WO2006109355A1 - Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength - Google Patents

Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength Download PDF

Info

Publication number
WO2006109355A1
WO2006109355A1 PCT/JP2005/007012 JP2005007012W WO2006109355A1 WO 2006109355 A1 WO2006109355 A1 WO 2006109355A1 JP 2005007012 W JP2005007012 W JP 2005007012W WO 2006109355 A1 WO2006109355 A1 WO 2006109355A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
different wavelength
reaction
curing reaction
inducing
Prior art date
Application number
PCT/JP2005/007012
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Masuhara
Shoji Ito
Original Assignee
Japan Science And Technology Agency
D-Mec Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, D-Mec Ltd. filed Critical Japan Science And Technology Agency
Priority to PCT/JP2005/007012 priority Critical patent/WO2006109355A1/en
Publication of WO2006109355A1 publication Critical patent/WO2006109355A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Definitions

  • the present invention relates to a multi-beam microstructure optical modeling method and apparatus using different wavelength laser light.
  • the size of the cured portion of the photocurable resin is determined by the focused spot diameter of the laser beam.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-025295
  • Patent Document 2 JP 2001-158050 A
  • Patent Document 3 Japanese Patent Laid-Open No. 7-329188
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-001599
  • Non-Patent Literature l Makoto Horiyama, Hong— Bo Sun, Masafumi Miwa, Shige Ki Kimatsuo, and Hiroaki Misawa, Japanese Journal of Applied Physi cs 38, pp. L212 -L215 (1999).
  • Non-Patent Document 2 Shoji Maruo and Koji Ikuta, Applied Physics Letters 7 6, p. 2656 (2000).
  • Non-Patent Document 3 Shoji Maruo, Osamu Nakamura, and Satoshi Kawata, Optics Letters 22, p. 132 (1997).
  • Non-Patent Document 4 Hong— Bo Sun, Takeshi Kawakami, Ying Xu, Jia-Yu Ye, Shigeki Matsuo, Hiroaki Misawa, Masafumi Miwa, and Reizo Kane ko, Optics Letters 25, p. 1110 (2000).
  • the reason why it is difficult to improve the modeling accuracy in the one-photon process is that light absorption occurs in a region other than the focused spot of the laser beam, that is, a region outside the scanning locus of the focused spot. This is because a curing reaction occurs.
  • the photocuring reaction is a threshold reaction, and curing occurs when the amount of light irradiation exceeds a certain threshold.
  • Two-photon polymerization can have high spatial selectivity because the two-photon absorption probability is proportional to the square of the light intensity, and therefore light absorption occurs only near the condensing spot.
  • the present invention provides a reaction promoting laser beam having a wavelength different from that of the curing reaction inducing laser beam (in the example, a near infrared laser).
  • a reaction promoting laser beam having a wavelength different from that of the curing reaction inducing laser beam (in the example, a near infrared laser).
  • the present invention is in addition to the laser beam for inducing the curing reaction.
  • Multi-beam microstructures using different wavelength laser light that can give nano-level three-dimensional spatial selectivity by using a reaction promoting laser light having a wavelength different from that of the curing reaction inducing laser light
  • An object is to provide an optical modeling method and apparatus. In order to achieve the above object, the present invention provides
  • a curing reaction-inducing laser beam is irradiated into a photocurable resin, and a laser beam for promoting a reaction at a different wavelength is cured.
  • a photocurable resin in superposition with the laser beam for inducing reaction, a photocuring reaction is induced only in the vicinity of the focused spot where the two laser beams overlap.
  • the curing reaction-inducing laser beam is absorbed in the photocurable resin. It is characterized by being one laser beam and having an extremely weak light intensity, and the one reaction promoting laser beam is a laser beam having another wavelength that is not absorbed by the photocurable resin.
  • the intensity of the curing reaction-inducing laser beam is approximately 0.038-0. It is.
  • the wavelength of the reaction promoting laser beam is approximately 1064 nm.
  • means for irradiating a curing reaction inducing laser beam having an extremely weak light intensity that does not induce a photocuring reaction and the curing A means for irradiating a reaction promoting laser beam to the same spot as the curing reaction inducing laser light in a state where the reaction inducing laser light is irradiated in the photocurable resin, and a collection of the curing reaction inducing laser light. It is characterized by comprising a photocurable resin that induces a photocuring reaction only in the vicinity of the light spot.
  • the curing reaction-inducing laser beam has an intensity of about 0.038-0.076 / z W.
  • the reaction promoting laser beam has a wavelength of approximately 1064 nm. .
  • the photocurable resin in which the photocurable resin is dropped on a glass substrate The curing reaction inducing laser light and the reaction promoting laser light are irradiated from the glass substrate side.
  • the photocurable resin is It is an acrylic photocurable resin.
  • FIG. 1 is a block diagram of a main part of a multi-beam micro structure object stereolithography apparatus using a two-beam micro-stereolithography method showing a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a resin line pattern formed by the two-beam micro-stereolithography method according to the first embodiment of the present invention.
