WO2015072265A1 - 分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置 - Google Patents

分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置 Download PDF

Info

Publication number
WO2015072265A1
WO2015072265A1 PCT/JP2014/077340 JP2014077340W WO2015072265A1 WO 2015072265 A1 WO2015072265 A1 WO 2015072265A1 JP 2014077340 W JP2014077340 W JP 2014077340W WO 2015072265 A1 WO2015072265 A1 WO 2015072265A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
analysis
separation
phase extraction
peptide
Prior art date
Application number
PCT/JP2014/077340
Other languages
English (en)
French (fr)
Inventor
清仁 志村
俊彦 長井
修一 福原
善一 瀬戸
Original Assignee
公立大学法人福島県立医科大学
日栄工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人福島県立医科大学, 日栄工業株式会社 filed Critical 公立大学法人福島県立医科大学
Priority to JP2015547698A priority Critical patent/JP6422131B2/ja
Priority to US15/025,809 priority patent/US9927399B2/en
Publication of WO2015072265A1 publication Critical patent/WO2015072265A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44795Isoelectric focusing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • C07K1/28Isoelectric focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction

Definitions

  • the present invention relates to a capillary device for separation analysis, a microfluidic chip for separation analysis, a protein or peptide analysis method, an electrophoresis apparatus, and a microfluidic chip electrophoresis apparatus for separation analysis.
  • This application claims priority on November 12, 2013 based on Japanese Patent Application No. 2013-234146 for which it applied to Japan, and uses the content for it here.
  • Proteins often exist as multiple molecular types while being derived from the same gene by post-translational modifications such as phosphorylation and glycosylation. Such distribution pattern of molecular type is related to the regulation of the protein function in cells and individuals, and it is considered that it reflects the state of cells and individuals if it is reversed. Useful information can be obtained. Capillary isoelectric focusing has high resolution and completes separation in a short time as a method having great potential for analysis of molecular pattern by post-translational modification of proteins.
  • Non-Patent Document 1 proposes an analysis method using a protein analyzer that links solid-phase extraction and isoelectric focusing.
  • Patent Document 1 discloses a capillary electrophoresis apparatus and a structure of an on-line sample concentration carrier integrated with a zone electrophoresis capillary used therein.
  • Patent Document 2 proposes an on-line adsorption column structure for the purpose of concentrating a diluted sample in capillary zone electrophoresis.
  • Patent Document 3 proposes on-line binding of an adsorption carrier for concentration of a low-concentration sample in capillary zone electrophoresis.
  • Non-Patent Document 2 the detection sensitivity can be improved by connecting a capillary for solid-phase extraction and a capillary for zone electrophoresis having an octadecyl group bonded to the inner wall, and separating the sample concentrated at the octadecyl group-binding portion on-line. It is shown.
  • Non-Patent Documents 3 to 6 discuss online connection between solid-phase extraction and capillary zone electrophoresis.
  • Non-Patent Documents 7 to 8 disclose microfluidic chips for the purpose of integrating solid-phase extraction and isoelectric focusing via a branch path. Specifically, in the microfluidic chips described in Non-Patent Documents 7 to 8, the target protein is eluted from the solid-phase extraction carrier into the isoelectric focusing channel, and then the isoelectric focusing channel is sandwiched.
  • the branch channel formed in (1) is filled with the electrode solution and connected to the electrode.
  • An integrated protein analysis chip On-chip combination of immunoaffinity chromatography and isoelectric focusing.
  • the solid-phase extraction carrier used in Non-Patent Document 1 has an extraction phase on the surface of the tip of an optical fiber having an outer diameter of 0.34 mm, and adsorbs sample components by being immersed in the sample solution for a certain period of time. It is.
  • the solid-phase extraction carrier is designed to adsorb a part of the target molecule in the sample, and is not intended for almost complete capture of the target molecule. Therefore, when the purpose is quantification, factors related to the kinetics of the adsorption reaction such as adsorption time, temperature, and viscosity of the sample solution must be precisely controlled. Further, since only a part of the target molecule is adsorbed, the maximum sensitivity cannot be obtained.
  • the solid-phase extraction carrier is inserted into a solid-phase extraction fiber insertion port with an inner diameter of 0.38 mm provided at one end of the capillary for isoelectric focusing. To do.
  • Patent Documents 1 to 3 and Non-Patent Documents 2 to 6 are all for the purpose of on-line coupling between solid phase extraction and capillary zone electrophoresis. There is no description or suggestion about combining with electrophoretic electrophoresis. In addition, an analysis method in which solid-phase extraction and capillary zone electrophoresis are combined on-line has not been widely used.
  • Non-Patent Documents 7 to 8 solid-phase extraction and isoelectric focusing are connected to branch channels, but the total amount of the sample captured on the solid-phase extraction carrier is subjected to isoelectric focusing.
  • In order to shift to the channel it is necessary to elute as a narrow zone so that the entire eluted sample zone fits in the isoelectric focusing channel, but this is not always easy to achieve.
  • the use of a microfluidic chip as described in Non-Patent Document 7 requires a plurality of microvalves (eight in Non-Patent Document 7) for stopping the flow at the channel inlet of the chip. There is a problem that it is difficult to manufacture a fine valve with processing accuracy capable of desired fluid control.
  • the channel connecting the cathode end of the isoelectric focusing channel and the electrode needs to be filled with a base solution such as a sodium hydroxide solution.
  • a base solution such as a sodium hydroxide solution.
  • this base solution accelerates the peeling of the neutral polymer coating applied to the inner wall of the channel to suppress electroosmosis, making it impossible to perform many analyzes required for reproducibility studies. It was.
  • the present invention has been made in view of the above circumstances, and is a capillary device for separation and analysis, a microfluidic chip for separation and analysis, a protein or peptide analysis method, an electric method capable of easily and highly sensitively analyzing proteins or peptides.
  • An electrophoresis apparatus and a microfluidic chip electrophoresis apparatus for separation analysis are provided.
  • the present invention provides a separation analysis capillary device, a separation analysis microfluidic chip, a protein or peptide analysis method, an electrophoresis apparatus, and a separation analysis microfluidic chip electrophoresis apparatus having the following characteristics.
  • a capillary device for separation analysis comprising a capillary for isoelectric focusing and a solid phase extraction column directly connected to the capillary for isoelectric focusing.
  • the capillary for separation analysis according to (1) wherein the capillary for isoelectric focusing is a hydrophilic polymer bonded to an inner wall.
  • a separation / analysis microfluidic chip comprising a structure corresponding to the separation / analysis capillary device of any one of (1) to (4).
  • a protein or peptide analysis method using the separation / analysis capillary device according to any one of (1) to (4), Introducing a sample containing a target protein or peptide into a solid phase extraction column, and adsorbing the target protein or peptide onto the solid phase extraction column; Elution of the target protein or peptide adsorbed on the solid-phase extraction column into the separation / analysis capillary device; and Applying a voltage to the separation / analysis capillary device to focus the eluted target protein or peptide in the isoelectric focusing capillary; and Detecting 5 the target protein or peptide after focusing;
  • the process 3 and the process 5 include the process 4 of controlling the electroosmosis generated in the solid phase extraction column by adjusting the pressure difference between both ends of the capillary for isoelectric focusing.
  • the separation / analysis capillary device according to any one of (1) to (4) and one or more boundary detectors for detecting the boundary positions of two or more kinds of liquids present in the separation / analysis capillary device.
  • an electrophoretic device comprising: (9) The electrophoresis apparatus according to (8), wherein the boundary detector is a boundary detector that detects a boundary position between the injected sample liquid and another liquid. (10) The electrophoresis apparatus according to (8) or (9), wherein the boundary detector is a boundary detector that detects a boundary position between the amphoteric carrier liquid and the eluent or electrode liquid.
  • the boundary detector is a non-contact or contact-type electric conductivity detector, a refractive index detector, an absorbance detector, a fluorescence detector, or a scattered light detector. Either electrophoresis device.
  • the detection device further includes a sample detector for detecting a sample separated by isoelectric focusing.
  • the separation analysis capillary device is arranged in an inverted U shape.
  • a microfluidic chip electrophoresis apparatus for separation and analysis which is functionally the same as the electrophoresis apparatus according to any one of (8) to (13).
  • the interfering substance contained in the sample can be easily removed, and the protein or peptide can be separated and analyzed based on the difference in isoelectric point with high sensitivity and high accuracy.
  • a separation analysis capillary device 1 is integrally provided with a solid phase extraction column 2 and an isoelectric focusing capillary 3 directly connected to the solid phase extraction column 2.
  • “directly connected” means that a solid-phase extraction column and a capillary for isoelectric focusing are connected without passing through other columns, capillaries, flow paths, channels, and the like.
  • Capillary isoelectric focusing introduces an amphoteric carrier, which is a mixture of amphoteric electrolytes having various isoelectric points, and a sample such as a protein into a capillary and separates them by the difference in isoelectric points of sample components by applying a voltage. It is a technique to do.
  • sample may be referred to as “protein”, but the sample is not limited to protein.
  • a fused silica capillary is preferable from the viewpoints of excellent corrosion resistance, low electrical conductivity, and very transparent, but not limited thereto, it has the same or superior properties. If it is.
  • the inner diameter of the separation analysis capillary device 1 is preferably 1 to 500 ⁇ m. Since the inner diameter of the capillary device for separation analysis 1 is within the range, the heat dissipation of Joule heat accompanying voltage application is high, and a high voltage can be applied. Therefore, high-speed separation is possible with a very small amount of sample.
  • the capillary 3 for isoelectric focusing has a hydrophilic polymer bonded to the inner wall of the capillary from the viewpoint of suppressing adsorption of protein or peptide and electroosmotic flow by having a silanol group derived from fused silica on the inner wall.
  • hydrophilic polymers include cellulose derivatives such as hydroxyethyl cellulose, polyethylene glycol, polypropylene glycol, polyacrylamide, polydimethylacrylamide, polydiethylacrylamide, polyvinylpyrrolidone, polyethylene oxide, polyvinyl alcohol, polyols (polyglycerin), dextran, agarose, and the like. Is mentioned.
  • the bond may be physical adsorption or chemical bond.
  • a capillary in which a hydrophilic polymer is chemically or physically bonded to the inner wall in advance may be used.
  • a hydrophilic polymer is added to an amphoteric carrier liquid (separation liquid), and the hydrophilic polymer is physically attached to the inner wall of the capillary. Alternatively, it may be adsorbed.
  • the solid-phase extraction column 2 is directly connected to the capillary 3 for isoelectric focusing, and preferably has an affinity chromatography carrier from the viewpoint of reversibly adsorbing and desorbing a specific target substance.
