WO2015072079A1 - Method and apparatus for manufacturing light emitting device - Google Patents

Method and apparatus for manufacturing light emitting device Download PDF

Info

Publication number
WO2015072079A1
WO2015072079A1 PCT/JP2014/005219 JP2014005219W WO2015072079A1 WO 2015072079 A1 WO2015072079 A1 WO 2015072079A1 JP 2014005219 W JP2014005219 W JP 2014005219W WO 2015072079 A1 WO2015072079 A1 WO 2015072079A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
phosphor
laser
Prior art date
Application number
PCT/JP2014/005219
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 徳雄
暁史 中村
弘高 上ミ
純 合田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015547616A priority Critical patent/JP6145737B2/en
Publication of WO2015072079A1 publication Critical patent/WO2015072079A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method of manufacturing a light emitting device, and more particularly to a method of manufacturing a light emitting device capable of adjusting the chromaticity.
  • a light emitting device in which a blue LED chip is sealed with a translucent resin containing a phosphor is known as a light emitting device (light emitting device) which emits white light.
  • a part of the blue light emitted by the blue LED chip excites the phosphor and yellow fluorescence is emitted from the phosphor. Then, white light is obtained by mixing the blue light emitted by the blue LED chip and the yellow fluorescence emitted by the excited phosphor.
  • the chromaticity of the white light of the light emitting device is determined by the ratio of the amount of blue light emitted by the blue LED chip to the amount of yellow fluorescence emitted from the phosphor.
  • the problem is that the chromaticity of white light varies due to the variation of the performance of the blue LED chip and the amount of the phosphor.
  • the present invention provides a method of manufacturing a light emitting device capable of performing chromaticity adjustment while reducing damage to the light emitting element.
  • a light emitting element and a translucent resin containing a phosphor that emits light by being excited by light emitted from the light emitting element are formed.
  • the laser beam may be irradiated using a CO 2 laser device having a wavelength of 9.2 ⁇ m to 9.7 ⁇ m or a CO laser device having a wavelength of 5.5 ⁇ m to 5.9 ⁇ m. Good.
  • At least a part of the phosphor may be removed by irradiating the color conversion unit with the laser light.
  • the color conversion portion is irradiated with the laser light to remove at least a part of the translucent resin to expose the phosphor and to expose the phosphor. At least a portion may be inactivated.
  • the color conversion portion may be a phosphor layer made of the light transmitting resin containing the phosphor, and a resin provided above the phosphor layer made of the light transmitting resin not containing the phosphor.
  • a layer, and in the irradiation step, the color conversion portion is irradiated with the laser light to remove at least a part of the resin layer to expose the phosphor in the phosphor layer; And, at least a part of the exposed phosphor may be inactivated.
  • the irradiation position of the laser beam may be changed to a position separated by a predetermined distance or more at predetermined time intervals.
  • the method further includes a measurement step of measuring the chromaticity of light emitted from the light emitting device, and in the irradiating step, the measurement is performed such that the chromaticity of light emitted from the light emitting device falls within a predetermined range. At least one of the irradiation time of the laser light, the irradiation place of the laser light, and the irradiation energy of the laser light is adjusted based on the measurement result of the step, and the color conversion unit is irradiated with the laser light. It is also good.
  • a manufacturing apparatus is formed of a light emitting element, and a translucent resin including a phosphor that is excited by light emitted from the light emitting element to emit light, and covers at least a part of the light emitting element
  • An apparatus for manufacturing a light emitting device having a converting unit comprising: an irradiating unit configured to adjust the chromaticity of light emitted from the light emitting device by irradiating the color converting unit with laser light having a wavelength of 5.5 ⁇ m or more.
  • FIG. 1 is a view showing a substrate provided with the light emitting device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the light emitting device shown in FIG. 1 taken along line AA.
  • FIG. 3 is a view schematically showing a manufacturing apparatus of the light emitting device according to the first embodiment.
  • FIG. 4 is an external view of the irradiation unit.
  • FIG. 5 is an example of an image representing chromaticity.
  • FIG. 6 is a flowchart showing a method of adjusting the chromaticity of the light emitting device.
  • FIG. 7 is a diagram showing the relationship between the oscillation wavelength of laser light and the transmittance of laser light.
  • FIG. 8 is a diagram for explaining the focusing diameter of the laser beam.
  • FIG. 1 is a view showing a substrate provided with the light emitting device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the light emitting device shown in FIG. 1 taken along line AA.
  • FIG. 9 is a schematic view for explaining an aspect of processing of the color conversion unit.
  • FIG. 10 is a diagram for explaining changes in chromaticity of light emitted from the light emitting device.
  • FIG. 11 is a schematic diagram for explaining another example of processing of the color conversion unit.
  • FIG. 12 is an image of the light emitting device when the phosphor is deactivated by processing.
  • FIG. 13 is a schematic view showing an example in which the irradiation position of the laser light is changed every predetermined time.
  • FIG. 14 is a diagram for explaining a COB light emitting device.
  • FIG. 1 is a view showing a substrate provided with the light emitting device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the light emitting device shown in FIG. 1 taken along line AA.
  • the light emitting device 100 is mounted on, for example, the substrate 10 and used for a light source for illumination or a lighting device.
  • the substrate 10 is a substrate having a circular opening in the center, and a plurality of light emitting devices 100 are provided on the substrate 10 in the circumferential direction.
  • the substrate 10 provided with the light emitting device 100 is used for a bulb-shaped LED lamp (light source for illumination).
  • the light emitting device 100 is a light emitting device of a so-called SMD (Surface Mount Device) type and emits white light. As shown in FIG. 2, the light emitting device 100 includes an LED chip 110 (a light emitting element), a color conversion unit 120 (a phosphor layer 120 a and a resin layer 120 b) made of a translucent resin including a phosphor 130, and a package. 140, a lead frame 150, and a bonding wire 160.
  • SMD Surface Mount Device
  • the LED chip 110 is an example of a light emitting element, and is a bare chip that emits monochromatic visible light, and is die-bonding mounted on the bottom surface of the recess of the package 140 by a die attach material (die bond material).
  • a blue LED chip that emits blue light can be used as the LED chip 110.
  • a gallium nitride-based semiconductor light emitting device having a center wavelength of 440 nm to 470 nm, which is made of an InGaN-based material can be used.
  • the color conversion unit 120 is a translucent resin containing a phosphor 130 which is a light wavelength conversion material, and converts the wavelength of light from the LED chip 110 and seals the LED chip 110 to protect the LED chip 110. Do.
  • the translucent resin constituting the color conversion unit 120 is filled in the recess of the package 140 and is sealed up to the opening surface of the recess.
  • the translucent resin constituting the color conversion portion 120 is dimethyl silicone resin, phenyl silicone resin, silsesquioxane resin, epoxy resin, fluorine resin, acrylic resin or the like.
  • the color conversion unit 120 includes the phosphor layer 120 a and the resin layer 120 b.
  • the phosphor layer 120 a is a layer that covers at least the light emitting side (upper part) of the LED chip 110 and is made of a translucent resin including the phosphor 130.
  • the resin layer 120 b is a layer made of a translucent resin provided above the phosphor layer 120 a and does not include the phosphor 130. The resin layer 120 b may not be provided.
  • the phosphor 130 is a yellow phosphor which is excited by the light emitted from the LED chip 110 to emit yellow fluorescence.
  • the phosphor 130 is a YAG (yttrium aluminum garnet) -based yellow phosphor.
  • the phosphor 130 may be an orthosilicate phosphor or an oxynitride phosphor.
  • the phosphors 130 are basically spherical, and a plurality of the phosphors 130 are included in the color conversion unit 120.
  • the light emitting device 100 (color conversion unit 120) emits white light by the excited yellow fluorescence and blue light. Light is emitted.
  • the package 140 is a container formed by molding a non-light transmitting resin (white resin or the like), and includes a recess (cavity) having an inverted truncated cone shape.
  • the inner side surface of the recess is an inclined surface, and is configured to reflect the light from the LED chip 110 upward.
  • the package 140 is formed of a resin such as a phenol resin, an epoxy resin, a polyimide resin, a BT resin, or polyphthalamide (PPA).
  • the package 140 may be formed of ceramic.
  • the lead frame 150 is a pair of positive and negative electrodes.
  • the lead frame 150 is for connecting the LED chip 110 and an external electrode (not shown) provided on the substrate 10, and is made of, for example, a metal member such as iron, phosphor bronze or copper alloy.
  • the lead frame 150 is connected to the LED chip 110 by a bonding wire 160.
  • FIG. 3 is a view schematically showing a manufacturing apparatus of the light emitting device 100. As shown in FIG. 3
  • the manufacturing apparatus 200 includes an irradiation unit 210 and a chromaticity measurement unit 220 (measurement unit).
  • the irradiation unit 210 irradiates the color conversion unit 120 with laser light, and adjusts the chromaticity of the light emitted from the light emitting device 100.
  • FIG. 4 is an external view of the irradiation unit 210.
  • the irradiation unit 210 irradiates the light emitting device 100 placed on the pedestal 240 with the laser light 230.
  • the light emitting device 100 may be placed on the stand 240 in a state of being mounted on the substrate 10 or may be placed on the stand 240 alone as the light emitting device 100.
  • the laser used for the irradiation part 210 is a characteristic of the manufacturing apparatus 200, and the detail about this is mentioned later.
  • the chromaticity measurement unit 220 measures the chromaticity of light emitted from the light emitting device 100.
  • the chromaticity measurement unit 220 is a measurement device using a general-purpose spectrometer for measuring optical characteristics such as chromaticity and luminance.
  • the chromaticity measurement unit 220 measures, for example, the spectrum of light on the light emitting surface (the surface on the light emission side) of the light emitting device 100 to obtain the chromaticity.
  • the chromaticity is displayed as an image as shown in FIG. 5 on a display device (not shown in FIG. 3) included in the manufacturing apparatus 200.
  • the image shown in FIG. 5 is an image obtained by measuring the chromaticity from the light emitting surface (upper surface) side in a state where the light emitting device 100 emits light.
  • a circular area represents the light emitting portion of the light emitting device 100, and in the circular area, the shade of color represents the chromaticity (distribution of chromaticity).
  • the two rectangular areas in the circular area of the image shown in FIG. 5 are areas in which the LED chip 110 is located.
  • the chromaticity measurement unit 220 may measure the light emission intensity and the light distribution characteristic in addition to the chromaticity (the spectrum of the light of the light emitting device 100).
  • FIG. 6 is a flowchart showing the chromaticity adjustment method of the light emitting device 100.
  • the chromaticity measurement unit 220 measures the chromaticity of light emitted by the light emitting device 100 (S10).
  • the chromaticity measured by the chromaticity measurement unit 220 is within the predetermined range (Yes in S20)
  • the chromaticity adjustment of the light emitting device 100 ends.
  • the predetermined range is, for example, an inspection specification of the chromaticity of the light emitting device 100 in the manufacturing process.
  • the irradiating unit 210 irradiates the light emitting device 100 with the laser light 230 (S30), and the chromaticity measuring unit 220
  • the chromaticity of the light emitting device 100 after irradiation of the laser beam 230 is measured (S10). Thereafter, the irradiation of the laser light 230 of the irradiation unit 210 and the measurement of the chromaticity of the chromaticity measurement unit 220 are repeated until the chromaticity measured by the chromaticity measurement unit 220 falls within a predetermined range.