  • FIG. 3 is a system configuration diagram of a multi-beam micro structure object stereolithography apparatus using a two-beam micro-stereolithography method showing a second embodiment of the present invention.
  • FIG. 4 is a view showing a scanning electron microscope image of a photocurable resin that has been spot-cured on a glass substrate according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing a columnar microstructure manufactured according to the present invention.
  • the photocuring reaction is not induced !, extremely weak !, for accelerating the reaction to the same spot in a state where the curing reaction-inducing laser light is irradiated into the resin at the light intensity.
  • a photo-curing reaction can occur only in the vicinity of the condensing spot of the curing reaction-inducing laser beam, and nano-level three-dimensional spatial selectivity can be achieved.
  • FIG. 1 is a configuration diagram of the main part of a multi-beam micro-structure stereolithography apparatus using a two-beam micro-stereolithography according to the first embodiment of the present invention, and FIG. It is a figure which shows the line pattern of the made resin.
  • 1 is a glass substrate
  • 2 is a stage
  • 3 is an objective lens (40 ⁇ , NA: 0.9)
  • 4 is an ultraviolet laser beam for inducing curing reaction (dotted line)
  • 5 is a near reaction promoting accelerator.
  • 6 is a photocurable resin.
  • the curing reaction-inducing ultraviolet laser beam 4 is condensed by the objective lens 3 at the interface between the glass substrate 1 and the photocurable resin 6, and the stage 2 is scanned, while the curing reaction-inducing ultraviolet laser beam is scanned.
  • the photocurable resin 6 is, for example, an acrylic photocurable resin CFC KC 1156A).
  • the curing reaction inducing laser beam 4 is a laser beam that is absorbed by the photocurable resin 6 and has an extremely weak light intensity.
  • the reaction promoting laser beam 5 is a photocurable resin. This is a laser beam of another wavelength that is not absorbed by the resin 6.
  • the photocuring reaction (resin line pattern 7 ) Can be confirmed.
  • the photo-curing reaction does not occur when only the curing reaction-inducing ultraviolet laser light 4 is irradiated, but the photo-curing reaction does not occur even when only the reaction-promoting near-infrared laser light 5 is irradiated.
  • FIG. 3 is a system configuration diagram of a multi-beam micro structure stereolithography apparatus using a two-beam micro stereo modeling method according to a second embodiment of the present invention
  • FIG. 4 is a glass illustrating a second embodiment of the present invention. It is a figure which shows the scanning electron microscope image of the photocurable resin which was spot-cured on the board
  • 11 is an ultraviolet laser light source for inducing curing reaction
  • 12, 13, 16, 18, 19 are reflecting mirrors
  • 14, 15, 20, 21, 25 are lenses
  • 17 is a near infrared for promoting reaction.
  • Laser light source, 22 and 23 are dichroic mirrors
  • 24 is an objective lens (100x, NA: 1.3) 5)
  • 26 is a CCD camera
  • 27 is a monitor
  • 31 is a cover glass
  • 32 is a photocurable resin
  • 33 is a stage.
  • an ultraviolet laser pulse (wavelength 355 nm, pulse width 0.5 ns) focused on the photocurable resin 32 dropped on the cover glass 31 by the objective lens 24 (curing reaction induction laser)
  • light (dotted line) is irradiated, photocuring occurs at the condensing position of the curing reaction-inducing ultraviolet laser light from the light intensity that reaches the threshold value of the photocuring reaction, as shown in Fig. 4 (a).
  • continuous irradiation near-infrared laser light (wavelength 1064nm) (reaction promoting laser light) (solid line) (solid line) is also focused and irradiated together with ultraviolet laser light for curing reaction induction (dotted line)
  • the photo-curing reaction could be induced even with the UV laser light intensity for curing reaction induction that was so weak that the photo-curing reaction did not occur when only the curing reaction-inducing ultraviolet laser light (dotted line) was irradiated. . It was found that the photo-curing reaction with the intensity below the threshold value was not induced by irradiation with the curing reaction-inducing ultraviolet laser beam alone or the reaction promoting near-infrared laser beam alone.
  • FIG. 2 and FIG. 4 show that the present invention can impart space selectivity to the photopolymerization reaction.
  • FIG. 5 is a diagram showing a columnar microstructure manufactured according to the present invention.
  • a curing reaction-inducing ultraviolet laser beam and a reaction promoting near-infrared laser beam are used.
  • the columnar microstructures 41 produced have a reduced level of excess growth in the horizontal and optical axis directions compared to the columnar microstructures 42 produced using only the curing reaction-inducing ultraviolet laser beam, and the molding accuracy is remarkably improved. It can be confirmed that there is an improvement.
  • Nano-level three-dimensional spatial selectivity can be provided.
  • the multi-beam microstructure optical modeling method and apparatus using the different wavelength laser beam of the present invention can be expected to be used for manufacturing various micro devices (chemical chip, biochip, micromachine, etc.).