  • an affinity chromatography carrier from the viewpoint of reversibly adsorbing and desorbing a specific target substance.
  • a protein having affinity for the affinity ligand in the solid phase extraction column 2 is specifically captured on the solid phase. Elution from the solid phase can be accomplished by competition with free ligand, pH changes such as acidification or alkalinization, protein denaturation with high concentrations of urea, and the like.
  • the solid phase extraction column 2 preferably has an ion exchange chromatography carrier or a hydrophobic interaction chromatography carrier.
  • a protein having a desired effective surface charge can be specifically captured on a solid phase.
  • the target protein can be suitably captured on the solid phase by utilizing the interaction between the target protein and the solid phase ligand.
  • a method using an inner wall of a capillary a method using a monolith column obtained by producing a porous gel by a polymerization reaction, a method using a column packed with a bead-like solid phase support And using a porous membrane as a solid support.
  • the cross-sectional area of the capillary 3 for isoelectric focusing and the cross-sectional area of the solid-phase extraction column 2 do not need to be the same, and can be optimized as appropriate. Further, the solid phase extraction column 2 and the isoelectric focusing capillary 3 are separated, and may be used integrally at the start of operation or after completion of the solid phase extraction step.
  • the target molecule / affinity ligand combination includes biotin binding protein / biotin such as avidin and streptavidin, maltose binding protein / maltose, G protein / guanine nucleotide, oligohistidine peptide / nickel or cobalt Metal ions such as glutathione-S-transferase / glutathione, DNA binding protein / DNA, antibody / antigen molecule (epitope), antigen molecule (epitope) / antibody, antibody / protein A, antibody / protein G, antibody / protein L, Lectin / sugar, calmodulin / calmodulin-binding peptide, ATP-binding protein / ATP, or estradiol receptor protein / estradiol It is mentioned as examples.
  • biotin binding protein / biotin such as avidin and streptavidin
  • maltose binding protein / maltose G protein / guanine nucleotide
  • target molecule / affinity ligand combinations include biotin-binding proteins / biotin such as avidin and streptavidin, metal ions such as oligohistidine peptide / nickel or cobalt, antibodies / antigen molecules (epitope), antigen molecules (epitope) ) / Antibody, antibody / protein A, antibody / protein G, antibody / protein L, lectin / sugar, and the like.
  • the capillary 3 for isoelectric focusing and the solid phase extraction column 2 are directly connected, so that high concentration protein and salt in the sample are removed, and low concentration Allows analysis of proteins by isoelectric focusing.
  • the target protein or peptide is concentrated by the solid phase extraction column 2, so that the detection sensitivity is greatly increased by increasing the amount of the sample flowing through the solid phase extraction column 2. Can be improved.
  • the microfluidic chip for separation analysis of the present invention has a functionally similar structure as the capillary device for separation analysis of the present invention described above. That is, the microfluidic chip for separation analysis of the present invention includes at least a flow path for isoelectric focusing and a solid phase extraction column directly connected to the flow path. As shown in FIG. 2, the separation analysis microfluidic chip 10 of the present invention includes, as an example, a solid phase extraction column 2, an isoelectric focusing flow path 3, an electrode liquid reservoir 4 for introducing an electrode liquid, The substrate 11 is provided with an electrode solution reservoir 5 for introducing another electrode solution. Examples of the material of the substrate 11 include plastic material, glass, silica, quartz, photo-curing resin, thermosetting resin, and silicone.
  • Electrodes (not shown) for performing electrophoresis may be preliminarily provided in each reservoir (electrode liquid reservoir 4, electrode liquid reservoir 5), and may be formed in each reservoir portion on the substrate by, for example, sputtering, or A structure may be provided in which an electrode is inserted into each reservoir, and the electrode is inserted onto the substrate 11 from outside the substrate 11 when necessary.
  • a voltage is applied between the electrodes.
  • the voltage is preferably a direct current voltage.
  • the microfluidic chip 10 for separation analysis according to the present invention may be provided with a mechanism for applying a voltage, and includes a detection device (not shown) for detecting the boundary between two types of liquids sequentially injected into the flow path, a target You may further provide the detection apparatus (illustration omitted) for detecting protein or a peptide.
  • the detection device is preferably a conductivity detector or a light detection device such as a refractive index, light scattering, UV absorption, or fluorescence.
  • the light detection device includes a light source and a detector.
  • Examples of the light source include a laser, an LED, and a lamp
  • examples of the detector include a photomultiplier tube, a photodiode, an avalanche photodiode, a multi-pixel photodetector, and a CCD camera.
  • the separation / analysis microfluidic chip 10 of the present invention is a chip of the separation / analysis capillary device of the present invention, it is possible to easily analyze a highly sensitive protein or peptide.
  • the protein or peptide analysis method of the present invention is a protein or peptide analysis method using the capillary device for separation analysis of the present invention, Introducing a sample containing the target protein or peptide into the capillary device for separation analysis, and adsorbing the target protein or peptide on the solid phase extraction column; Elution of the target protein or peptide adsorbed on the solid-phase extraction column into the separation / analysis capillary device; and Applying a voltage to the separation / analysis capillary device to focus the eluted target protein or peptide in the isoelectric focusing capillary; and Detecting 5 the target protein or peptide after focusing;
  • FIG. 1 a preferred embodiment of the protein or peptide analysis method of the present invention will be described with reference to FIG.
  • Step 1 a sample containing a target protein or peptide is introduced into a solid phase extraction column. Since the solid phase extraction column has affinity for the target protein or peptide, the target protein or peptide is specifically adsorbed on the solid phase extraction column. Next, the solid-phase extraction column is washed as necessary. By introducing an appropriate buffer into the capillary device for separation analysis, unnecessary high-concentration proteins and interference substances such as salts are removed from the target protein or peptide. Next, the separation / analysis capillary device is filled with the amphoteric carrier solution.
  • the capillary for isoelectric focusing is an amphoteric electrolyte composed of a plurality of amphoteric electrolytes having both weakly acidic and weakly basic dissociating groups so that a pH gradient is formed by voltage application.
  • the carrier solution is preferably filled.
  • the width of the pH gradient of the amphoteric carrier can be selected so as to include the isoelectric point of the protein or peptide to be measured.
  • the anode tank is filled with an anolyte containing an acid such as a phosphoric acid solution, and the cathode tank is filled with a catholyte containing a base such as a sodium hydroxide solution.
  • Step 2 the target protein or peptide adsorbed on the solid phase extraction column is eluted.
  • the elution method is not particularly limited, a method in which a free ligand is introduced into a solid phase extraction column to compete, a method in which an acid solution is introduced to elute by acidification, and a method in which a base solution is introduced and basified And a method in which a high concentration of a modifying agent such as urea is introduced and eluted.
  • Step 3 a voltage is applied to the separation / analysis capillary device, and the eluted target protein or peptide is focused (separated, migrated) by the isoelectric focusing capillary.
  • the range of the applied voltage value is preferably 100 to 1000 V per 1 cm length of the capillary for isoelectric focusing.
  • cooling may be performed by external circulation of a cooling solvent, ventilation, Peltier, or the like.
  • Proteins and peptides are amphoteric substances, and the isoelectric point varies depending on the type and amount of side chain dissociation groups of the amino acids constituting the peptide. It converges and is separated at a pH position equal to the isoelectric point.
  • step 2 when the target protein or peptide is eluted by basification, isoelectric focusing is performed with the polarity reversed.
  • step 2 when the target protein or peptide is eluted by competitive reaction or denaturation, a competing substance or denaturing agent and a solution containing an amphoteric carrier are introduced into a solid-phase extraction column, and then solid-phase extraction. Fill the column with anolyte or catholyte and start isoelectric focusing.
  • the solid phase extraction column side is the anode
  • the solid phase extraction column side is the cathode.
  • the process 3 and the process 4 include the process 4 of adjusting the pressure difference between both ends of the capillary for isoelectric focusing to control the electroosmosis generated in the solid phase extraction column. It is preferable.
  • the pressure difference between both ends of the separation analysis capillary device is adjusted to control electroosmosis generated in the solid phase extraction column.
  • a voltage is applied by immersing the solid phase extraction column side in the anolyte and the isoelectric focusing capillary side in the catholyte. There is a high possibility that the solid phase extraction column is positively charged by acidification.
  • electroosmosis occurs in the anodic direction, and the entire pH gradient including the target protein or peptide moves in the anodic direction.
  • an appropriate pressure to the anode end in step 4
  • the flow due to the electroosmotic flow is substantially canceled and focusing by isoelectric focusing is caused in the capillary for isoelectric focusing.
  • the hydrostatic pressure may be used to adjust the pressure difference between both ends of the separation analysis capillary device.
  • the electroosmosis generated in the solid-phase extraction column by previously binding a charge unrelated to the solid-phase extraction to the solid-phase extraction carrier in place of the step 4 described above.
  • a charge unrelated to the solid-phase extraction to the solid-phase extraction carrier in place of the step 4 described above.
  • the solid phase carrier is positively charged, and an electroosmotic flow in the anode direction may occur in the solid phase extraction column.
  • This electroosmotic flow can be controlled by adjusting the pressure difference as described above in Step 4, but it can also be controlled by previously binding a negative charge that balances the positive charge carried by the solid-phase extraction carrier by acidification. It is possible to control the generation of electroosmotic flow accompanying acidification.
  • the method for applying the charge is not particularly limited.
  • a target protein captured on a solid-phase extraction carrier or a solid-phase extraction carrier by introducing a strong acidic dissociation group such as a sulfonic acid group into a solid-phase extraction column in advance.
  • the net charge of the solid phase extraction column can be made zero.
  • production of electroosmotic flow can be suppressed and focusing by isoelectric focusing can be performed within the capillary for isoelectric focusing.
  • by suppressing the generation of electroosmotic flow it is possible to prevent the inflow of a basic catholyte that can adversely affect the inner wall coating of the capillary for isoelectric focusing.
  • step 5 after focusing, the target protein or peptide is detected.
  • a signal from a label previously attached to the target protein or peptide is obtained.
  • excitation light corresponding to the excitation wavelength of the fluorescent dye is irradiated to acquire fluorescence emitted from the fluorescent dye.