  • the measurement of the chromaticity of the chromaticity measurement unit 220 and the irradiation of the laser light 230 of the irradiation unit 210 may be performed in real time (simultaneously). That is, while measuring the chromaticity of the light emitted from the light emitting device 100, the laser light 230 may be irradiated such that the chromaticity of the light emitted by the light emitting device 100 is within a predetermined range (predetermined value). .
  • the laser light 230 may be irradiated so as to have a uniform spectral distribution or a desired spectral distribution.
  • the laser light 230 may be irradiated while measuring at least one of the chromaticity (the spectrum of the light of the light emitting device 100), the emission intensity, and the light distribution characteristic.
  • the laser used for the irradiation unit 210 is characteristic.
  • a laser used for the irradiation unit 210 a laser that is absorbed by the color conversion unit 120 and the phosphor 130 and that laser light does not easily reach the LED chip 110 is selected in order to reduce damage to the LED chip 110.
  • FIG. 7 is a diagram showing the relationship between the oscillation wavelength of laser light and the transmittance of laser light.
  • the solid line graph in FIG. 7 shows the relationship between the oscillation wavelength of the laser beam and the transmittance of the laser beam when the silicon-based translucent resin is irradiated with the laser beam. As shown in the solid line graph, when the wavelength of the laser light is 5500 nm (5.5 ⁇ m) or more, the transmittance of the laser light to the silicon-based light transmitting resin is almost zero.
  • the oscillation wavelength of the laser light and the transmission of the laser light in the case where the silicon-based light-transmissive resin including the phosphor 130 is irradiated with the laser light shows the relationship with the rate.
  • the wavelength of the laser light is 2000 nm or more
  • the transmittance of the laser light to the silicon-based light transmitting resin including the phosphor 130 is substantially zero.
  • the irradiation unit 210 irradiates the color conversion unit 120 with the laser light 230 having an oscillation wavelength of 5.5 ⁇ m or more, and adjusts the chromaticity of the light emitted from the light emitting device 100.
  • the upper limit of the wavelength of the laser light 230 is considered to be about 10.8 ⁇ m of the industrial CO 2 laser.
  • such lasers may be used when lasers with longer wavelengths are put into practical use in the future.
  • FIG. 7 shows the transmittance of laser light to the silicon-based light transmitting resin, but the light transmitting resin other than silicon also has a transmittance close to this.
  • CO 2 laser device CO 2 laser device
  • CO laser device CO laser device
  • FIG. 8 is a diagram for explaining the focusing diameter of the laser beam. As shown in FIG. 8, assuming that the focal length of the lens 250 for emitting the laser light is f, the laser wavelength is ⁇ , and the diameter of the laser light incident on the lens 250 is D, as shown in FIG. It is expressed by the following (Formula 1) and is proportional to the laser wavelength ⁇ .
  • the irradiation unit 210 For the lasers having an oscillation wavelength of 5.5 ⁇ m or more, for the irradiation unit 210, one having a short oscillation wavelength is used.
  • the oscillation wavelength ⁇ of a generally used CO 2 laser is 10.6 ⁇ m
  • a CO 2 laser having an oscillation wavelength of 9.2 ⁇ m or more and 9.7 ⁇ m or less is used for the irradiation unit 210.
  • a CO laser having an oscillation wavelength of 5.5 ⁇ m or more and 5.9 ⁇ m or less is used for the irradiation unit 210.
  • FIG. 9 is a schematic diagram for explaining the processing mode of the color conversion unit 120. As shown in FIG.
  • the irradiation unit 210 focuses the color conversion unit 120 above the LED chip 110 and irradiates the laser light 230.
  • FIG. 9B a part of the color conversion unit 120 is removed. Since the removed color converter 120 includes the phosphor 130, the chromaticity of the light emitted from the light emitting device 100 is changed.
  • FIG. 10 is a diagram for explaining changes in chromaticity of light emitted from the light emitting device 100.
  • FIG. 10 chromaticity coordinates (x, y) are illustrated.
  • the phosphor 130 emitting yellow fluorescence is removed, so that the chromaticity of the light emitted from the light emitting device 100 is blue from the yellow side Shift towards the side.
  • the laser having an oscillation wavelength of 5.5 ⁇ m or more is used for the irradiation unit 210, the laser light 230 is absorbed by the color conversion unit 120 and hardly reaches the LED chip 110. Therefore, even when the laser beam 230 is irradiated directly above the LED chip 110, the damage to the LED chip 110 due to the irradiation of the laser beam 230 is extremely low. That is, according to the irradiation part 210, the chromaticity can be adjusted while reducing the damage given to the LED chip 110.
  • the processing mode of the color conversion unit 120 is not limited to that shown in FIG.
  • FIG. 11 is a schematic diagram for explaining another example of the processing mode of the color conversion unit 120. As shown in FIG.
  • the irradiation unit 210 first irradiates the color conversion unit 120 with the laser light 230 as shown in (a) of FIG.
  • the irradiation unit 210 first irradiates the color conversion unit 120 with the laser light 230 as shown in (a) of FIG.
  • the recess 170 is formed in the color conversion unit 120, and the phosphor 130 is exposed from the bottom surface of the recess 170.
  • the resin layer 120b of the color conversion unit 120 is removed, and the phosphor 130 in the phosphor layer 120a is exposed.
  • the irradiation part 210 deactivates at least one part of the fluorescent substance 130 in the fluorescent substance layer 120a by irradiation of the laser beam 230.
  • FIG. Deactivation of the phosphor 130 means that although the appearance of the phosphor 130 by visual observation is not changed, the phosphor 130 does not emit fluorescence even when it is irradiated with excitation light of a predetermined wavelength.
  • the chromaticity of the light emitted from the light emitting device 100 shifts from the yellow side to the blue side also by the processing mode as described above.
  • FIG. 12 is an image of the light emitting device when the phosphor 130 is deactivated by the processing as shown in FIG. (A) of FIG. 12 is an image in a normal state, and (b) of FIG. 12 is an image when the black light is irradiated.
  • FIG. 12 shows an image when the above processing is performed on a COB (Chip On Board) type light emitting device, but the same phenomenon can be confirmed in the SMD type light emitting device 100.
  • COB Chip On Board
  • the portion where the phosphor 130 is inactivated by the irradiation of the laser light 230 is whitened more than the other portions. Further, as shown in (b) of FIG. 12, the portion where the phosphor 130 is inactivated by the irradiation of the laser light 230 turns blue when it is irradiated with the black light.
  • the chromaticity can also be adjusted by deactivating the fluorescent material 130 exposed by removing the translucent resin.
  • the laser beam 230 is mainly irradiated to the resin layer 120 b located above the color conversion unit 120. Therefore, the reduction effect of the laser beam 230 on the LED chip 110 by such processing is high.
  • the irradiation position of the laser beam 230 is changed to a position separated by a predetermined distance or more every predetermined time.
  • FIG. 13 is a schematic view showing an example in which the irradiation position of the laser light 230 is changed every predetermined time.
  • the irradiation position of the laser light 230 is changed at predetermined time intervals.
  • the second irradiation is at a position separated by a predetermined distance or more from the irradiation position of the first laser beam 230.
  • the laser beam 230 is irradiated, and as a result, the recess 170 b is formed ((b) in FIG. 13).
  • the laser light 230 is irradiated at a position separated by a predetermined distance or more from the irradiation position of the second laser light 230, and as a result, the recess 170c is formed ((c) in FIG. 13). ).
  • the irradiation of the laser light 230 as described above reduces damage to the LED chip 110 due to heat generation.
  • the irradiation unit 210 may irradiate the laser light 230 at a predetermined time interval to reduce damage to the LED chip 110 due to heat generation.
  • the manufacturing method (the chromaticity adjusting method) of the light emitting device 100 according to the first embodiment has been described.
  • the laser light 230 having an oscillation wavelength of 5.5 ⁇ m or more is irradiated to adjust the chromaticity of the light emitted from the light emitting device 100. Accordingly, it is possible to adjust the chromaticity of the light emitted from the light emitting device 100 while reducing the damage given to the light emitting element.
  • the phosphor 130 is described as being a yellow phosphor, but the color conversion unit 120 may be a green phosphor that emits green fluorescence or a red phosphor that emits red fluorescence in addition to the yellow phosphor. May be included.
  • the green phosphor and the red phosphor are mixed in the color conversion unit 120 for the purpose of enhancing the color rendering of white light.
  • the color conversion unit 120 includes a green phosphor and a red phosphor instead of the yellow phosphor, and the white light is emitted from the light emitting device in combination with the blue light emitted from the LED chip 110. It is also good.
  • the LED chip 110 may be an LED chip that emits light other than blue light.
  • the LED chip 110 may be an LED chip that emits near-ultraviolet light.
  • the color conversion unit 120 includes phosphors of respective colors that emit light of three primary colors (red, green, and blue).
  • a light wavelength conversion material other than a phosphor may be used.
  • a light wavelength conversion material such as a semiconductor, a metal complex, an organic dye, or a pigment, absorbs light of a certain wavelength
  • a light wavelength conversion material made of a substance that emits light of a wavelength different from the absorbed light may be used. That is, the manufacturing method of this invention is applicable also to the light-emitting device in which light wavelength conversion materials other than fluorescent substance were used.
  • FIG. 14 is a diagram for explaining a COB light emitting device.
  • FIG. 14A is a plan view (top view) showing the configuration of the COB type light emitting device.
  • FIG. 14B is a cross-sectional view of the light emitting device of FIG. 14A cut along the line B-B.
  • FIG. 14C is a cross-sectional view of the light emitting device of FIG. 14A taken along the line C-C.
  • the COB light emitting device 300 includes a substrate 20, a plurality of LED chips 110, and a color conversion unit 120 including a phosphor 130 for collectively sealing the plurality of LED chips 110.
  • the light emitting device 300 includes a wire 155 and a bonding wire 160.
  • the LED chips 110 are mounted directly on the substrate 20 in a row.
  • six element rows of the LED chip 110 are provided.
  • a p-side electrode and an n-side electrode for supplying current are formed on the top surface of each of the plurality of LED chips 110 belonging to one element row, and each of the p-side electrode and the n-side electrode and the wiring 155 It is wire-bonded by the bonding wire 160.
  • the color converter 120 has a substantially semi-elliptical shape with an upward convex cross-sectional shape, and is linearly formed along the arrangement direction of the LED chips 110 so as to cover each element row of all the LED chips 110 on the substrate 20 It is done. Note that various materials similar to those described in the above embodiment are used for the color conversion unit 120 and the phosphor 130.
  • the manufacturing method of the present invention can be applied to the COB type light emitting device 300 as described above.
  • the LED chip 110 is used as a light emitting element, but a semiconductor light emitting element such as a semiconductor laser, a solid light emitting element such as an organic EL (Electro Luminescence), or an inorganic EL is used as a light emitting element. It may be done.
  • a semiconductor light emitting element such as a semiconductor laser, a solid light emitting element such as an organic EL (Electro Luminescence), or an inorganic EL is used as a light emitting element. It may be done.
  • the present invention may be realized as the light emitting device described in the above embodiment or a manufacturing apparatus thereof.
  • LED chip light emitting element
  • color converter 120a phosphor layer 120b resin layer 130 phosphor 140 package
  • lead frame 155 wiring 160 bonding wire 170, 170a, 170b, 170c recessed portion 200 manufacturing apparatus 210 irradiation unit 220 chromaticity measurement unit 230 laser light 240 holder 250 lens