Abstract

A multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelengths in which three-dimensional space selectivity of nano level can be imparted by employing, in addition to a laser beam for inducing a curing reaction, a laser beam for accelerating the reaction having a wavelength different from that of the laser beam for inducing the curing reaction. A photo-curing reaction can be induced only at and near a focused spot by irradiating the spot with a laser beam (5) for accelerating the reaction in a state where resin is irradiated with a laser beam (4) for inducing the curing reaction with such an extremely weak intensity as to not induce the photo-curing reaction.

Description

異波長レーザー光を用いた多光束微小構造物光造形方法及び装置 技術分野  Multi-beam microstructure optical modeling method and apparatus using different wavelength laser beam
[0001] 本発明は、異波長レーザー光を用いた多光束微小構造物光造形方法及び装置に 関するものである。  The present invention relates to a multi-beam microstructure optical modeling method and apparatus using different wavelength laser light.
背景技術  Background art
[0002] 近年、光硬化性榭脂中でレーザー光の集光スポットを走査し、前記榭脂を所望の 形状に硬化させ、従来の半導体プロセス等に比べて短時間で複雑な 3次元構造物 を形成できる光造形法が実用化され、ラビッドプロトタイピング等の分野で活用されて いる。  In recent years, a condensing spot of a laser beam is scanned in a photocurable resin, the resin is cured to a desired shape, and a complicated three-dimensional structure is obtained in a shorter time than conventional semiconductor processes. The stereolithography method that can form the surface has been put into practical use and is used in fields such as rapid prototyping.
[0003] 現在市販されている光造形機の加工精度は 50〜: LOO m程度であり、より微細な 3次元構造物の作製を目指しマイクロ光造形技術の開発が進められている。  [0003] The processing accuracy of currently available stereolithography machines is about 50-: LOO m, and the development of micro stereolithography technology is progressing with the aim of producing finer three-dimensional structures.
[0004] 光造形技術においては、レーザー光の集光スポット径で光硬化性榭脂の硬化部の サイズが決定される。  [0004] In the optical modeling technique, the size of the cured portion of the photocurable resin is determined by the focused spot diameter of the laser beam.
[0005] したがって、集光能の高い(つまり NAの大きい)対物レンズ等でより小さな領域に 光を絞ることで、微細構造物の作製が可能となる(下記非特許文献 1、 2参照)。しか し実際には、対物レンズで光を絞っても集光スポットのみで光硬化が起こるわけでは なぐ集光スポット周囲でも硬化反応は起こるので、この余剰成長のために造形精度 が悪くなる。  [0005] Therefore, a fine structure can be manufactured by focusing light on a smaller area with an objective lens having a high light collecting ability (that is, a large NA) (see Non-Patent Documents 1 and 2 below). However, in reality, even if the light is focused by the objective lens, the photocuring does not occur only at the converging spot, but the curing reaction also occurs around the converging spot.
[0006] そこで、より微細な光造形のためフェムト秒レーザーパルス照射により誘起される二 光子重合を利用した造形精度向上法が報告されている (下記非特許文献 3、 4参照)  [0006] Therefore, there has been reported a method for improving modeling accuracy using two-photon polymerization induced by femtosecond laser pulse irradiation for finer optical modeling (see Non-Patent Documents 3 and 4 below).
[0007] 上記した従来のマイクロ光造形技術については、下記の特許文献 1 4に開示され ている。 [0007] The conventional micro stereolithography technique described above is disclosed in Patent Document 14 below.
特許文献 1 :特開 2003— 025295号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-025295
特許文献 2:特開 2001— 158050号公報  Patent Document 2: JP 2001-158050 A
特許文献 3 :特開平 7— 329188号公報 特許文献 4 :特開 2003— 001599号公報 Patent Document 3: Japanese Patent Laid-Open No. 7-329188 Patent Document 4: Japanese Patent Laid-Open No. 2003-001599
非特許文献 l : Makoto Horiyama, Hong— Bo Sun, Masafumi Miwa, Shig eKi Matsuo, and Hiroaki Misawa, Japanese Journal of Applied Physi cs 38, pp. L212 -L215 (1999) .  Non-Patent Literature l: Makoto Horiyama, Hong— Bo Sun, Masafumi Miwa, Shige Ki Kimatsuo, and Hiroaki Misawa, Japanese Journal of Applied Physi cs 38, pp. L212 -L215 (1999).
非特許文献 2: Shoji Maruo and Koji Ikuta, Applied Physics Letters 7 6, p. 2656 (2000) .  Non-Patent Document 2: Shoji Maruo and Koji Ikuta, Applied Physics Letters 7 6, p. 2656 (2000).
非特許文献 3 : Shoji Maruo, Osamu Nakamura, and Satoshi Kawata, Op tics Letters 22, p. 132 (1997) .  Non-Patent Document 3: Shoji Maruo, Osamu Nakamura, and Satoshi Kawata, Optics Letters 22, p. 132 (1997).
非特許文献 4 : Hong— Bo Sun, Takeshi Kawakami, Ying Xu, Jia-Yu Ye , Shigeki Matsuo, Hiroaki Misawa, Masafumi Miwa, and Reizo Kane ko, Optics Letters 25, p. 1110 (2000) .  Non-Patent Document 4: Hong— Bo Sun, Takeshi Kawakami, Ying Xu, Jia-Yu Ye, Shigeki Matsuo, Hiroaki Misawa, Masafumi Miwa, and Reizo Kane ko, Optics Letters 25, p. 1110 (2000).
発明の開示  Disclosure of the invention
[0008] 上記したように、一光子過程で造形精度を高めることが困難な理由は、レーザー光 の集光スポット以外の領域、すなわち、集光スポットの走査軌跡外の領域でも光吸収 が起こり光硬化反応が起こるためである。一般に光硬化反応は閾値反応であり、光 照射量がある閾値を越えた段階で硬化が起こる。二光子重合が高い空間選択性を 持ち得るのは、二光子吸収確率が光強度の自乗に比例するので、従って集光スポッ ト近傍のみで光吸収が起こるためである。  [0008] As described above, the reason why it is difficult to improve the modeling accuracy in the one-photon process is that light absorption occurs in a region other than the focused spot of the laser beam, that is, a region outside the scanning locus of the focused spot. This is because a curing reaction occurs. In general, the photocuring reaction is a threshold reaction, and curing occurs when the amount of light irradiation exceeds a certain threshold. Two-photon polymerization can have high spatial selectivity because the two-photon absorption probability is proportional to the square of the light intensity, and therefore light absorption occurs only near the condensing spot.