  • the excitation light source a laser, an LED, a lamp, or the like can be used.
  • a filter such as a band-pass filter is used so as to irradiate only light having an excitation wavelength as necessary.
  • a photomultiplier tube In order to acquire fluorescence, for example, a photomultiplier tube, a photodiode, an avalanche photodiode, a multi-pixel photodetector, a CCD camera, or the like is used. It is preferable to use a filter such as a band pass filter or a notch filter so as to measure only light corresponding to the fluorescence wavelength from the fluorescent dye. Any combination of light sources and detectors other than those described above may be used.
  • Measurement may be performed by a method of scanning and detecting a capillary using a scanning detector, or may be performed by a method of detecting using a fixed detector. Moreover, you may detect as an image using a CCD camera etc.
  • control the pressure difference across the separation analysis capillary device to move the entire pH gradient containing the focused target protein or peptide relative to the fixed detector for detection. Preferably it is done.
  • the entire pH gradient may be moved by a method in which the focused protein is electrophoresed toward the cathode by adding chloride ions or the like to the catholyte to acidify the entire pH gradient.
  • the movement by electrophoresis can also be performed in the reverse anodic direction by adding sodium ions or the like to the anolyte.
  • the protein or peptide in the separation analysis capillary device converges and is separated at a pH position equal to its isoelectric point.
  • the amount of the target protein or peptide is calculated from the signal amount from the label at these isoelectric points.
  • the measurement instead of the light measurement using the fluorescent dye, the measurement may be performed by the UV absorption value or the electrical conductivity at the isoelectric point position of the target protein or peptide.
  • the solid phase extraction column captures almost all of the target molecules, and almost all of them are for isoelectric focusing Since separation and quantification can be performed with a capillary, highly sensitive protein or peptide analysis can be easily performed.
  • the electrophoresis apparatus of the present invention is a detection having the above-described separation / analysis capillary device of the present invention and one or more boundary detectors for detecting the boundary positions of two or more liquids present in the separation / analysis capillary device. And a device.
  • An electrophoresis apparatus 20 of the present invention shown in FIG. 5 includes, as an example, a separation / analysis capillary device 1 including a solid extraction column 2 and an isoelectric focusing capillary 3, an electrode liquid reservoir 4, an electrode liquid reservoir 5, and a boundary. And a detector having a detector 6 and a protein detector (sample detector) 7.
  • the electrode solution reservoir 4 includes an anode
  • the electrode solution reservoir 5 includes a cathode.
  • the anode and the cathode are connected to a power source, and a voltage is applied between the electrodes during electrophoresis.
  • the separation / analysis capillary device 1 is arranged in an inverted U-shape as an example of a preferred arrangement, and the solid phase is disposed on the electrode solution reservoir 4 and the anode side.
  • An extraction column 2 is disposed, and an isoelectric focusing capillary 3 is disposed on the electrode solution reservoir 5 and the cathode side.
  • the boundary detector 6 included in the detection device detects a boundary position between two or more liquids present in the separation analysis capillary device.
  • the boundary detector 6 shown in FIG. 5 includes an amphoteric carrier liquid that fills the capillary for isoelectric focusing at the time of isoelectric focusing, and an eluent for eluting the target protein or peptide from the solid phase extraction column 2. And the boundary position with the electrode solution can be detected.
  • the moving speed of the liquid in the capillary and the position of the boundary of the liquid can be calculated and adjusted according to the applied pressure or the like.
  • the solid phase extraction capillary of the present invention has a structure such as a filler, the resistance changes depending on the filling state of the filler or the clogging due to particulate matter mixed in the sample, etc. Conventionally, it has been difficult to specify the position.
  • the boundary detector 6 is provided as in the present embodiment, the boundary position between the amphoteric carrier liquid and the eluent or electrode liquid can be detected even when the relationship between the pressure and the flow rate is unknown. By adjusting the boundary to an appropriate position, separation analysis of the target protein or peptide can be performed with high accuracy and efficiency.
  • the electrophoresis apparatus 20 of the present invention may further include another boundary detector (not shown). By providing a plurality of boundary detectors, it is possible to know the change in flow rate during the liquid injection process, and to detect the occurrence of problems such as mixing of particulate matter into the injection liquid.
  • boundary detector detection of the boundary position between the sample liquid injected into the solid-phase extraction column 2 and the liquid filled in the separation analysis capillary device 1 before the sample liquid injection. By detecting the boundary position, it is possible to measure the injection amount of the sample liquid, and to perform quantitative analysis.
  • boundary detector (boundary detector 6, other boundary detector), a non-contact or contact type electrical conductivity detector, a refractive index detector, an absorbance detector, a fluorescence detector, or a scattered light detector.
  • a non-contact type conductivity detector is particularly preferable because it can be easily detected and can be installed without any restriction on the material and shape of the separation analysis capillary.
  • the amphoteric carrier liquid when detecting the boundary position between an amphoteric carrier liquid and an electrode liquid, the amphoteric carrier liquid generally has a low electric conductivity, and the electrode liquid generally has a high electric conductivity. Detection can be easily performed.
  • the detection apparatus further includes a protein detector (sample detector) 7 that detects a sample separated by isoelectric focusing.
  • the protein detector 7 detects a target protein or peptide focused by isoelectric focusing, and the above-described scanning detector, fixed detector, image detector, or the like can be used.
  • the electrophoresis apparatus of the present invention is equipped with a mechanism for controlling the pressure difference between both ends of the capillary device for separation analysis of the present invention, thereby injecting a liquid into the capillary device and by electroosmosis generated by a solid phase extraction carrier.
  • the flow of the liquid in the capillary for isoelectric focusing can be controlled.
  • focusing separation, electrophoresis
  • the boundary detector 6 Isoelectric focusing is started with the amphoteric carrier liquid and anolyte boundary in place, and the boundary position is continuously monitored so that the boundary does not move due to electroosmosis generated in the solid-phase extraction carrier.
  • the boundary can be controlled so as not to actually move by dynamically controlling the pressure.
  • the electrophoresis apparatus of the present invention can maximize the performance of the separation / analysis capillary device of the present invention, the analysis and detection of proteins or peptides can be performed with high sensitivity and ease.
  • the microfluidic chip electrophoresis apparatus for separation analysis of the present invention has a functionally similar structure to the above-described electrophoresis apparatus of the present invention.
  • the microfluidic chip electrophoresis apparatus for separation analysis according to the present invention can perform analysis and detection of proteins or peptides with high sensitivity and ease as with the electrophoresis apparatus according to the present invention.
  • a fused silica capillary (inner diameter 50 ⁇ m, outer diameter 365 ⁇ m, length 70 cm) is prepared, and the inside of the capillary is mixed with 3-methacryloxypropyltrimethoxysilane / acetic acid / acetone (10/45/45, v / v / v) It was filled and allowed to stand at room temperature overnight, and methacryloxypropyl groups were bonded to the inner wall. After washing and drying the capillary, mark the outer wall with a marker pen etc. at a position 40 cm from one end, inject dimethylacrylamide polymerization solution from the end of the longer capillary to the position of this mark, and close both ends with rubber septa.
  • polydimethylacrylamide which suppresses electroosmosis and protein adsorption, is bound to the inner wall by causing copolymerization of dimethylacrylamide and the methacryloxy group previously bound to the inner wall of the capillary.
  • the glycidyl methacrylate polymerization solution is injected from the end of the shorter capillary to the position of the mark, and both ends are closed with a rubber septum and allowed to react overnight at 50 ° C.
  • polyglycidyl methacrylate was bonded to the inner wall.
  • this separation / analysis capillary device is attached to a P / ACE MDQ fully automatic capillary electrophoresis apparatus manufactured by Beckman Coulter, Inc., and 532 nm laser light is excited at 590 nm at a position 10 cm from the cathode end. Nearby fluorescence was detected.
  • a 100 mM nickel chloride aqueous solution was added at a pressure of 2 psi.
  • solid phase extraction column that targets a protein having a hexahistidine tag by binding nickel ions to iminodiacetic acid.
  • the following liquid feeding was always performed from the anode side toward the cathode side.
  • 20 mM Tris-HCl buffer (pH 7.4) containing 10 mM imidazole and 0.5 M sodium chloride was passed as a washing solution at a pressure of 2 psi for 1 minute.
  • a 100 mM Tris-HCl buffer solution (containing 0.1% Tween 20) containing 20 nM of a labeled Fab sample having an isoelectric point of 7.70 obtained by fluorescently labeling and purifying a mouse recombinant antibody Fab fragment having a hexahistidine tag.
  • a pressure of 0.5 psi for 2 minutes capillary length of about 7.5 cm
  • the Fab was adsorbed on the solid phase extraction column.
  • the above washing solution was allowed to flow at a pressure of 2 psi for 1 minute, and the amphoteric carrier solution (2.5% (v / v) Pharmalite 3- 10, 0.1% acetic acid, 0.6% tetramethylethylenediamine) at a pressure of 40 psi for 0.3 minutes, and the inside of the device was replaced with a solution containing an isoelectric point marker and an amphoteric carrier.
  • 100 mM phosphoric acid used as an eluent and an anolyte was allowed to flow at a pressure of 2 psi for 1.3 minutes, so that only the solid phase extraction column portion was filled with the anolyte and the Fab bound to the solid phase extraction column was eluted.
  • the pressure control setting of the capillary electrophoresis apparatus used here is a minimum of 0.1 psi, and 0.1 psi is the minimum set value.
  • the pressure applied to the anode end is set to 0.2 psi for the first 2 minutes after the start of focusing by electrophoresis, and 0.1 psi for the subsequent two minutes. I was able to suppress it. Thereafter, by continuing to apply 0.1 psi of pressure, the pH gradient was gradually moved toward the detection point while proceeding with focusing, thereby enabling detection of the entire pH gradient after completion of focusing.
  • the Fab with an isoelectric point of 7.70 was detected at 22.7 minutes from the start of analysis. This position is an appropriate position in view of the separation results of the isoelectric point markers separated at the same time.
  • His-tag-attached fluorescently labeled recombinant Fab having a predetermined pI was detected with high sensitivity.
  • Electrode solution reservoir 1 Capillary device for separation analysis 2 Solid phase extraction column 3 Capillary for isoelectric focusing 4 Electrode solution reservoir 5 Electrode solution reservoir 6 Boundary detector 7 Protein detector (sample detector) 10 Microfluidic chip for separation analysis 11 Substrate 20 Electrophoresis device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明の分離分析用キャピラリーデバイスは、等電点電気泳動用キャピラリーと、該等電点電気泳動用キャピラリーに直結する固相抽出カラムと、を一体として備えてなることを特徴とする。