Abstract

A light emitting device manufacturing method of the present invention is a method for manufacturing a light emitting device (100) that has: a light emitting element (110); and a color conversion unit (120), which is formed of a translucent resin containing a fluorescent material (130) that emits light when excited by means of light emitted from the light emitting element (110), and which covers at least a part of the light emitting element (110). The method includes an irradiation step wherein chromaticity of light to be emitted from the light emitting device (100) is adjusted by radiating a laser beam having a wavelength equal to or longer than 5.5 μm to the color conversion unit (120).

Description

発光装置の製造方法、および製造装置Method and apparatus for manufacturing light emitting device
 本発明は、発光装置の製造方法に関し、特に、色度調整が可能な発光装置の製造方法等に関する。 The present invention relates to a method of manufacturing a light emitting device, and more particularly to a method of manufacturing a light emitting device capable of adjusting the chromaticity.
 白色光を発する発光装置(発光デバイス)として、青色LEDチップを、蛍光体を含む透光性樹脂で封止した発光装置が知られている。 A light emitting device in which a blue LED chip is sealed with a translucent resin containing a phosphor is known as a light emitting device (light emitting device) which emits white light.
 このような発光装置では、青色LEDチップが発する青色光の一部は、蛍光体を励起し、蛍光体から黄色蛍光が発せられる。そして、青色LEDチップが発する青色光と、励起された蛍光体が発する黄色蛍光とが混合されることにより白色光が得られる。上記発光装置の白色光の色度は、青色LEDチップが発する青色光の光量と、蛍光体から発せられる黄色蛍光の光量との割合によって決まる。 In such a light emitting device, a part of the blue light emitted by the blue LED chip excites the phosphor and yellow fluorescence is emitted from the phosphor. Then, white light is obtained by mixing the blue light emitted by the blue LED chip and the yellow fluorescence emitted by the excited phosphor. The chromaticity of the white light of the light emitting device is determined by the ratio of the amount of blue light emitted by the blue LED chip to the amount of yellow fluorescence emitted from the phosphor.
 このような発光装置は、青色LEDチップの性能のばらつきや、蛍光体の量によって白色光の色度にばらつきが生じることが課題である。 In such a light emitting device, the problem is that the chromaticity of white light varies due to the variation of the performance of the blue LED chip and the amount of the phosphor.
 このような課題を解決するために、レーザ光の照射によって発光装置の発光色の色度調整を行う技術が開示されている(例えば、特許文献1および2参照)。 In order to solve such a subject, the technique which adjusts the chromaticity of the luminescent color of a light-emitting device by irradiation of a laser beam is disclosed (for example, refer to patent documents 1 and 2).
特開2009-158541号公報JP, 2009-158541, A 特開2011-165827号公報JP, 2011-165827, A
 しかしながら、特許文献1および2に記載の方法で発光装置の色度を調整した場合、LEDチップ(発光素子)にダメージを与えてしまう可能性がある。 However, when the chromaticity of the light emitting device is adjusted by the methods described in Patent Documents 1 and 2, there is a possibility that the LED chip (light emitting element) may be damaged.
 そこで、本発明は、発光素子に与えるダメージを低減しつつ色度調整をすることが可能な発光装置の製造方法を提供する。 Therefore, the present invention provides a method of manufacturing a light emitting device capable of performing chromaticity adjustment while reducing damage to the light emitting element.
 本発明の一態様に係る発光装置の製造方法は、発光素子と、前記発光素子の発する光で励起されて光を発する蛍光体を含む透光性樹脂で形成され、前記発光素子の少なくとも一部を覆う色変換部とを有する発光装置の製造方法であって、前記色変換部に波長が5.5μm以上のレーザ光を照射することによって前記発光装置から発せられる光の色度を調整する照射工程を含む。 In a method of manufacturing a light emitting device according to one aspect of the present invention, a light emitting element and a translucent resin containing a phosphor that emits light by being excited by light emitted from the light emitting element are formed. And a color conversion portion covering the color conversion portion, wherein the color conversion portion is irradiated with a laser beam having a wavelength of 5.5 .mu.m or more to adjust the chromaticity of light emitted from the light emission device. Including the steps.
 また、前記照射工程においては、波長が9.2μm以上9.7μm以下のCO2レーザ装置、または、波長が5.5μm以上5.9μm以下のCOレーザ装置を用いて前記レーザ光を照射してもよい。 In the irradiation step, the laser beam may be irradiated using a CO 2 laser device having a wavelength of 9.2 μm to 9.7 μm or a CO laser device having a wavelength of 5.5 μm to 5.9 μm. Good.
 また、前記照射工程においては、前記色変換部に前記レーザ光を照射することにより、前記蛍光体の少なくとも一部を除去してもよい。 In the irradiation step, at least a part of the phosphor may be removed by irradiating the color conversion unit with the laser light.
 また、前記照射工程においては、前記色変換部に前記レーザ光を照射することにより、前記透光性樹脂の少なくとも一部を除去して前記蛍光体を露出させ、かつ、露出した前記蛍光体の少なくとも一部を失活させてもよい。 Further, in the irradiation step, the color conversion portion is irradiated with the laser light to remove at least a part of the translucent resin to expose the phosphor and to expose the phosphor. At least a portion may be inactivated.
 また、前記色変換部は、前記蛍光体を含む前記透光性樹脂からなる蛍光体層と、前記蛍光体を含まない前記透光性樹脂からなる、前記蛍光体層の上方に設けられた樹脂層とを有し、前記照射工程においては、前記色変換部に前記レーザ光を照射することにより、前記樹脂層の少なくとも一部を除去して前記蛍光体層内の前記蛍光体を露出させ、かつ、露出した前記蛍光体の少なくとも一部を失活させてもよい。 In addition, the color conversion portion may be a phosphor layer made of the light transmitting resin containing the phosphor, and a resin provided above the phosphor layer made of the light transmitting resin not containing the phosphor. A layer, and in the irradiation step, the color conversion portion is irradiated with the laser light to remove at least a part of the resin layer to expose the phosphor in the phosphor layer; And, at least a part of the exposed phosphor may be inactivated.
 また、前記照射工程においては、前記レーザ光の照射位置を所定時間毎に所定の距離以上離れた位置に変更してもよい。 In the irradiation step, the irradiation position of the laser beam may be changed to a position separated by a predetermined distance or more at predetermined time intervals.
 また、さらに、前記発光装置から発せられる光の色度を測定する測定工程を含み、前記照射工程においては、前記発光装置から発せられる光の色度が所定の範囲内となるように、前記測定工程の測定結果に基づいて、前記レーザ光の照射時間、前記レーザ光の照射場所、および前記レーザ光の照射エネルギーのうち少なくとも1つを調整し、前記色変換部に前記レーザ光を照射してもよい。 Furthermore, the method further includes a measurement step of measuring the chromaticity of light emitted from the light emitting device, and in the irradiating step, the measurement is performed such that the chromaticity of light emitted from the light emitting device falls within a predetermined range. At least one of the irradiation time of the laser light, the irradiation place of the laser light, and the irradiation energy of the laser light is adjusted based on the measurement result of the step, and the color conversion unit is irradiated with the laser light. It is also good.
 本発明の一態様に係る製造装置は、発光素子と、前記発光素子の発する光で励起されて光を発する蛍光体を含む透光性樹脂で形成され、前記発光素子の少なくとも一部を覆う色変換部とを有する発光装置の製造装置であって、前記色変換部に波長が5.5μm以上のレーザ光を照射することによって前記発光装置から発せられる光の色度を調整する照射部を備える。 A manufacturing apparatus according to an aspect of the present invention is formed of a light emitting element, and a translucent resin including a phosphor that is excited by light emitted from the light emitting element to emit light, and covers at least a part of the light emitting element An apparatus for manufacturing a light emitting device having a converting unit, comprising: an irradiating unit configured to adjust the chromaticity of light emitted from the light emitting device by irradiating the color converting unit with laser light having a wavelength of 5.5 μm or more. .
 本発明に係る発光装置の製造方法によれば、発光素子に与えるダメージを低減しつつ発光装置の色度調整をすることができる。 According to the method for manufacturing a light emitting device according to the present invention, it is possible to adjust the chromaticity of the light emitting device while reducing the damage given to the light emitting element.
図1は、実施の形態1に係る発光装置が設けられた基板を示す図である。FIG. 1 is a view showing a substrate provided with the light emitting device according to the first embodiment. 図2は、図1に示される発光装置をA-A線で切断した断面図である。FIG. 2 is a cross-sectional view of the light emitting device shown in FIG. 1 taken along line AA. 図3は、実施の形態1に係る発光装置の製造装置を模式的に示す図である。FIG. 3 is a view schematically showing a manufacturing apparatus of the light emitting device according to the first embodiment. 図4は、照射部の外観図である。FIG. 4 is an external view of the irradiation unit. 図5は、色度を表す画像の一例である。FIG. 5 is an example of an image representing chromaticity. 図6は、発光装置の色度調整方法を示すフローチャートである。FIG. 6 is a flowchart showing a method of adjusting the chromaticity of the light emitting device. 図7は、レーザ光の発振波長と、レーザ光の透過率との関係を示す図である。FIG. 7 is a diagram showing the relationship between the oscillation wavelength of laser light and the transmittance of laser light. 図8は、レーザ光の集光径を説明するための図である。FIG. 8 is a diagram for explaining the focusing diameter of the laser beam. 図9は、色変換部の加工の態様を説明するための模式図である。FIG. 9 is a schematic view for explaining an aspect of processing of the color conversion unit. 図10は、発光装置から発せられる光の色度の変化を説明するための図である。FIG. 10 is a diagram for explaining changes in chromaticity of light emitted from the light emitting device. 図11は、色変換部の加工の態様の別の例を説明するための模式図である。FIG. 11 is a schematic diagram for explaining another example of processing of the color conversion unit. 図12は、加工によって蛍光体を失活させた場合の発光装置の画像である。FIG. 12 is an image of the light emitting device when the phosphor is deactivated by processing. 図13は、レーザ光の照射位置が所定時間毎に変更される例を示す模式図である。FIG. 13 is a schematic view showing an example in which the irradiation position of the laser light is changed every predetermined time. 図14は、COB型の発光装置を説明するための図である。FIG. 14 is a diagram for explaining a COB light emitting device.
 以下、実施の形態に係る発光装置の製造方法について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a method of manufacturing a light emitting device according to the embodiment will be described with reference to the drawings. Each of the embodiments described below shows a preferable specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic view, and is not necessarily illustrated strictly. Further, in the drawings, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions may be omitted or simplified.
 (実施の形態1)
 まず、実施の形態1に係る発光装置について説明する。図1は、実施の形態1に係る発光装置が設けられた基板を示す図である。図2は、図1に示される発光装置をA-A線で切断した断面図である。
Embodiment 1
First, the light emitting device according to the first embodiment will be described. FIG. 1 is a view showing a substrate provided with the light emitting device according to the first embodiment. FIG. 2 is a cross-sectional view of the light emitting device shown in FIG. 1 taken along line AA.
 図1に示されるように、発光装置100は、例えば、基板10上に実装され、照明用光源や、照明装置に用いられる。図1では、基板10は、中央に開口が設けられた平面視形状が円形の基板であり、発光装置100は、基板10上に円周方向に並んで複数設けられる。なお、発光装置100が設けられた基板10は、具体的には、電球形のLEDランプ(照明用光源)に用いられる。 As shown in FIG. 1, the light emitting device 100 is mounted on, for example, the substrate 10 and used for a light source for illumination or a lighting device. In FIG. 1, the substrate 10 is a substrate having a circular opening in the center, and a plurality of light emitting devices 100 are provided on the substrate 10 in the circumferential direction. Specifically, the substrate 10 provided with the light emitting device 100 is used for a bulb-shaped LED lamp (light source for illumination).