[0009] したがって、光重合に空間選択性を付与するためには、硬化用レーザー光の集光 スポットにおける光重合効率を周囲に比べて高めてやればよい。  Therefore, in order to impart spatial selectivity to photopolymerization, it is only necessary to increase the photopolymerization efficiency at the condensing spot of the curing laser light as compared to the surroundings.
[0010] 本発明は、硬化反応誘起用レーザー光(実施例では紫外レーザー光)に加えて、 前記硬化反応誘起用レーザー光とは異なる波長の反応促進用レーザー光(実施例 では近赤外レーザー光)を用いることにより、ナノレベルの 3次元空間選択性を持た せることができる。  [0010] In addition to a curing reaction inducing laser beam (in the embodiment, an ultraviolet laser beam), the present invention provides a reaction promoting laser beam having a wavelength different from that of the curing reaction inducing laser beam (in the example, a near infrared laser). By using (light), nano-level three-dimensional spatial selectivity can be achieved.
[0011] すなわち、本発明は、上記状況に鑑みて、硬化反応誘起用のレーザー光に加えて That is, in view of the above situation, the present invention is in addition to the laser beam for inducing the curing reaction.
、前記硬化反応誘起用レーザー光とは異なる波長の反応促進用レーザー光を用い ることにより、ナノレベルの 3次元空間選択性を持たせることができる異波長レーザー 光を用いた多光束微小構造物光造形方法及び装置を提供することを目的とする。 [0012] 本発明は、上記目的を達成するために、 Multi-beam microstructures using different wavelength laser light that can give nano-level three-dimensional spatial selectivity by using a reaction promoting laser light having a wavelength different from that of the curing reaction inducing laser light An object is to provide an optical modeling method and apparatus. In order to achieve the above object, the present invention provides
〔1〕異波長レーザー光を用いた多光束微小構造物光造形方法において、硬化反 応誘起用レーザー光を光硬化性榭脂中に照射し、別の波長の反応促進用レーザー 光を前記硬化反応誘起用レーザー光に重ねて前記光硬化性榭脂中に照射すること により、両レーザー光の重なった集光スポット近傍でのみ光硬化反応を誘起する。  [1] In a multi-beam microstructure optical modeling method using laser beams of different wavelengths, a curing reaction-inducing laser beam is irradiated into a photocurable resin, and a laser beam for promoting a reaction at a different wavelength is cured. By irradiating the photocurable resin in superposition with the laser beam for inducing reaction, a photocuring reaction is induced only in the vicinity of the focused spot where the two laser beams overlap.
[0013] 〔2〕上記〔1〕記載の異波長レーザー光を用いた多光束微小構造物光造形方法に ぉ 、て、前記硬化反応誘起用レーザー光は前記光硬化性榭脂に吸収のあるレーザ 一光であって、かつ極めて弱い光強度を有するものであり、前記反応促進用レーザ 一光は前記光硬化性榭脂が吸収しない別の波長のレーザー光であることを特徴とす る。  [2] In the multi-beam microstructure optical modeling method using the different wavelength laser beam described in [1] above, the curing reaction-inducing laser beam is absorbed in the photocurable resin. It is characterized by being one laser beam and having an extremely weak light intensity, and the one reaction promoting laser beam is a laser beam having another wavelength that is not absorbed by the photocurable resin.
[0014] 〔3〕上記〔1〕又は〔2〕記載の異波長レーザー光を用いた多光束微小構造物光造形 方法にお 、て、ナノレベルの 3次元空間選択性を持たせることを特徴とする。  [0014] [3] The multi-beam microstructure optical modeling method using the different wavelength laser beam described in [1] or [2] is characterized by having nano-level three-dimensional spatial selectivity. And
[0015] 〔4〕上記〔3〕記載の異波長レーザー光を用いた多光束微小構造物光造形方法に おいて、前記硬化反応誘起用レーザー光の強度がほぼ 0. 038-0. 076 Wであ る。  [4] In the multi-beam microstructure optical modeling method using the different wavelength laser beam described in [3] above, the intensity of the curing reaction-inducing laser beam is approximately 0.038-0. It is.
[0016] 〔5〕上記〔3〕記載の異波長レーザー光を用いた多光束微小構造物光造形方法に おいて、前記反応促進用レーザー光の波長がほぼ 1064nmである。  [5] In the multi-beam microstructure optical modeling method using the different wavelength laser beam described in [3] above, the wavelength of the reaction promoting laser beam is approximately 1064 nm.
[0017] 〔6〕上記〔1〕から〔5〕の何れか一項記載の異波長レーザー光を用いた多光束微小 構造物光造形方法において、ガラス基板上に滴下される前記光硬化性榭脂に、前 記ガラス基板側から前記硬化反応誘起用レーザー光及び前記反応促進用レーザー 光を照射することを特徴とする。  [0017] [6] In the multi-beam microstructure optical modeling method using the different wavelength laser beam according to any one of [1] to [5], the photocurable mold dripped onto the glass substrate. The fat is irradiated with the curing reaction inducing laser light and the reaction promoting laser light from the glass substrate side.
[0018] 〔7〕異波長レーザー光を用いた多光束微小構造物光造形装置において、光硬化 反応が誘起されない程度の極めて弱い光強度の硬化反応誘起用レーザー光を照射 する手段と、前記硬化反応誘起用レーザー光を光硬化性榭脂中に照射した状態で 、前記硬化反応誘起用レーザー光と同一スポットに反応促進用レーザー光を照射す る手段と、前記硬化反応誘起用レーザー光の集光スポット近傍でのみ光硬化反応が 誘起される光硬化性榭脂を具備することを特徴とする。  [7] In the multi-beam microstructure optical modeling apparatus using a different wavelength laser beam, means for irradiating a curing reaction inducing laser beam having an extremely weak light intensity that does not induce a photocuring reaction, and the curing A means for irradiating a reaction promoting laser beam to the same spot as the curing reaction inducing laser light in a state where the reaction inducing laser light is irradiated in the photocurable resin, and a collection of the curing reaction inducing laser light. It is characterized by comprising a photocurable resin that induces a photocuring reaction only in the vicinity of the light spot.
[0019] 〔8〕上記〔7〕記載の異波長レーザー光を用いた多光束微小構造物光造形装置に おいて、前記硬化反応誘起用レーザー光がほぼ 0. 038-0. 076 /z Wの強度を有 することを特徴とする。 [8] In the multi-beam microstructure optical modeling apparatus using the different wavelength laser beam described in [7] above The curing reaction-inducing laser beam has an intensity of about 0.038-0.076 / z W.
[0020] 〔9〕上記〔7〕記載の異波長レーザー光を用いた多光束微小構造物光造形装置に おいて、前記反応促進用レーザー光がほぼ 1064nmの波長を有することを特徴とす る。  [9] In the multi-beam microstructure optical modeling apparatus using the different wavelength laser beam described in [7], the reaction promoting laser beam has a wavelength of approximately 1064 nm. .