Description

分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置
 本発明は、分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置に関する。
 本願は、2013年11月12日に、日本に出願された特願2013-234146号に基づき優先権を主張し、その内容をここに援用する。
 タンパク質はリン酸化や糖鎖付加などの翻訳後修飾によって、同一の遺伝子に由来しながら複数の分子型として存在することが多い。このような分子型の分布パターンは細胞や個体における当該タンパク質機能の調節に関わっており、また、裏を返せば細胞や個体の状態を反映していると考えられ、そのパターンから生体の状態に関する有用な情報を得ることができる。タンパク質の翻訳後修飾による分子型パターンの解析に大きな可能性を持つ方法として、分離能が高く、短時間に分離を完了するキャピラリー等電点電気泳動がある。
 しかし、血清などの生体試料をキャピラリー等電点電気泳動で分析する場合には主に2つの問題がある。
 一つは、アルブミンなどの高濃度タンパク質が分析対象である低濃度タンパク質を覆い隠してしまい、分析対象タンパク質の検出を困難にする点である。また高濃度タンパク質が分離過程で沈殿し、検出の際のノイズ発生の原因にもなる。
 もう一つは、試料中に存在する塩が、等電点電気泳動の焦点化に要する時間を長引かせ、また分離パターンを変えてしまう点である。
 これに対して、非特許文献1では、タンパク質分析装置を用いた分析方法であって、固相抽出と等電点電気泳動を連動させる方法が提案されている。
 従来、固相抽出と、ゾーン電気泳動分離とのオンライン結合を目的としたデバイスが提案されている。
例えば、特許文献1には、キャピラリー電気泳動装置、並びにそこで用いられるゾーン電気泳動用キャピラリーと一体化したオンライン試料濃縮担体の構造が開示されている。
特許文献2には、キャピラリーゾーン電気泳動における希薄試料の濃縮を目的とした、オンライン吸着カラムの構造が提案されている。
特許文献3には、キャピラリーゾーン電気泳動において低濃度試料の濃縮のために吸着担体をオンライン結合することが提案されている。
非特許文献2には、内壁にオクタデシル基を結合した固相抽出用キャピラリーとゾーン電気泳動用キャピラリーとを結合し、オクタデシル基結合部分で濃縮した試料をオンライン分離することにより検出感度を向上できることが示されている。
 また、非特許文献3~6では、固相抽出と、キャピラリーゾーン電気泳動とのオンライン結合についての検討がなされている。
 一方、非特許文献7~8には、分岐路を介して固相抽出と等電点電気泳動の統合を目的とするマイクロ流体チップが開示されている。具体的には、非特許文献7~8に記載のマイクロ流体チップは、固相抽出担体から目的タンパク質を等電点電気泳動用チャネルに溶離させた後、等電点電気泳動用チャネルを挟み込むように作られた分岐チャネルに電極液を満たして、電極に接続するように構成されている。
米国特許第5202010号 米国特許第5246577号 米国特許第5340452号
Liu, Z., Pawliszyn, J. Coupling of solid-phase microextraction and capillary isoelectric focusing with laser-induced fluorescence whole column imaging detection for protein analysis.  Anal Chem. 2005;77:165-171 Cai J, El Rassi Z. On-line preconcentration of triazine herbicides with tandem octadecyl capillaries-capillary zone electrophoresis. J Liq Chromatogr. 1992;15(6-7):1179-1192 Guzman NA, Stubbs RJ. The use of selective adsorbents in capillary electrophoresis-mass spectrometry for analyte preconcentration and microreactions: a powerful three-dimensional tool for multiple chemical and biological applications. Electrophoresis. 2001;22(17):3602-3628 Guzman NA, Phillips TM. Immunoaffinity CE for proteomics studies. Anal Chem. 2005;77(3):61A-67A Guzman NA, Blanc T, Phillips TM. Immunoaffinity capillary electrophoresis as a powerful strategy for the quantification of low-abundance biomarkers drugs and metabolites in biological matrices. Electrophoresis. 2008;29(16):3259-3278 Guzman NA, Phillips TM. Immunoaffinity capillary electrophoresis: a new versatile tool for determining protein biomarkers in inflammatory processes. Electrophoresis. 2011;32(13):1565-1578 Shimura K, Kitamori T. An integrated protein analysis chip: On-chip combination of immunoaffinity chromatography and isoelectric focusing. In: Viovy JL, Tabeling P, Descroix S, Malaquin L, editors. The Proceedings of μTAS 2007 Conference. Paris: 2007. p. 799-801 Shimura K, Takahashi K, Koyama Y, Sato K, Kitamori T. Isoelectric focusing in a microfluidically defined electrophoresis channel. Anal Chem. 2008;80:3818-3823
 しかしながら、非特許文献1で用いられる固相抽出担体は、外径0.34mmの光ファイバーの先端部表面に抽出相を有するものであり、試料液に一定時間浸すことによって、試料成分を吸着するものである。該固相抽出担体は試料中の標的分子の一部を吸着するようにデザインされており、標的分子のほぼ完全な捕捉を目的としたものではない。そのため、定量を目的とする場合には吸着時間、温度、試料液の粘性など、吸着反応の速度論に関係する因子を精密に制御しなければならない。また、標的分子の一部のみを吸着するので、最大の感度を得ることができない。キャピラリー等電点電気泳動分析の際には、該固相抽出担体を等電点電気泳動用キャピラリーの一端に設けられた内径0.38mmの固相抽出ファイバー挿入口内に挿入して電気泳動を開始する。該固相抽出担体を用いるには等電点電気泳動用キャピラリーと電極液の電気的接続のためにミクロ多孔性膜を介する必要があるなど、一般的キャピラリー電気泳動装置では該固相抽出担体を用いることができない。
 また、特許文献1~3及び非特許文献2~6に記載されたデバイスはいずれも、固相抽出とキャピラリーゾーン電気泳動とのオンライン結合を目的としたものであって、固相抽出とキャピラリー等電点電気泳動とを組み合わせることについては一切記載も示唆もしていない。また、固相抽出とキャピラリーゾーン電気泳動をオンライン結合した分析法は広く使われるに至っていない。
 また、非特許文献7~8においては、固相抽出と、等電点電気泳動とを、分岐チャネルを接続しているが、固相抽出担体に捕捉された試料の全量を等電点電気泳動チャネルに移行させるためには、溶離した試料ゾーンの全体が等電点電気泳動用チャネルに納まるように、幅の狭いゾーンとして溶離する必要があるが、これを実現することは必ずしも容易ではないという問題があった。
加えて、非特許文献7に記載されたようなマイクロ流体チップの使用には、チップのチャネル入口で流れを止めるためのマイクロバルブが複数個(非特許文献7では8個)必要であるが、所望の流体制御が可能な加工精度の微細バルブの製造が困難であるという問題があった。
さらに、等電点電気泳動用流路の陰極端と電極を接続するチャネルには、水酸化ナトリウム溶液等の塩基溶液を満たす必要がある。しかしながら、この塩基溶液が、電気浸透を抑制するためにチャネル内壁に施された中性ポリマーコーティングの剥離を加速し、再現性の検討などに要する多数回の分析を不可能にするという問題があった。
 本発明は、上記事情に鑑みてなされたものであって、簡便かつ高感度にタンパク質又はペプチドを分析することができる分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置を提供する。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、固相抽出カラムと等電点電気泳動用キャピラリーを一体化することにより、本発明を完成させた。
 すなわち、本発明は、下記の特徴を有する分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置を提供する。
(1)等電点電気泳動用キャピラリーと、該等電点電気泳動用キャピラリーに直結する固相抽出カラムと、を一体として備えてなることを特徴とする分離分析用キャピラリーデバイス。
(2)前記等電点電気泳動用キャピラリーは、内壁に親水性ポリマーが結合されてなる前記(1)の分離分析用キャピラリーデバイス。
(3)前記固相抽出カラムは、アフィニティークロマトグラフィー担体、イオン交換クロマトグラフィー担体、又は、疎水性相互作用クロマトグラフィー担体を有する前記(1)又は(2)の分離分析用キャピラリーデバイス。
(4)前記固相抽出カラムに電荷を有する解離基を導入することにより、該固相抽出カラムで発生する電気浸透を抑制した前記(1)~(3)のいずれかの分離分析用キャピラリーデバイス。
(5)前記(1)~(4)のいずれかの分離分析用キャピラリーデバイスに相当する構造を備えたことを特徴とする分離分析用マイクロ流体チップ。
(6)前記(1)~(4)のいずれかの分離分析用キャピラリーデバイスを用いたタンパク質又はペプチド分析方法であって、
 標的タンパク質又はペプチドを含有する試料を、固相抽出カラムに導入し、固相抽出カラムに標的タンパク質又はペプチドを吸着させる工程1と、
 前記固相抽出カラムに吸着させた標的タンパク質又はペプチドを分離分析用キャピラリーデバイス内に溶離する工程2と、
 前記分離分析用キャピラリーデバイスに電圧を印加し、溶離した前記標的タンパク質又はペプチドを、前記等電点電気泳動用キャピラリー内で、焦点化する工程3と、
 焦点化後、前記標的タンパク質又はペプチドを検出する工程5と、
を有することを特徴とするタンパク質又はペプチド分析方法。
(7)前記工程3と、前記工程5の全体に亘って、前記等電点電気泳動用キャピラリー両端の圧力差を調整して前記固相抽出カラムで発生する電気浸透を制御する工程4を有する前記(6)のタンパク質又はペプチド分析方法。
(8)前記(1)~(4)のいずれかの分離分析用キャピラリーデバイスと、該分離分析用キャピラリーデバイス中に存在する2種以上の液の境界位置を検出する一以上の境界検出器を有する検出装置と、を備えた電気泳動装置。
(9)前記境界検出器が、注入された試料液と、他の液との境界位置を検出する境界検出器である前記(8)の電気泳動装置。
(10)前記境界検出器が、両性担体液と、溶離液または電極液との境界位置を検出する境界検出器である前記(8)又は(9)の電気泳動装置。
(11)前記境界検出器が、非接触若しくは接触型の電気伝導度検出器、屈折率検出器、吸光度検出器、蛍光検出器、又は散乱光検出器である前記(8)~(10)のいずれかの電気泳動装置。
(12)前記検出装置が、さらに、等電点電気泳動により分離された試料を検出する試料検出器を有する前記(8)~(11)のいずれかの電気泳動装置。
(13)前記分離分析用キャピラリーデバイスが、逆U字型に配置された前記(8)~(12)のいずれかの電気泳動装置。
(14)前記(8)~(13)のいずれかの電気泳動装置と機能的に同じ構造を備えたことを特徴とする分離分析用マイクロ流体チップ電気泳動装置。
 本発明によれば、試料に含まれる妨害物質を簡便に除去し、高感度かつ高精度にタンパク質又はペプチドを等電点の違いに基づいて分離して分析することができる。
本発明に係る分離分析用キャピラリーデバイスの実施形態の一例を示す断面図である。 本発明に係る分離分析用マイクロ流体チップの実施形態の一例を示す断面図である。 本発明に係るタンパク質又はペプチド分析方法の実施形態の一例の説明図である。 実施例の結果である。 本発明に係る電気泳動装置の実施形態の一例を示す概略説明図である。
