WO2015072296A1 - 電動機駆動装置および車両駆動システム - Google Patents

電動機駆動装置および車両駆動システム Download PDF

Info

Publication number
WO2015072296A1
WO2015072296A1 PCT/JP2014/078013 JP2014078013W WO2015072296A1 WO 2015072296 A1 WO2015072296 A1 WO 2015072296A1 JP 2014078013 W JP2014078013 W JP 2014078013W WO 2015072296 A1 WO2015072296 A1 WO 2015072296A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transmission
electric motor
capacitor
value
Prior art date
Application number
PCT/JP2014/078013
Other languages
English (en)
French (fr)
Inventor
慎吾 西口
宮崎 英樹
和人 大山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015547709A priority Critical patent/JP6324404B2/ja
Publication of WO2015072296A1 publication Critical patent/WO2015072296A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric motor drive device used in a vehicle drive system that transmits an output of an electric motor to drive wheels via a transmission, and a vehicle drive system including the electric motor drive device.
  • motor drive devices have been proposed in which an upper limit value of the motor rotation speed is set based on the motor rotation speed, and the motor rotation speed is controlled so as not to exceed the upper limit value (for example, , See Patent Document 1).
  • the motor rotation speed is controlled so as not to exceed the upper limit value (for example, , See Patent Document 1).
  • this apparatus by controlling the motor rotation speed, it is possible to prevent an electric load exceeding the breakdown tolerance from being applied to the motor drive circuit due to an induced voltage accompanying the motor rotation.
  • the inverter mounted on the vehicle drive system is required to be downsized.
  • the arrangement space is limited, so that downsizing is necessary.
  • the volume of the smoothing capacitor provided in the inverter is reduced in order to reduce the size and cost of the inverter, the capacity and breakdown voltage of the smoothing capacitor are also reduced. Since the capacity is reduced, the voltage smoothing function is also reduced, and the voltage fluctuation of the smoothing capacitor is increased. If the voltage fluctuation is large, the rotational speed control of the motor becomes unstable, and the rotational speed may not be set below the required upper limit. In this case, the induced voltage of the motor may exceed the capacitor withstand voltage. It was.
  • An electric motor drive device is a vehicle drive system including an electric motor driven by battery power, a transmission that transmits an output of the electric motor to driving wheels, and a shift control unit that controls a transmission gear ratio of the transmission.
  • An electric motor driving device to be mounted, a capacitor for smoothing a voltage of a battery, an inverter to which a voltage smoothed by the capacitor is applied and driving and controlling the electric motor, and a voltage detection for detecting the voltage of the capacitor
  • a voltage fluctuation value calculation unit that calculates a fluctuation value of the voltage detected by the voltage detection unit, and the voltage fluctuation value calculated by the voltage fluctuation value calculation unit is equal to or greater than a predetermined value.
  • the transmission ratio of the transmission is controlled so as to reduce the rotational speed.
  • the transmission is controlled to a gear ratio such that an induced voltage of the electric motor is less than a withstand voltage value of the capacitor.
  • FIG. 1 is a diagram showing a schematic configuration of the vehicle drive system 150.
  • FIG. 2 is a diagram for explaining a motor applied voltage and a capacitor voltage.
  • FIG. 3 is a flowchart illustrating an example of transmission control according to the present embodiment.
  • FIG. 4 is a diagram showing the relationship between the motor rotation speed and the induced voltage.
  • FIG. 5 is an explanatory diagram of the second gear ratio Gr2.
  • FIG. 6 is a diagram showing the relationship between the capacitor temperature and the capacitor breakdown voltage.
  • FIG. 7 is a flowchart for explaining the control in consideration of the gear ratio and the carrier frequency.
  • FIG. 1 is a diagram showing an embodiment of the present invention, and is a diagram showing a schematic configuration of a vehicle drive system 150.
  • the vehicle drive system 150 includes a motor 55, a clutch 50, a transmission 30, an inverter 70, a battery 120, a smoothing capacitor 60, a power transistor unit 80, a transmission controller 140, and a controller 130. Prepare.
  • the motor 55 for example, a synchronous generator motor is used.
  • the motor 55 is driven by the inverter 70 using the electric power of the battery 120.
  • the battery 120 is composed of, for example, a lithium ion secondary battery.
  • the motor 55 is used as a generator, the battery 120 is charged with the electric power generated by the motor 55.
  • the inverter 70 includes a smoothing capacitor 60 for smoothing the voltage from the battery 120, a power transistor unit 80 driven by a switching control signal, and a voltage sensor 110 for detecting the voltage Vc of the smoothing capacitor 60.
  • the clutch 50 connects and disconnects the engine 40 and the motor 55 connected to the transmission 30.
  • the transmission 30 is connected to the drive wheels 10 a and 10 b via the differential gear 20.
  • the transmission 30 is, for example, a continuously variable automatic transmission, and is controlled by the transmission controller 140 to change the speed between the rotation shaft of the motor 55 and the input shaft to the differential gear 20 (hereinafter referred to as a drive shaft). Transmits power with a ratio change.
  • the controller 130 includes an accelerator opening Ac from an accelerator opening sensor 160 that detects the amount of accelerator depression by the driver, a vehicle speed Vsp from the vehicle speed sensor 100, and a rotational position detection sensor 56 that detects the rotational position of the rotor of the motor 55.
  • a phase current flowing through the motor 55 detected by a current sensor (not shown), a capacitor voltage Vc from the voltage sensor 110, and the like, and the inverter 70 and the transmission controller 140 are controlled based on the input information. .
  • the controller 130 inputs a PWM (pulse width modulation) signal for switching control of the switching element of the power transistor unit 80 to the inverter 70.
  • PWM pulse width modulation
  • FIG. 2A shows a motor applied voltage for one phase, which is a rectangular wave voltage whose duty changes based on the PWM signal.
  • the capacitor voltage Vc detected by the voltage sensor 110 is pulsated as shown in FIG. Occurs.
  • the voltage sensor 110 that measures the capacitor voltage Vc is preferably disposed between the power transistor unit 80 and the smoothing capacitor 60 from the viewpoint of voltage pulsation detection.
  • the width (ripple value) Vpk-pk of the voltage pulsation is inversely proportional to the capacitance of the smoothing capacitor 60 and the carrier frequency of the PWM signal as shown in Expression (1).