[0021] 〔10〕上記〔7〕記載の異波長レーザー光を用いた多光束微小構造物光造形装置に おいて、前記光硬化性榭脂がガラス基板上に滴下される光硬化性榭脂であり、前記 ガラス基板側から前記硬化反応誘起用レーザー光及び前記反応促進用レーザー光 を照射するようにしたことを特徴とする。  [10] In the multi-beam microstructure optical modeling apparatus using the different wavelength laser beam described in [7] above, the photocurable resin in which the photocurable resin is dropped on a glass substrate The curing reaction inducing laser light and the reaction promoting laser light are irradiated from the glass substrate side.
[0022] 〔11〕上記〔7〕から〔10〕の何れか一項記載の異波長レーザー光を用いた多光束微 小構造物光造形装置にお!、て、前記光硬化性榭脂がアクリル系光硬化性榭脂であ ることを特徴とする。  [0022] [11] In the multi-beam micro structure stereolithography apparatus using the different wavelength laser beam according to any one of [7] to [10], the photocurable resin is It is an acrylic photocurable resin.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明の第 1実施例を示す二光束マイクロ光造形法を用いた多光束微小構造 物光造形装置の要部構成図である。  FIG. 1 is a block diagram of a main part of a multi-beam micro structure object stereolithography apparatus using a two-beam micro-stereolithography method showing a first embodiment of the present invention.
[図 2]本発明の第 1実施例を示す二光束マイクロ光造形法により形成した榭脂のライ ンパターンを示す図である。  FIG. 2 is a diagram showing a resin line pattern formed by the two-beam micro-stereolithography method according to the first embodiment of the present invention.
[図 3]本発明の第 2実施例を示す二光束マイクロ光造形法を用いた多光束微小構造 物光造形装置のシステム構成図である。  FIG. 3 is a system configuration diagram of a multi-beam micro structure object stereolithography apparatus using a two-beam micro-stereolithography method showing a second embodiment of the present invention.
[図 4]本発明の第 2実施例を示すガラス基板上でスポット硬化させた光硬化性榭脂の 走査型電子顕微鏡像を示す図である。  FIG. 4 is a view showing a scanning electron microscope image of a photocurable resin that has been spot-cured on a glass substrate according to a second embodiment of the present invention.
[図 5]本発明で作製した柱状のマイクロ構造物を示す図である。  FIG. 5 is a diagram showing a columnar microstructure manufactured according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 本発明によれば、光硬化反応が誘起されな!、程度の極めて弱!、光強度で硬化反 応誘起用レーザー光を榭脂中に照射した状態で、同一スポットに反応促進用レーザ 一光を重ねて照射すると硬化反応誘起用レーザー光の集光スポット近傍でのみ光硬 化反応を起こすことができ、ナノレベルの 3次元空間選択性を持たせることができる。  [0024] According to the present invention, the photocuring reaction is not induced !, extremely weak !, for accelerating the reaction to the same spot in a state where the curing reaction-inducing laser light is irradiated into the resin at the light intensity. When a single laser beam is irradiated, a photo-curing reaction can occur only in the vicinity of the condensing spot of the curing reaction-inducing laser beam, and nano-level three-dimensional spatial selectivity can be achieved.
[0025] 以下、本発明の実施の形態について詳細に説明する。 実施例 1 Hereinafter, embodiments of the present invention will be described in detail. Example 1
[0026] 図 1は本発明の第 1実施例を示す二光束マイクロ光造形法を用いた多光束微小構 造物光造形装置の要部構成図、図 2はその二光束マイクロ光造形法により形成した 榭脂のラインパターンを示す図である。  [0026] FIG. 1 is a configuration diagram of the main part of a multi-beam micro-structure stereolithography apparatus using a two-beam micro-stereolithography according to the first embodiment of the present invention, and FIG. It is a figure which shows the line pattern of the made resin.
[0027] 図 1において、 1はガラス基板、 2はステージ、 3は対物レンズ (40倍、 NA:0. 9)、 4 は硬化反応誘起用紫外レーザー光 (点線)、 5は反応促進用近赤外レーザー光 (実 線)、 6は光硬化性榭脂である。  [0027] In FIG. 1, 1 is a glass substrate, 2 is a stage, 3 is an objective lens (40 ×, NA: 0.9), 4 is an ultraviolet laser beam for inducing curing reaction (dotted line), and 5 is a near reaction promoting accelerator. Infrared laser light (solid line), 6 is a photocurable resin.
[0028] そこで、ガラス基板 1と光硬化性榭脂 6との界面に対物レンズ 3で硬化反応誘起用 紫外レーザー光 4を集光し、ステージ 2をスキャンさせつつ、硬化反応誘起用紫外レ 一ザ一光 4と同一点に集光した反応促進用近赤外レーザー光 5を ONZOFFさせる 。ここで、光硬化性榭脂 6は、例えば、アクリル系光硬化性榭脂 CFSR株式会社製 KC 1156A)である。そして、硬化反応誘起用レーザー光 4は光硬化性榭脂 6に吸収の あるレーザー光であって、かつ極めて弱い光強度を有するものであり、反応促進用レ 一ザ一光 5は光硬化性榭脂 6が吸収しない別の波長のレーザー光である。  [0028] Therefore, the curing reaction-inducing ultraviolet laser beam 4 is condensed by the objective lens 3 at the interface between the glass substrate 1 and the photocurable resin 6, and the stage 2 is scanned, while the curing reaction-inducing ultraviolet laser beam is scanned. Turn on and off the near-infrared laser beam 5 for reaction promotion that is focused at the same point as The Ikko 4 Here, the photocurable resin 6 is, for example, an acrylic photocurable resin CFC KC 1156A). The curing reaction inducing laser beam 4 is a laser beam that is absorbed by the photocurable resin 6 and has an extremely weak light intensity. The reaction promoting laser beam 5 is a photocurable resin. This is a laser beam of another wavelength that is not absorbed by the resin 6.
[0029] そこで、反応促進用近赤外レーザー光 5と硬化反応誘起用紫外レーザー光 4がとも に照射された場合にのみ、図 2に示すように、光硬化反応 (榭脂のラインパターン 7) が起こっていることが確認できる。ここでは、硬化反応誘起用紫外レーザー光 4のみ を照射した場合に光硬化反応が起こらないことを示しているが、反応促進用近赤外 レーザー光 5のみの照射でも光硬化反応は起こらない。  Therefore, as shown in FIG. 2, only when the near-infrared laser beam 5 for promoting the reaction and the ultraviolet laser beam 4 for inducing the curing reaction are irradiated, the photocuring reaction (resin line pattern 7 ) Can be confirmed. Here, it is shown that the photo-curing reaction does not occur when only the curing reaction-inducing ultraviolet laser light 4 is irradiated, but the photo-curing reaction does not occur even when only the reaction-promoting near-infrared laser light 5 is irradiated.
[0030] このことは、二本の異波長のレーザー光を用いることで空間選択的な光重合反応 誘起が可能であることを示して 、る。  [0030] This indicates that a spatially selective photopolymerization reaction can be induced by using two laser beams having different wavelengths.