 以下、図を用いて実施形態を具体的に説明するが、本発明は各図に示す実施形態に限定されるものではない。
<分離分析用キャピラリーデバイス>
 図1に示すように、本発明の分離分析用キャピラリーデバイス1は、固相抽出カラム2と、該固相抽出カラム2に直結する等電点電気泳動用キャピラリー3と、を一体として備えてなる。本発明において「直結する」とは、固相抽出カラムと、等電点電気泳動用キャピラリーとが、他のカラム、キャピラリー、流路、チャネル等を介さずに連結していることをいう。
 キャピラリー等電点電気泳動は、様々な等電点をもつ両性電解質の混合物である両性担体とタンパク質などの試料とをキャピラリー内に導入し、電圧印加により試料成分の等電点の違いにより分離を行う手法である。以下、便宜上、「試料」を「タンパク質」と言うことがあるが、試料はタンパク質に限定されるものではない。
 分離分析用キャピラリーデバイス1に用いられるキャピラリーとしては、耐食性に優れ、電気伝導率が低く、非常に透明であるなどの観点から溶融シリカキャピラリーが好ましいが、それに限らず同等あるいはそれに優る性質を有するものであればよい。
 分離分析用キャピラリーデバイス1の内径は、1~500μmが好ましい。分離分析用キャピラリーデバイス1の内径が係る範囲内にあることにより、電圧印加に伴うジュール熱の放熱性が高く、高電圧の印加が可能である。従って、微小量の試料で高速分離が可能である。
 等電点電気泳動用キャピラリー3は、内壁に溶融シリカ由来のシラノール基を有することによる、タンパク質又はペプチドの吸着と電気浸透流を抑制する観点から、キャピラリーの内壁に親水性ポリマーを結合させたものが好ましい。親水性ポリマーとしては、ヒドロキシエチルセルロース等のセルロース誘導体、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド、ポリジメチルアクリルアミド、ポリジエチルアクリルアミド、ポリビニルピロリドン、ポリエチレンオキサイド、ポリビニルアルコール、ポリオール類(ポリグリセリン)、デキストラン、アガロース等が挙げられる。結合は物理的吸着であっても、化学結合によるものであってもよい。例えば、内壁に親水性ポリマーを予め化学的あるいは物理的に結合させたキャピラリーを用いてもよく、両性担体液(分離液)中に親水性ポリマーを添加し、当該親水性ポリマーをキャピラリー内壁に物理的に吸着させて用いてもよい。
 固相抽出カラム2は、等電点電気泳動用キャピラリー3に直結するものであり、特定の標的物質を可逆的に吸着、脱着する観点から、アフィニティークロマトグラフィー担体を有するものが好ましい。この場合、固相抽出カラム2にあるアフィニティーリガンドに親和性をもつタンパク質が特異的に固相に捕捉される。固相からの溶離は遊離リガンドによる競合、酸性化またはアルカリ性化などのpH変化、高濃度の尿素などによるタンパク質の変性などによってなし得る。
 また、固相抽出カラム2は、イオン交換クロマトグラフィー担体を有するもの、又は疎水性相互作用クロマトグラフィー担体を有するものも好ましい。イオン交換クロマトグラフィー担体を用いることにより、所望の有効表面電荷を有するタンパク質を特異的に固相に捕捉することができる。また、疎水性相互作用クロマトグラフィー担体を用いることにより、目的とするタンパク質と固相リガンドとの相互作用を利用して、当該目的タンパク質を好適に固相に捕捉することができる。
 固相抽出カラム2の固相担体としては、キャピラリーの内壁を用いる方法、重合反応によって多孔性ゲルを作製して得られるモノリスカラムを用いる方法、ビーズ状の固相担体を充填したカラムを用いる方法、多孔性の膜を固相担体として用いる等が挙げられる。
 等電点電気泳動用キャピラリー3の断面積と、固相抽出カラム2の断面積は同一である必要はなく、適宜最適化されうる。また、固相抽出カラム2と等電点電気泳動用キャピラリー3とが分離しており、操作開始時または固相抽出工程の完了後に一体化して用いてもよい。
 アフィニティークロマトグラフィー担体を用いる場合の、標的分子/アフィニティーリガンドの組み合わせとしては、アビジン及びストレプトアビジン等のビオチン結合タンパク質/ビオチン、マルトース結合タンパク質/マルトース、Gタンパク質/グアニンヌクレオチド、オリゴヒスチジンペプチド/ニッケルあるいはコバルト等の金属イオン、グルタチオン-S-トランスフェラーゼ/グルタチオン、DNA結合タンパク質/DNA、抗体/抗原分子(エピトープ)、抗原分子(エピトープ)/抗体、抗体/プロテインA、抗体/プロテインG、抗体/プロテインL、レクチン/糖、カルモジュリン/カルモジュリン結合ペプチド、ATP結合タンパク質/ATP、あるいはエストラジオール受容体タンパク質/エストラジオールなどが例として挙げられる。
 これらの中で標的分子/アフィニティーリガンドの組合せとしては、アビジン及びストレプトアビジンなどのビオチン結合タンパク質/ビオチン、オリゴヒスチジンペプチド/ニッケルあるいはコバルト等の金属イオン、抗体/抗原分子(エピトープ)、抗原分子(エピトープ)/抗体、抗体/プロテインA、抗体/プロテインG、抗体/プロテインL、レクチン/糖、などが好ましい。
 本発明の分離分析用キャピラリーデバイス1によれば、等電点電気泳動用キャピラリー3と、固相抽出カラム2が直結しているため、試料中の高濃度タンパク質と塩を除去して、低濃度タンパク質の等電点電気泳動による分析を可能にする。
 また、本発明の分離分析用キャピラリーデバイスによれば、標的タンパク質又はペプチドは、固相抽出カラム2により濃縮されるため、固相抽出カラム2に流す試料の量を増すことにより検出感度を大幅に向上することができる。
<分離分析用マイクロ流体チップ>
 本発明の分離分析用マイクロ流体チップは、上述した本発明の分離分析用キャピラリーデバイスと機能的に同様の構造を備えたものである。すなわち、本発明の分離分析用マイクロ流体チップは、少なくとも、等電点電気泳動用流路と、当該流路に直結された固相抽出カラムとを備える。
 図2に示すように、本発明の分離分析用マイクロ流体チップ10は、一例として、固相抽出カラム2と、等電点電気泳動用流路3と、電極液を導入する電極液リザーバー4と、もう一つの電極液を導入する電極液リザーバー5とが形成された基板11を備えている。
 基板11の材料としては、例えば、プラスチック材料、ガラス、シリカ、石英、光硬化性樹脂、熱硬化性樹脂、シリコーン等が挙げられる。
 電気泳動を行うための電極(図示省略)は、各リザーバー(電極液リザーバー4、電極液リザーバー5)に予め備え付けられ、例えばスパッタなどにより基板上の各リザーバー部位に形成されてもよいし、又は各リザーバーに電極を挿入する機構を備え、必要時に基板11外から電極を基板11上に差し込む構成であってもよい。
 電気泳動を行う際は、電極間に電圧を印加する。電圧は、直流電圧であることが好ましい。
 本発明の分離分析用マイクロ流体チップ10は、電圧を印加する機構を備えていてもよく、流路に順番に注入された2種の液体の境界を検出する検出装置(図示省略)と、標的タンパク質又はペプチドを検出するための検出装置(図示省略)とをさらに備えていてもよい。
検出装置としては、伝導度検出器、または屈折率、光散乱、UV吸収、蛍光などの光検出装置が好ましい。光検出装置は、光源と検出器を備える。光源としては、レーザー、LED、ランプが挙げられ、検出器は、光電子増倍管、フォトダイオード、アバランシェフォトダイオード、マルチピクセル光検出器、CCDカメラが挙げられる。
 本発明の分離分析用マイクロ流体チップ10は、本発明の分離分析用キャピラリーデバイスをチップ化したものであるため、高感度のタンパク質又はペプチドの分析を容易に行うことができる。
<タンパク質又はペプチド分析方法>
 本発明のタンパク質又はペプチド分析方法は、本発明の分離分析用キャピラリーデバイスを用いたタンパク質又はペプチド分析方法であって、
 標的タンパク質又はペプチドを含有する試料を、分離分析用キャピラリーデバイスに導入し、固相抽出カラムに標的タンパク質又はペプチドを吸着させる工程1と、
 前記固相抽出カラムに吸着させた標的タンパク質又はペプチドを分離分析用キャピラリーデバイス内に溶離する工程2と、
 前記分離分析用キャピラリーデバイスに電圧を印加し、溶離した前記標的タンパク質又はペプチドを、前記等電点電気泳動用キャピラリー内で、焦点化する工程3と、
 焦点化後、前記標的タンパク質又はペプチドを検出する工程5と、
 を有する。
 以下、図3を参照しながら本発明のタンパク質又はペプチド分析方法の好ましい実施形態について説明する。
[工程1]
 工程1において、標的タンパク質又はペプチドを含有する試料を、固相抽出カラムに導入する。固相抽出カラムは、標的タンパク質又はペプチドに親和性を有するため、該固相抽出カラムに標的タンパク質又はペプチドが特異的に吸着する。
 次いで、必要に応じて、前記固相抽出カラムを洗浄する。適当な緩衝液を分離分析用キャピラリーデバイスに導入することにより不要な高濃度タンパク質及び塩などの妨害物質は、標的タンパク質又はペプチドから除かれる。
 次いで、分離分析用キャピラリーデバイスを両性担体溶液で満たす。等電点電気泳動を行うため、等電点電気泳動用キャピラリーには、電圧印加によりpH勾配が形成されるよう、弱酸性と弱塩基性の両方の解離基をもつ複数の両性電解質からなる両性担体溶液が充填されることが好ましい。
両性担体のpH勾配の幅は、測定対象のタンパク質又はペプチドの等電点が含まれるように選択可能である。陽極槽には例えば、リン酸溶液などの酸を含む陽極液が充填され、陰極槽には例えば、水酸化ナトリウム溶液などの塩基を含む陰極液が充填される。
[工程2]
 工程2において、固相抽出カラムに吸着させた標的タンパク質又はペプチドを溶離する。溶離方法としては特に限定されず、固相抽出カラムに遊離リガンドを導入して競合させる方法、酸溶液を導入して酸性化により溶離させる方法、塩基溶液を導入して塩基性化により溶離させる方法、高濃度の尿素などの変成剤を導入して溶離させる方法等が挙げられる。
[工程3]
 工程3において、分離分析用キャピラリーデバイスに電圧を印加し、溶離した前記標的タンパク質又はペプチドを、前記等電点電気泳動用キャピラリーで、焦点化(分離、泳動)する。
 印加電圧値の範囲は、等電点電気泳動用キャピラリーの長さ1cmあたり100~1000Vが好ましい。電気泳動を行う間、ジュール熱の影響を除去するために、例えば冷却溶媒の外部循環、送風、ペルチェなどで冷却を行ってもよい。電圧を印加することにより、等電点電気泳動用キャピラリー内に両性担体によるpH勾配が形成される。タンパク質及びペプチドは両性物質であり、ペプチドを構成するアミノ酸の側鎖解離基の種類とその量が異なれば等電点も異なるので、分離分析用キャピラリーデバイス内に存在するタンパク質又はペプチドは、それぞれの等電点と等しいpHの位置に収束し分離される。
 工程2において、塩基性化により標的タンパク質又はペプチドを溶離させる場合には、極性を逆にして等電点電気泳動を行う。
 また、工程2において、競合反応や変性により標的タンパク質又はペプチドを溶離させる場合には、競合する物質または変成剤と、両性担体を含む溶液とを固相抽出カラムに導入し、次に固相抽出カラム部を陽極液又は陰極液で満たして等電点電気泳動を開始する。固相抽出カラムを陽極液で満たした場合には、固相抽出カラム側を陽極にし、固相抽出カラムを陰極液で満たした場合には、固相抽出カラム側を陰極にする。
[工程4]
 本実施形態において、工程3と、工程5の全体に亘って、前記等電点電気泳動用キャピラリー両端の圧力差を調整して前記固相抽出カラムで発生する電気浸透を制御する工程4を有することが好ましい。
 工程4において、必要に応じて、前記分離分析用キャピラリーデバイス両端の圧力差を調整して前記固相抽出カラムで発生する電気浸透を制御する。一例として、固相抽出カラム側を陽極液、等電点電気泳動用キャピラリー側を陰極液に浸して電圧を印加する。固相抽出カラム部は酸性化により陽電荷を帯びる可能性が高い。その場合、陽極液の電気伝導度に依存して陽極方向に電気浸透が発生し、標的タンパク質又はペプチドを含むpH勾配全体が陽極方向に移動する。
 しかし、工程4において陽極端に適度の圧力を加えることで、この電気浸透流による流れを実質的にキャンセルし、等電点電気泳動による焦点化を、等電点電気泳動用キャピラリー内で起こさせることができる。また、前記分離分析用キャピラリーデバイス両端の圧力差の調整は、静水圧を用いてもよい。
 また、上述した工程4に代えて、前記固相抽出には無関係な電荷をあらかじめ固相抽出担体に結合させることにより、前記固相抽出カラムで発生する電気浸透を制御することも好ましい。
 例えば、工程2における溶離液として酸液を用いる場合であれば、固相担体が陽電荷を帯び、固相抽出カラムにおいて陽極方向への電気浸透流が発生するおそれがある。この電気浸透流は、工程4として上述したような圧力差の調整により制御を行うこともできるが、酸性化によって固相抽出担体が帯びる正電荷とつり合う負電荷をあらかじめ結合させておくことによっても、酸性化にともなう電気浸透流の発生を制御することが可能である。
 電荷を加える方法は特に限定されるものではない。一例として、固相抽出に酸液を用いる場合であれば、予め固相抽出カラムにスルホン酸基などの強酸性の解離基を導入しておくことにより、固相抽出担体に捕捉した標的タンパク質又はペプチドを溶離するために固相抽出担体を酸液で満たしたとしても、固相抽出カラムの実効電荷をゼロの状態とすることができる。これにより電気浸透流の発生を抑制し、等電点電気泳動による焦点化を、等電点電気泳動用キャピラリー内で行うことができる。また、電気浸透流の発生を抑制することにより、等電点電気泳動用キャピラリーの内壁コーティングに悪影響を及ぼし得る塩基性の陰極液の流入を防ぐことができる。
[工程5]
 工程5において、焦点化後、前記標的タンパク質又はペプチドを検出する。一例として、標的タンパク質又はペプチドに予め付した標識からの信号を取得する。
 蛍光色素を標識として用いる場合、蛍光色素の励起波長に応じた励起光を照射し、蛍光色素から放出される蛍光を取得する。励起光源として、レーザー、LED、ランプなどを用いることが可能であり、必要に応じて励起波長の光のみを照射するよう、例えばバンドパスフィルタなどのフィルタを使用する。
 蛍光を取得するには、例えば光電子増倍管、フォトダイオード、アバランシェフォトダイオード、マルチピクセル光検出器、CCDカメラ等を用いる。蛍光色素からの蛍光波長に相当する光のみを測定するよう例えばバンドパスフィルタやノッチフィルタなどのフィルタを使用することが好ましい。上記以外のあらゆる光源と検出器の組合せを用いることも可能である。
 測定は、走査型検出器を用いてキャピラリーを走査検出する方法により行ってもよく、固定型検出器を用いて検出する方法により行ってもよい。また、CCDカメラなどを用いて画像として検出してもよい。固定型検出器を用いる場合には、分離分析用キャピラリーデバイス両端の圧力差を制御することにより、焦点化した標的タンパク質又はペプチドを含むpH勾配全体を固定型検出器に対して移動させて検出を行うことが好ましい。pH勾配全体の移動は、陰極液に塩化物イオンなどを添加してpH勾配全体を酸性化することによって、焦点化したタンパク質を陰極方向へ電気泳動させる方法によって行ってもよい。電気泳動による移動は、陽極液にナトリウムイオンなどを添加することによって、逆の陽極方向に行うこともできる。
 分離分析用キャピラリーデバイス中のタンパク質又はペプチドは、自身の等電点と等しいpHの位置に収束し分離される。標的タンパク質又はペプチドの量は、これらの等電点位置の標識からの信号量から算出される。
 なお、工程5では、上記蛍光色素を用いた光測定に代えて、標的タンパク質又はペプチドの等電点位置でのUV吸収値や電気伝導度により測定を行ってもよい。
 本発明のタンパク質又はペプチド分析方法によれば、本発明の分離分析用キャピラリーデバイスを用い、固相抽出カラムで試料中の標的分子のほとんどすべてを捕捉し、そのほとんどすべてを等電点電気泳動用キャピラリーで分離定量することができるため、高感度のタンパク質又はペプチドの分析を容易に行うことができる。
<電気泳動装置>
 本発明の電気泳動装置は、上述した本発明の分離分析用キャピラリーデバイスと、該分離分析用キャピラリーデバイス中に存在する2種以上の液の境界位置を検出する一以上の境界検出器を有する検出装置と、を備えたものである。
 図5に示す本発明の電気泳動装置20は、一例として、固体抽出カラム2及び等電点電気泳動用キャピラリー3を備える分離分析用キャピラリーデバイス1と、電極液リザーバー4、電極液リザーバー5、境界検出器6及びタンパク質検出器(試料検出器)7を有する検出装置と、を備えている。
 電極液リザーバー4は陽極を備え、電極液リザーバー5は陰極を備えており、これら陽極及び陰極は電源と接続されて、電気泳動の際に電極間に電圧が印加される。
 図5に示す本発明の電気泳動装置20において、分離分析用キャピラリーデバイス1は、好ましい配置の一例として逆U字型に配置されているものであって、電極液リザーバー4及び陽極側に固相抽出カラム2が配され、電極液リザーバー5及び陰極側に等電点電気泳動用キャピラリー3が配されている。
 検出装置が有する境界検出器6は、分離分析用キャピラリーデバイス中に存在する2種以上の液の境界位置を検出するものである。
たとえば、図5に示す境界検出器6は、等電点電気泳動時に等電点電気泳動用キャピラリー内を充たす両性担体液と、固相抽出カラム2から標的タンパク質又はペプチドを溶離する際の溶離液や電極液との境界位置を検出することができる。
通常の中空キャピラリーの場合、該キャピラリー中の液の移動速度及び液の境界の位置は、付与する圧力等に応じて算出及び調整することができる。しかしながら、本発明の固相抽出キャピラリー内に充填材等の構造を有する場合は、充填材等の充填状況あるいは試料などに混入した粒子状物質等による目詰まりなどにより抵抗が変わるため、液の境界位置を特定することが従来困難であった。
一方、本実施形態のように、境界検出器6を有する場合であれば、圧力と流量の関係が不明の場合でも両性担体液と溶離液や電極液との境界位置を検出することができ、その境界を適切な位置に調節することによって標的タンパク質又はペプチドの分離分析を精度高く効率的に行うことができる。
 本発明の電気泳動装置20は、境界検出器6に加えて、さらに他の境界検出器を備えていてもよい(図示省略)。複数の境界検出器を備えることにより、液の注入過程における流量の変化を知ることができ、注入液への粒子状物質の混入などの問題の発生を検知することができる。
境界検出器の他の用途は、固相抽出カラム2に注入された試料液と、試料液注入前に分離分析用キャピラリーデバイス1中を充たしている液との境界位置の検出が挙げられる。該境界位置を検出することにより、試料液の注入量を測ることができ、定量的に分離分析を行うことができる。
 上述した境界検出器(境界検出器6、他の境界検出器)としては、非接触若しくは接触型の電気伝導度検出器、屈折率検出器、吸光度検出器、蛍光検出器、又は散乱光検出器が好ましい。
なかでも、簡易に検出が可能であり、且つ、分離分析用キャピラリーの材料や形状への制約を設けずに設置し得ることから、非接触型の電気伝導度検出器であることが特に好ましい。例えば、両性担体液と電極液との境界位置の検出であれば、一般的に両性担体液は電気伝導度が低く、電極液は一般的に電気伝導度が高いため、電気伝導度を用いて容易に検出を行うことができる。
 本態様の検出装置は、さらに、等電点電気泳動により分離された試料を検出するタンパク質検出器(試料検出器)7を備える。タンパク質検出器7は、等電点電気泳動により焦点化された標的タンパク質又はペプチドを検出するものであって、上述した走査型検出器、固定型検出器、画像検出器等を用いることができる。
 本発明の電気泳動装置は、本発明の分離分析用キャピラリーデバイスの両端の圧力差を制御する機構を備えることにより、該キャピラリーデバイス内への液の注入、固相抽出担体で発生する電気浸透による等電点電気泳動用キャピラリー内の液の流れの制御を行うことができる。等電点電気泳動による焦点化(分離、泳動)の際には圧力の制御によって、固相抽出担体で発生する電気浸透の影響を最少にすることが望ましいが、例えば境界検出器6の位置に両性担体液と陽極液の境界を置いた状態で等電点電気泳動を開始し、その境界が固相抽出担体内で発生する電気浸透によって移動しないように、境界の位置を連続的にモニターしつつ、圧力を動的に制御することによって実際上境界が移動しないように制御することができる。
 本発明の電気泳動装置は、本発明の分離分析用キャピラリーデバイスの性能を最大限引き出すことができるものであるため、タンパク質又はペプチドの分析及び検出を高感度かつ容易に行うことができる。
<分離分析用マイクロ流体チップ電気泳動装置>
 本発明の分離分析用マイクロ流体チップ電気泳動装置は、上述した本発明の電気泳動装置と機能的に同様の構造を備えたものである。
 本発明の分離分析用マイクロ流体チップ電気泳動装置は、本発明の電気泳動装置と同様、タンパク質又はペプチドの分析及び検出を高感度かつ容易に行うことができる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 溶融シリカキャピラリー(内径50μm、外径365μm、長さ70cm)を用意し、キャピラリー内を3-メタクリルオキシプロピルトリメトキシシラン/酢酸/アセトン(10/45/45,v/v/v)混合液で満たし、一晩室温に放置し、内壁にメタクリルオキシプロピル基を結合させた。
 キャピラリーを洗浄、乾燥後、一端から40cmの位置にマーカーペン等で外壁に印を付け、長い方のキャピラリーの端からこの印の位置までジメチルアクリルアミド重合液を注入し、両端をゴムセプタムで閉じて50°C、2時間反応させることにより、ジメチルアクリルアミドと、先にキャピラリー内壁に結合させたメタクリルオキシ基との共重合を引き起こすことより、内壁に電気浸透とタンパク質の吸着を抑制するポリジメチルアクリルアミドを結合させた。
 キャピラリーを洗浄、乾燥後、短い方のキャピラリーの端から印の位置までメタクリル酸グリシジル重合液を注入し、両端をゴムセプタムで閉じて50°C、一夜反応させることにより、メタクリル酸グリシジルと、先にキャピラリー内壁に結合させたメタクリルオキシ基との共重合を引き起こすことより、内壁にポリメタクリル酸グリシジルを結合させた。
 キャピラリーを洗浄、乾燥後、ポリメタクリル酸グリシジルを結合した部分のみをイミノジ酢酸ナトリウム溶液(pH9.0)で満たし、50°Cに1.6時間置いて、イミノジ酢酸を結合させた。イミノジ酢酸を結合させたキャピラリー部分は印から20cmの位置で、ポリジメチルアクリルアミドを結合させたキャピラリー部分は印から30cmの位置で切断し、全長を50cmとした。このキャピラリーを分離分析用キャピラリーデバイスとして用いた。
 イミノジ酢酸結合側を陽極側にして、この分離分析用キャピラリーデバイスをベックマンコールター社製P/ACE MDQ 全自動キャピラリー電気泳動装置に取り付け、陰極端から10cmの位置で532nmのレーザー光を励起光として590nm付近の蛍光を検出した。
 この分離分析用キャピラリーデバイスに陽極側から平衡化液として0.5M塩化ナトリウムを含む20mMトリス塩酸緩衝液(pH7.4)を2psiの圧力で1分間流した後に、100mM塩化ニッケル水溶液を2psiの圧力で1分間流し、イミノジ酢酸にニッケルイオンを結合させ、ヘキサヒスチジンタグをもつタンパク質を標的とする固相抽出カラムとした。以下の送液は常に陽極側から陰極側に向けて行った。
 過剰のニッケルイオンを除くために、洗浄液として10mMのイミダゾールと0.5M塩化ナトリウムを含む20mMトリス塩酸緩衝液(pH7.4)を2psiの圧力で1分間流した。
 次にヘキサヒスチジンタグをもつマウス組換え抗体Fab断片を蛍光標識、精製して得た等電点7.70の標識Fab試料20nMを含む100mMトリス塩酸緩衝液(0.1%ツイーン20を含む)を0.5psiの圧力で2分間注入(キャピラリーの長さにして約7.5cm)し、Fabを固相抽出カラムに吸着させた。次いで、上記の洗浄液を2psiの圧力で1分間流し、さらに、4種の蛍光標識ペプチドを等電点マーカーとしてそれぞれ2.5nM含む両性担体液(2.5%(v/v)ファルマライト3-10、0.1%酢酸、0.6%テトラメチルエチレンジアミン)を40psiの圧力で0.3分間流し、デバイス内を等電点マーカーと両性担体を含む液で置換した。
 次いで、溶離液として、また陽極液としても用いる100mMリン酸を2psiの圧力で1.3分間流し、固相抽出カラム部分のみを陽極液で満たすとともに固相抽出カラムに結合したFabを溶離した。この状態では、試料のFabは固相抽出カラムと等電点電気泳動用キャピラリーの境界付近に溶離されたと考えられる。イミノジ酢酸に結合したニッケルイオンも遊離し、イミノジ酢酸のカルボキシル基の解離は抑制され、イミノ基には正電荷が残るので、固相抽出カラムは正の電荷を帯びるようになる。
 次に、陽極液として100mMリン酸、陰極液として100mM水酸化ナトリウムを用い、最大電流20μAの制限下に25kVの直流電圧を印加し、また、固相抽出カラムで発生する電気浸透流を抑制するために、陽極端に0.2psiの圧力を加えた。
 固相抽出カラムは正電荷を帯びているので、陽極方向への電気浸透が発生する。電気泳動開始時に陽極液に浸された固相抽出カラム部分には大きな電圧がかかり、電気浸透も大きいが、電気伝導率の小さなpH勾配が形成されるに伴ってpH勾配による電圧降下が大きくなるので、固相抽出カラム部分にかかる電圧はしだいに低下し、電気浸透流もしだいに小さくなる。
 ここで用いたキャピラリー電気泳動装置の圧力制御の設定は最少0.1psi刻みであり、0.1psiが最少設定値である。陽極端に加える圧力は、電気泳動による焦点化を開始して最初の2分間を0.2psi、それ以降を0.1psiとすることで、電気泳動初期の陽極方向へのpH勾配の移動をほぼ抑制することができた。その後、0.1psiの圧力を加え続けることで、焦点化を進めつつ、pH勾配を検出点にむけて徐々に動かすことによって、焦点化終了後のpH勾配全体の検出が可能になった。等電点7.70のFabは分析開始から22.7分の位置に検出された。この位置は同時に分離した等電点マーカーの分離結果からみて妥当な位置である。
 図4に示すように、所定のpIを有するHis・tag付き蛍光標識組換えFabが高感度に検出された。
1 分離分析用キャピラリーデバイス
2 固相抽出カラム
3 等電点電気泳動用キャピラリー
4 電極液リザーバー
5 電極液リザーバー
6 境界検出器
7 タンパク質検出器(試料検出器)
10 分離分析用マイクロ流体チップ
11 基板
20 電気泳動装置

