding microlens. For this reason, the production cost of the ash mask method is extremely high, and the mass production cost cannot be reduced. In the past, the method of mass production of microlenses, in the case of a convex lens, must be used first. Photoresistive hot-melt method, hot-pressing method, micro-droplet method «Convex lens manufacturing process Then, combined with the micro-electric 铧 娜 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ It is a continuation; the electroforming step is a precision technology, and the subsequent hot pressing process parameters need to be inspected, which will increase the instability of the transmission process. [Inventive content] In view of the above problems, the main purpose of the present invention is A method for manufacturing a microlens (microlens array) mold is provided, and a concave micro-mode is directly produced by using a LIG-woven thick film Guangqicheng with a technique of ''«U-curable glue (UV-cunng) technology), and then Can be turned over to create a professional job, which is suspected to be a sneak peek, or _ micro-molding itself uses five optical properties of the material, if it is detached from the substrate, it can also be used directly as a concave micro-we (micro-wei phase) 仏In order to solve the problems of the prior art. In view of the above problems, a main object of the present invention is to provide a microtube (microarray h, field S) which is manufactured by the above method as a method of manufacturing a concave microlens (from a lens array) as a holly lens (microlens) Array) mold, filled with UV curable glue. 'Microlens can be formed by the surface tension of the UV curable material and the thin tube adhesion shape 1269885. This is the most natural lens forming method, which will make the liquid in the tube appear as micro. The circular arc shape of the lens, as to the curvature of the concave shape, will depend on the amount of the filled gel, so that the problems of the prior art can be substantially solved. Therefore, in order to achieve the above object, the present invention discloses a microscopic The manufacturing process of the lens mold includes the following steps: forming a thick film on the substrate; patterning the thick film to form a fine layer, filling the micro tube with a heat test; and irradiating or heating the light source _ the heat curing glue Therefore, in order to achieve the above object, the manufacturing method of a concave microlens disclosed in the present invention includes the following steps: forming a thick film on a substrate; ® case thick film to form "s, the heat (4) is filled in the micro tube; the side wire is irradiated or heated, the heat curing glue is solidified and formed; and the thick film is detached from the substrate as a concave micro The steps of forming a thick film and patterning a thick film utilize the deep molding technique (LIGA) or the deep molding technique (LIGA4ike). The above thick film is a polymer material or photoresist having optical properties. The detailed features and advantages of the present disclosure are described in detail below in the embodiments, and are sufficient for any skilled person to understand the contents of the present invention and to implement them, and according to the disclosure of the present specification, The related objects and advantages of the present invention are readily understood by those skilled in the art. [Embodiment] The present invention has been described in detail with reference to the embodiments of the present invention. The above description of the embodiments of the invention is intended to illustrate and explain the principles of the invention, and to provide a further explanation of the scope of the invention. The invention aims to simplify the traditional microlens mold and microlens mass production process, and develop a new micro lens mold process by itself, with LiGA-like thick film (photoresist: 丨掣鼗 啦 应用 application UV curing glue (UV.ing) The technology can directly produce the concave micro-mold 1 as shown in Fig. 1, and then can mold the convex microlens (microlens array) product 3 as shown in Fig. 1B, and the concave micro-shape The mold structure itself uses a material that is optical in nature, and if it is detached from the substrate, it can also be directly used as a concave microlens (microlens array) product 5 as shown in Fig. lc. LIGA is a German model. Abbreviation of technology, in which LI is an advanced technique, using a synchrotron radiation to engrave a high aspect ratio microstructure on a thick film (photoresist). G stands for precision electroforming mold technology, and Α represents injection mass production technology. Synchrotron radiation source X_ray is difficult to build due to its high cost. Not only is the mask used as the H 4 film (photoresist) material and technology, but also the Excimer Laser is used instead of X to carry out profound technology and develop profound molding. [Sweet LIGA related technology The LIGA-like technology firstly adheres a layer of fine or coated-layer polymer material to the substrate, and the thickness of the ancestral member or the depth of the microstructure is 疋, from tens of um to hundreds of um. When processing with ExcimerLaser, The light source projected by the laser must be adjusted into uniform parallel light through a plurality of lenses, and then the polymer material on the substrate is processed through the photomask and the focusing lens to achieve a profound function; this is called laser deep engraving. The present invention makes it possible to design an array-micro-tubular structure with good transparent optical properties. This structure is made of a thick film polymer or optical slab with optical properties, and firstly, 10 1269885 Γ=Γ!Τ fiber material (_... 4 细吕中' The solidified glue liquid in s forms a circular arc shape like a lens due to the surface tension effect, and then is cured by ultraviolet light or heat to cure the two concave microlens (microlens _ ' A plastic material such as a ruthenium phthalate (4) MSM UV-curable adhesive, and a convex microlens (microlens array) optical film product, if necessary, a concave microlens (micro Lens array Shun Ke makes it from the substrate, and can be applied as a concave lens (microlens array). The 2A to 2G drawings are used to show the manufacturing process of the present invention and the third figure 'is the contract of the present invention. The embodiment of the present invention includes the following steps: as shown in Figures 2A and 2B, coating a thick film 12 having optical properties on the substrate 1 (step 301); using a yellow light lithography step, soft baking, exposure , development, hard baking 'discrimination time plus King polymer · # machine processing 倾 case thick film to produce a single or array of micro-tube structure 14 (step 3 〇 2). The substrate may be a 矽 substrate. The thick film may be a polymer material or a photoresist material. As shown in FIG. 2C, the ultraviolet light or heat curing glue 16 of optical properties is completely covered on the surface of the micro tube of the array in the figure, and vacuum is applied. The machine table 18 is capable of completely sucking the glue 16 into the micro tube by vacuuming to increase the adhesion between the heat curing glue liquid 16 and the micro tube, so that the gas originally stored in the micro tube can be discharged (step 303). As shown in Fig. 2D, then using a spin coater 2〇, rotating 11 Ϊ Ϊ 269885 卜 light or thermosetting glue evenly out of the micro tube, the curvature of the concave shape will depend on the heat in the remaining tube The amount of gelatin liquid 16 is cured (step 304). As shown in Fig. 2E, the phenomenon in the microtube makes the surface of the solidified gel liquid form a concave surface. The ultraviolet light source is irradiated or heated to cure the cured specimen, and after solidification, it becomes a concave lens form 22, which can be used as a concave microlens mold (step 3〇 s). As shown in FIG. 2F, the concave microlens mold 22 is directly peeled off from the substrate 1 ,, and the _ microlens mold 22 can be directly fine or polymerized with a gelatin such as polydimethyl oxalate (10) MS or UV cured. A material having optical properties such as glue is overmolded to produce a convex microlens product 24 (step 306). The surface tension of the fine photoresist material and the change in the adhesion of the microtubes result in microlens lenses of different scales, and the formed microlenses can be cured by ultraviolet light, which is the most convenient lens forming method. _In the experiment of the present invention, when we want to design the micro-saki structure of the sputum, the six (four) column can make a more compact (unsewn) array structure than the _ thin tube, that is, the bee ^ equation structure Hexagonal tube array design. In order to facilitate the experiment to prove its feasibility, according to the different sizes, the design of the six-Shaw-shaped thin-pair diagonal line is (10) //m and 75#m, and the spacing is different according to the thin tube spacing (ie the tube wall thickness). It is four sizes of 5, 1, 〇m, 15 (four), and 2 〇M. When the w-cutter curing rubber is unscrewed, the different rotation speeds are changed. In this experiment, the rotation speed is 4500 rpm, 500 rpm, 550 rpm, respectively. The purpose of the segmental speed is to investigate how the three concave parameters will affect the subsequent formation of the concave microlens array. Here, we will list three experimental parameters again for the following explanation: 12 1269885 (1) When the uv curing adhesive is unscrewed, change its different rotation speed. In this experiment, the _ speed is 4500 rpm, 5000 rpm, 5500 rpm. The speed is used to determine the effect of the speed on its subsequent forming. 