  • the capacity and withstand voltage of the smoothing capacitor 60 are also reduced. That is, when the size of the capacitor is reduced, the capacitance of the capacitor is inevitably reduced. As a result, the width (ripple value) of the voltage pulsation of the capacitor voltage Vc is increased. As can be seen from the equation (1), for example, when the capacitor capacity is halved, the ripple value is doubled.
  • the ripple value of the capacitor voltage (hereinafter referred to as a voltage fluctuation value) increases, the influence also appears in the motor applied voltage shown in FIG. That is, the voltage fluctuation value of the capacitor voltage acts as a disturbance on the motor control system, and if the voltage fluctuation value is large, the motor control system becomes unstable.
  • the voltage fluctuation value of the capacitor voltage is monitored, and if the value exceeds a predetermined value, the gear ratio of the transmission 30 is changed to lower the motor rotation speed, and the motor control is unstable. Even so, the induced voltage does not exceed the capacitor breakdown voltage.
  • the above-mentioned predetermined value is the upper limit value of the voltage fluctuation value at which motor control can be performed stably, and is determined by experiments, simulations, or the like. If the voltage fluctuation value is greater than or equal to this predetermined value, the possibility of motor control instability increases.
  • FIG. 3 is a flowchart for explaining an example of transmission control in the present embodiment.
  • the process shown in FIG. 3 is executed by the controller 130 of FIG.
  • step S100 of FIG. 3 it is determined whether or not the voltage fluctuation value is less than a predetermined value. Specifically, the voltage of the positive line between the power transistor unit 80 and the smoothing capacitor 60 is measured by the voltage sensor 110, the measured value is taken into the controller 130, and the voltage fluctuation value is obtained by the controller 130.
  • step S100 When it is determined in step S100 that the value is less than the predetermined value (Yes), the process proceeds to step S110, and a gear ratio command for setting the first gear ratio is output to the transmission controller 140.
  • the first gear ratio since the voltage fluctuation value is less than the predetermined value, the first gear ratio corresponds to the case of general normal control. The procedure for setting the first gear ratio will be described later.
  • step S120 if it is determined in step S100 that the value is equal to or greater than the predetermined value (No), the process proceeds to step S120, and a gear ratio command for setting the second gear ratio is output to the transmission controller 140.
  • the motor rotation speed is suppressed, so that the motor control system becomes unstable and control for suppressing the induced voltage is temporarily disabled. Even in this case, it is possible to reliably prevent the element (smoothing capacitor 60 or the switching element) from being destroyed by the induced voltage accompanying the motor rotation.
  • the controller 130 stores in advance a shift map that is a relationship among the vehicle speed Vsp, the drive torque request Tp, and the gear ratio.
  • the controller 130 obtains a target speed ratio Gr corresponding to the vehicle speed Vsp and the drive torque request Tp using the acquired vehicle speed Vsp, the calculated drive torque request Tp, and a previously stored speed change map, and the target speed ratio.
  • Gr is output to the transmission controller 140.
  • the transmission controller 140 controls the transmission 30 so that the transmission gear ratio of the transmission 30 becomes the target transmission gear ratio Gr (corresponding to the first transmission gear ratio).
  • the controller 130 calculates a value obtained by dividing the drive torque request Tp by the target gear ratio Gr as a torque command Tm to be output from the motor 55. Then, the controller 130 outputs, to the inverter 70, a PWM signal that allows the motor 55 to output a torque having the same value as the torque command Tm, as a PWM signal for controlling the switching of the power transistor unit 80.
  • a target voltage command Vm to be applied to the motor 55 is set based on the torque command Tm, the rotation speed of the motor 55, the capacitor voltage Vc from the voltage sensor 110, and the like.
  • the target voltage command Vm is converted to a pulse width modulation signal by comparing with a triangular wave carrier having a predetermined carrier frequency, and a switching element (not shown) of the power transistor unit 80 is on / off controlled.
  • the rotational speed of the motor 55 is calculated based on rotational position information from the rotational position detection sensor 56.
  • the target speed ratio Gr in the above-described normal drive control is referred to as a first speed ratio Gr1.
  • the induced voltage that accompanies the motor rotation is proportional to the motor rotation speed as shown in FIG. Therefore, it is necessary to suppress the motor rotation speed to less than Nlmt so that the induced voltage is less than the withstand voltage value of the smoothing capacitor 60.
  • FIG. 5 is a diagram for explaining the second gear ratio Gr2, in which the horizontal axis represents the vehicle speed and the vertical axis represents the motor rotation speed.
  • the broken line L1 indicates the relationship between the vehicle speed and the motor rotation speed when the speed ratio is Gr2lo
  • the broken line L2 indicates the relationship between the vehicle speed and the motor rotation speed when the speed ratio is Gr2hi.
  • a solid line L3 indicates the relationship between the vehicle speed and the second speed ratio Gr2.
  • the second gear ratio Gr2 is set to a gear ratio Gr2lo when the vehicle speed is from 0 to the vehicle speed Vsplo, and is set to a gear ratio between Gr2lo and Gr2hi from the vehicle speed Vsplo to the maximum vehicle speed Vsphi.
  • the gear ratio Gr2lo is a gear ratio at which the motor rotational speed is Nlmt1 (value less than Nlmt) at the vehicle speed Vsplo
  • the gear ratio Gr2hi is a gear ratio at which the motor rotational speed is Nlmt1 at the maximum vehicle speed Vsphi.
  • the gear ratio is changed from Gr1 to Gr2lo.
  • the gear ratio is changed from Gr1 to a gear ratio between Gr2lo and Gr2hi.
  • the motor rotation speed becomes less than Nlmt1
  • the induced voltage can be prevented from exceeding the element breakdown voltage (capacitor breakdown voltage or switching element breakdown voltage).
  • the breakdown voltage of the switching element and the smoothing capacitor 60 is considered.
  • the smoothing capacitor 60 is downsized, the smaller the capacitor capacity, the lower the breakdown voltage. It is important to control so as not to exceed.
  • the inverter 70 is provided inside the casing of the transmission or on the outer surface of the transmission, since the inverter 70 is required to be downsized, a smaller capacitor than the conventional capacitor may be used for the smoothing capacitor 60.
  • the ripple value increases in inverse proportion to the capacitor capacity. Therefore, when the smoothing capacitor 60 is downsized, the motor control system is likely to become unstable compared to the conventional case. .