 発光装置100は、いわゆるSMD(Surface Mount Device)型の発光装置であり、白色光を発する。図2に示されるように、発光装置100は、LEDチップ110(発光素子)と、蛍光体130を含む透光性樹脂からなる色変換部120(蛍光体層120aおよび樹脂層120b)と、パッケージ140と、リードフレーム150と、ボンディングワイヤ160とを備える。 The light emitting device 100 is a light emitting device of a so-called SMD (Surface Mount Device) type and emits white light. As shown in FIG. 2, the light emitting device 100 includes an LED chip 110 (a light emitting element), a color conversion unit 120 (a phosphor layer 120 a and a resin layer 120 b) made of a translucent resin including a phosphor 130, and a package. 140, a lead frame 150, and a bonding wire 160.
 LEDチップ110は、発光素子の一例であって、単色の可視光を発するベアチップであり、ダイアタッチ材(ダイボンド材)によってパッケージ140の凹部の底面にダイボンディング実装されている。LEDチップ110としては、例えば、青色光を発光する青色LEDチップを用いることができる。青色LEDチップとしては、例えばInGaN系の材料によって構成された、中心波長が440nm~470nmの窒化ガリウム系の半導体発光素子を用いることができる。 The LED chip 110 is an example of a light emitting element, and is a bare chip that emits monochromatic visible light, and is die-bonding mounted on the bottom surface of the recess of the package 140 by a die attach material (die bond material). For example, a blue LED chip that emits blue light can be used as the LED chip 110. As the blue LED chip, for example, a gallium nitride-based semiconductor light emitting device having a center wavelength of 440 nm to 470 nm, which is made of an InGaN-based material, can be used.
 色変換部120は、光波長変換材である蛍光体130を含む透光性樹脂であって、LEDチップ110からの光を波長変換するとともに、LEDチップ110を封止してLEDチップ110を保護する。色変換部120を構成する透光性樹脂は、パッケージ140の凹部に充填されており、当該凹部の開口面まで封入されている。色変換部120を構成する透光性樹脂は、具体的には、ジメチルシリコーン樹脂、フェニルシリコーン樹脂、シルセスキオキサン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂等である。 The color conversion unit 120 is a translucent resin containing a phosphor 130 which is a light wavelength conversion material, and converts the wavelength of light from the LED chip 110 and seals the LED chip 110 to protect the LED chip 110. Do. The translucent resin constituting the color conversion unit 120 is filled in the recess of the package 140 and is sealed up to the opening surface of the recess. Specifically, the translucent resin constituting the color conversion portion 120 is dimethyl silicone resin, phenyl silicone resin, silsesquioxane resin, epoxy resin, fluorine resin, acrylic resin or the like.
 実施の形態1では、色変換部120は、蛍光体層120aと、樹脂層120bとを有する。蛍光体層120aは、LEDチップ110の少なくとも光出射側(上部)を覆う、蛍光体130を含む透光性樹脂からなる層である。樹脂層120bは、蛍光体層120aの上方に設けられた透光性樹脂からなる層であり、蛍光体130は含まれない。なお、樹脂層120bは、設けられなくてもよい。 In the first embodiment, the color conversion unit 120 includes the phosphor layer 120 a and the resin layer 120 b. The phosphor layer 120 a is a layer that covers at least the light emitting side (upper part) of the LED chip 110 and is made of a translucent resin including the phosphor 130. The resin layer 120 b is a layer made of a translucent resin provided above the phosphor layer 120 a and does not include the phosphor 130. The resin layer 120 b may not be provided.
 蛍光体130は、LEDチップ110の発する光で励起されて黄色蛍光を発する黄色蛍光体である。LEDチップ110が青色発光LEDである場合、蛍光体130は、YAG(イットリウム・アルミニウム・ガーネット)系の黄色蛍光体である。なお、蛍光体130は、オルトシリケート系蛍光体や、酸窒化物蛍光体であってもよい。蛍光体130は、基本的には球状であり、色変換部120内に複数含まれる。 The phosphor 130 is a yellow phosphor which is excited by the light emitted from the LED chip 110 to emit yellow fluorescence. When the LED chip 110 is a blue light emitting LED, the phosphor 130 is a YAG (yttrium aluminum garnet) -based yellow phosphor. The phosphor 130 may be an orthosilicate phosphor or an oxynitride phosphor. The phosphors 130 are basically spherical, and a plurality of the phosphors 130 are included in the color conversion unit 120.
 上述のように、蛍光体130は、LEDチップ110の青色光によって励起されて黄色蛍光を放出するので、発光装置100(色変換部120)からは、励起された黄色蛍光と青色光とによって白色光が放出される。 As described above, since the phosphor 130 is excited by the blue light of the LED chip 110 to emit yellow fluorescence, the light emitting device 100 (color conversion unit 120) emits white light by the excited yellow fluorescence and blue light. Light is emitted.
 パッケージ140は、非透光性樹脂(白樹脂等)を成型してなる容器であり、逆円錐台形状の凹部(キャビティ)を備える。凹部の内側面は傾斜面であり、LEDチップ110からの光を上方に反射させるように構成されている。パッケージ140は、具体的には、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)等の樹脂で形成される。なお、パッケージ140は、セラミックで形成されてもよい。 The package 140 is a container formed by molding a non-light transmitting resin (white resin or the like), and includes a recess (cavity) having an inverted truncated cone shape. The inner side surface of the recess is an inclined surface, and is configured to reflect the light from the LED chip 110 upward. Specifically, the package 140 is formed of a resin such as a phenol resin, an epoxy resin, a polyimide resin, a BT resin, or polyphthalamide (PPA). The package 140 may be formed of ceramic.
 リードフレーム150は、一対の正負の電極である。リードフレーム150は、LEDチップ110と、基板10上に設けられた外部電極(図示せず)とを接続するものであり、例えば、鉄、リン青銅、銅合金等の金属部材で構成される。リードフレーム150は、ボンディングワイヤ160によってLEDチップ110と接続される。 The lead frame 150 is a pair of positive and negative electrodes. The lead frame 150 is for connecting the LED chip 110 and an external electrode (not shown) provided on the substrate 10, and is made of, for example, a metal member such as iron, phosphor bronze or copper alloy. The lead frame 150 is connected to the LED chip 110 by a bonding wire 160.
 次に、発光装置100の製造装置について説明する。図3は、発光装置100の製造装置を模式的に示す図である。 Next, an apparatus for manufacturing the light emitting device 100 will be described. FIG. 3 is a view schematically showing a manufacturing apparatus of the light emitting device 100. As shown in FIG.
 図3に示されるように、製造装置200は、照射部210と、色度測定部220(測定部)とを備える。 As shown in FIG. 3, the manufacturing apparatus 200 includes an irradiation unit 210 and a chromaticity measurement unit 220 (measurement unit).
 照射部210は、色変換部120にレーザ光を照射し、発光装置100から発せられる光の色度を調整する。図4は、照射部210の外観図である。 The irradiation unit 210 irradiates the color conversion unit 120 with laser light, and adjusts the chromaticity of the light emitted from the light emitting device 100. FIG. 4 is an external view of the irradiation unit 210.
 図4に示されるように、照射部210は、置き台240に置かれた発光装置100にレーザ光230を照射する。発光装置100は、基板10に実装された状態で置き台240に置かれてもよいし、発光装置100単体で置き台240に置かれてもよい。 As shown in FIG. 4, the irradiation unit 210 irradiates the light emitting device 100 placed on the pedestal 240 with the laser light 230. The light emitting device 100 may be placed on the stand 240 in a state of being mounted on the substrate 10 or may be placed on the stand 240 alone as the light emitting device 100.
 なお、照射部210に用いられるレーザは、製造装置200の特徴であり、これについての詳細は後述する。 In addition, the laser used for the irradiation part 210 is a characteristic of the manufacturing apparatus 200, and the detail about this is mentioned later.
 色度測定部220は、発光装置100から発せられる光の色度を測定する。色度測定部220は、色度や輝度などの光学特性を測定するための、汎用の分光器を用いた測定器である。 The chromaticity measurement unit 220 measures the chromaticity of light emitted from the light emitting device 100. The chromaticity measurement unit 220 is a measurement device using a general-purpose spectrometer for measuring optical characteristics such as chromaticity and luminance.
 色度測定部220は、例えば、発光装置100の発光面(光出射側の面)における光のスペクトルを測定し、色度を求める。色度は、製造装置200が備える表示装置(図3において図示せず)に、図5に示されるような画像として表示される。 The chromaticity measurement unit 220 measures, for example, the spectrum of light on the light emitting surface (the surface on the light emission side) of the light emitting device 100 to obtain the chromaticity. The chromaticity is displayed as an image as shown in FIG. 5 on a display device (not shown in FIG. 3) included in the manufacturing apparatus 200.
 図5に示される画像は、発光装置100を発光させた状態で発光面(上面)側から色度を測定した画像である。この画像においては、円形状の領域が発光装置100の発光している部分を表し、当該円形状の領域内においては、色の濃淡が色度(色度の分布)を表している。なお、図5に示される画像の円形状の領域内の2つの矩形の領域は、LEDチップ110が位置する領域である。なお、色度測定部220は、色度(発光装置100の光のスペクトル)に加えて、発光強度や、配光特性を測定してもよい。 The image shown in FIG. 5 is an image obtained by measuring the chromaticity from the light emitting surface (upper surface) side in a state where the light emitting device 100 emits light. In this image, a circular area represents the light emitting portion of the light emitting device 100, and in the circular area, the shade of color represents the chromaticity (distribution of chromaticity). The two rectangular areas in the circular area of the image shown in FIG. 5 are areas in which the LED chip 110 is located. The chromaticity measurement unit 220 may measure the light emission intensity and the light distribution characteristic in addition to the chromaticity (the spectrum of the light of the light emitting device 100).
 次に、製造装置200を用いた発光装置100の製造方法(色度調整方法)について説明する。図6は、発光装置100の色度調整方法を示すフローチャートである。 Next, a method of manufacturing the light emitting device 100 (a chromaticity adjustment method) using the manufacturing apparatus 200 will be described. FIG. 6 is a flowchart showing the chromaticity adjustment method of the light emitting device 100.
 まず、色度測定部220は、発光装置100が発する光の色度を測定する(S10)。色度測定部220が測定した色度が所定の範囲内である場合(S20でYes)、発光装置100の色度調整は終了する。なお、所定の範囲とは、例えば、製造工程における発光装置100の色度の検査スペック等である。 First, the chromaticity measurement unit 220 measures the chromaticity of light emitted by the light emitting device 100 (S10). When the chromaticity measured by the chromaticity measurement unit 220 is within the predetermined range (Yes in S20), the chromaticity adjustment of the light emitting device 100 ends. The predetermined range is, for example, an inspection specification of the chromaticity of the light emitting device 100 in the manufacturing process.
 色度測定部220が測定した色度が所定の範囲外である場合(S20でNo)、照射部210は、発光装置100にレーザ光230を照射し(S30)、色度測定部220は、レーザ光230の照射後の発光装置100の色度を測定する(S10)。以降は、色度測定部220が測定した色度が所定の範囲内になるまで、照射部210のレーザ光230の照射と、色度測定部220の色度の測定とが繰り返される。 When the chromaticity measured by the chromaticity measuring unit 220 is out of the predetermined range (No in S20), the irradiating unit 210 irradiates the light emitting device 100 with the laser light 230 (S30), and the chromaticity measuring unit 220 The chromaticity of the light emitting device 100 after irradiation of the laser beam 230 is measured (S10). Thereafter, the irradiation of the laser light 230 of the irradiation unit 210 and the measurement of the chromaticity of the chromaticity measurement unit 220 are repeated until the chromaticity measured by the chromaticity measurement unit 220 falls within a predetermined range.