Claims (14)

  1.  等電点電気泳動用キャピラリーと、該等電点電気泳動用キャピラリーに直結する固相抽出カラムと、を一体として備えてなることを特徴とする分離分析用キャピラリーデバイス。
  2.  前記等電点電気泳動用キャピラリーは、内壁に親水性ポリマーが結合されてなる請求項1に記載の分離分析用キャピラリーデバイス。
  3.  前記固相抽出カラムは、アフィニティークロマトグラフィー担体、イオン交換クロマトグラフィー担体、又は、疎水性相互作用クロマトグラフィー担体を有する請求項1又は2に記載の分離分析用キャピラリーデバイス。
  4.  前記固相抽出カラムに電荷を有する解離基を導入することにより、該固相抽出カラムで発生する電気浸透を抑制した請求項1~3のいずれか一項に記載の分離分析用キャピラリーデバイス。
  5.  請求項1~4のいずれか一項に記載の分離分析用キャピラリーデバイスと機能的に同じ構造を備えたことを特徴とする分離分析用マイクロ流体チップ。
  6.  請求項1~4のいずれか一項に記載の分離分析用キャピラリーデバイスを用いたタンパク質又はペプチド分析方法であって、
     標的タンパク質又はペプチドを含有する試料を、固相抽出カラムに導入し、固相抽出カラムに標的タンパク質又はペプチドを吸着させる工程1と、
     前記固相抽出カラムに吸着させた標的タンパク質又はペプチドを分離分析用キャピラリーデバイス内に溶離する工程2と、
     前記分離分析用キャピラリーデバイスに電圧を印加し、溶離した前記標的タンパク質又はペプチドを、前記等電点電気泳動用キャピラリー内で、焦点化する工程3と、
     焦点化後、前記標的タンパク質又はペプチドを検出する工程5と、
    を有することを特徴とするタンパク質又はペプチド分析方法。
  7.  前記工程3と、前記工程5の全体に亘って、前記等電点電気泳動用キャピラリー両端の圧力差を調整して前記固相抽出カラムで発生する電気浸透を制御する工程4を有する請求項6に記載のタンパク質又はペプチド分析方法。
  8.  請求項1~4のいずれか一項に記載の分離分析用キャピラリーデバイスと、
     該分離分析用キャピラリーデバイス中に存在する2種以上の液の境界位置を検出する一以上の境界検出器を有する検出装置と、を備えた電気泳動装置。
  9. 前記境界検出器が、注入された試料液と、他の液との境界位置を検出する境界検出器である請求項8に記載の電気泳動装置。
  10. 前記境界検出器が、両性担体液と、溶離液または電極液との境界位置を検出する境界検出器である請求項8又は9に記載の電気泳動装置。
  11. 前記境界検出器が、非接触若しくは接触型の電気伝導度検出器、屈折率検出器、吸光度検出器、蛍光検出器、又は散乱光検出器である請求項8~10のいずれか一項に記載の電気泳動装置。
  12.  前記検出装置が、さらに、等電点電気泳動により分離された試料を検出する試料検出器を有する請求項8~11のいずれか一項に記載の電気泳動装置。
  13.  前記分離分析用キャピラリーデバイスが、逆U字型に配置された請求項8~12のいずれか一項に記載の電気泳動装置。
  14.  請求項8~13のいずれか一項に記載の電気泳動装置と機能的に同じ構造を備えたことを特徴とする分離分析用マイクロ流体チップ電気泳動装置。
PCT/JP2014/077340 2013-11-12 2014-10-14 分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置 WO2015072265A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015547698A JP6422131B2 (ja) 2013-11-12 2014-10-14 分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置
US15/025,809 US9927399B2 (en) 2013-11-12 2014-10-14 Capillary device for separation and analysis, microfluidic chip for separation and analysis, analysis method for proteins or peptides, electrophoresis instrument, and microfluidic chip electrophoresis instrument for separation and analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-234146 2013-11-12
JP2013234146 2013-11-12

Publications (1)

Publication Number Publication Date
WO2015072265A1 true WO2015072265A1 (ja) 2015-05-21

Family

ID=53057207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077340 WO2015072265A1 (ja) 2013-11-12 2014-10-14 分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置

Country Status (3)

Country Link
US (1) US9927399B2 (ja)
JP (1) JP6422131B2 (ja)
WO (1) WO2015072265A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109106403A (zh) * 2018-07-17 2019-01-01 王晓飞 基于色谱棒的微米级采样针及制备方法
CN109564147A (zh) * 2016-06-03 2019-04-02 普度研究基金会 用于分析使用吸附材料从样品中提取的分析物的系统和方法
JP7045737B1 (ja) 2021-01-15 2022-04-01 エースバイオアナリシス株式会社 走査ユニット、システムおよび方法
WO2022153571A1 (ja) * 2021-01-15 2022-07-21 エースバイオアナリシス株式会社 走査ユニット、システムおよび方法、ならびにマイクロカラム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578580B2 (en) 2016-09-23 2020-03-03 University Of Notre Dame Du Lac One-step capillary isoelectric focusing and mobilization of analytes
US10746696B2 (en) 2016-12-19 2020-08-18 Analog Devices, Inc. Self-calibrated heavy metal detector
ES2978396T3 (es) * 2017-08-01 2024-09-11 Amgen Inc Sistemas y métodos para la preparación en tiempo real de una muestra de polipéptidos para el análisis por espectrometría de masas
CN109718576A (zh) * 2018-12-26 2019-05-07 上海交通大学 固化pH梯度的毛细管等电聚焦开管柱及其制备方法
US11173486B2 (en) * 2019-02-13 2021-11-16 International Business Machines Corporation Fluidic cavities for on-chip layering and sealing of separation arrays
CA3193454A1 (en) * 2019-08-30 2021-03-04 Tallinn University Of Technology Apparatus and method for determination of banned substances
CN111175513A (zh) * 2019-10-09 2020-05-19 天津科技大学 一种去除蛋白质提取液中离子型表面活性剂的新方法
CN113063834B (zh) * 2021-03-19 2021-12-28 上海交通大学 一种基于移动交换界面的可视化检测物质浓度的方法
SE2130189A1 (en) * 2021-07-06 2023-01-07 Biomotif Ab Apparatus and method for capillary isoelectric focusing of biomolecules
CN115069320B (zh) * 2022-07-01 2023-07-28 宁波工程学院 整体柱纳流电渗泵集成芯片及制造方法、分析系统与应用
CN116223172B (zh) * 2023-03-16 2023-08-29 杭州瑞旭科技集团有限公司 一种化妆品合规角质软化组分萃取和测定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318453A (ja) * 1991-02-01 1992-11-10 Smithkline Beckman Corp 毛管電気泳動のためのカラム、毛管電気泳動装置、試料の調製方法および毛管電気泳動方法
JPH06242073A (ja) * 1993-01-19 1994-09-02 Hewlett Packard Co <Hp> キャピラリ電気泳動システムにおけるフロー制御システムおよびその方法ならびにキャピラリ電気泳動システム
JPH07311198A (ja) * 1994-03-08 1995-11-28 Ciba Geigy Ag 組み合わされたバイオアフィニティーアッセイ及び電気泳動分離のための装置及び方法
JPH08327594A (ja) * 1995-05-29 1996-12-13 Shimadzu Corp キャピラリ電気泳動チップ
JP2006038535A (ja) * 2004-07-23 2006-02-09 Sharp Corp 物質の検出方法および物質の分離装置
JP2008256460A (ja) * 2007-04-03 2008-10-23 Sekisui Chem Co Ltd 電気泳動用キャピラリー
JP2008547021A (ja) * 2005-06-23 2008-12-25 ベックマン コールター,インコーポレーテッド キャピラリーゾーン電気泳動の感度を向上させるための方法及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680201A (en) * 1985-10-30 1987-07-14 Stellan Hjerten Coating for electrophoresis tube
US5202010A (en) 1987-11-25 1993-04-13 Princeton Biochemicals, Inc. Automated capillary electrophoresis apparatus
US5246577A (en) 1990-05-29 1993-09-21 Millipore Corporation Apparatus for effecting capillary electrophoresis
US5376249A (en) * 1992-11-25 1994-12-27 Perseptive Biosystems, Inc. Analysis utilizing isoelectric focusing
US5282942A (en) * 1993-01-22 1994-02-01 Beckman Instruments, Inc. Methods and apparatus for separating and mobilizing solutes in a solute mixture
US6410668B1 (en) * 1999-08-21 2002-06-25 Marcella Chiari Robust polymer coating
EP2623975B1 (en) 2006-12-26 2016-02-03 Sekisui Chemical Co., Ltd. Stable hemoglobin A1c and glucose measurement method
CN102680557B (zh) * 2012-05-24 2014-06-04 严丽娟 一种用于固相萃取-毛细管电泳在线联用的毛细管微柱的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318453A (ja) * 1991-02-01 1992-11-10 Smithkline Beckman Corp 毛管電気泳動のためのカラム、毛管電気泳動装置、試料の調製方法および毛管電気泳動方法
JPH06242073A (ja) * 1993-01-19 1994-09-02 Hewlett Packard Co <Hp> キャピラリ電気泳動システムにおけるフロー制御システムおよびその方法ならびにキャピラリ電気泳動システム
JPH07311198A (ja) * 1994-03-08 1995-11-28 Ciba Geigy Ag 組み合わされたバイオアフィニティーアッセイ及び電気泳動分離のための装置及び方法
JPH08327594A (ja) * 1995-05-29 1996-12-13 Shimadzu Corp キャピラリ電気泳動チップ
JP2006038535A (ja) * 2004-07-23 2006-02-09 Sharp Corp 物質の検出方法および物質の分離装置
JP2008547021A (ja) * 2005-06-23 2008-12-25 ベックマン コールター,インコーポレーテッド キャピラリーゾーン電気泳動の感度を向上させるための方法及び装置
JP2008256460A (ja) * 2007-04-03 2008-10-23 Sekisui Chem Co Ltd 電気泳動用キャピラリー

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO-HONG ZHANG ET AL.: "In-capillary solid-phase extraction-capillary electrophoresis for the determination of chlorophenols in water", ELECTROPHORESIS, vol. 27, 2006, pages 3224 - 3232 *
MARIA ROWENA ET AL.: "Sample enrichment techniques in cappillary electrophoresis:Focus on peptides and proteins", JOURNAL OF CHROMATOGRAPHY B, vol. 841, 2006, pages 88 - 95 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564147A (zh) * 2016-06-03 2019-04-02 普度研究基金会 用于分析使用吸附材料从样品中提取的分析物的系统和方法
CN109564147B (zh) * 2016-06-03 2022-02-18 普度研究基金会 用于分析使用吸附材料从样品中提取的分析物的系统和方法
CN109106403A (zh) * 2018-07-17 2019-01-01 王晓飞 基于色谱棒的微米级采样针及制备方法
JP7045737B1 (ja) 2021-01-15 2022-04-01 エースバイオアナリシス株式会社 走査ユニット、システムおよび方法
WO2022153571A1 (ja) * 2021-01-15 2022-07-21 エースバイオアナリシス株式会社 走査ユニット、システムおよび方法、ならびにマイクロカラム
JP2022109699A (ja) * 2021-01-15 2022-07-28 エースバイオアナリシス株式会社 走査ユニット、システムおよび方法

Also Published As

Publication number Publication date
JPWO2015072265A1 (ja) 2017-03-16
US9927399B2 (en) 2018-03-27
US20160245778A1 (en) 2016-08-25
JP6422131B2 (ja) 2018-11-14

Similar Documents

Publication Publication Date Title
JP6422131B2 (ja) 分離分析用キャピラリーデバイス、分離分析用マイクロ流体チップ、タンパク質又はペプチド分析方法、電気泳動装置、及び分離分析用マイクロ流体チップ電気泳動装置
Kašička Recent developments in CE and CEC of peptides (2009–2011)
Shimura Recent advances in IEF in capillary tubes and microchips
US11573200B2 (en) Devices and methods for sample characterization
Kašička Recent developments in capillary and microchip electroseparations of peptides (2011–2013)
Štěpánová et al. Analysis of proteins and peptides by electromigration methods in microchips
Pont et al. A critical retrospective and prospective review of designs and materials in in-line solid-phase extraction capillary electrophoresis
Huang et al. Capillary electrophoresis‐based separation techniques for the analysis of proteins
Silvertand et al. Recent developments in capillary isoelectric focusing
US10935519B2 (en) Apparatus and method for separating molecules
CA3089842A1 (en) Devices, methods and kits for sample characterization
Tran et al. Recent innovations in protein separation on microchips by electrophoretic methods: an update
Saavedra et al. Chromatography-based on-and in-line pre-concentration methods in capillary electrophoresis
Xie et al. Carrier ampholyte‐free isoelectric focusing on a paper‐based analytical device for the fractionation of proteins
Yang et al. Trends in capillary electrophoresis: 1997
KR20240088767A (ko) 샘플에서 분석물을 분획화하고 수집하기 시스템 및 방법
Kubalczyk et al. Methods of analyte concentration in a capillary
Mikuš et al. Column coupling electrophoresis in biomedical analysis
Fogarty et al. Microchip capillary electrophoresis: application to peptide analysis
Changa et al. Advanced capillary and microchip electrophoretic techniques for proteomics
Markuszewski et al. Capillary isoelectric focusing
Pont Villanueva et al. A critical retrospective and prospective review of designs and materials in in-line solid-phase extraction capillary electrophoresis
CA2712213C (en) Method to perform limited two dimensional separation of proteins and other biologicals
Zhan Development of Isoelectric Focusing Techniques for Protein Analyses
Fogarty et al. Microchip Capillary Electrophoresis: Application to Peptide Analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862568

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15025809

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015547698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862568

Country of ref document: EP

Kind code of ref document: A1