  • the capacitor withstand voltage varies depending on the capacitor temperature. Generally, when the capacitor temperature is high, the capacitor withstand voltage is low. Since a switching element (not shown) is ON / OFF controlled by the PWM signal input to the power transistor unit 80, a pulsed current flows through the smoothing capacitor 60. This current causes current ripple and causes the capacitor temperature to rise. Therefore, by increasing the carrier frequency for generating the PWM signal, the current ripple can be reduced, thereby suppressing an increase in capacitor temperature (that is, a decrease in capacitor withstand voltage).
  • FIG. 7 is a flowchart when the control of the carrier frequency is added to the control shown in FIG.
  • step S200 the capacitor voltage from the voltage sensor 110 is measured, and it is determined whether or not the voltage fluctuation value is less than a predetermined value. If it is determined in step S200 that the value is less than the predetermined value, the process proceeds to step S110, and if it is determined that the value is equal to or greater than the predetermined value, the process proceeds to step S120.
  • Steps S110 and S120 are the same as steps S110 and S120 in FIG. That is, in step S110, the first speed ratio Gr1 is output as the speed ratio command, and in step S120, the second speed ratio Gr2 is output as the speed ratio command.
  • step S220 a process of changing the carrier frequency to a frequency f1 higher than the normal carrier frequency f0 is performed, and this control flow is terminated.
  • the frequency f1 is set in advance.
  • step S210 processing for reducing the carrier frequency is performed, and this control flow is terminated.
  • f0 is maintained when the current carrier frequency is the normal carrier frequency f0, and the carrier frequency is returned to the normal carrier frequency f0 when the current frequency is f1.
  • the carrier frequency changing process As shown in FIG. 6, when the voltage fluctuation value of the capacitor voltage exceeds a predetermined value, the carrier frequency is increased and the rise in the capacitor temperature is suppressed. As a result, it is possible to suppress a decrease in the capacitor withstand voltage value due to a temperature rise, and it is possible to reliably suppress the smoothing capacitor 60 from being destroyed by the induced voltage accompanying the motor rotation.
  • the motor 55 driven by the electric power of the battery 120, the transmission 30 that transmits the output of the motor 55 to the drive wheels 10a and 10b, and the gear ratio of the transmission 30 are controlled.
  • an electric motor drive device mounted on a vehicle drive system 150 including a transmission controller 140 a smoothing capacitor 60 that smoothes the voltage of the battery 120 and a voltage smoothed by the smoothing capacitor 60 are applied to drive the motor 55.
  • the controller 130 calculates the calculated voltage fluctuation value.
  • transmission 30 is controlled to a gear ratio Gr2 such that the induced voltage of motor 55 is less than the withstand voltage value of smoothing capacitor 60.
  • the smoothing capacitor 60 can be reliably prevented from being destroyed by the induced voltage by controlling the transmission 30 so that the induced voltage of the motor 55 is less than the withstand voltage value of the smoothing capacitor 60. it can.
  • the engine power is transmitted to the transmission via the clutch, and an electric motor is provided on the transmission side of the clutch, and the motor performs start, acceleration, and regenerative braking with the clutch disconnected.
  • the present invention has been described by way of an example of a possible vehicle drive system, but the present invention is not limited to the vehicle drive system having the above-described configuration, and is applied to various vehicle drive systems that transmit the output of an electric motor to drive wheels via a transmission. Can do.
  • the voltage fluctuation value (ripple value Vpk-pk) associated with the switching operation as shown in FIG. 2B has been described as an example of the voltage fluctuation value of the capacitor voltage.
  • the fluctuation is also subject to detection as the voltage fluctuation value described above. That is, the voltage sampling time for obtaining the voltage fluctuation value is set to a long time compared to the ripple cycle.
  • the controller 130 that calculates the gear ratio is configured to perform the first control in the normal control based on the accelerator opening detected by the accelerator opening sensor 160 and the vehicle speed detected by the vehicle speed sensor 100.
  • the gear ratio Gr1 is calculated and the voltage fluctuation value is equal to or greater than a predetermined value
  • the second gear ratio Gr2 at which the induced voltage of the motor 55 at the vehicle speed detected by the vehicle speed sensor 100 is less than the withstand voltage value of the smoothing capacitor 60 is calculated. calculate.
  • the transmission controller 140 controls the transmission 30 based on the first transmission ratio Gr1 and the second transmission ratio Gr2. As described above, when the voltage fluctuation value is equal to or larger than the predetermined value, the transmission 30 is controlled to the second speed ratio Gr2, so that the induced voltage is reliably prevented from exceeding the withstand voltage of the smoothing capacitor 60. Can do.
  • the controller 130 that controls the inverter 70 by pulse width modulation control performs the pulse width modulation control with the first carrier frequency f0 in the normal control, and the voltage fluctuation value is predetermined. If the value is greater than or equal to the value, the pulse width modulation control may be performed with the second carrier frequency f1 having a frequency higher than the first carrier frequency f0. By performing such control, a rise in temperature of the smoothing capacitor 60 can be suppressed and a decrease in breakdown voltage can be suppressed. As a result, it is possible to more reliably prevent the induced voltage from exceeding the withstand voltage of the smoothing capacitor 60.
  • the transmission 30 is a continuously variable automatic transmission, but may be a stepped type.
  • the present invention can be similarly applied to a vehicle drive system having a configuration in which a vehicle controller that controls the transmission controller 140 and a motor controller that controls the inverter are separately provided instead of the controller 130. it can. In that case, the processing of FIG. 3 and FIG. 7 described above may be performed by either the vehicle controller or the motor controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 モータ回転に伴う誘起電圧による平滑コンデンサの破壊を防止することができる電動機駆動装置の提供。 電動機駆動装置は、バッテリ120の電圧を平滑化する平滑コンデンサ60と、平滑コンデンサ60で平滑化された電圧が印加され、モータ55を駆動制御するインバータ70と、平滑コンデンサ60の電圧を検出する電圧センサ110と、電圧センサ110で検出された電圧の変動値を算出し、その電圧変動値が所定値以上である場合に、モータ55の回転速度を減少させるように変速機30の変速比を制御する変速制御部(コントローラ130および変速機用コントローラ140)とを備える。例えば、モータ55の誘起電圧が平滑コンデンサ60の耐圧値未満となるような変速比Gr2に制御する。