 なお、色度測定部220の色度の測定と、照射部210のレーザ光230の照射とは、リアルタイムで(同時に)行われてもよい。すなわち、発光装置100から発せられる光の色度を測定しながら、発光装置100が発する光の色度が所定の範囲内(所定の値)になるように、レーザ光230が照射されてもよい。 The measurement of the chromaticity of the chromaticity measurement unit 220 and the irradiation of the laser light 230 of the irradiation unit 210 may be performed in real time (simultaneously). That is, while measuring the chromaticity of the light emitted from the light emitting device 100, the laser light 230 may be irradiated such that the chromaticity of the light emitted by the light emitting device 100 is within a predetermined range (predetermined value). .
 例えば、発光装置100の発光面における光のスペクトル分布(発光面の色ばらつき)を測定しながら、均一なスペクトル分布または所望のスペクトル分布になるようにレーザ光230が照射されてもよい。 For example, while measuring the spectral distribution of light on the light emitting surface of the light emitting device 100 (color variation of the light emitting surface), the laser light 230 may be irradiated so as to have a uniform spectral distribution or a desired spectral distribution.
 また、この場合、色度(発光装置100の光のスペクトル)、発光強度、および配光特性のうちの少なくとも1つを測定しながら、レーザ光230が照射されてもよい。 In this case, the laser light 230 may be irradiated while measuring at least one of the chromaticity (the spectrum of the light of the light emitting device 100), the emission intensity, and the light distribution characteristic.
 上記の色度調整においては、照射部210に用いられるレーザが特徴的である。照射部210に用いられるレーザとしては、LEDチップ110に与えるダメージを低減するために、色変換部120および蛍光体130に吸収され、LEDチップ110までレーザ光が到達しにくいものが選択される。図7は、レーザ光の発振波長と、レーザ光の透過率との関係を示す図である。 In the above-mentioned chromaticity adjustment, the laser used for the irradiation unit 210 is characteristic. As a laser used for the irradiation unit 210, a laser that is absorbed by the color conversion unit 120 and the phosphor 130 and that laser light does not easily reach the LED chip 110 is selected in order to reduce damage to the LED chip 110. FIG. 7 is a diagram showing the relationship between the oscillation wavelength of laser light and the transmittance of laser light.
 図7の実線のグラフは、シリコン系の透光性樹脂にレーザ光を照射した場合の、レーザ光の発振波長と、レーザ光の透過率との関係を示している。この実線のグラフに示されるように、レーザ光の波長が5500nm(5.5μm)以上であれば、シリコン系の透光性樹脂に対するレーザ光の透過率は、ほぼ0となる。 The solid line graph in FIG. 7 shows the relationship between the oscillation wavelength of the laser beam and the transmittance of the laser beam when the silicon-based translucent resin is irradiated with the laser beam. As shown in the solid line graph, when the wavelength of the laser light is 5500 nm (5.5 μm) or more, the transmittance of the laser light to the silicon-based light transmitting resin is almost zero.
 また、図7の破線のグラフは、色変換部120を想定し、蛍光体130を含むシリコン系の透光性樹脂にレーザ光を照射した場合の、レーザ光の発振波長と、レーザ光の透過率との関係を示している。この破線のグラフに示されるように、レーザ光の波長が2000nm以上であれば、蛍光体130を含むシリコン系の透光性樹脂に対するレーザ光の透過率は、ほぼ0となる。 Further, in the graph of the broken line in FIG. 7, assuming the color conversion unit 120, the oscillation wavelength of the laser light and the transmission of the laser light in the case where the silicon-based light-transmissive resin including the phosphor 130 is irradiated with the laser light. It shows the relationship with the rate. As shown in the broken line graph, when the wavelength of the laser light is 2000 nm or more, the transmittance of the laser light to the silicon-based light transmitting resin including the phosphor 130 is substantially zero.
 そこで、照射部210は、色変換部120に発振波長が5.5μm以上のレーザ光230を照射し、発光装置100から発せられる光の色度を調整する。なお、実用的には、レーザ光230の波長は、産業用のCO2レーザの10.8μm程度が上限になるものと考えられる。しかしながら、将来的に波長がさらに長いレーザが実用化された場合、このようなレーザが用いられてもよい。なお、図7は、シリコン系の透光性樹脂に対するレーザ光の透過率を示すものであるが、シリコン系以外の透光性樹脂についても、これに近い透過率となる。 Therefore, the irradiation unit 210 irradiates the color conversion unit 120 with the laser light 230 having an oscillation wavelength of 5.5 μm or more, and adjusts the chromaticity of the light emitted from the light emitting device 100. In practice, the upper limit of the wavelength of the laser light 230 is considered to be about 10.8 μm of the industrial CO 2 laser. However, such lasers may be used when lasers with longer wavelengths are put into practical use in the future. Note that FIG. 7 shows the transmittance of laser light to the silicon-based light transmitting resin, but the light transmitting resin other than silicon also has a transmittance close to this.
 ここで、発振波長が5.5μm以上のレーザとして、例えば、CO2レーザ(CO2レーザ装置)や、COレーザ(COレーザ装置)を使用することが考えられるが、レーザ光の集光径が小さいほうが、微細な加工が可能であることから好ましい。 Here, it is conceivable to use, for example, a CO 2 laser (CO 2 laser device) or a CO laser (CO laser device) as a laser having an oscillation wavelength of 5.5 μm or more, but the one having a smaller focused diameter of laser light It is preferable because fine processing is possible.
 図8は、レーザ光の集光径を説明するための図である。図8に示されるように、レーザ光の集光径dは、レーザ光を出射するレンズ250の焦点距離をf、レーザ波長をλ、レンズ250に入射するレーザ光の径をDとした場合、次の(式1)で表され、レーザ波長λに比例する。 FIG. 8 is a diagram for explaining the focusing diameter of the laser beam. As shown in FIG. 8, assuming that the focal length of the lens 250 for emitting the laser light is f, the laser wavelength is λ, and the diameter of the laser light incident on the lens 250 is D, as shown in FIG. It is expressed by the following (Formula 1) and is proportional to the laser wavelength λ.
   d=2.44×f・(λ/D)   ・・・(式1) D = 2.44 × f · (λ / D) (Equation 1)
 そこで、照射部210には、発振波長が5.5μm以上のレーザのうち、発振波長の短いものが用いられる。例えば、一般的に使用されるCO2レーザの発振波長λは10.6μmであるが、照射部210には、発振波長が9.2μm以上9.7μm以下のCO2レーザが用いられる。また、照射部210には、発振波長が5.5μm以上5.9μm以下のCOレーザが用いられる。 Therefore, among the lasers having an oscillation wavelength of 5.5 μm or more, for the irradiation unit 210, one having a short oscillation wavelength is used. For example, although the oscillation wavelength λ of a generally used CO 2 laser is 10.6 μm, a CO 2 laser having an oscillation wavelength of 9.2 μm or more and 9.7 μm or less is used for the irradiation unit 210. In addition, for the irradiation unit 210, a CO laser having an oscillation wavelength of 5.5 μm or more and 5.9 μm or less is used.
 次に、色変換部120の具体的な加工態様について説明する。図9は、色変換部120の加工の態様を説明するための模式図である。 Next, a specific processing mode of the color conversion unit 120 will be described. FIG. 9 is a schematic diagram for explaining the processing mode of the color conversion unit 120. As shown in FIG.
 例えば、図9の(a)に示されるように、照射部210は、LEDチップ110の上方の色変換部120に焦点を合わせてレーザ光230を照射する。これにより、図9の(b)に示されるように、色変換部120の一部が除去される。除去された色変換部120には、蛍光体130が含まれるため、発光装置100から発せられる光の色度が変わる。 For example, as shown in (a) of FIG. 9, the irradiation unit 210 focuses the color conversion unit 120 above the LED chip 110 and irradiates the laser light 230. As a result, as shown in FIG. 9B, a part of the color conversion unit 120 is removed. Since the removed color converter 120 includes the phosphor 130, the chromaticity of the light emitted from the light emitting device 100 is changed.
 図10は、発光装置100から発せられる光の色度の変化を説明するための図である。図10では、色度座標(x、y)が図示されている。図10に示されるように、色変換部120の一部が除去されると、黄色蛍光を発する蛍光体130が除去されるため、発光装置100から発せられる光の色度は、黄色側から青色側に向けてシフトする。 FIG. 10 is a diagram for explaining changes in chromaticity of light emitted from the light emitting device 100. FIG. In FIG. 10, chromaticity coordinates (x, y) are illustrated. As shown in FIG. 10, when a part of the color conversion unit 120 is removed, the phosphor 130 emitting yellow fluorescence is removed, so that the chromaticity of the light emitted from the light emitting device 100 is blue from the yellow side Shift towards the side.
 また、上述のように、照射部210には、発振波長が5.5μm以上のレーザが用いられるため、レーザ光230は、色変換部120に吸収され、LEDチップ110にはほとんど到達しない。したがって、LEDチップ110の直上にレーザ光230が照射される場合であっても、レーザ光230の照射によってLEDチップ110に加わるダメージは極めて低い。つまり、照射部210によれば、LEDチップ110に与えるダメージを低減しつつ色度を調整することができる。 Further, as described above, since the laser having an oscillation wavelength of 5.5 μm or more is used for the irradiation unit 210, the laser light 230 is absorbed by the color conversion unit 120 and hardly reaches the LED chip 110. Therefore, even when the laser beam 230 is irradiated directly above the LED chip 110, the damage to the LED chip 110 due to the irradiation of the laser beam 230 is extremely low. That is, according to the irradiation part 210, the chromaticity can be adjusted while reducing the damage given to the LED chip 110.
 なお、色変換部120の加工態様は、図9に示されるものに限定されない。図11は、色変換部120の加工の態様の別の例を説明するための模式図である。 The processing mode of the color conversion unit 120 is not limited to that shown in FIG. FIG. 11 is a schematic diagram for explaining another example of the processing mode of the color conversion unit 120. As shown in FIG.
 図11に示される加工態様では、照射部210は、まず、図11の(a)に示されるように色変換部120にレーザ光230を照射する。この結果、色変換部120に含まれる透光性樹脂の少なくとも一部が除去されて、色変換部120内に凹部170が形成され、蛍光体130が凹部170の底面から露出する。より具体的には、色変換部120の樹脂層120bの少なくとも一部が除去され、蛍光体層120a内の蛍光体130が露出する。 In the processing mode shown in FIG. 11, the irradiation unit 210 first irradiates the color conversion unit 120 with the laser light 230 as shown in (a) of FIG. As a result, at least a part of the translucent resin included in the color conversion unit 120 is removed, and the recess 170 is formed in the color conversion unit 120, and the phosphor 130 is exposed from the bottom surface of the recess 170. More specifically, at least a part of the resin layer 120b of the color conversion unit 120 is removed, and the phosphor 130 in the phosphor layer 120a is exposed.
 そして、照射部210は、レーザ光230の照射により蛍光体層120a内の蛍光体130の少なくとも一部を失活させる。なお、蛍光体130の失活とは、目視による蛍光体130の外観は変化していないが、蛍光体130に所定波長の励起光を照射しても蛍光を発しなくなることをいう。 And the irradiation part 210 deactivates at least one part of the fluorescent substance 130 in the fluorescent substance layer 120a by irradiation of the laser beam 230. FIG. Deactivation of the phosphor 130 means that although the appearance of the phosphor 130 by visual observation is not changed, the phosphor 130 does not emit fluorescence even when it is irradiated with excitation light of a predetermined wavelength.
 以上のような加工態様によっても、発光装置100から発せられる光の色度は、黄色側から青色側に向けてシフトする。 The chromaticity of the light emitted from the light emitting device 100 shifts from the yellow side to the blue side also by the processing mode as described above.
 図12は、図11に示されるような加工によって蛍光体130を失活させた場合の発光装置の画像である。図12の(a)は、通常の状態の画像であり、図12の(b)は、ブラックライトを照射した場合の画像である。なお、図12は、COB(Chip On Board)型の発光装置に上記加工を行った場合の画像であるが、SMD型の発光装置100においても同様の現象を確認することができる。 FIG. 12 is an image of the light emitting device when the phosphor 130 is deactivated by the processing as shown in FIG. (A) of FIG. 12 is an image in a normal state, and (b) of FIG. 12 is an image when the black light is irradiated. FIG. 12 shows an image when the above processing is performed on a COB (Chip On Board) type light emitting device, but the same phenomenon can be confirmed in the SMD type light emitting device 100.