〃 (2) Using the reticle design described above, the spacing between the microtube arrays is made different during the yellow light process, with pitches of about 5//m, 10/zm, 15/zm and 20//m, respectively. The effect of its subsequent formation on the time when the spacing is different. (3) Change the diagonal width of the hexagonal microtube array, respectively, by 75_ and 1〇〇_ opening and exposing the effect of the subsequent forming of the tube when the diagonal width of the tube is different. Attachment (1) is the completed rotation parameter of 5500 rpm, the opening diagonal of the tube is f 100/zm, the pitch is about 10//m, and the fourth picture is the lens 高度 height profile trend. Each concave lens mold produced by each of the parameters is obtained by using the measured depth h of the recessed hole and the diameter D of the recessed hole, and the refractlve index of the county body, by the following formulas (1) and (2) 2h (1) and (2) The nose has a radius of curvature rd · 卞仫KcCradius of curvature and focal length and f (focus). The measurement results of the parameters of the experiment are shown in Tables 1 and 2 below. The results of the semi-control calculation of curvature are shown in Tables 3 and 4 below. Table 1 13 1269885 Hexagonal pipe diagonal length 100 # mh : concave 檄 lens sag, 〆m separation distance rotation speed ^ 5 // m 10 // m 15 “ m 20 /im 5500rpm 10.82 10.3 8.31 7.3 5000rpm Γ 9.17 8.84 5.92 4.44 4500rpm 7.69 4.78 2.8 2.3 Table 2 Hexagonal pipe diagonal length 7 5 in mh: concave microlens height (sag), #!!! separation distance 5 // m 10 ^ m 15 // m 20 // m 5500rpm 10.02 9.03 6.3 3.78 5000rpm 7.76 5.97 3.98 2.66 4500rpm Bu 4.16 Π 3.9 2.13 1.36 _ Table 3 Hexagonal pipe diagonal length 100" ir R: concave microlens curvature diameter, χ / m separation distance Spinning speed 5 um 10 // m 15 μ τη 20 β m 5500rpm 98.98671 103.451 125.9962 142.3486 5000rpm 1 14.9994 1 18.9562 173.9904 230.2605 4500rpm 1^35.5095 214.2101 363.0071 441.3674 Table 4 Hexagonal pipe diagonal length 75 um κ : concave microlens Curvature source m ----- times ^ separation distance rotation speed 5 " m 10 // m 15 // m 20 // m 5500rpm 49.92018 54.34889 74.57857 120.9376 5000rpm 61.86969 78.36188 115.0553 170.5029 4500rpm 110.2531 117.3346 212.3326 331.5624 • From this hair In the results of the Ming experiment, we can clearly see some trends, which are summarized as follows: (1) Between the swirling speed and the shun six-column column _ the same, if the micro-six tube opening diagonally longer The deeper concave microlens will be obtained, that is, the height of the microlens after the mold is higher. (2) If the micro hexagonal column spacing is the same as the diagonal opening length of the micro hexagonal tube, we can clearly see the '郷 rotational speed Touch, turn _ deep Zhiqing microlens height. (3) under the rotation speed of the spinning cone and the diagonal opening of the micro hexagonal tube, the micro hexagonal tube 14 1269885 is quite awkward! / The smaller the spacing, the judgment can be obtained —π θ 伃 乂 乂 乂 之 之 之 之 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹 凹The second invention is not to discuss the concept of the subsequent mold-turning finished product, but the finished product to observe the mold is a kind of integrity. The beginning of the valley renting the feasibility of this invention and the finished material _ (four) then the optical properties of the sharp rrt for the selection of the mold is measured by the rotation parameters, the tube _100 qing distance is about the L SEM image. The benefits/advantages that can be achieved in this case: (1) It is suitable for mass reproduction: It can be directly used as a micro-lens mold, and the material can be matched with or without electroforming into a mold step. s or uv curing knee T manufactures convex microlens or convex microlens array products, and the microlens mold structure itself uses materials that are optical in nature, and if it is detached from the substrate, it can also be used as a concave microlens or concave micro Lens array products are used. (2) The process is extremely simple: the shape and size of the microlens mold can be stably controlled by the spin-off speed, the pitch between the microtube arrays, and the opening size of the microtube array. (3) Low cost of production equipment: The invention does not require _ expensive production equipment, and only needs a cheap and inexpensive rotating machine, vacuuming 5 and heating plate or ultraviolet light used for curing glue. Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the spirit and the scope of the present invention, and the modifications and refinements thereof are all within the scope of the present invention. The scope of the patent application attached to the coin spoon defined by the present invention. /, the target target is more than a test [Simplified description of the drawing] «Transparent: Γ (4) His convex tear micro-lens of Wei 魏 Wei (4) traces from the figure to the 2G map, showing the production method. A concave microlens pattern diagram 3 is a flow pattern of a method for manufacturing a concave microlens mold according to the present invention. The figure is a lens core height wheel corridor trend diagram in Annex 1. Attachment (1) is the completed rotation table. (10) The center of the heart is about MM. The sem diagram rpm 'The opening width of the official opening diagonal is 1G0 () is the miscellaneous turning (four) with the riding parameter 55GGrpm, the tube Diagonal 飧 see the horse 100 "m, the spacing is about A e and diagonal [the main components of the object 翻 翻 随 随 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Microlens (microlens array) products10 Substrate12 Thick film14 Microtube structure16 Heat curing glue 18 Vacuuming machine 20 Rotary coating machine 22 Concave lens form 24 Convex microlens products

1717

Claims (1)

1269885 十、申請專利範圍: ι 一種微透鏡模具之製造方法,包括下列步驟: 形成一厚膜於一基板; 圖案化該厚膜,以形成一微細管; 將一熱固化膠液填入該微細管内;及 固化成形該熱固化膠液。 2·如申請專利範圍第1項所述之微透鏡模具之製造方法,其中 形成該厚膜以及圖案化該厚膜之步驟係利用一深刻模造技術 (LIGA)或一類深刻模造技術(LiGA-likeJ。 3·如申請專利範圍第1項所述之微透鏡模具之製造方法,其中 將該熱固化膠液填入該微細管之步驟,更包含: 將該熱固化膠液滴於該微細管表面;及 以抽真空方式,使該熱固化膠液被吸入該微細管内。 4·如申請專利範圍第1項所述之微透鏡模具之製造方法,其中 將該熱固化膠液填入該微細管之步驟與固化成形之步驟之 間更包令旋轉該基板之步驟。 5·如申請專利範圍第1項所述之微透鏡模具之製造方法,其中 固化成形該熱固化膠液之步驟係利用一光源照射或加熱方 法。 6·如申請專利範圍第1項所述之微透鏡模具之製造方法,其中 該厚膜為一具有光學性質之高分子材料。 7·如申請專利範圍第1項所述之微透鏡模具之製造方法,其中 18 1269885 ,-,1, ,|M n , —--J' ; -.· . 1--r ΓΊ·ιι ιι 月〖I關.:.(更).正本 該厚膜為一光阻。 8·如申請專利範圍第丨項所述之微透鏡模具之製造方法,其中 該基板為一碎基板。 9·如申請專利範圍第丨項所述之微透^^莫具之製造方法,其中 該微細管為六角形。 10·如申請專利範圍第丨項所述之微透鏡模具之製造方法,其中 該熱固化膠液為一具有光學性質之可固化高分子流動材料。 # U•如申請專利範圍第5項所述之微透鏡模具之製造方法,其中 該光源為一紫外光源。 12.如申請專利範圍第4項所述之微透鏡模具之製造方法,其 中,可任意改變旋開固化膠之轉速與固化膠之黏滯係數。' 13· —種凹微透鏡之製造方法,包括下列步驟: 形成一厚膜於一基板; 圖案化該厚膜,以形成一微細管; 將一熱固化膠液填入該微細管内; 固化成形該熱固化膠液;及 將該厚膜自該基板脫離以作為一凹微透鏡。 14·如申請專利範圍第13項所述之凹微透鏡之製造方法,其中形 成該厚膜以及圖案化該厚膜之步驟係利用一深刻模造技術 (LIGA)或一類深刻模造技術(LIGA-like;)。 15·如申請專利範圍第13項所述之凹微透鏡之製造方法,其中將 該熱固化膠液填入該微細管之步驟,更包含: 19 1269885 I 一—' 〜….….… P焊y月•(更)正本 ""* ____________ 將該熱固化膠液滴於該微細管表面;及 以抽真空方式,使該熱固化膠液被吸入該微細管内。 16·如申請專利範圍第13項所述之凹微透鏡之製造方法,其中將 該熱固化膠液填入該微細管之步驟與固化成形之步驟之間 更包含一旋轉該基板之步驟。 17·如申請專利範圍第13項所述之凹微透鏡之製造方法,其中固 化成形該熱固化膠液之步驟係利用一光源照射或加熱方法。 • 18·如申請專利範圍第13項所述之凹微透鏡之製造方法,其中該 厚膜為一具有光學性質之高分子材料。 丨9·如申請專利範圍第13項所述之凹微透鏡之製造方法,其中該 、 厚膜為一光阻。 20·如申請專利範圍第13項所述之凹微透鏡之製造方法,其中該 基板為 基板。 •如申凊專利範圍第13項所述之凹微透鏡之製造方法,其中該 •微細管為六角形。 如申明專利範圍第13項所述之凹微透鏡之製造方法,其中該 熱固化膠液為-具有光學性質之可固化高分子流動材料。 如申明專利範圍第17項所述之凹微透鏡之製造方法,其中該 光源為一紫外光源。 20 1269885 七、指定代表圖: (一) 本案指定代表圖為:第3圖。 (二) 本代表圖之元件符號簡單說明·· 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1269885 X. Patent application scope: ι A manufacturing method of a microlens mold, comprising the steps of: forming a thick film on a substrate; patterning the thick film to form a micro tube; filling a heat curing glue into the fine Inside the tube; and curing the thermosetting glue. 2. The method of manufacturing a microlens mold according to claim 1, wherein the step of forming the thick film and patterning the thick film utilizes a deep molding technique (LIGA) or a deep molding technique (LiGA-likeJ). 3. The method for manufacturing a microlens mold according to claim 1, wherein the step of filling the thermosetting glue into the microtube further comprises: dropping the thermosetting gel onto the surface of the microtube And the method of manufacturing the microlens mold according to the first aspect of the invention, wherein the heat curing glue is filled into the micro tube. The method of manufacturing the microlens mold according to the first aspect of the invention, wherein the step of solidifying the thermosetting glue is utilized in the step of curing the substrate. The method of manufacturing a microlens mold according to claim 1, wherein the thick film is a polymer material having optical properties. The manufacturing method of the microlens mold according to item 1, wherein: 18 1269885, -, 1, , |M n , --- J' ; -.· . 1--r ΓΊ·ιι ιι 〖I off.:. (more). The thick film is a photoresist. The manufacturing method of the microlens mold according to the above application, wherein the substrate is a broken substrate. The method for manufacturing a microlens mold according to the above aspect of the invention, wherein the heat curing glue is an optical property. The method of manufacturing a microlens mold according to claim 5, wherein the light source is an ultraviolet light source. 12. The microlens according to claim 4 The manufacturing method of the mold, wherein the rotation speed of the spin-on curing glue and the viscosity coefficient of the curing glue can be arbitrarily changed. ' 13 · A method for manufacturing a concave microlens, comprising the steps of: forming a thick film on a substrate; Thick film to form a micro tube; fill a heat curing glue The method of manufacturing the concave microlens according to claim 13 , wherein the method of manufacturing the concave microlens according to claim 13 is formed in the micro tube; The thick film and the step of patterning the thick film utilize a deep molding technique (LIGA) or a type of deep molding technique (LIGA-like;). 15. The method for manufacturing a concave microlens according to claim 13 of the patent application, The step of filling the heat-cured glue into the micro-tube further comprises: 19 1269885 I--~........... P-welding yue•(more) original""* ____________ The heat-curing adhesive The droplets are on the surface of the microtube; and the thermosetting glue is sucked into the microtube by vacuuming. The method of manufacturing a concave microlens according to claim 13, wherein the step of filling the thermosetting glue into the microtube and the step of solidifying forming further comprises the step of rotating the substrate. The method of manufacturing a concave microlens according to claim 13, wherein the step of curing the thermosetting glue is performed by a light source irradiation or heating method. The method of manufacturing a concave microlens according to claim 13, wherein the thick film is a polymer material having optical properties. The method of manufacturing a concave microlens according to claim 13, wherein the thick film is a photoresist. The method of manufacturing a concave microlens according to claim 13, wherein the substrate is a substrate. The method of manufacturing a concave microlens according to claim 13, wherein the microtube is hexagonal. The method for producing a concave microlens according to claim 13, wherein the heat curable glue is a curable polymer flow material having optical properties. The method of manufacturing a concave microlens according to claim 17, wherein the light source is an ultraviolet light source. 20 1269885 VII. Designated representative map: (1) The representative representative of the case is: Figure 3. (2) A brief description of the symbol of the representative figure. · 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW94117934A 2005-05-31 2005-05-31 Manufacturing method of micro lens mold and micro concave lens TWI269885B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94117934A TWI269885B (en) 2005-05-31 2005-05-31 Manufacturing method of micro lens mold and micro concave lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94117934A TWI269885B (en) 2005-05-31 2005-05-31 Manufacturing method of micro lens mold and micro concave lens

Publications (2)

Publication Number Publication Date
TW200641386A TW200641386A (en) 2006-12-01
TWI269885B true TWI269885B (en) 2007-01-01

Family

ID=38318501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94117934A TWI269885B (en) 2005-05-31 2005-05-31 Manufacturing method of micro lens mold and micro concave lens

Country Status (1)

Country Link
TW (1) TWI269885B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967890A (en) * 2012-11-20 2013-03-13 中国科学院大连化学物理研究所 Simple preparation method and application of polydimethylsiloxane (PDMS) polymer microlens array
CN104421834A (en) * 2013-08-28 2015-03-18 鸿富锦精密工业(深圳)有限公司 Compound lens and manufacturing method thereof and light source device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324370B2 (en) 2016-09-06 2019-06-18 Unimicron Technology Corp. Manufacturing method of circuit substrate and mask structure and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967890A (en) * 2012-11-20 2013-03-13 中国科学院大连化学物理研究所 Simple preparation method and application of polydimethylsiloxane (PDMS) polymer microlens array
CN102967890B (en) * 2012-11-20 2015-03-11 中国科学院大连化学物理研究所 Simple preparation method and application of polydimethylsiloxane (PDMS) polymer microlens array
CN104421834A (en) * 2013-08-28 2015-03-18 鸿富锦精密工业(深圳)有限公司 Compound lens and manufacturing method thereof and light source device using same

Also Published As

Publication number Publication date
TW200641386A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
CN101594980B (en) Method and arrangement for manufacturing optical products with complex three-dimensional forms
US8303866B2 (en) Mass production of micro-optical devices, corresponding tools, and resultant structures
CN101573659A (en) Method for expelling gas positioned between a substrate and a mold
JP2011053496A (en) Optical device, manufacturing method thereof, and method of manufacturing master
TW201842384A (en) Light guiding laminate using anisotropic optical film and planar light source device using the same
US9625819B2 (en) Photolithography on shrink film
TWI269885B (en) Manufacturing method of micro lens mold and micro concave lens
TWI289683B (en) Method for fabricating microlens arrays
JP2004258071A (en) Optical component and method for manufacturing same, and image projection screen
US20070041097A1 (en) Method for fabricating a micro-lens mold and a concave micro-lens
JP2004322566A (en) Forming sheet and its manufacturing method
TW200827152A (en) Method for producing optical member and method for producing molding die for optical member
Cheng et al. Micro fabrication of microlens arrays by micro dispensing
Lamprecht et al. Origination of free-form micro-optical elements using one-and two-photon grayscale laser lithography
JP2558355B2 (en) Three-dimensional shape forming method
TWI280943B (en) Method of micro-structural wedged array
TWI287504B (en) Manufacturing method of a 3-D micro lens array with predetermined surface curvature controlled by centrifugal force surface
TWI262893B (en) Manufacturing method and product of micro-cones array
US7045089B2 (en) Fabrication of molds and mold components using a photolithographic technique and structures made therefrom
Kuo et al. The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method
JP7340840B2 (en) Manufacturing method of micro optical structure
JP2001301052A (en) Method for manufacturing micro-lens/micro-lens array/ micro-lens and method for manufacturing micro-lens array
JP2016105203A (en) Optical element and method for manufacturing the same, and method for manufacturing master
WO2021058077A1 (en) Production process of an isolated monolithic micro optical component
TW201106023A (en) Prism containing optical layer and its preparation method