Description

電動機駆動装置および車両駆動システム
 本発明は、電動機の出力を変速機を介して駆動輪に伝達する車両駆動システムに用いられる電動機駆動装置、および、その電動機駆動装置を備える車両駆動システムに関する。
 従来、モータの駆動装置としては、モータの回転速度に基づいてモータの回転速度の上限値を設定し、この上限値を超えないようにモータの回転速度を制御するものが提案されている(例えば、特許文献1参照)。この装置では、そのようなモータ回転速度の制御を行うことで、モータ回転に伴う誘起電圧によりモータ駆動回路に破壊耐量を超えた電気的負荷が加わるのを防止している。
特開2005-45927号公報
 ところで、車両駆動システムに搭載されるインバータは小型化が要求される。例えば、変速機筐体内や筐体外面にインバータを設けるような構成の場合には、配置スペースが限られるため小型化が必要となる。しかしながら、インバータの小型化やコスト削減のために、インバータに設けられた平滑コンデンサの体積を小さくすると、平滑コンデンサの容量および耐圧も小さくなる。容量が小さくなることから電圧の平滑機能も小さくなり、平滑コンデンサの電圧変動が大きくなる。その電圧変動が大きいとモータの回転速度制御が不安定となり、回転速度を要求される上限値未満に設定できないおそれがあり、その場合にはモータの誘起電圧がコンデンサ耐圧を超えてしまうおそれがあった。
 本発明に係る電動機駆動装置は、バッテリの電力により駆動される電動機、前記電動機の出力を駆動輪に伝達する変速機、および前記変速機の変速比を制御する変速制御部を備える車両駆動システムに搭載される電動機駆動装置であって、バッテリの電圧を平滑化するコンデンサと、前記コンデンサで平滑化された電圧が印加され、前記電動機を駆動制御するインバータと、前記コンデンサの電圧を検出する電圧検出部と、前記電圧検出部で検出された電圧の変動値を算出する電圧変動値演算部と、前記電圧変動値演算部で算出された電圧変動値が所定値以上である場合に、前記電動機の回転速度を減少させるように前記変速機の変速比を制御する。好ましくは、前記電動機の誘起電圧が前記コンデンサの耐圧値未満となるような変速比に前記変速機を制御する。
 本発明によれば、モータ回転に伴う誘起電圧による平滑コンデンサの破壊を防止することができる。
図1は、車両駆動システム150の概略構成を示す図である。 図2は、モータ印加電圧およびコンデンサ電圧を説明する図である。 図3は、本実施の形態における変速機制御の一例を説明するフローチャートである。 図4は、モータ回転速度と誘起電圧との関係を示す図である。 図5は、第2の変速比Gr2の説明図である。 図6は、コンデンサ温度とコンデンサ耐圧との関係を示す図である。 図7は、変速比とキャリア周波数とを考慮した制御を説明するフローチャートである。
 以下、図を参照して本発明を実施するための形態について説明する。図1は本発明の一実施の形態を示す図であり、車両駆動システム150の概略構成を示す図である。車両駆動システム150は、モータ55と、クラッチ50と、変速機30と、インバータ70と、バッテリ120と、平滑コンデンサ60と、パワートランジスタ部80と、変速機用コントローラ140と、コントローラ130と、を備える。
 モータ55には、例えば同期発電電動機が用いられる。モータ55は、バッテリ120の電力を用いてインバータ70により駆動される。バッテリ120は、例えば、リチウムイオン2次電池で構成される。モータ55を発電機として用いる場合には、モータ55で発電した電力によりバッテリ120が充電される。インバータ70は、バッテリ120からの電圧を平滑するための平滑コンデンサ60と、スイッチング制御信号により駆動されるパワートランジスタ部80と、平滑コンデンサ60の電圧Vcを検出する電圧センサ110とを備えている。
 クラッチ50は、エンジン40と、変速機30に接続されたモータ55とを断接するものである。変速機30は、デファレンシャルギア20を介して駆動輪10a、10bに接続されている。変速機30は例えば無段式の自動変速機であり、変速機用コントローラ140によって制御され、モータ55の回転軸とデファレンシャルギア20への入力軸(以下、駆動軸とする)との間で変速比の変更を伴って動力を伝達する。
 コントローラ130は、運転者のアクセル踏み込み量を検出するアクセル開度センサ160からのアクセル開度Ac、車速センサ100からの車速Vsp、モータ55の回転子の回転位置を検出する回転位置検出センサ56からの信号、図示しない電流センサにより検出されるモータ55に流れる相電流、電圧センサ110からのコンデンサ電圧Vcなどが入力され、それらの入力情報に基づいて、インバータ70や変速機用コントローラ140を制御する。
 コントローラ130は、インバータ70に対して、パワートランジスタ部80のスイッチング素子をスイッチング制御するためのPWM(パルス幅変調)信号を入力する。その結果、モータ55の各相には、図2(a)に示すような矩形波電圧が印加される。図2(a)は一相分のモータ印加電圧を示したものであり、PWM信号に基づいてデューティが変化する矩形波電圧となっている。