 図12の(a)に示されるように、レーザ光230の照射により蛍光体130が失活した部分は、他の部分より白化している。また、図12の(b)に示されるようにレーザ光230の照射により蛍光体130が失活した部分は、ブラックライトを照射すると青く光る。 As shown in (a) of FIG. 12, the portion where the phosphor 130 is inactivated by the irradiation of the laser light 230 is whitened more than the other portions. Further, as shown in (b) of FIG. 12, the portion where the phosphor 130 is inactivated by the irradiation of the laser light 230 turns blue when it is irradiated with the black light.
 以上説明したように、照射部210によれば、透光性樹脂が除去されて露出した蛍光体130を失活させることによっても、色度を調整することができる。また、この場合、レーザ光230は、主に、色変換部120の上方に位置する樹脂層120bに照射される。このため、このような加工による、レーザ光230がLEDチップ110に与えるダメージの低減効果は高い。 As described above, according to the irradiation unit 210, the chromaticity can also be adjusted by deactivating the fluorescent material 130 exposed by removing the translucent resin. In this case, the laser beam 230 is mainly irradiated to the resin layer 120 b located above the color conversion unit 120. Therefore, the reduction effect of the laser beam 230 on the LED chip 110 by such processing is high.
 なお、レーザ光230の照射が同一の照射位置に集中する場合、LEDチップ110に発熱によるダメージを与える可能性がある。そこで、実施の形態1では、レーザ光230の照射位置は、所定時間毎に所定の距離以上離れた位置に変更される。 When the irradiation of the laser light 230 is concentrated on the same irradiation position, the LED chip 110 may be damaged due to heat generation. Therefore, in the first embodiment, the irradiation position of the laser beam 230 is changed to a position separated by a predetermined distance or more every predetermined time.
 図13は、レーザ光230の照射位置が所定時間毎に変更される例を示す模式図である。図13の(a)~(c)に示されるように、実施の形態1では、レーザ光230の照射位置は、所定時間毎に変更される。例えば、最初のレーザ光230の照射により凹部170aが形成された場合(図13の(a))、2回目の照射では、最初のレーザ光230の照射位置よりも所定の距離以上離れた位置にレーザ光230が照射され、この結果、凹部170bが形成される(図13の(b))。また、3回目の照射では、2回目のレーザ光230の照射位置よりも所定の距離以上離れた位置にレーザ光230が照射され、この結果、凹部170cが形成される(図13の(c))。 FIG. 13 is a schematic view showing an example in which the irradiation position of the laser light 230 is changed every predetermined time. As shown in (a) to (c) of FIG. 13, in the first embodiment, the irradiation position of the laser light 230 is changed at predetermined time intervals. For example, when the recess 170a is formed by the irradiation of the first laser beam 230 ((a) in FIG. 13), the second irradiation is at a position separated by a predetermined distance or more from the irradiation position of the first laser beam 230. The laser beam 230 is irradiated, and as a result, the recess 170 b is formed ((b) in FIG. 13). Further, in the third irradiation, the laser light 230 is irradiated at a position separated by a predetermined distance or more from the irradiation position of the second laser light 230, and as a result, the recess 170c is formed ((c) in FIG. 13). ).
 以上のようなレーザ光230の照射により、LEDチップ110への発熱によるダメージが低減される。なお、照射部210は、同一の照射位置にレーザ光230を照射する場合に、所定の時間間隔でレーザ光230を照射し、LEDチップ110への発熱によるダメージを低減してもよい。 The irradiation of the laser light 230 as described above reduces damage to the LED chip 110 due to heat generation. Note that, when irradiating the same irradiation position with the laser light 230, the irradiation unit 210 may irradiate the laser light 230 at a predetermined time interval to reduce damage to the LED chip 110 due to heat generation.
 以上、実施の形態1に係る発光装置100の製造方法(色度調整方法)について説明した。上記製造方法では、発振波長が5.5μm以上のレーザ光230を照射し、発光装置100から発せられる光の色度を調整する。これにより、発光素子に与えるダメージを低減しつつ発光装置100から発せられる光の色度を調整することが可能となる。 Heretofore, the manufacturing method (the chromaticity adjusting method) of the light emitting device 100 according to the first embodiment has been described. In the above manufacturing method, the laser light 230 having an oscillation wavelength of 5.5 μm or more is irradiated to adjust the chromaticity of the light emitted from the light emitting device 100. Accordingly, it is possible to adjust the chromaticity of the light emitted from the light emitting device 100 while reducing the damage given to the light emitting element.
 (その他の実施の形態)
 以上、実施の形態1に係る発光装置の製造方法について説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
As mentioned above, although the manufacturing method of the light-emitting device which concerns on Embodiment 1 was demonstrated, this invention is not limited to the said embodiment.
 上記実施の形態では、蛍光体130は、黄色蛍光体であるとして説明したが、色変換部120には、黄色蛍光体以外に、緑色蛍光を発する緑色蛍光体や、赤色蛍光を発する赤色蛍光体が含まれてもよい。なお、緑色蛍光体や、赤色蛍光体は、白色光の演色性を高める目的で色変換部120に混合される。また、色変換部120には、黄色蛍光体の代わりに、緑色蛍光体と赤色蛍光体とが含まれ、LEDチップ110が発する青色光と合わせて発光装置から白色光が発せられる構成であってもよい。 In the above embodiment, the phosphor 130 is described as being a yellow phosphor, but the color conversion unit 120 may be a green phosphor that emits green fluorescence or a red phosphor that emits red fluorescence in addition to the yellow phosphor. May be included. The green phosphor and the red phosphor are mixed in the color conversion unit 120 for the purpose of enhancing the color rendering of white light. In addition, the color conversion unit 120 includes a green phosphor and a red phosphor instead of the yellow phosphor, and the white light is emitted from the light emitting device in combination with the blue light emitted from the LED chip 110. It is also good.
 また、LEDチップ110は、青色光以外の光を発光するLEDチップであってもよい。例えば、LEDチップ110は、近紫外線を発するLEDチップであってもよい。この場合、色変換部120には、三原色(赤色、緑色、青色)の光を発する各色蛍光体が含まれる。 Moreover, the LED chip 110 may be an LED chip that emits light other than blue light. For example, the LED chip 110 may be an LED chip that emits near-ultraviolet light. In this case, the color conversion unit 120 includes phosphors of respective colors that emit light of three primary colors (red, green, and blue).
 なお、発光装置100には、蛍光体以外の光波長変換材が用いられてもよく、例えば、光波長変換材として、半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質からなる光波長変換材が用いられてもよい。すなわち、本発明の製造方法は、蛍光体以外の光波長変換材が用いられた発光装置にも適用可能である。 In the light emitting device 100, a light wavelength conversion material other than a phosphor may be used. For example, a light wavelength conversion material, such as a semiconductor, a metal complex, an organic dye, or a pigment, absorbs light of a certain wavelength A light wavelength conversion material made of a substance that emits light of a wavelength different from the absorbed light may be used. That is, the manufacturing method of this invention is applicable also to the light-emitting device in which light wavelength conversion materials other than fluorescent substance were used.
 また、上記実施の形態では、発光装置100はSMD型の発光装置であるとして説明したが、本発明の製造方法は、COB(Chip On Board)型の発光装置にも適用可能である。図14は、COB型の発光装置を説明するための図である。図14の(a)は、COB型の発光装置の構成を示す平面図(上面図)である。図14の(b)は、図14の(a)の発光装置をB-B線に沿って切断した場合の断面図である。図14の(c)は、図14の(a)の発光装置をC-C線に沿って切断した場合の断面図である。 Although the light emitting device 100 is described as an SMD type light emitting device in the above embodiment, the manufacturing method of the present invention is also applicable to a COB (Chip On Board) light emitting device. FIG. 14 is a diagram for explaining a COB light emitting device. FIG. 14A is a plan view (top view) showing the configuration of the COB type light emitting device. FIG. 14B is a cross-sectional view of the light emitting device of FIG. 14A cut along the line B-B. FIG. 14C is a cross-sectional view of the light emitting device of FIG. 14A taken along the line C-C.
 COB型の発光装置300は、基板20と、複数のLEDチップ110と、複数のLEDチップ110を一括封止する、蛍光体130が含まれた色変換部120とを備える。また、発光装置300は、配線155と、ボンディングワイヤ160とを備える。 The COB light emitting device 300 includes a substrate 20, a plurality of LED chips 110, and a color conversion unit 120 including a phosphor 130 for collectively sealing the plurality of LED chips 110. In addition, the light emitting device 300 includes a wire 155 and a bonding wire 160.
 LEDチップ110は、基板20上に直接、列状に実装されている。図14の例では、LEDチップ110の素子列は、6列設けられている。1つの素子列に属する複数のLEDチップ110それぞれのチップ上面には電流を供給するためのp側電極およびn側電極が形成されており、p側電極およびn側電極のそれぞれと配線155とがボンディングワイヤ160によってワイヤボンディングされている。 The LED chips 110 are mounted directly on the substrate 20 in a row. In the example of FIG. 14, six element rows of the LED chip 110 are provided. A p-side electrode and an n-side electrode for supplying current are formed on the top surface of each of the plurality of LED chips 110 belonging to one element row, and each of the p-side electrode and the n-side electrode and the wiring 155 It is wire-bonded by the bonding wire 160.
 色変換部120は、断面形状が上に凸の略半楕円形状であり、基板20上の全てのLEDチップ110の各素子列を覆うようにLEDチップ110の配列方向に沿って直線状に形成されている。なお、色変換部120や、蛍光体130には、上記実施の形態で説明したものと同様の各種材料が用いられる。 The color converter 120 has a substantially semi-elliptical shape with an upward convex cross-sectional shape, and is linearly formed along the arrangement direction of the LED chips 110 so as to cover each element row of all the LED chips 110 on the substrate 20 It is done. Note that various materials similar to those described in the above embodiment are used for the color conversion unit 120 and the phosphor 130.
 以上説明したようなCOB型の発光装置300においても、本発明の製造方法は適用できる。 The manufacturing method of the present invention can be applied to the COB type light emitting device 300 as described above.
 また、上記実施の形態においては、発光素子としてLEDチップ110が用いられたが、発光素子として、半導体レーザ等の半導体発光素子、有機EL(Electro Luminescence)、または無機EL等の固体発光素子が用いられてもよい。 In the above embodiment, the LED chip 110 is used as a light emitting element, but a semiconductor light emitting element such as a semiconductor laser, a solid light emitting element such as an organic EL (Electro Luminescence), or an inorganic EL is used as a light emitting element. It may be done.
 なお、本発明は、上記実施の形態で説明した発光装置や、その製造装置として実現されてもよい。 Note that the present invention may be realized as the light emitting device described in the above embodiment or a manufacturing apparatus thereof.
 以上、一つまたは複数の態様に係る発光装置の製造方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 As mentioned above, although the manufacturing method of the light-emitting device which concerns on one or several aspect was demonstrated based on embodiment, this invention is not limited to this embodiment. Without departing from the spirit of the present invention, various modifications that can be conceived by those skilled in the art may be applied to the present embodiment, and modes configured by combining components in different embodiments may also be in the scope of one or more aspects. May be included within.
 10、20 基板
 100、300 発光装置
 110 LEDチップ(発光素子)
 120 色変換部
 120a 蛍光体層
 120b 樹脂層
 130 蛍光体
 140 パッケージ
 150 リードフレーム
 155 配線
 160 ボンディングワイヤ
 170、170a、170b、170c 凹部
 200 製造装置
 210 照射部
 220 色度測定部
 230 レーザ光
 240 置き台
 250 レンズ
10, 20 substrate 100, 300 light emitting device 110 LED chip (light emitting element)
120 color converter 120a phosphor layer 120b resin layer 130 phosphor 140 package 150 lead frame 155 wiring 160 bonding wire 170, 170a, 170b, 170c recessed portion 200 manufacturing apparatus 210 irradiation unit 220 chromaticity measurement unit 230 laser light 240 holder 250 lens

Claims (8)

  1.  発光素子と、前記発光素子の発する光で励起されて光を発する蛍光体を含む透光性樹脂で形成され、前記発光素子の少なくとも一部を覆う色変換部とを有する発光装置の製造方法であって、
     前記色変換部に波長が5.5μm以上のレーザ光を照射することによって前記発光装置から発せられる光の色度を調整する照射工程を含む
     発光装置の製造方法。
    A method of manufacturing a light emitting device, comprising: a light emitting element; and a light conversion resin including a light emitting resin containing a phosphor that is excited by light emitted from the light emitting element to emit light and covers at least a part of the light emitting element. There,
    A method of manufacturing a light emitting device, comprising: an irradiating step of adjusting the chromaticity of light emitted from the light emitting device by irradiating the color conversion portion with a laser beam having a wavelength of 5.5 μm or more.
  2.  前記照射工程においては、波長が9.2μm以上9.7μm以下のCO2レーザ装置、または、波長が5.5μm以上5.9μm以下のCOレーザ装置を用いて前記レーザ光を照射する
     請求項1に記載の発光装置の製造方法。
    In the irradiation step, the laser beam is irradiated using a CO 2 laser device having a wavelength of 9.2 μm or more and 9.7 μm or less, or a CO laser device having a wavelength of 5.5 μm or more and 5.9 μm or less. The manufacturing method of the described light-emitting device.
  3.  前記照射工程においては、前記色変換部に前記レーザ光を照射することにより、前記蛍光体の少なくとも一部を除去する
     請求項1または2に記載の発光装置の製造方法。
    The method for manufacturing a light emitting device according to claim 1, wherein in the irradiating step, at least a part of the phosphor is removed by irradiating the color conversion unit with the laser light.
  4.  前記照射工程においては、前記色変換部に前記レーザ光を照射することにより、前記透光性樹脂の少なくとも一部を除去して前記蛍光体を露出させ、かつ、露出した前記蛍光体の少なくとも一部を失活させる
     請求項1または2に記載の発光装置の製造方法。
    In the irradiating step, the color conversion portion is irradiated with the laser light to remove at least a part of the light transmitting resin to expose the phosphor and at least one of the exposed phosphors. The manufacturing method of the light-emitting device of Claim 1 or 2 which deactivates a part.
  5.  前記色変換部は、前記蛍光体を含む前記透光性樹脂からなる蛍光体層と、前記蛍光体を含まない前記透光性樹脂からなる、前記蛍光体層の上方に設けられた樹脂層とを有し、
     前記照射工程においては、前記色変換部に前記レーザ光を照射することにより、前記樹脂層の少なくとも一部を除去して前記蛍光体層内の前記蛍光体を露出させ、かつ、露出した前記蛍光体の少なくとも一部を失活させる
     請求項1または2に記載の発光装置の製造方法。
    The color conversion portion includes a phosphor layer made of the light transmitting resin containing the phosphor, and a resin layer provided above the phosphor layer made of the light transmitting resin not containing the phosphor. Have
    In the irradiation step, the color conversion portion is irradiated with the laser light to remove at least a part of the resin layer to expose the phosphor in the phosphor layer, and the exposed fluorescence The manufacturing method of the light-emitting device of Claim 1 or 2 which deactivates at least one part of a body.
  6.  前記照射工程においては、前記レーザ光の照射位置を所定時間毎に所定の距離以上離れた位置に変更する
     請求項1~5のいずれか1項に記載の発光装置の製造方法。
    The method according to any one of claims 1 to 5, wherein, in the irradiation step, the irradiation position of the laser beam is changed to a position separated by a predetermined distance or more at predetermined time intervals.
  7.  さらに、前記発光装置から発せられる光の色度を測定する測定工程を含み、
     前記照射工程においては、前記発光装置から発せられる光の色度が所定の範囲内となるように、前記測定工程の測定結果に基づいて、前記レーザ光の照射時間、前記レーザ光の照射場所、および前記レーザ光の照射エネルギーのうち少なくとも1つを調整し、前記色変換部に前記レーザ光を照射する
     請求項1~6のいずれか1項に記載の発光装置の製造方法。
    The method further includes a measuring step of measuring the chromaticity of light emitted from the light emitting device.
    In the irradiation step, the irradiation time of the laser light, the irradiation place of the laser light, based on the measurement result of the measurement step so that the chromaticity of the light emitted from the light emitting device is within a predetermined range, The method according to any one of claims 1 to 6, wherein at least one of irradiation energy of the laser beam is adjusted, and the color conversion unit is irradiated with the laser beam.
  8.  発光素子と、前記発光素子の発する光で励起されて光を発する蛍光体を含む透光性樹脂で形成され、前記発光素子の少なくとも一部を覆う色変換部とを有する発光装置の製造装置であって、
     前記色変換部に波長が5.5μm以上のレーザ光を照射することによって前記発光装置から発せられる光の色度を調整する照射部を備える
     製造装置。
    A light emitting device manufacturing apparatus, comprising: a light emitting element; and a light conversion resin including a light emitting resin containing a phosphor that emits light by being excited by light emitted from the light emitting element and covers at least a part of the light emitting element. There,
    A manufacturing apparatus comprising: an irradiation unit configured to adjust the chromaticity of light emitted from the light emitting device by irradiating the color conversion unit with a laser beam having a wavelength of 5.5 μm or more.
PCT/JP2014/005219 2013-11-12 2014-10-15 Method and apparatus for manufacturing light emitting device WO2015072079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015547616A JP6145737B2 (en) 2013-11-12 2014-10-15 Manufacturing method of light emitting device and manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013234478 2013-11-12
JP2013-234478 2013-11-12

Publications (1)

Publication Number Publication Date
WO2015072079A1 true WO2015072079A1 (en) 2015-05-21

Family

ID=53057032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005219 WO2015072079A1 (en) 2013-11-12 2014-10-15 Method and apparatus for manufacturing light emitting device

Country Status (2)

Country Link
JP (1) JP6145737B2 (en)
WO (1) WO2015072079A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233950A (en) * 1997-12-11 1999-08-27 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2002344029A (en) * 2001-05-17 2002-11-29 Rohm Co Ltd Method of adjusting color tone of light-emitting diode
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof
JP2009016779A (en) * 2007-06-05 2009-01-22 Sharp Corp Light-emitting device, method for manufacturing light-emitting device, electronic instrument, and portable telephone
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
JP2011517090A (en) * 2008-03-31 2011-05-26 クリー インコーポレイテッド Light emission adjusting method and device manufactured using the method
JP2013110159A (en) * 2011-11-17 2013-06-06 Toshiba Corp Optical device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233950A (en) * 1997-12-11 1999-08-27 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2002344029A (en) * 2001-05-17 2002-11-29 Rohm Co Ltd Method of adjusting color tone of light-emitting diode
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof
JP2009016779A (en) * 2007-06-05 2009-01-22 Sharp Corp Light-emitting device, method for manufacturing light-emitting device, electronic instrument, and portable telephone
JP2011517090A (en) * 2008-03-31 2011-05-26 クリー インコーポレイテッド Light emission adjusting method and device manufactured using the method
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
JP2013110159A (en) * 2011-11-17 2013-06-06 Toshiba Corp Optical device and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2015072079A1 (en) 2017-03-16
JP6145737B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US9006761B2 (en) Light-emitting device
JP2013062320A (en) Light emitting device
EP2953173B1 (en) Light emitting device fabrication method and fabrication device
WO2016129495A1 (en) Light source device and light-emitting device
JP2010034183A (en) Light-emitting device
JP5831013B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
JP2018129492A (en) Light-emitting device, and illuminating device
KR102358639B1 (en) High Brightness Crisp White LED Light Source
JP2016115941A (en) Light emitting device
JP2017054994A (en) Light emitting device and luminaire
JP2014086696A (en) Light-emitting device
US10168007B2 (en) Light-emitting device and illuminating apparatus
WO2015072079A1 (en) Method and apparatus for manufacturing light emitting device
JP2015233048A (en) Light-emitting device
JP2007324630A (en) Semiconductor light-emitting device
KR101251962B1 (en) LED package
WO2015182089A1 (en) Light-emitting device and production method for light-emitting device
JP5178349B2 (en) Light emitting device and lighting unit
JP6410161B2 (en) Light emitting device and method for manufacturing light emitting device
CN107946436B (en) A kind of White-light LED package structure
JP6144716B2 (en) Light emitting diode
JP2022064124A (en) Led light-emitting device
WO2011016439A1 (en) Light-emitting device
JP2021048237A (en) Light-emitting device
WO2016021132A1 (en) Light emitting device manufacturing method, light emitting device, and light emitting device manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861479

Country of ref document: EP

Kind code of ref document: A1