実施例 2  Example 2
[0031] 図 3は本発明の第 2実施例を示す二光束マイクロ光造形法を用いた多光束微小構 造物光造形装置のシステム構成図、図 4は本発明の第 2実施例を示すガラス基板上 でスポット硬化させた光硬化性榭脂の走査型電子顕微鏡像を示す図である。  FIG. 3 is a system configuration diagram of a multi-beam micro structure stereolithography apparatus using a two-beam micro stereo modeling method according to a second embodiment of the present invention, and FIG. 4 is a glass illustrating a second embodiment of the present invention. It is a figure which shows the scanning electron microscope image of the photocurable resin which was spot-cured on the board | substrate.
[0032] 図 3において、 11は硬化反応誘起用紫外レーザー光源、 12, 13, 16, 18, 19は 反射鏡、 14, 15, 20, 21, 25はレンズ、 17は反応促進用近赤外レーザー光源、 22 , 23はダイクロイツクミラー(Dichloic mirror)、 24は対物レンズ(100倍、 NA: 1. 3 5)、 26は CCDカメラ、 27はモニター装置、 31はカバーガラス、 32は光硬化性榭脂、 33はステージである。 In FIG. 3, 11 is an ultraviolet laser light source for inducing curing reaction, 12, 13, 16, 18, 19 are reflecting mirrors, 14, 15, 20, 21, 25 are lenses, and 17 is a near infrared for promoting reaction. Laser light source, 22 and 23 are dichroic mirrors, 24 is an objective lens (100x, NA: 1.3) 5), 26 is a CCD camera, 27 is a monitor, 31 is a cover glass, 32 is a photocurable resin, and 33 is a stage.
[0033] この実施例によれば、カバーガラス 31上に滴下した光硬化性榭脂 32に対物レンズ 24により集光した紫外レーザーパルス(波長 355nm,パルス幅 0. 5ns) (硬化反応 誘起用レーザー光)(点線)を照射すると、図 4 (a)に示すように、光硬化反応の閾値 に達する光強度から、硬化反応誘起用紫外レーザー光の集光位置で光硬化が起こ る。次に、硬化反応誘起用紫外レーザー光 (点線)と共に連続発振近赤外レーザー 光 (波長 1064nm) (反応促進用レーザー光)(実線)を同じく集光照射すると、図 4 (b )の左 3列に示されるように、硬化反応誘起用紫外レーザー光(点線)のみの照射で は光硬化反応が起こらないほど微弱な硬化反応誘起用紫外レーザー光強度におい ても、光硬化反応を誘起できた。このような閾値以下の強度による光硬化反応は硬化 反応誘起用紫外レーザー光単独、または反応促進用近赤外レーザー光単独の照射 では誘起されな ヽことが分力ゝつた。  [0033] According to this example, an ultraviolet laser pulse (wavelength 355 nm, pulse width 0.5 ns) focused on the photocurable resin 32 dropped on the cover glass 31 by the objective lens 24 (curing reaction induction laser) When light (dotted line) is irradiated, photocuring occurs at the condensing position of the curing reaction-inducing ultraviolet laser light from the light intensity that reaches the threshold value of the photocuring reaction, as shown in Fig. 4 (a). Next, when continuous irradiation near-infrared laser light (wavelength 1064nm) (reaction promoting laser light) (solid line) (solid line) is also focused and irradiated together with ultraviolet laser light for curing reaction induction (dotted line), the left 3 in Fig. 4 (b). As shown in the column, the photo-curing reaction could be induced even with the UV laser light intensity for curing reaction induction that was so weak that the photo-curing reaction did not occur when only the curing reaction-inducing ultraviolet laser light (dotted line) was irradiated. . It was found that the photo-curing reaction with the intensity below the threshold value was not induced by irradiation with the curing reaction-inducing ultraviolet laser beam alone or the reaction promoting near-infrared laser beam alone.
[0034] 上記したように、図 2および図 4から本発明により光重合反応に空間選択性を付与 できることが示された。  [0034] As described above, FIG. 2 and FIG. 4 show that the present invention can impart space selectivity to the photopolymerization reaction.
[0035] また、図 5は本発明で作製した柱状のマイクロ構造物を示す図であり、この図から明 らかなように、硬化反応誘起用紫外レーザー光と反応促進用近赤外レーザー光で作 製した柱状のマイクロ構造物 41は、硬化反応誘起用紫外レーザー光のみで作製し た柱状のマイクロ構造物 42に比べて水平方向、光軸方向への余剰成長が抑制され 、造形精度が格段に向上していることが確認できる。  FIG. 5 is a diagram showing a columnar microstructure manufactured according to the present invention. As is clear from this figure, a curing reaction-inducing ultraviolet laser beam and a reaction promoting near-infrared laser beam are used. The columnar microstructures 41 produced have a reduced level of excess growth in the horizontal and optical axis directions compared to the columnar microstructures 42 produced using only the curing reaction-inducing ultraviolet laser beam, and the molding accuracy is remarkably improved. It can be confirmed that there is an improvement.
[0036] 上記したように、本発明によれば、光硬化反応が誘起されな!、程度の極めて弱!、 光強度で紫外レーザー光 (硬化反応誘起用レーザー光)を光硬化性榭脂中に照射 した状態で、同一スポットに近赤外レーザー光 (反応促進用レーザー光)を重ねて照 射すると紫外レーザー光の集光スポット近傍でのみ光硬化反応を起こすことができる  [0036] As described above, according to the present invention, no photocuring reaction is induced !, extremely weak to the extent that ultraviolet laser light (a laser beam for inducing curing reaction) is applied at a light intensity in a photocurable resin. When the same spot is irradiated with a near-infrared laser beam (reaction promoting laser beam), the photocuring reaction can occur only in the vicinity of the focused spot of the ultraviolet laser beam.
[0037] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種々 の変形が可能であり、これらを本発明の範囲から排除するものではない。 It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0038] 本発明によれば、以下のような効果を奏することができる。 [0039] (1)水平方向、光軸方向への余剰成長が抑制され、微小構造物の造形精度を格 段に向上させることができる。 [0038] According to the present invention, the following effects can be obtained. [0039] (1) Surplus growth in the horizontal direction and the optical axis direction is suppressed, and the modeling accuracy of the microstructure can be significantly improved.
[0040] (2)ナノレベルの 3次元空間選択性を持たせることができる。 [0040] (2) Nano-level three-dimensional spatial selectivity can be provided.
産業上の利用可能性  Industrial applicability
[0041] 本発明の異波長レーザー光を用いた多光束微小構造物光造形方法及び装置は、 様々なマイクロデバイス(ケミカルチップ、バイオチップ、マイクロマシン等)の作製へ の利用が期待できる。 [0041] The multi-beam microstructure optical modeling method and apparatus using the different wavelength laser beam of the present invention can be expected to be used for manufacturing various micro devices (chemical chip, biochip, micromachine, etc.).