 スイッチング素子のスイッチング動作によって図2(a)のような電圧が印加されると、そのスイッチング動作に伴って、電圧センサ110で検出されるコンデンサ電圧Vcには図2(b)に示すような脈動が生じる。なお、コンデンサ電圧Vcを計測する電圧センサ110の配置としては、電圧脈動検出の観点からパワートランジスタ部80と平滑コンデンサ60との間に配置するのが好ましい。電圧脈動の幅(リプル値)Vpk-pkは、式(1)のように平滑コンデンサ60の容量およびPWM信号のキャリア周波数のそれぞれに反比例する。
 リプル値∝(直流電流)/{(キャリア周波数)×(コンデンサ容量)} ・・・(1)
 ところで、前述したようにインバータ70の小型化やコスト削減のために平滑コンデンサ60の体積を小さくすると、平滑コンデンサ60の容量および耐圧も小さくなる。すなわち、コンデンサ小型化を図るとコンデンサ容量が小さくならざるを得ず、その結果、コンデンサ電圧Vcの電圧脈動の幅(リプル値)が大きくなる。式(1)からも分かるように、例えば、コンデンサ容量が1/2になると、リプル値は2倍となる。
 このように、コンデンサ電圧のリプル値(以下では、電圧変動値と呼ぶ)が大きくなると、その影響が図2(a)に示すモータ印加電圧にも現れて電圧波形が乱れる。すなわち、コンデンサ電圧の電圧変動値はモータ制御系に対して外乱として作用し、電圧変動値が大きいとモータ制御系が不安定となる。
 モータ回転速度が大きくなると誘起電圧も大きくなるが、一般に、誘起電圧がスイッチング素子耐圧や平滑コンデンサ60の耐圧を超えないようなモータ制御(例えば、弱め界磁制御など)が行われる。しかしながら、上述のようにコンデンサ小型化のためにコンデンサ電圧の電圧変動値が大きくなってモータ制御系が不安定となった場合、適切な誘起電圧抑制制御ができなくなって誘起電圧が素子耐圧を超えてしまうおそれがある。特に、平滑コンデンサ60を小型化すると耐圧も小さくなるので、耐圧超過の危険性が高くなる。
 そこで、本実施の形態では、コンデンサ電圧の電圧変動値を監視し、その値が所定値以上となった場合には変速機30の変速比を変えてモータ回転速度を下げ、仮にモータ制御不安定となっても誘起電圧がコンデンサ耐圧を超えないようにしている。なお、上述の所定値とはモータ制御を安定して行える電圧変動値の上限値であって、実験やシミュレーション等によって決定される。電圧変動値がこの所定値以上となると、モータ制御不安定となる可能性が高くなる。
 図3は、本実施の形態における変速機制御の一例を説明するフローチャートである。図3に示す処理は図1のコントローラ130によって実行される。図3のステップS100では、電圧変動値が所定値未満か否かを判定する。具体的には、パワートランジスタ部80と平滑コンデンサ60との間における正極ラインの電圧を電圧センサ110で計測し、その計測値をコントローラ130に取り込み、コントローラ130において電圧変動値を求める。
 ステップS100で所定値未満(Yes)と判定されるとステップS110へ進み、変速機用コントローラ140に対して第1の変速比に設定する変速比指令を出力する。この場合、電圧変動値は所定値未満なので、第1の変速比は一般的な通常制御の場合に対応する。第1の変速比の設定手順については後述する。一方、ステップS100で所定値以上(No)と判定されるとステップS120へ進み、変速機用コントローラ140に対して第2の変速比に設定する変速比指令を出力する。
 このように平滑コンデンサ60の電圧変動値により変速比を変更することにより、モータ回転速度が抑制されるので、モータ制御系が不安定になって誘起電圧を抑える制御が一時的に不能となった場合であっても、モータ回転に伴う誘起電圧により素子(平滑コンデンサ60やスイッチング素子)が破壊されるのを確実に防止することができる。
(通常制御:第1の変速比が採用された場合)
 図1の車両駆動システム150では、エンジン40とモータ55との間の動力伝達がクラッチ50によって遮断された状況下では、以下に説明する通常の駆動制御がコントローラ130によって実行される。コントローラ130では、まずアクセル開度センサ160からのアクセル開度Ac、車速センサ100からの車速Vspに基づき、駆動軸に出力すべき駆動トルク要求Tpを求める。
 コントローラ130には、予め、車速Vspと駆動トルク要求Tpと変速比との関係である変速マップが記憶されている。コントローラ130は、取得した車速Vspおよび演算した駆動トルク要求Tpと、予め記憶されている変速マップとを用いて、車速Vspおよび駆動トルク要求Tpに対応する目標変速比Grを求め、その目標変速比Grを変速機用コントローラ140に出力する。変速機用コントローラ140は、変速機30の変速比が目標変速比Gr(第1の変速比に対応する)となるように、変速機30を制御する。
 また、コントローラ130は、駆動トルク要求Tpを目標変速比Grで除した値を、モータ55から出力すべきトルク指令Tmとして算出する。そして、コントローラ130は、パワートランジスタ部80をスイッチング制御するPWM信号として、モータ55がトルク指令Tmと同値のトルクが出力できるようなPWM信号をインバータ70に出力する。
 PWM制御においては、トルク指令Tm、モータ55の回転速度、電圧センサ110からのコンデンサ電圧Vcなどに基づいて、モータ55に印加する目標電圧指令Vmが設定される。そして、目標電圧指令Vmを所定のキャリア周波数を持つ三角波キャリアと比較することでパルス幅変調信号に変換し、パワートランジスタ部80の図示しないスイッチング素子をオンオフ制御する。なお、モータ55の回転速度は、回転位置検出センサ56からの回転位置情報に基づいて算出される。
(第2の変速比が採用された場合)
 次に、図3のステップS100で電圧変動が所定値以上と判定されて、第2の変速比が採用された場合について説明する。以下では、上述した通常の駆動制御における目標変速比Grを第1の変速比Gr1とする。モータ回転に伴う誘起電圧は、図4に示すようにモータ回転速度と比例の関係となる。よって、誘起電圧が平滑コンデンサ60の耐圧値未満となるように、モータ回転速度をNlmt未満に抑える必要がある。
 図5は第2の変速比Gr2を説明する図であり、横軸は車速を表し、縦軸はモータ回転速度を表している。破線L1は変速比がGr2loの場合の車速とモータ回転速度との関係を示し、破線L2は変速比がGr2hiの場合の車速とモータ回転速度との関係を示している。そして実線L3が、車速と第2の変速比Gr2との関係を示している。
 第2の変速比Gr2においては、車速が0から車速Vsploまでは変速比Gr2loに設定され、車速Vsploから最高車速VsphiまではGr2loとGr2hiとの間の変速比に設定される。変速比Gr2loは車速Vsploにおいてモータ回転速度がNlmt1(Nlmt未満の値)となる変速比であり、変速比Gr2hiは最高車速Vsphiにおいてモータ回転速度がNlmt1となる変速比である。
 例えば、第1の変速比Gr1において点A1の状態(車速、モータ回転速度)であったときにコンデンサ電圧の電圧変動値が所定値以上となった場合には、変速比をGr1からGr2loへ変更する。また、点A2の状態であった場合には、変速比をGr1からGr2loとGr2hiとの間の変速比へ変更する。その結果、モータ回転速度はNlmt1未満になり、モータ制御系が不安定になった場合でも、誘起電圧が素子耐圧(コンデンサ耐圧やスイッチング素子の耐圧)を超えてしまうのを防止することができる。
 上述した説明では、スイッチング素子や平滑コンデンサ60の耐圧を考慮しているが、平滑コンデンサ60の小型化を図った場合には、コンデンサ容量が小さいものほど耐圧が低くなるので、誘起電圧がコンデンサ耐圧を超えないように制御することが重要となる。例えば、インバータ70を変速機の筐体内部や筐体外面に設ける場合には、インバータ70の小型化が要求されるため、平滑コンデンサ60に従来よりも小型のコンデンサを採用する場合がある。また、式(1)で示したように、リプル値はコンデンサ容量に反比例して大きくなるので、平滑コンデンサ60を小型化した場合には、従来に比べてモータ制御系が不安定になりやすくなる。
 ところで、図5に示すように、コンデンサ耐圧はコンデンサ温度によって変化する。一般的にコンデンサ温度が高いとコンデンサ耐圧は低くなる。パワートランジスタ部80に入力されるPWM信号によって図示しないスイッチング素子がオンオフ制御されるので、平滑コンデンサ60にはパルス状の電流が流れる。この電流により電流リプルが発生しコンデンサ温度が上昇する原因となる。そのため、PWM信号を生成するためのキャリア周波数を高めることで電流リプルを小さくすることにより、コンデンサ温度の上昇(すなわち、コンデンサ耐圧の低下)を抑制することができる。
 そこで、図3に示す変速比の制御に加えて、キャリア周波数を変更することによるコンデンサ温度抑制制御をさらに行うことにより、誘起電圧をコンデンサ耐圧未満に抑える制御をより確実に行うことができる。図7は、図3に示す制御にキャリア周波数の制御を加味した場合のフローチャートである。
 ステップS200では、電圧センサ110からのコンデンサ電圧を計測し、その電圧変動値が所定値未満か否かを判定する。ステップS200で所定値未満と判定されると、ステップS110ヘと進み、所定値以上と判定されるとステップS120へ進む。ステップS110およびステップS120の処理は、図3のステップS110およびステップS120の処理と同一である。すなわち、ステップS110では変速比指令として第1の変速比Gr1を出力し、ステップS120では変速比指令として第2の変速比Gr2を出力する。
 ステップS220では、キャリア周波数を通常のキャリア周波数f0より高い周波数f1に変更する処理を行い、本制御フローを終了する。なお、周波数f1は予め設定されている。一方、ステップS210では、キャリア周波数を低減する処理を行ない、本制御フローを終了する。なお、ステップS210での低減処理では、現在のキャリア周波数が通常のキャリア周波数f0である場合はf0を維持し、現在の周波数がf1である場合にはキャリア周波数を通常のキャリア周波数f0に戻す。
 図6のようなキャリア周波数の変更処理を行うことにより、コンデンサ電圧の電圧変動値が所定値以上となる場合には、キャリア周波数が高められてコンデンサ温度の上昇が抑制される。その結果、温度上昇によるコンデンサ耐圧値の低下を抑制することができ、平滑コンデンサ60がモータ回転に伴う誘起電圧により破壊されるのを確実に抑制することができる。
 以上説明したように、本実施の形態では、バッテリ120の電力により駆動されるモータ55、モータ55の出力を駆動輪10a,10bに伝達する変速機30、および変速機30の変速比を制御する変速機用コントローラ140を備える車両駆動システム150に搭載される電動機駆動装置において、バッテリ120の電圧を平滑化する平滑コンデンサ60と、平滑コンデンサ60で平滑化された電圧が印加され、モータ55を駆動制御するインバータ70と、平滑コンデンサ60の電圧を検出する電圧センサ110と、電圧センサ110で検出された電圧の変動値を算出するコントローラ130と、を備え、コントローラ130は、算出された電圧変動値が所定値以上である場合に、モータ55の回転速度を減少させるように変速機用コントローラ140を介して変速機30を制御する。好ましくは、モータ55の誘起電圧が平滑コンデンサ60の耐圧値未満となるような変速比Gr2に変速機30を制御する。
 モータ55の回転速度を減少させるように変速機30を制御することにより、モータ回転に伴う誘起電圧が低下し、平滑コンデンサ60が誘起電圧により破壊されるのを防止する。さらに、モータ55の誘起電圧が平滑コンデンサ60の耐圧値未満となるような変速比Gr2に変速機30を制御することにより、平滑コンデンサ60が誘起電圧により破壊されるのを確実に防止することができる。
 なお、上述した実施の形態では、エンジンの動力をクラッチを介して変速機に伝達すると共に,クラッチより変速機側に電動機を備え,クラッチを切り離した状態で、電動機で始動,加速および回生制動が可能な車両駆動システムを例に説明したが、本発明は、上述した構成の車両駆動システムに限らず、電動機の出力を変速機を介して駆動輪に伝達する種々の車両駆動システムに適用することができる。
 上述した説明では、コンデンサ電圧の電圧変動値として、図2(b)に示すようなスイッチング動作に伴う電圧変動値(リプル値Vpk-pk)を例に説明したが、外乱等による周期の長い電圧変動に関しても上述した電圧変動値として検出の対象とされる。すなわち、電圧変動値を求める際の電圧サンプリング時間を、リプルの周期に比べて長時間に設定する。
 変速比を演算するコントローラ130は、電圧変動値が所定値未満の場合には、アクセル開度センサ160で検出されたアクセル開度と車速センサ100で検出された車速とから通常制御における第1の変速比Gr1を算出し、電圧変動値が所定値以上の場合には、車速センサ100で検出された車速におけるモータ55の誘起電圧が平滑コンデンサ60の耐圧値未満となる第2の変速比Gr2を算出する。そして、変速機用コントローラ140は、第1の変速比Gr1および第2の変速比Gr2に基づいて変速機30を制御する。このように、電圧変動値が所定値以上の場合には変速機30は第2の変速比Gr2に制御されるので、誘起電圧が平滑コンデンサ60の耐圧を超えてしまうのを確実に防止することができる。
 さらに、インバータ70をパルス幅変調制御により制御するコントローラ130は、電圧変動値が所定値未満の場合には、通常制御における第1のキャリア周波数f0によりパルス幅変調制御を行い、電圧変動値が所定値以上の場合には、第1のキャリア周波数f0よりも周波数の高い第2のキャリア周波数f1によりパルス幅変調制御を行うようにしても良い。このような制御を行うことにより、平滑コンデンサ60の温度上昇を抑えて耐圧の低下を抑制することができる。その結果、誘起電圧が平滑コンデンサ60の耐圧を超えてしまうのをより確実に防止することができる。
 以上、本発明を実施するための形態について、図1に示す車両駆動システムを例に用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。例えば、実施の形態の車両駆動システム150では、変速機30を無段式の自動変速機としたが、有段式であってもよい。また、コントローラ130に代えて、変速機用コントローラ140を制御する車両コントローラと、インバータを制御するモータコントローラとを個別に設ける構成の車両駆動システムに対しても、本発明は同様に適用することができる。その場合、上述した図3や図7の処理は、車両コントローラおよびモータコントローラのいずれで行われても良い。
 30:変速機、40:エンジン、50:クラッチ、55:モータ、56:回転位置センサ、60:平滑コンデンサ、70:インバータ、80:パワートランジスタ部、100:車速センサ、120:バッテリ、160:アクセル開度センサ、130:コントローラ、140:変速機用コントローラ、150:車両駆動システム

Claims (6)

  1.  バッテリの電力により駆動される電動機、前記電動機の出力を駆動輪に伝達する変速機、および前記変速機の変速比を制御する変速制御部を備える車両駆動システムに搭載される電動機駆動装置において、
     前記バッテリの電圧を平滑化するコンデンサと、
     前記コンデンサで平滑化された電圧が印加され、前記電動機を駆動制御するインバータと、
     前記コンデンサの電圧を検出する電圧検出部と、
     前記電圧検出部で検出された電圧の変動値を算出する電圧変動値演算部と、を備え、
     前記変速制御部は、前記電圧変動値演算部で算出された電圧変動値が所定値以上である場合に、前記電動機の回転速度を減少させるように前記変速機の変速比を制御することを特徴とする電動機駆動装置。
  2.  請求項1に記載の電動機駆動装置において、
     前記変速制御部は、前記電圧変動値演算部で算出された電圧変動値が所定値以上である場合に、前記電動機の誘起電圧が前記コンデンサの耐圧値未満となるような変速比に前記変速機を制御することを特徴とする電動機駆動装置。
  3.  請求項2に記載の電動機駆動装置において、
     アクセル開度を検出するアクセル開度センサと、
     車速を検出する車速センサと、を備え、
     前記変速制御部は、
     前記電圧変動値が所定値未満の場合には、前記アクセル開度センサで検出されたアクセル開度と前記車速センサで検出された車速とから第1の変速比を算出し、
     前記電圧変動値が所定値以上の場合には、前記車速センサで検出された車速における前記電動機の誘起電圧が前記コンデンサの耐圧値未満となる第2の変速比を算出し、
     前記第1および第2の変速比に基づいて前記変速機を制御することを特徴とする電動機駆動装置。
  4.  請求項1乃至3のいずれか一項に記載の電動機駆動装置において、
     前記インバータをパルス幅変調制御により制御するPWM制御部を備え、
     前記PWM制御部は、
     前記電圧変動値が所定値未満の場合には、第1のキャリア周波数によりパルス幅変調制御を行い、
     前記電圧変動値が所定値以上の場合には、前記第1のキャリア周波数よりも周波数の高い第2のキャリア周波数によりパルス幅変調制御を行うことを特徴とする電動機駆動装置。
  5.  請求項1乃至4のいずれか一項に記載の電動機駆動装置を備える車両駆動システムであって、
     前記インバータは、前記変速機の筐体内部または筐体外面に設けられていることを特徴とする車両駆動システム。
  6.  請求項5に記載の車両駆動システムにおいて、
     エンジンの動力をクラッチを介して前記変速機に伝達すると共に、前記クラッチより変速機側に前記電動機を備え、前記クラッチを切り離した状態で前記電動機で始動、加速および回生制動が可能なことを特徴とする車両駆動システム。
     
PCT/JP2014/078013 2013-11-14 2014-10-22 電動機駆動装置および車両駆動システム WO2015072296A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015547709A JP6324404B2 (ja) 2013-11-14 2014-10-22 電動機駆動装置および車両駆動システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235866 2013-11-14
JP2013-235866 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072296A1 true WO2015072296A1 (ja) 2015-05-21

Family

ID=53057238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078013 WO2015072296A1 (ja) 2013-11-14 2014-10-22 電動機駆動装置および車両駆動システム

Country Status (2)

Country Link
JP (1) JP6324404B2 (ja)
WO (1) WO2015072296A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200079939A (ko) * 2018-12-26 2020-07-06 주식회사 현대케피코 모터 전원 이상 제어 장치 및 방법
CN111379852A (zh) * 2019-06-17 2020-07-07 长城汽车股份有限公司 挡位确定方法、系统及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335294A (ja) * 2005-06-03 2006-12-14 Nissan Motor Co Ltd 車両の制御装置
JP2007195292A (ja) * 2006-01-17 2007-08-02 Hitachi Ltd 電力変換装置
JP2008013028A (ja) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd ハイブリッド車両のモータロック防止装置
JP2013128350A (ja) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp 車両用電源システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019063B2 (ja) * 1998-06-01 2000-03-13 トヨタ自動車株式会社 インバータ内部コンデンサの異常検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335294A (ja) * 2005-06-03 2006-12-14 Nissan Motor Co Ltd 車両の制御装置
JP2007195292A (ja) * 2006-01-17 2007-08-02 Hitachi Ltd 電力変換装置
JP2008013028A (ja) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd ハイブリッド車両のモータロック防止装置
JP2013128350A (ja) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp 車両用電源システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200079939A (ko) * 2018-12-26 2020-07-06 주식회사 현대케피코 모터 전원 이상 제어 장치 및 방법
CN111379852A (zh) * 2019-06-17 2020-07-07 长城汽车股份有限公司 挡位确定方法、系统及车辆
CN111379852B (zh) * 2019-06-17 2021-07-13 长城汽车股份有限公司 挡位确定方法、系统及车辆

Also Published As

Publication number Publication date
JP6324404B2 (ja) 2018-05-16
JPWO2015072296A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5477339B2 (ja) 電動車両
JP4490458B2 (ja) 回転電機の制御装置及び車両の駆動装置
KR101509868B1 (ko) 하이브리드 차량의 고전압 부품의 비상 구동 장치 및 방법
EP2963807A1 (en) Motor control device and motor control method
US20120235612A1 (en) Motor control device for vehicle
US10348188B2 (en) Vehicle and control method therefor
JP6324404B2 (ja) 電動機駆動装置および車両駆動システム
KR100623745B1 (ko) 4륜 하이브리드 전기자동차의 인버터 제어장치 및 방법
US11404988B2 (en) Inverter control method, and inverter control apparatus
CN113261199B (zh) 马达控制装置
JP5708447B2 (ja) 駆動装置
JP5786500B2 (ja) 駆動装置
JP2017005914A (ja) 自動車
JP2012222907A (ja) 電動車両
JP6822493B2 (ja) インバータ制御装置及び車両駆動システム
JP2010136583A (ja) 電動機のトルク制御装置
JP2016100965A (ja) 電動車両
JP2006042575A (ja) 車両用電動機制御装置
JP5568055B2 (ja) 電力供給装置
WO2019198160A1 (ja) 昇圧コンバータの制御方法、及び、制御装置
JP2013106387A (ja) 駆動装置および自動車
JP2015146709A (ja) 車載用モータ制御装置
JP2009207268A (ja) 車輪駆動装置
JPH07222309A (ja) 電動車両の電気モータ制御装置
CN110861494A (zh) 旋转电机的控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862688

Country of ref document: EP

Kind code of ref document: A1