Claims

請求の範囲 The scope of the claims
[1] 硬化反応誘起用レーザー光を光硬化性榭脂中に照射し、別の波長の反応促進用 レーザー光を前記硬化反応誘起用レーザー光に重ねて前記光硬化性榭脂中に照 射することにより、両レーザー光の重なった集光スポット近傍でのみ光硬化反応を誘 起する異波長レーザー光を用いた多光束微小構造物光造形方法。  [1] A curing reaction-inducing laser beam is irradiated into the photocurable resin, and a reaction-promoting laser beam of another wavelength is superimposed on the curing reaction-inducing laser beam and irradiated into the photocurable resin. By doing so, a multi-beam microstructure optical modeling method using a different wavelength laser beam that induces a photocuring reaction only in the vicinity of the condensing spot where both laser beams overlap.
[2] 請求項 1記載の異波長レーザー光を用いた多光束微小構造物光造形方法にぉ 、 て、前記硬化反応誘起用レーザー光は前記光硬化性榭脂に吸収のあるレーザー光 であって、かつ極めて弱い光強度を有するものであり、前記反応促進用レーザー光 は前記光硬化性榭脂が吸収しない別の波長のレーザー光であることを特徴とする異 波長レーザー光を用いた多光束微小構造物光造形方法。  [2] In the multi-beam microstructure optical modeling method using the different wavelength laser beam according to claim 1, the curing reaction inducing laser beam is a laser beam absorbed in the photocurable resin. The reaction accelerating laser beam is a laser beam having a different wavelength that is not absorbed by the photocurable resin. Light beam microstructure optical modeling method.
[3] 請求項 1又は 2記載の異波長レーザー光を用いた多光束微小構造物光造形方法 にお 、て、ナノレベルの 3次元空間選択性を持たせることを特徴とする異波長レーザ 一光を用いた多光束微小構造物光造形方法。  [3] The multi-wavelength microstructure optical modeling method using the different wavelength laser beam according to claim 1 or 2, wherein the different wavelength laser has a nano-level three-dimensional spatial selectivity. Multi-beam micro structure stereolithography using light.
[4] 請求項 3記載の異波長レーザー光を用いた多光束微小構造物光造形方法にぉ 、 て、前記硬化反応誘起用レーザー光の強度がほぼ 0. 038〜0. 076 Wである異 波長レーザー光を用いた多光束微小構造物光造形方法。  [4] In the multi-beam microstructure optical modeling method using the different wavelength laser beam according to claim 3, the intensity of the curing reaction inducing laser beam is approximately 0.038 to 0.076 W. Multi-beam microstructure optical modeling method using wavelength laser light.
[5] 請求項 3記載の異波長レーザー光を用いた多光束微小構造物光造形方法にぉ 、 て、前記反応促進用レーザー光の波長がほぼ 1064nmである異波長レーザー光を 用いた多光束微小構造物光造形方法。  [5] The multi-beam micro structure optical modeling method using the different wavelength laser beam according to claim 3, wherein the reaction promoting laser beam has a wavelength of approximately 1064 nm. Microstructure stereolithography method.
[6] 請求項 1から 5の何れか一項記載の異波長レーザー光を用いた多光束微小構造物 光造形方法において、ガラス基板上に滴下される前記光硬化性榭脂に、前記ガラス 基板側から前記硬化反応誘起用レーザー光及び前記反応促進用レーザー光を照 射することを特徴とする異波長レーザー光を用いた多光束微小構造物光造形装置。  [6] The multi-beam micro structure using the different wavelength laser beam according to any one of claims 1 to 5, wherein the photocurable resin dripped on the glass substrate is used as the glass substrate. A multi-beam microstructure optical modeling apparatus using a different wavelength laser beam, wherein the laser beam for inducing curing reaction and the laser beam for promoting reaction are irradiated from the side.
[7] (a)光硬化反応が誘起されな!ヽ程度の極めて弱!、光強度の硬化反応誘起用レーザ 一光を照射する手段と、  [7] (a) No photo-curing reaction is induced! Extremely weak!
(b)前記硬化反応誘起用レーザー光を光硬化性榭脂中に照射した状態で、前記硬 化反応誘起用レーザー光と同一スポットに反応促進用レーザー光を照射する手段と (c)前記硬化反応誘起用レーザー光の集光スポット近傍でのみ光硬化反応が誘起さ れる光硬化性榭脂を具備することを特徴とする異波長レーザー光を用いた多光束微 小構造物光造形装置。 (b) means for irradiating the same spot as the curing reaction inducing laser light with the reaction promoting laser light in a state where the curing reaction inducing laser light is irradiated in the photocurable resin; (c) a multi-beam microscopic structure using a different wavelength laser beam, characterized by comprising a photo-curable resin capable of inducing a photo-curing reaction only in the vicinity of the condensing spot of the curing reaction-inducing laser beam. Stereolithography equipment.
[8] 請求項 7記載の異波長レーザー光を用いた多光束微小構造物光造形装置にぉ 、 て、前記硬化反応誘起用レーザー光がほぼ 0. 038〜0. 076 Wの強度を有するこ とを特徴とする異波長レーザー光を用いた多光束微小構造物光造形装置。  [8] In the multi-beam microstructure optical modeling apparatus using the different wavelength laser beam according to claim 7, the curing reaction inducing laser beam has an intensity of approximately 0.038 to 0.076 W. A multi-beam microstructure optical modeling apparatus using different wavelength laser light characterized by:
[9] 請求項 7記載の異波長レーザー光を用いた多光束微小構造物光造形装置におい て、前記反応促進用レーザー光がほぼ 1064nmの波長を有することを特徴とする異 波長レーザー光を用いた多光束微小構造物光造形装置。  [9] In the multi-beam microstructure optical modeling apparatus using the different wavelength laser beam according to [7], the reaction promoting laser beam has a wavelength of approximately 1064 nm. Multi-beam micro structure stereolithography equipment.
[10] 請求項 7記載の異波長レーザー光を用いた多光束微小構造物光造形装置におい て、前記光硬化性榭脂がガラス基板上に滴下される光硬化性榭脂であり、前記ガラ ス基板側から前記硬化反応誘起用レーザー光及び前記反応促進用レーザー光を 照射するようにしたことを特徴とする異波長レーザー光を用いた多光束微小構造物 光造形装置。  [10] In the multi-beam microstructure optical modeling apparatus using the different wavelength laser beam according to [7], the photocurable resin is a photocurable resin dropped on a glass substrate, and the glass A multi-beam fine structure optical modeling apparatus using a different wavelength laser beam, wherein the curing reaction inducing laser beam and the reaction promoting laser beam are irradiated from the side of the substrate.
[11] 請求項 7から 10の何れか一項記載の異波長レーザー光を用いた多光束微小構造 物光造形装置にぉ 、て、前記光硬化性榭脂がアクリル系光硬化性榭脂であることを 特徴とする異波長レーザー光を用いた多光束微小構造物光造形装置。  [11] In the multi-beam microstructure object stereolithography apparatus using the different wavelength laser beam according to any one of claims 7 to 10, the photocurable resin is an acrylic photocurable resin. A multi-beam microstructure optical modeling apparatus using different wavelength laser light, characterized by
PCT/JP2005/007012 2005-04-11 2005-04-11 Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength WO2006109355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007012 WO2006109355A1 (en) 2005-04-11 2005-04-11 Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007012 WO2006109355A1 (en) 2005-04-11 2005-04-11 Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength

Publications (1)

Publication Number Publication Date
WO2006109355A1 true WO2006109355A1 (en) 2006-10-19

Family

ID=37086653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007012 WO2006109355A1 (en) 2005-04-11 2005-04-11 Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength

Country Status (1)

Country Link
WO (1) WO2006109355A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141521A1 (en) * 2010-05-11 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing three-dimensional structures
CN102649314A (en) * 2011-02-25 2012-08-29 光刻设备有限公司 Method and device for location-triggered application of an intensity pattern from electromagnetic radiation to a photosensitive substance and applications of same
WO2020126154A1 (en) * 2018-12-17 2020-06-25 Karlsruher Institut für Technologie Parallelised 3d lithography using muti-beam, multi-colour light-induced polymerisation
US11179926B2 (en) 2016-12-15 2021-11-23 General Electric Company Hybridized light sources
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
CN117330181A (en) * 2023-12-01 2024-01-02 中国工程物理研究院应用电子学研究所 Multi-channel multifunctional laser beam quality detection system based on super surface
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355224A (en) * 1989-07-24 1991-03-11 Matsushita Electric Works Ltd Forming method of three dimensional shape
JPH0491928A (en) * 1990-08-06 1992-03-25 Fujitsu Ltd Forming method of solid-shaped article
JP2003001599A (en) * 2001-06-25 2003-01-08 Japan Science & Technology Corp Manufacture method of three-dimensional minute structure and apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355224A (en) * 1989-07-24 1991-03-11 Matsushita Electric Works Ltd Forming method of three dimensional shape
JPH0491928A (en) * 1990-08-06 1992-03-25 Fujitsu Ltd Forming method of solid-shaped article
JP2003001599A (en) * 2001-06-25 2003-01-08 Japan Science & Technology Corp Manufacture method of three-dimensional minute structure and apparatus thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAGAWA T. AND MARUYA Y.: "Sekiso Zokei System Sanjigen Copy Gijutsu no Shintenkai", 1996, XP003005254 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141521A1 (en) * 2010-05-11 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing three-dimensional structures
US20130056910A1 (en) * 2010-05-11 2013-03-07 Fraunhofer-Gesellschaft Zur Foederung Der Angewandten Forschung E. V. Device and method for producing three-dimensional structures
EP3225383A1 (en) * 2010-05-11 2017-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing three-dimensional structures
CN102649314A (en) * 2011-02-25 2012-08-29 光刻设备有限公司 Method and device for location-triggered application of an intensity pattern from electromagnetic radiation to a photosensitive substance and applications of same
CN102649314B (en) * 2011-02-25 2016-01-20 光刻设备有限公司 For method and apparatus and the application thereof of the intensity pattern of input electromagnetic radiation spatially resolved in photoactive substance
US11179926B2 (en) 2016-12-15 2021-11-23 General Electric Company Hybridized light sources
WO2020126154A1 (en) * 2018-12-17 2020-06-25 Karlsruher Institut für Technologie Parallelised 3d lithography using muti-beam, multi-colour light-induced polymerisation
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
CN117330181A (en) * 2023-12-01 2024-01-02 中国工程物理研究院应用电子学研究所 Multi-channel multifunctional laser beam quality detection system based on super surface
CN117330181B (en) * 2023-12-01 2024-02-27 中国工程物理研究院应用电子学研究所 Multi-channel multifunctional laser beam quality detection system based on super surface

Similar Documents

Publication Publication Date Title
WO2006109355A1 (en) Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength
Skliutas et al. Polymerization mechanisms initiated by spatio-temporally confined light
Malinauskas et al. Ultrafast laser processing of materials: from science to industry
Duocastella et al. Bessel and annular beams for materials processing
US20120098164A1 (en) Two-photon stereolithography using photocurable compositions
US20220234282A1 (en) Continuous and scalable 3d nanoprinting
Naessens et al. Flexible fabrication of microlenses in polymer layers with excimer laser ablation
JP2008126283A (en) Manufacturing method of microstructure and exposure method
JP2010510089A (en) Polymer object optical manufacturing process
JP4599553B2 (en) Laser processing method and apparatus
JP2007527326A (en) Ultrafast laser direct writing method to modify existing submicron scale microstructures
TWI260267B (en) Multibeam stereolithography and device for microstructure using different wavelength laser beam
Zhou et al. Recent progress of laser micro-and nano manufacturing
JP2001158050A (en) Two-photon optical micro-shaping method, apparatus adapted thereto, part molded by two-photon optical micro-shaping method, and movable mechanism
Jipa et al. Femtosecond laser lithography in organic and non-organic materials
US8585390B2 (en) Mold making system and mold making method
Skliutas et al. Photopolymerization mechanisms at a spatio-temporally ultra-confined light
Zhou et al. Enhanced photonic nanojets for submicron patterning
KR100538467B1 (en) Manufacturing process for fabrication of 3-dimensional ultra-micro metal parts
Jonušauskas et al. Femtosecond laser-assisted etching: making arbitrary shaped 3D glass micro-structures
KR102222245B1 (en) Micropatterning method of silicone-based elastomers, micropatterning apparatus, and micropatterning chip
KR100560084B1 (en) Ultra-micro mold and mask manufacturing method
Stender et al. Industrial-Scale Fabrication of Optical Components Using High-Precision 3D Printing: Aspects-Applications-Perspectives
JP2005107451A (en) Method of manufacturing three-dimensional structure
KR100573927B1 (en) Direct fabrication method of three-dimensional micro-scaled surfaces

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05728551

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5728551

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP