WO2015072005A1 - 通信装置及びシステム及び方法 - Google Patents
通信装置及びシステム及び方法 Download PDFInfo
- Publication number
- WO2015072005A1 WO2015072005A1 PCT/JP2013/080862 JP2013080862W WO2015072005A1 WO 2015072005 A1 WO2015072005 A1 WO 2015072005A1 JP 2013080862 W JP2013080862 W JP 2013080862W WO 2015072005 A1 WO2015072005 A1 WO 2015072005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- packet
- unit
- encoding
- time
- error correction
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/007—Unequal error protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
- H04L1/0073—Special arrangements for feedback channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0075—Transmission of coding parameters to receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/22—Parsing or analysis of headers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0078—Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
- H04L1/0079—Formats for control data
Definitions
- the present invention relates to a communication apparatus, system, and method, and more particularly to a communication apparatus for low-delay communication that can be applied to various systems such as a remote operation system remote monitoring system, a remote control system, and a remote monitoring control system. And systems and methods.
- WAN Wide Area Network
- the Internet developed as a communication infrastructure may be used for communication with a remote place.
- TCP Transmission Control Protocol
- UDP User Datagram Protocol
- TCP guarantees the order of data strings when transmitting data from one terminal to another, and realizes highly reliable communication by retransmitting missing data.
- UDP is used, which is a communication protocol that places importance on low communication delay rather than reliability. UDP does not retransmit, and the order of data strings is not guaranteed, but high-speed and low-delay transmission is possible.
- RTP Real-time Transport Protocol
- TCP Transmission Control Protocol
- UDP User Datagram Protocol
- the RTP alone cannot avoid the loss of data packets that occur when going through the network, and there is a problem that high-quality stream data may not be reproduced particularly in an environment where the communication quality of the line is relatively poor. There is.
- a forward error correction (FEC: Forward Error Correction) code is added to data to be transmitted.
- FEC Forward Error Correction
- By assigning the FEC code and transmitting the data it is possible to restore the loss of the data packet on the receiving side alone. Therefore, even when the communication quality of the line is relatively poor, it is possible to realize highly reliable communication with low delay.
- an error correction code is calculated in units of a plurality of packets.
- the FEC code a parity code, a Reed-Solomon code, or the like is used.
- an object of the present invention is to effectively suppress packet loss by setting an encoding block size or encoding processing time of an error correction code and an encoding block size.
- a communication device A line quality measuring unit for calculating first line quality information including a first burst loss time from a packet loss situation of a received packet; An error correction decoding unit that repairs a loss of a received packet based on an encoding time T included in an error correction header of the received packet and an encoding processing amount that is a parameter of the encoded block; A feedback data acquisition unit for acquiring second line quality information including the second burst loss time T BL from the error correction header of the received packet; A packet number measurement unit that sets the encoding time T to be variable or fixed based on the second channel quality information acquired by the feedback data acquisition unit, and measures the number N of packets per encoding time T of the transmission data packet; Encoding processing amount based on the number of packets N measured by the packet number measuring unit, the encoding time T set by the packet number measuring unit, and the second line quality information acquired by the feedback data acquiring unit; An error correction encoding unit that generates an error correction code packet including the error correction
- a communication system A transmission side communication device having a transmission unit and inserted between the terminal on the transmission side and the gateway; A receiving unit, and a receiving-side communication device inserted between the receiving-side terminal and the gateway;
- the receiver is A line quality measuring unit for calculating first line quality information including a first burst loss time from a packet loss situation of a received packet;
- An error correction decoding unit that repairs a loss of a received packet based on an encoding time T included in an error correction header of the received packet and an encoding processing amount that is a parameter of the encoded block;
- a feedback data acquisition unit for acquiring second line quality information including the second burst loss time T BL from the error correction header of the received packet;
- the transmitter is A packet number measurement unit that sets the encoding time T to be variable or fixed based on the second channel quality information acquired by the feedback data acquisition unit, and measures the number N of packets per encoding time T of the transmission data packet; Encoding processing amount based on the number of packets N
- a communication method From the packet loss situation of the received packet, calculate the first line quality information including the first burst loss time, Based on the encoding time T included in the error correction header of the received packet and the encoding processing amount which is a parameter of the encoding block, the missing of the received packet is repaired, Obtaining the second line quality information including the second burst loss time T BL from the error correction header of the received packet; Based on the acquired second channel quality information, the encoding time T is set to be variable or fixed, and the number N of packets per encoding time T of the transmission data packet is measured, An encoding processing amount is obtained based on the measured number of packets N, the encoding time T set by the packet number measuring unit, and the acquired second line quality information, and is calculated based on the encoding processing amount.
- An error correction code packet including the generated error correction code A transmission packet is obtained by adding an error correction header including the encoding time T and the encoding processing amount in the encoding process and the calculated first channel quality information to the transmission data packet and the error correction code packet, respectively.
- a communication method is provided that includes generating
- packet loss can be effectively suppressed by setting the encoding block size or encoding processing time of the error correction code and the encoding block size.
- the communication apparatus is arranged on each of the transmission side and the reception side, and the communication apparatus includes a transmission unit and a reception unit, and software having FEC encoding and decoding functions, or It is a device configured as hardware.
- the transmission unit includes a transmission packet type determination unit that determines communication from a specific communication partner or a specific application, and the transmission packet type determination unit outputs a packet as it is when it is determined that FEC calculation is unnecessary. If it is determined that FEC calculation is necessary, the data is transmitted to the packet number measurement unit, and the packet number measurement unit measures the number of packets per unit time (encoding time).
- the transmission unit includes an FEC encoding unit that calculates a forward error correction code based on feedback information of the number of packets measured by the packet number measurement unit and a burst loss time provided by the reception unit for each encoding time; A transmission header processing unit for adding an FEC header to the packet processed by the FEC encoding unit, and a packet transmission unit for transmitting the packet configured by the transmission header processing unit.
- the reception unit includes a reception packet type determination unit that determines whether or not FEC decoding is necessary based on header information of a packet that is sent, and the reception packet type determination unit does not require an FEC decoding process. Packets are output without being processed, and packets that require FEC complex processing are transmitted to the reception buffer unit.
- the receiving unit calculates a burst loss time from the FEC decoding unit that repairs the packet loss from the data in the reception buffer, and the packet lost in the reception buffer, and sends the information to the transmission header processing unit of the transmission unit.
- the packet transmission unit of the transmission unit can transmit packets at equal intervals over the same time as the encoding time.
- the transmitter may change the FEC calculation method based on the fed-back burst loss time and the encoding time for measuring the number of packets.
- FIG. 1 is a diagram showing a configuration of a communication system according to a first embodiment of the present invention.
- a burst loss often occurs in which several packets are continuously lost.
- the communication apparatus of this embodiment is an example suitable for effectively suppressing packet loss due to burst loss.
- FIG. 1 shows a configuration when the terminals 104-1 and 104-2 perform bidirectional communication.
- a communication device 101 is connected between a terminal 104 and a GW (gateway) 105, and each device is connected by a communication line 106 such as Ethernet (registered trademark).
- the communication line 106 may be wired or wireless.
- the communication apparatus 101 includes a transmission unit 102 and a reception unit 103.
- the communication device 101 may be configured by a PC (personal computer).
- the terminal 104 may be a device such as a PC, and the present system may be applied to control a plurality of devices connected to the PC.
- the communication device 101-1 When a data packet is transmitted from the terminal 104-1, the communication device 101-1 receives the data packet and inputs it to the transmission unit 102-1.
- the transmission unit 102-1 performs encoding processing such as FEC calculation, and outputs the encoded packet to the GW 105-1 side.
- the GW 105-1 that has received the data packet from the communication device 101-1 transmits the packet to the GW 105-2 via the WAN.
- the GW 105-2 that has received data from the WAN side transfers the data packet to the communication device 101-2.
- the communication apparatus 101-2 that has received the data from the GW 105-2 inputs the packet to the reception unit 103-2.
- the receiving unit 103-2 decodes the encoded packet, performs error correction, and transmits the data packet to the communication terminal 104-2.
- Similar processing is performed when the terminal 104-2 transmits a packet addressed to the terminal 104-1.
- the communication apparatus 101 performs the packet encoding process on the packet input from the LAN (Local Area Network) side by the transmission unit 102, and the reception unit 103 decodes the packet received from the WAN side. Process.
- the communication apparatus 101 it is only necessary to insert the communication apparatus 101 as a bridge in a path where the normal terminal 104 and the GW 105 are directly connected, and the FEC calculation process can be performed on the data packet without changing the existing communication system. it can.
- a network router or a hub may be connected between the GW 105 and the communication apparatus 101 or between the communication apparatus 101 and the terminal 104.
- FIG. 2 shows a configuration diagram of the communication apparatus 101.
- the communication device 101-1 is configured as a pair with the communication device 101-2, and each communication device 101 includes a transmission unit 102 and a reception unit 103.
- the transmission packet input 201-1 input from the terminal side (LAN side) is taken into the transmission unit 102-1 and sent to the transmission packet type determination unit 202-1.
- the transmission packet type determination unit 202-1 determines whether the communication is from a specific communication partner set in advance or a specific application, and the corresponding packet is transmitted to the packet number measurement unit 203-1. If not applicable, it has a function of outputting the packet as it is as the transmission packet output 207-1.
- the transmission packet type determination unit 202-1 compares header information such as the IP address, port number, and communication protocol described in the header of the transmission packet input 201-1 with those information set in advance. It is determined whether or not it is a packet to be transmitted. A plurality of combinations can be set in advance for the IP address, port number, and communication protocol, which are determination conditions of the transmission packet type determination unit 202-1. For example, when it is determined whether the packet should calculate FEC according to the settings of the IP address and the port number, the communication protocol can be the target of FEC calculation regardless of TCP, UDP, RTP, or the like.
- the packet number measurement unit 203-1 measures the number of packets sent from the transmission packet type determination unit 202-1 and sends information on the number of packets measured for each encoding processing time T to the FEC encoding unit 204-1. Is output. For this reason, the encoding processing time T for measuring the number of packets appears as an encoding processing delay.
- the packet number measurement unit 203-1 encodes according to information (eg, line quality information) from the feedback data acquisition unit 214-1. T can be changed and set dynamically or adaptively. Note that the encoding time T may be fixedly set in advance as in an embodiment described later.
- Packets input to the packet number measuring unit 203-1 may be sequentially transferred to the FEC encoding unit 204-1 or the input packets may be temporarily stored in a buffer in the packet number measuring unit 203-1, and the number of packets May be transferred to the FEC encoder 204-1 simultaneously with the end of the measurement.
- the number of packets measured by the packet number measuring unit 203-1 and the number of packets measured by the packet number measuring unit 203-1 are changed dynamically with respect to the data packet input from the packet number measuring unit 203-1.
- the adaptively set or fixedly set encoding time T and the channel quality information acquired by the feedback data acquiring unit 214-1 of the receiving unit 103-1 sufficient for burst loss FEC encoding with high tolerance is performed.
- the feedback data acquisition unit 214-1 does not hold the channel quality information or when the channel quality information is old, the FEC encoding can be performed according to a preset value. Details of the encoding process in the FEC encoding unit 204-1 will be described later.
- the data packet input to the FEC encoding unit 204-1 and the FEC code packet calculated by the FEC encoding unit 204-1 are sent to the transmission header processing unit 205-1.
- the transmission header processing unit 205-1 assigns an FEC header in which details of FEC encoding are described to each packet and transmits the packet to the packet transmission unit 206-1.
- the transmission header processing unit 205-1 uses the line quality information of the communication path 217-1 measured by the line quality measuring unit 211-1 of the receiving unit 103-1 as FEC as feedback information to the communication apparatus 101-2. Store in header.
- the packet transmission unit 206-1 that has received the data from the transmission header processing unit 205-1 spends the same amount of time as the encoding time T so that transmission of packet data in the buffer is performed at equal time intervals.
- the packet transmission time is adjusted and data is transmitted to the WAN side as a transmission packet output 207-1.
- the communication device 101-2 when the communication device 101-2 receives the received packet input 208-2 from the GW side (WAN side), the communication device 101-2 transmits the packet to the received packet type determination unit 209-2.
- the reception packet type determination unit 209-2 reads information such as the IP header, TCP, UDP header, FEC header, and other header information of the reception packet input 208-2, and determines whether the packet requires FEC decoding processing. . Note that conditions necessary for this determination can be set in advance as appropriate combinations.
- a packet that is determined not to require FEC decoding processing is output as a received packet output 216-2, and a packet that is determined to require decoding processing is received based on information in the FEC header 210- Transmit the packet to 2.
- the reception buffer unit 210-2 stores data transmitted from the reception packet type determination unit 209-2. Regardless of whether or not a packet loss has occurred in the reception buffer unit 210-2, or regardless of whether or not a packet loss has occurred, the line quality measurement unit 211-2 determines whether the communication line 217- 2 is measured and transmitted to the transmission header processing unit 205-2 of the transmission unit 102-2.
- the line quality information refers to, for example, an average packet loss rate, a maximum burst loss time, or a burst loss time.
- the received packet stored in the reception buffer unit 210-2 is transmitted to the FEC decoding unit 212-2, and packet loss error correction processing is performed.
- the error-corrected packet data is sent to the reception header processing unit 213-2, and after removing information such as the FEC header, it is output from the reception packet output 215-2 as the reception packet output 216-2.
- the feedback data acquisition unit 214-2 acquires channel quality information of the communication line 217-1 included in the FEC header of the received packet, and uses this to obtain the packet number measurement unit 203-2 of the transmission unit 102-2 and the FEC code. Is transmitted to the processing unit 204-2. Communication from the communication device 101-2 to the communication device 101-1 is performed in the same manner.
- an error correction code a case where an FEC code is used as an example will be described. However, the present invention is not limited to this, and parity or other appropriate error correction codes may be used.
- the FEC encoding unit 204 configures an FEC encoded block from the data packet, and generates an FEC code packet for each encoded block.
- FIG. 3 shows an example in which a two-dimensional parity code method is used as an FEC encoding method, for example.
- an FEC encoded block of D rows ⁇ L columns is constructed from the data packet, and the exclusive OR (XOR) of each row and each column of the encoded block is calculated, thereby causing each of the vertical and horizontal directions.
- the FEC encoded packet in the direction is generated. Data packets and FEC encoded packets are transmitted over the WAN.
- each row Each packet is transmitted.
- L + 1 consecutive packet losses burst loss
- the XOR of each row and column of the received FEC encoded block is recalculated, so that the lost packet can be recovered by a single operation on the receiving side as shown in FIG. be able to.
- the burst loss tolerance is determined to be one line (L + 1) of the FEC encoded block
- the number of packets for one line of the FEC encoded block is larger than the number of burst losses generated in the line. If there are more, lost packets can be recovered.
- the cause of burst loss is mainly due to buffer overflow or the like in the switching network, and the number of burst losses changes in proportion to the data transmission rate.
- the burst loss must be defined not by the number of packet losses but by the time at which the packet loss occurred. That the FEC coding block is comprised of the time to transmit the one line, which means that it longer than the burst loss time T BL. Method for calculating the burst loss time T BL will be described in detail in the description of the channel quality measurement unit 211.
- FEC coding section 204 a burst loss time T BL measured by channel quality measuring section 211, when it can be obtained via the feedback data acquisition unit 214, a line over T BL or more times (L + 1 By transmitting data), it is possible to generate an FEC matrix (FEC encoded block) having high resistance to burst loss.
- N packets are measured by the packet number measuring unit 203 during the encoding time T,
- FIG. 3D shows an example in which D and L of the encoded block change according to TBL.
- the left part of FIG. 3D shows the definition of each line in the encoded block.
- TBL T BL1
- T BL T BL2
- TBL T BL1
- the packet count measurement time T is set to a time equal to or greater than 2T BL .
- the packet counting unit 203 acquires the channel quality information, such as burst loss time T BL of the communication line as feedback data from the feedback data acquiring unit 214, while obtaining a sufficient burst loss resistance to shorten the FEC calculation delay
- the FEC encoding time T can be changed.
- the packet counting unit 203 to set the at least two times the coding time T T BL, may change the encoding process time T.
- the packet number measurement unit 203 sets n to 2 in order to make delay as low as possible, or sets it as an integer of 3 or more in advance, and sets the burst loss time T BL from the feedback data acquisition unit 214.
- Transmission header processing unit 205 The data packet constituting the coding block by the FEC coding unit 204 and the FEC code packet generated by the FEC coding unit 204 are sent to the transmission header processing unit 205.
- FIG. 4 shows an embodiment of header processing of the transmission header processing unit 205.
- the transmission header processing unit 205 since the data packet received by the transmission header processing unit 205 may include a plurality of protocols, the transmission header processing unit 205 newly wraps the incoming data packet in a UDP / IP header, The old data packet is encapsulated as a data part of a new UDP packet.
- the protocol part of the new IP header is UDP
- the source IP address and destination IP address of the IP header, and the source port and destination port of the UDP header are generated by copying the information of the old data packet ( 402).
- the MAC header information is also copied (403).
- an FEC header describing details of FEC encoding is added to the head of the new UDP data part.
- the header information described in the immediately preceding data packet is copied and used as it is (404).
- the same header information as the first half of the divided packet is copied to the second half packet.
- FIG. 5 shows a configuration example of the FEC header 401. This is an example of a minimum configuration, and other information may be included as an FEC header.
- the header identifier is used for recognition of the FEC header.
- the data flag is used to identify whether the data following the FEC header is a data packet or an FEC code packet.
- the extension indicates the presence or absence of feedback data.
- the encoding time indicates how long the packet measurement time of the packet number measurement unit 203 was, and corresponds to the above-described time T. In the encoding time of the FEC header 401, time information may be directly described, or a method of describing codes corresponding to a plurality of predetermined times may be used.
- the FECID is a value incremented at each encoding time T in the FEC encoding unit 204 and indicates which time or which FEC encoding block the packet has been processed.
- the encoding processing amount indicates a parameter at the time of generating an encoded block. For example, in the case of a two-dimensional parity code, information on D and L is described.
- the data position is information indicating the number of data in the encoded block of the packet, and can be used for order correction of reverse order packets.
- the feedback data is used to send back channel quality information such as burst loss time, packet error rate, and / or other information measured by the receiving unit.
- the reception buffer unit 210 When receiving a new FECID, the reception buffer unit 210 secures a storage area for packet reception, and continues reception for a time T + T j obtained by adding a jitter compensation time T j to the encoding time T described in the FEC header.
- T j is a preset value.
- the reception buffer unit 210 receives all the packets of the FEC coding block or receives a new FECID packet, and when a time of T + T j has elapsed and a timeout has occurred, the line quality measurement unit 211, and The processing start signal is transmitted to the FEC decoding unit 212.
- Line quality measurement unit 211 When the line quality measuring unit 211 receives a signal to start processing from the reception buffer unit 210, the line quality measuring unit 211 starts processing. Since the packet transmission unit 206 sends out the packets generated by the FEC coding block at an equal interval during the coding time T, the line quality measurement unit 211 of the communication device 101 on the reception side receives the reception buffer 210 and the received packet. Referring to the information obtained from the packet's FEC header, measure the number of lost packets, the number of burst losses, and the maximum burst loss time or burst loss time, average packet error. It is possible to calculate line state information (line quality information) such as rate.
- the burst loss time When the burst loss time is used as the channel quality information, it can be calculated as follows. For example, if M packets including FEC code packets are transmitted during the encoding time T, the line quality measurement unit 211 acquires T and M information from the normally received FEC header, and the packet It is possible to calculate that the transmission time interval is T / M. Therefore, when a maximum of k received packets have been lost, the burst loss time TBL is
- the maximum value of T BL can be determined as a maximum burst loss time in the predetermined time it may be used as the channel quality information.
- the calculated line quality information is transmitted to the transmission header processing unit 205.
- the line quality information sent to the transmission header processing unit 205 is stored in the transmission header as feedback data for the communication device on the partner terminal side.
- the line quality information measured by the line quality measuring unit 211 is stored as feedback data in the transmission header. Even when the uplink and downlink channel qualities are different, the feedback data acquisition unit 214 extracts feedback data including channel quality information such as burst loss time and average packet loss rate from the FEC header received from the communication device on the other side. Encoding and decoding processes can be performed appropriately.
- the FEC decoding unit 212 restores the packet loss that has occurred in the received packet based on information such as the encoding time T, the encoding processing amount (D, L), and the data position described in the FEC header.
- the FEC decoding unit 212 receives a signal to start processing from the reception buffer unit 210, the FEC decoding unit 212 starts decoding processing and processing for repairing packet loss.
- reception header processing unit 213 Based on the data flag of the FEC header, the reception header processing unit 213 discards the packet if it is an FEC code packet, and performs header processing if it is a data packet.
- FIG. 6 shows an example of header processing in the reception header processing unit 213. Since the received packet has a structure in which the original data packet is encapsulated by the UDP / IP header, the reception header processing unit 213 extracts the old data packet portion from the data portion of the UDP packet. When NAT (Network Address Translation) is performed in the GW on the transmission side or the reception side, the source IP address, the destination IP address, and the source port number of the received packet are converted, so that the reception header processing unit 213 Overwrites these pieces of information in the extracted old data packet part (601). The reception header processing unit 213 also creates a copy for the MAC header (602). As a result, packet transmission corresponding to IP masquerade and port forwarding can be performed. After performing the above header operation, the reception header processing unit 213 transmits the data packet to the reception packet output unit 215. If feedback data is described in the FEC header 401, the information is transmitted to the feedback data acquisition unit 214.
- NAT Network Address Translation
- the FEC encoding unit 204 may improve the loss rate by arbitrarily reducing the value of D obtained by calculation.
- the FEC encoding unit 204 may decrease the value of D calculated by Expression 1 by 1, and then calculate L by Expression 2.
- the FEC encoding unit 204 determines the loss rate and the threshold again after the lapse of the predetermined time T C1 . If the loss rate exceeds the threshold, the above procedure is repeated, and if the loss rate falls below the threshold, the fixed time T C The value of D can be kept until C2 has elapsed. You may return to the calculation method of D and L by Formula 1, Formula 2 after TC2 time progress.
- FIG. 7 is a diagram showing a configuration of a communication system according to the second exemplary embodiment of the present invention.
- the transmission unit 102 and the reception unit 103 can operate independently. Since the transmission unit 102 and the reception unit 103 do not necessarily exist in the same apparatus, only the transmission unit 102 can be implemented on the transmission side, and only the reception unit 103 can be implemented on the reception side.
- FEC encoding processing can be performed. Values such as encoding time T and burst loss time TBL are preset in the user setting unit 701 of the transmission unit 102, and the packet number measuring unit 203 and the FEC encoding unit 204 are based on the information of T and TBL. FEC encoding processing is performed. Further, parameters such as T and TBL described in the user setting unit 701 can be arbitrarily changed by the user.
- the encoding time T, burst loss time T BL , and D and L sizes corresponding to the number N of input packets per encoding time T are set in the user setting unit 701 in advance. You may do it.
- the value of n in Equation 3 may be set in advance. Further, based on the measured values of the statistical T BL, it may be set to T to twice or three or more of the n-fold of previously determined.
- the MTU size of the communication port on the side connected to the terminal 104 is larger than the MTU size of the communication port on the side connected to the GW 105 by the header length given by the header processing unit 205.
- the size By setting the size smaller in advance, it is possible to prevent the packet from being divided by the IP header.
- FIG. 8 is a diagram showing a configuration of a communication system according to the third embodiment of the present invention.
- the embodiment shown in FIG. 8 is a form in which the communication apparatus 101 of the first embodiment is implemented as the communication software 901 of the communication terminal 104.
- the communication software 901 includes a transmission unit 102 and a reception unit 103, calculates an FEC code for communication from a specific application 902, and transmits the encoded packet to the GW 105.
- the terminal 104 may be a mobile phone terminal or a mobile information terminal
- the GW 105 may be a mobile phone base station or a WiMAX (Worldwide Interoperability for Microwave Access) base station.
- WiMAX Worldwide Interoperability for Microwave Access
- the FEC coding block size is adaptively changed, and the packets are transmitted evenly during the unit time, thereby dividing the data packet. It is possible to effectively suppress packet loss due to burst loss without performing it.
- the packet transmission interval of the transmitter is equalized, and the FEC calculation according to the burst loss time is performed, thereby increasing the FEC processing load such as packet division and the redundant packets more than necessary.
- the burst loss can be effectively avoided while suppressing the transmission of.
- FEC can be assigned to a specific application, and non-FEC can be selected for other applications.
- Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
- the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
- the communication method or communication apparatus / system of the present invention includes a communication program for causing a computer to execute each procedure, a computer-readable recording medium storing the communication program, and a program that includes the communication program and can be loaded into the internal memory of the computer.
- the product can be provided by a computer such as a server including the program.
- communication device 102 transmission unit 103 reception unit 104 terminal 105 GW (gateway) 106 Communication line (wired, wireless) 201 packet input 202 to transmission unit 102 transmission packet type determination unit 203 packet number measurement unit 204 FEC encoding unit 205 transmission header processing unit 206 packet transmission unit 207 packet output 208 from transmission unit 102 packet input 209 to reception unit 103 Reception packet type determination unit 210 Reception buffer unit 211 Communication quality measurement unit 212 FEC decoding unit 213 Reception header processing unit 214 Feedback data acquisition unit 215 Reception packet output unit 216 Packet output from reception unit 103 401 FEC header 701 User setting unit 801 Feedback information transmission path 901 Form in which communication device 101 is implemented as software 902 User application
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Computer Security & Cryptography (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
本発明は、以上の点に鑑み、誤り訂正符号の符号化ブロックサイズ又は符号化処理時間と符号化ブロックサイズを設定することでパケット損失を効果的に抑制することを目的とする。
通信装置であって、
受信パケットのパケット欠損状況から、第1のバーストロス時間を含む第1の回線品質情報を計算する回線品質計測部と、
受信パケットの誤り訂正ヘッダに含まれる符号化時間T及び符号化ブロックのパラメータである符号化処理量に基づき、受信パケットの欠損を修復する誤り訂正復号化部と、
受信パケットの誤り訂正ヘッダから第2のバーストロス時間TBLを含む第2の回線品質情報を取得するフィードバックデータ取得部と、
前記フィードバックデータ取得部により取得した第2の回線品質情報に基づき可変又は固定に符号化時間Tを設定し、送信データパケットの符号化時間T当たりのパケット数Nを計測するパケット数計測部と、
前記パケット数計測部で計測されたパケット数N、前記パケット数計測部で設定された符号化時間T、及び、前記フィードバックデータ取得部で取得された第2の回線品質情報に基づき符号化処理量を求め、該符号化処理量により計算された誤り訂正符号を含む誤り訂正符号パケットを生成する誤り訂正符号化部と、
前記誤り訂正符号化部による符号化処理における符号化時間T及び符号化処理量と、前記回線品質計測部で計算された第1の回線品質情報とを含む誤り訂正ヘッダを、送信データパケット及び誤り訂正符号パケットにそれぞれ付与することにより送信パケットを生成する送信ヘッダ処理部と
を備えた通信装置が提供される。
通信システムであって、
送信部を有し、送信側の端末とゲートウェイの間に挿入された送信側通信装置と、
受信部を有し、受信側の端末とゲートウェイの間に挿入され受信側通信装置と
を備え、
前記受信部は、
受信パケットのパケット欠損状況から、第1のバーストロス時間を含む第1の回線品質情報を計算する回線品質計測部と、
受信パケットの誤り訂正ヘッダに含まれる符号化時間T及び符号化ブロックのパラメータである符号化処理量に基づき、受信パケットの欠損を修復する誤り訂正復号化部と、
受信パケットの誤り訂正ヘッダから第2のバーストロス時間TBLを含む第2の回線品質情報を取得するフィードバックデータ取得部と、
を有し、
前記送信部は、
前記フィードバックデータ取得部により取得した第2の回線品質情報に基づき可変又は固定に符号化時間Tを設定し、送信データパケットの符号化時間T当たりのパケット数Nを計測するパケット数計測部と、
前記パケット数計測部で計測されたパケット数N、前記パケット数計測部で設定された符号化時間T、及び、前記フィードバックデータ取得部で取得された第2の回線品質情報に基づき符号化処理量を求め、該符号化処理量により計算された誤り訂正符号を含む誤り訂正符号パケットを生成する誤り訂正符号化部と、
前記誤り訂正符号化部による符号化処理における符号化時間T及び符号化処理量と、前記回線品質計測部で計算された第1の回線品質情報とを含む誤り訂正ヘッダを、送信データパケット及び誤り訂正符号パケットにそれぞれ付与することにより送信パケットを生成する送信ヘッダ処理部と
を有する
ことを特徴とする通信システムが提供される。
通信方法であって、
受信パケットのパケット欠損状況から、第1のバーストロス時間を含む第1の回線品質情報を計算し、
受信パケットの誤り訂正ヘッダに含まれる符号化時間T及び符号化ブロックのパラメータである符号化処理量に基づき、受信パケットの欠損を修復し、
受信パケットの誤り訂正ヘッダから第2のバーストロス時間TBLを含む第2の回線品質情報を取得し、
前記取得した第2の回線品質情報に基づき可変又は固定に符号化時間Tを設定し、送信データパケットの符号化時間T当たりのパケット数Nを計測し、
前記計測されたパケット数N、前記パケット数計測部で設定された符号化時間T、及び、前記取得された第2の回線品質情報に基づき符号化処理量を求め、該符号化処理量により計算された誤り訂正符号を含む誤り訂正符号パケットを生成し、
前記符号化処理における符号化時間T及び符号化処理量と、前記計算された第1の回線品質情報とを含む誤り訂正ヘッダを、送信データパケット及び誤り訂正符号パケットにそれぞれ付与することにより送信パケットを生成すること
を含む通信方法が提供される。
本実施例による通信装置は、送信側と受信側それぞれに配置されるものであって、前記通信装置は送信部と受信部によって構成され、FEC符号化、及び復号化機能を持ったソフトウェア、又はハードウェアとして構成される装置である。前記送信部は、特定の通信相手、又は特定のアプリケーションからの通信を判定する送信パケット種別判定部を備え、送信パケット種別判定部は、FECの計算が不要と判断した場合にはパケットをそのまま出力し、FECの計算が必要と判断した場合にはパケット数計測部へとデータを伝送し、前記パケット数計測部は単位時間(符号化時間)当たりのパケット数を計測する。また、前記送信部は、前記符号化時間毎に前記パケット数計測部で計測されたパケット数と受信部によってもたらされるバーストロス時間のフィードバック情報に基づき前方誤り訂正符号を計算するFEC符号化部と、前記FEC符号化部で処理されたパケットにFECヘッダを付与する送信ヘッダ処理部と、前記送信ヘッダ処理部によって構成されたパケットを送出するパケット送信部を具備する。
図1に示す実施例は、端末104-1、104-2が双方向の通信を行う際の構成を示している。端末104とGW(ゲートウェイ)105の間に通信装置101が接続され、それぞれの装置間はイーサネット(登録商標)などの通信線106で接続される。通信線106は有線であっても良いし、無線であっても良い。通信装置101は送信部102と受信部103を備える。例えば通信装置101はPC(パーソナルコンピュータ)で構成されてもよい。また端末104はPCなどの装置であってもよく、PCに接続された複数の機器を制御するために本システムが適用されても良い。
図2に、通信装置101の構成図を示す。通信装置101-1は通信装置101-2と対で構成され、各通信装置101は送信部102と受信部103を備える。端末側(LAN側)から入力された送信パケット入力201-1は送信部102-1に取り込まれ、送信パケット種別判定部202-1へと送られる。送信パケット種別判定部202-1は予め設定された特定の通信相手、又は特定のアプリケーションからの通信であるかどうかを判別し、該当するパケットはパケット数計測部203-1へパケットを伝送し、該当しない場合はパケットをそのまま送信パケット出力207-1として出力する機能を有する。送信パケット種別判定部202-1は、送信パケット入力201-1のヘッダに記載されているIPアドレス、ポート番号、通信プロトコルなどのヘッダ情報と、予め設定されたそれらの情報とを比較し、該当するパケットかどうかの判別を行う。送信パケット種別判定部202-1の判定条件であるIPアドレスやポート番号、通信プロトコルは、予め複数の組み合わせを設定しておくことができる。
例えばIPアドレスとポート番号の設定に従い、FECを計算すべきパケットかどうかの判別を行う場合、通信プロトコルはTCP、UDP、RTPなどにかかわらず、FECの計算対象となり得る。
なお、誤り訂正符号として、本実施例では、一例としてFEC符号を用いる場合を説明するが、これに限らずパリティや他の適宜の誤り訂正符号を用いてもよい。
FEC符号化部204はデータパケットからFEC符号化ブロックを構成し、符号化ブロックごとにFEC符号パケットを生成する。
図3に、例えばFEC符号化方式として、2次元パリティ符号方式を用いた例を示す。図3(a)において、データパケットからD行×L列のFEC符号化ブロックを構成し、符号化ブロックの各行、各列の排他的論理和(XOR)を計算することで、縦、横それぞれの方向のFEC符号化パケットを生成する。データパケットとFEC符号化パケットはWANを介して伝送される。例えばP11、P12、・・・、P1L、P1F、P21、・・・、P2L、P2F、・・・、PF1、PF2、・・・PFLという順序で、各行ごとにパケット伝送される。このとき、図3(b)のようにL+1個の連続したパケットロス(バーストロス)が生じたとする。伝送路の途中でパケットが消失しても、受信したFEC符号化ブロックの各行、列のXORを再計算することで、図3(c)のように受信側単独の演算でロスパケットを復旧することができる。このように2次元パリティ符号では、各々の行、列にロスが1個であれば、パリティ符号から元のデータを復元することができるため、最大L+3個のパケットが連続して消失しても、パリティによる復元が可能である。ここでは簡単化のため、バーストロス耐性をFEC符号化ブロックの1行分(L+1個)であると定めると、FEC符号化ブロックの1行分のパケット数が、回線で生じるバーストロス数よりも多ければ、ロスしたパケットを復元できる。ここで、バーストロスが生じる原因はスイッチングネットワーク中のバッファあふれ等が主な原因であり、データの伝送レートに比例してバーストロスの個数が変化することとなる。このためバーストロスはパケットロスの数ではなく、パケットロスが生じた時間で規定する必要がある。つまりFEC符号化ブロックにおいては、1行分を送信する時間が、バーストロス時間TBLよりも長ければ良いということを意味する。バーストロス時間TBLの算出方法については回線品質計測部211の説明にて詳述する。
パケット数計測部203はフィードバックデータ取得部214からのフィードバックデータとして通信回線のバーストロス時間TBLなどの回線品質情報を取得し、十分なバーストロス耐性を得つつFECの計算遅延を短くするようにFEC符号化時間Tを変更できる。パケット数計測部203は符号化時間TをTBLの少なくとも2倍以上に設定するよう、符号化処理時間Tを変更しても良い。
T=n×TBL (式3)
(但しnは2以上の整数で、任意の設定値)
となるよう、予め設定された時間ごとに変更することができる。なお、Tをダイナミックに設定するタイミングは、例えば、後述のFECヘッダを参照して新しいFECIDのパケット毎としてもよいし、予め定めた適宜の時間毎等としてもよい。
FEC符号化部204で符号化ブロックを構成していたデータパケット、及びFEC符号化部204で生成されたFEC符号パケットは送信ヘッダ処理部205へと送られる。
図5に、FECヘッダ401の構成例を示す。これは最小構成の例を示したものであり、FECヘッダとして他の情報を含んでも良い。図5において、ヘッダ識別子はFECヘッダの認識に利用する。データフラグはFECヘッダに続くデータがデータパケットであるのか、FEC符号パケットであるのかを識別するために用いられる。また拡張はフィードバックデータの有無を表す。符号化時間はパケット数計測部203のパケット計測時間がどれだけであったかを示すもので、前述の時間Tに相当する。FECヘッダ401の符号化時間には、時間情報を直接記載してもよいし、予め定められた複数の時間に対応する符号を記載する方法でも良い。FECIDは、FEC符合化部204において、符号化時間Tごとにインクリメントされる値であり、どの時間、又はどのFEC符号化ブロックで処理されたパケットであるかを示す。符号化処理量は符号化ブロック生成時のパラメータを示すもので、例えば2次元パリティ符号の場合はD、Lの情報が記載される。データ位置は、当該パケットが符号化ブロックにおいて何番目のデータかを示す情報であり、逆順パケットの順序補正等にも利用できる。フィードバックデータは受信部で計測されたバーストロス時間、パケット誤り率などの回線品質情報、及び/又は他の情報を送り返すために用いる。
受信バッファ部210は新しいFECIDを受信するとパケット受信用の記憶領域を確保し、FECヘッダに記載された符号化時間Tに、ジッタ補償時間Tjを加えたT+Tjの時間だけ受信を続ける。ここでTjは予め設定された値である。受信バッファ部210はFEC符号化ブロックのすべてのパケットが受信されるか、新しいFECIDのパケットを受け取ってからT+Tjだけの時間が経過し、タイムアウトが発生した段階で、回線品質計測部211、及びFEC復号化部212に処理開始の合図を伝送する。
回線品質計測部211は、受信バッファ部210から処理開始の合図を受けると、処理を開始する。パケット送信部206は符号化時間Tの間にFEC符号化ブロックで生成されたパケットを均等な間隔で送り出すことから、受信側の通信装置101の回線品質計測部211は受信バッファ210、及び受信したパケットのFECヘッダから取得した情報を参照して、符号化されたパケットのうち、何パケットがロスしたか、バーストロス数がいくつかを計測し、最大バーストロス時間又はバーストロス時間、平均パケット誤り率などの回線状態の情報(回線品質情報)を算出することができる。
と算出することができる。なお、回線品質計測部211は、予め定めた時間におけるTBLの最大値を最大バーストロス時間として求めることができ、これを回線品質情報として用いてもよい。算出した回線品質情報は送信ヘッダ処理部205へ伝送される。なお、送信ヘッダ処理部205に送られた回線品質情報は、相手端末側の通信装置に対するフィードバックデータとして送信ヘッダに格納される。
回線品質計測部211で計測された回線品質情報は送信ヘッダ内にフィードバックデータとして格納される。フィードバックデータ取得部214が、相手側の通信装置から受信したFECヘッダからバーストロス時間、平均パケットロス率などの回線品質情報を含むフィードバックデータを取り出すことで、上りと下りの回線品質が異なる場合でも適切に符号化、復号化処理を行うことができる。
FEC復号化部212はFECヘッダに記載された符号化時間T、符号化処理量(D、L)、データ位置などの情報を元に受信パケットに生じているパケットロスを復元する。
FEC復号化部212は、受信バッファ部210から処理開始の合図を受けると、復号化処理及びパケットロスを修復する処理を開始する。
受信ヘッダ処理部213は、FECヘッダのデータフラグに基づき、FEC符号パケットであればパケットを廃棄し、データパケットであればヘッダ処理を行う。
本発明によれば、単位時間当たりのパケット数が少ない場合でも、FECの符号化ブロックサイズを適応的に変更するとともに、パケットを単位時間の間に均等に送信することで、データパケットの分割を行うことなくバーストロスによるパケット損失を効果的に抑制することができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれている。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
102 送信部
103 受信部
104 端末
105 GW(ゲートウェイ)
106 通信線(有線、無線)
201 送信部102へのパケット入力
202 送信パケット種別判定部
203 パケット数計測部
204 FEC符号化部
205 送信ヘッダ処理部
206 パケット送信部
207 送信部102からのパケット出力
208 受信部103へのパケット入力
209 受信パケット種別判定部
210 受信バッファ部
211 通信品質計測部
212 FEC復号化部
213 受信ヘッダ処理部
214 フィードバックデータ取得部
215 受信パケット出力部
216 受信部103からのパケット出力
401 FECヘッダ
701 ユーザ設定部
801 フィードバック情報の伝達経路
901 通信装置101をソフトウェアとして実装した形態
902 ユーザアプリケーション
Claims (16)
- 通信装置であって、
受信パケットのパケット欠損状況から、第1のバーストロス時間を含む第1の回線品質情報を計算する回線品質計測部と、
受信パケットの誤り訂正ヘッダに含まれる符号化時間T及び符号化ブロックのパラメータである符号化処理量に基づき、受信パケットの欠損を修復する誤り訂正復号化部と、
受信パケットの誤り訂正ヘッダから第2のバーストロス時間TBLを含む第2の回線品質情報を取得するフィードバックデータ取得部と、
前記フィードバックデータ取得部により取得した第2の回線品質情報に基づき可変又は固定に符号化時間Tを設定し、送信データパケットの符号化時間T当たりのパケット数Nを計測するパケット数計測部と、
前記パケット数計測部で計測されたパケット数N、前記パケット数計測部で設定された符号化時間T、及び、前記フィードバックデータ取得部で取得された第2の回線品質情報に基づき符号化処理量を求め、該符号化処理量により計算された誤り訂正符号を含む誤り訂正符号パケットを生成する誤り訂正符号化部と、
前記誤り訂正符号化部による符号化処理における符号化時間T及び符号化処理量と、前記回線品質計測部で計算された第1の回線品質情報とを含む誤り訂正ヘッダを、送信データパケット及び誤り訂正符号パケットにそれぞれ付与することにより送信パケットを生成する送信ヘッダ処理部と
を備えた通信装置。 - 請求項1に記載の通信装置であって、
前記送信ヘッダ処理部によって生成された送信パケットを送出するパケット送信部を
さらに備え、
前記パケット送信部は、誤り訂正符号化処理された送信パケットを、前記符号化時間T毎に、パケットの送信間隔が均等になるように送信することを特徴とする通信装置。 - 請求項1に記載の通信装置において、
前記誤り訂正符号化部は、
前記フィードバックデータ取得部が第2の回線品質情報として取得した第2のバーストロス時間TBLと、
前記パケット数計測部が計測したパケット数Nと、
予め設定された前記符号化時間Tと、
を元に符号化処理を行うことを特徴とする通信装置。 - 請求項4に記載の通信装置において、
前記誤り訂正符号化部は、
前記フィードバックデータ取得部で第2の回線品質情報として取得された平均ロス率と、予め設定されたロス率の閾値とを比較し、平均ロス率が閾値を上回る場合は前記式1で求めた行サイズDを1減少させて前記符号化処理量を算出することを特徴とする通信装置。 - 請求項5に記載の通信装置において、
前記誤り訂正符号化部は、
前記式1で求めた行サイズDを1減少させた場合に、前記式2により列サイズLを更新して前記符号化処理量を算出することを特徴とする通信装置。 - 請求項1に記載の通信装置において、
前記パケット数計測部は、
前記フィードバックデータ取得部から、回線品質情報として第2のバーストロス時間TBLを取得し、
符号化時間Tを、
T=n×TBL (式3)
(但し、nは、2であること、又は、3以上の整数で任意の設定値であること)
となるよう、符号化時間T毎に設定される誤り訂正IDが新しい値の受信パケットを受信した時間ごと又は他の予め設定された時間ごとに変更することを特徴とする通信装置。 - 請求項1に記載の通信装置において、
前記パケット数計測部の符号化時間T、第2のバーストロス時間TBLを予め固定値に設定する設定部
をさらに備え、
前記パケット数計測部及び前記誤り訂正符号化部及び前記送信ヘッダ処理部及び前記設定部を有する送信部と、前記回線品質計測部及び前記誤り訂正復号化部及び前記フィードバックデータ取得部を有する受信部とが、それぞれ独立して処理を行うことを特徴とする通信装置。 - 請求項1に記載の通信装置において、
符号化時間T毎に設定される誤り訂正IDが新しい値の受信パケットを受信した際、、誤り訂正ヘッダに記載された符号化時間Tに、ジッタ補償時間Tjを加えたT+Tjの時間、受信パケットを受信する受信バッファ部
をさらに備え、
前記誤り訂正復号化部は、T+Tjの時間後に、受信パケットに生じたパケットの欠損を修復して復号する機能を有することを特徴とする通信装置。 - 請求項1に記載の通信装置において、
前記パケット数計測部は、符号化時間Tを、予め測定された第2のバーストロス時間TBLの最大値又は平均値又は他の統計値に対して、2倍に設定すること、又は、3以上の予め定められた整数n倍に設定することを特徴とする通信装置。 - 請求項1に記載の通信装置において、
送信側の端末からの予め定められた特定の送信パケットに対しては、送信パケットを誤り訂正符号化を行うために前記パケット数計測部へ出力し、その他の送信パケットに対しては送信パケットをそのまま出力するために、送信パケットを分岐する送信パケット種別判定部と、
誤り訂正符号化が行われた受信パケットを受信した際は受信パケットに対して誤り訂正の復号化を行い、その他の受信パケットを受信した際は受信パケットをそのまま出力するために、受信パケットを分岐する受信パケット種別判定部と
をさらに備えたことを特徴とする通信装置。 - 請求項1に記載の通信装置において、
送信側では、前記送信ヘッダ処理部が、送信データパケットをUDPヘッダに包んでUDPパケットとして送信し、
受信側では、前記UDPパケットを受け取った、UDPパケットから受信データパケットを抽出する受信ヘッダ処理部をさらに備えた
ことを特徴とする通信装置。 - 請求項12に記載の通信装置において、
前記送信ヘッダ処理部は、送信するデータパケットのヘッダの送信元アドレス、宛先アドレス、送信元ポート、宛先ポートをコピーしてUDPヘッダを生成することを特徴とする通信装置。 - 請求項12に記載の通信装置において、
前記受信ヘッダ処理部は、前記誤り訂正復号化部によって復号化したUDPパケットから抽出した受信データパケットに、前記UDPパケットのヘッダの情報から送信元アドレス、宛先アドレス、送信先ポート、宛先ポートをコピーして受信パケットを作成することを特徴とする通信装置。 - 通信システムであって、
送信部を有し、送信側の端末とゲートウェイの間に挿入された送信側通信装置と、
受信部を有し、受信側の端末とゲートウェイの間に挿入され受信側通信装置と
を備え、
前記受信部は、
受信パケットのパケット欠損状況から、第1のバーストロス時間を含む第1の回線品質情報を計算する回線品質計測部と、
受信パケットの誤り訂正ヘッダに含まれる符号化時間T及び符号化ブロックのパラメータである符号化処理量に基づき、受信パケットの欠損を修復する誤り訂正復号化部と、
受信パケットの誤り訂正ヘッダから第2のバーストロス時間TBLを含む第2の回線品質情報を取得するフィードバックデータ取得部と、
を有し、
前記送信部は、
前記フィードバックデータ取得部により取得した第2の回線品質情報に基づき可変又は固定に符号化時間Tを設定し、送信データパケットの符号化時間T当たりのパケット数Nを計測するパケット数計測部と、
前記パケット数計測部で計測されたパケット数N、前記パケット数計測部で設定された符号化時間T、及び、前記フィードバックデータ取得部で取得された第2の回線品質情報に基づき符号化処理量を求め、該符号化処理量により計算された誤り訂正符号を含む誤り訂正符号パケットを生成する誤り訂正符号化部と、
前記誤り訂正符号化部による符号化処理における符号化時間T及び符号化処理量と、前記回線品質計測部で計算された第1の回線品質情報とを含む誤り訂正ヘッダを、送信データパケット及び誤り訂正符号パケットにそれぞれ付与することにより送信パケットを生成する送信ヘッダ処理部と
を有する
ことを特徴とする通信システム。 - 通信方法であって、
受信パケットのパケット欠損状況から、第1のバーストロス時間を含む第1の回線品質情報を計算し、
受信パケットの誤り訂正ヘッダに含まれる符号化時間T及び符号化ブロックのパラメータである符号化処理量に基づき、受信パケットの欠損を修復し、
受信パケットの誤り訂正ヘッダから第2のバーストロス時間TBLを含む第2の回線品質情報を取得し、
前記取得した第2の回線品質情報に基づき可変又は固定に符号化時間Tを設定し、送信データパケットの符号化時間T当たりのパケット数Nを計測し、
前記計測されたパケット数N、前記パケット数計測部で設定された符号化時間T、及び、前記取得された第2の回線品質情報に基づき符号化処理量を求め、該符号化処理量により計算された誤り訂正符号を含む誤り訂正符号パケットを生成し、
前記符号化処理における符号化時間T及び符号化処理量と、前記計算された第1の回線品質情報とを含む誤り訂正ヘッダを、送信データパケット及び誤り訂正符号パケットにそれぞれ付与することにより送信パケットを生成すること
を含む通信方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/080862 WO2015072005A1 (ja) | 2013-11-15 | 2013-11-15 | 通信装置及びシステム及び方法 |
JP2015547345A JP6294346B2 (ja) | 2013-11-15 | 2013-11-15 | 通信装置及びシステム及び方法 |
US15/035,569 US10320520B2 (en) | 2013-11-15 | 2013-11-15 | Communication device, system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/080862 WO2015072005A1 (ja) | 2013-11-15 | 2013-11-15 | 通信装置及びシステム及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015072005A1 true WO2015072005A1 (ja) | 2015-05-21 |
Family
ID=53056968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080862 WO2015072005A1 (ja) | 2013-11-15 | 2013-11-15 | 通信装置及びシステム及び方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10320520B2 (ja) |
JP (1) | JP6294346B2 (ja) |
WO (1) | WO2015072005A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3352400A4 (en) * | 2015-09-17 | 2018-09-12 | Nec Corporation | Terminal device, control method therefor, and recording medium in which control program for terminal device is stored |
US12081347B2 (en) | 2019-12-05 | 2024-09-03 | Sony Group Corporation | Reception terminal and method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10581554B2 (en) | 2017-01-13 | 2020-03-03 | Dolby Laboratories Licensing Corporation | Systems and methods to generate copies of data for transmission over multiple communication channels |
US10367682B2 (en) * | 2017-06-30 | 2019-07-30 | Bank Of American Corporation | Node failure recovery tool |
US10616088B2 (en) * | 2017-07-13 | 2020-04-07 | Avago Technologies International Sales Pte. Limited | Apparatus and method for measurements at intermediate nodes in end-to-end performance test |
JP6952726B2 (ja) * | 2019-01-07 | 2021-10-20 | 株式会社東芝 | 通信装置、通信方法、通信プログラム、および通信システム |
JP7145117B2 (ja) * | 2019-04-05 | 2022-09-30 | ルネサスエレクトロニクス株式会社 | 通信装置 |
WO2020245883A1 (ja) * | 2019-06-03 | 2020-12-10 | 日本電信電話株式会社 | 信号転送装置及び信号転送方法 |
KR20220033055A (ko) * | 2019-09-10 | 2022-03-15 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 패킷 처리 방법 및 장치 그리고 칩 |
CN112564855A (zh) * | 2019-09-10 | 2021-03-26 | 华为技术有限公司 | 报文处理方法、装置以及芯片 |
CN114004320B (zh) * | 2021-10-15 | 2023-11-28 | 库卡机器人(广东)有限公司 | 图形码的生成方法和装置、识别方法和装置、电子设备 |
CN114401208B (zh) * | 2021-12-10 | 2022-12-06 | 北京百度网讯科技有限公司 | 数据传输方法、装置、电子设备和存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006157525A (ja) * | 2004-11-30 | 2006-06-15 | Nippon Telegr & Teleph Corp <Ntt> | 符号誤り訂正を行うデータ送信方法、受信方法、装置、システム及びプログラム |
JP2007074152A (ja) * | 2005-09-05 | 2007-03-22 | Nippon Telegr & Teleph Corp <Ntt> | 品質測定方法及び装置及び符号誤り訂正方法及びシステム及びプログラム |
JP2007324876A (ja) * | 2006-05-31 | 2007-12-13 | Ntt Communications Kk | データ送信装置、データ受信装置、データ送信方法、データ受信方法、及びプログラム |
JP2008510380A (ja) * | 2004-08-12 | 2008-04-03 | インターデイジタル テクノロジー コーポレーション | 無線通信媒体へのアクセスを制御するための方法およびシステム |
JP2009060513A (ja) * | 2007-09-03 | 2009-03-19 | Toshiba Corp | Fec送信処理装置、ならびにfec送信処理のための方法およびプログラム |
JP2010183439A (ja) * | 2009-02-06 | 2010-08-19 | Canon Inc | 送信装置、及び、方法、プログラム |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6490705B1 (en) * | 1998-10-22 | 2002-12-03 | Lucent Technologies Inc. | Method and apparatus for receiving MPEG video over the internet |
US6804237B1 (en) * | 1999-06-23 | 2004-10-12 | Nortel Networks Limited | Method, devices and signals for multiplexing payload data for transport in a data network |
US8898340B2 (en) * | 2000-04-17 | 2014-11-25 | Circadence Corporation | Dynamic network link acceleration for network including wireless communication devices |
US6970935B1 (en) * | 2000-11-01 | 2005-11-29 | International Business Machines Corporation | Conversational networking via transport, coding and control conversational protocols |
US7240350B1 (en) * | 2002-01-07 | 2007-07-03 | Slt Logic, Llc | System and method for providing communications to processes |
WO2003085838A1 (fr) * | 2002-04-05 | 2003-10-16 | Sony Corporation | Dispositif et procede d'entrelacement, dispositif et procede de desentrelacement |
JP4040426B2 (ja) * | 2002-10-18 | 2008-01-30 | 富士通株式会社 | データ送信装置 |
JP2004171206A (ja) * | 2002-11-19 | 2004-06-17 | Hitachi Ltd | ストレージシステム |
JP2004254127A (ja) * | 2003-02-20 | 2004-09-09 | Hamamatsu Photonics Kk | データ伝送方法、データ伝送プログラム及びデータ伝送装置 |
JP4255951B2 (ja) * | 2003-09-09 | 2009-04-22 | 株式会社エヌ・ティ・ティ・ドコモ | 無線多重伝送システムにおける信号伝送方法及び送信機 |
US8064341B2 (en) * | 2003-10-10 | 2011-11-22 | Nortel Networks Limited | Temporal-spatial burst switching |
TWI235911B (en) * | 2004-02-20 | 2005-07-11 | Mediatek Inc | Error correction code generator |
US20060056403A1 (en) * | 2004-09-13 | 2006-03-16 | Pleasant Daniel L | System and method for robust communication via a non-reliable protocol |
US7676735B2 (en) * | 2005-06-10 | 2010-03-09 | Digital Fountain Inc. | Forward error-correcting (FEC) coding and streaming |
US7990887B2 (en) * | 2006-02-22 | 2011-08-02 | Cisco Technology, Inc. | Sampling test of network performance |
EP1871065A1 (en) * | 2006-06-19 | 2007-12-26 | Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO | Methods, arrangement and systems for controlling access to a network |
JP4356742B2 (ja) | 2006-12-25 | 2009-11-04 | ソニー株式会社 | データ通信システム、データ送信装置およびデータ送信方法 |
US8074054B1 (en) * | 2007-12-12 | 2011-12-06 | Tellabs San Jose, Inc. | Processing system having multiple engines connected in a daisy chain configuration |
US8468572B2 (en) * | 2008-03-26 | 2013-06-18 | Cisco Technology, Inc. | Distributing digital video content to multiple end-user devices |
US20100023842A1 (en) * | 2008-07-25 | 2010-01-28 | Nortel Networks Limited | Multisegment loss protection |
JP5598155B2 (ja) * | 2010-08-12 | 2014-10-01 | ソニー株式会社 | 情報処理装置および方法、並びに送受信システム |
-
2013
- 2013-11-15 WO PCT/JP2013/080862 patent/WO2015072005A1/ja active Application Filing
- 2013-11-15 US US15/035,569 patent/US10320520B2/en active Active
- 2013-11-15 JP JP2015547345A patent/JP6294346B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008510380A (ja) * | 2004-08-12 | 2008-04-03 | インターデイジタル テクノロジー コーポレーション | 無線通信媒体へのアクセスを制御するための方法およびシステム |
JP2006157525A (ja) * | 2004-11-30 | 2006-06-15 | Nippon Telegr & Teleph Corp <Ntt> | 符号誤り訂正を行うデータ送信方法、受信方法、装置、システム及びプログラム |
JP2007074152A (ja) * | 2005-09-05 | 2007-03-22 | Nippon Telegr & Teleph Corp <Ntt> | 品質測定方法及び装置及び符号誤り訂正方法及びシステム及びプログラム |
JP2007324876A (ja) * | 2006-05-31 | 2007-12-13 | Ntt Communications Kk | データ送信装置、データ受信装置、データ送信方法、データ受信方法、及びプログラム |
JP2009060513A (ja) * | 2007-09-03 | 2009-03-19 | Toshiba Corp | Fec送信処理装置、ならびにfec送信処理のための方法およびプログラム |
JP2010183439A (ja) * | 2009-02-06 | 2010-08-19 | Canon Inc | 送信装置、及び、方法、プログラム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3352400A4 (en) * | 2015-09-17 | 2018-09-12 | Nec Corporation | Terminal device, control method therefor, and recording medium in which control program for terminal device is stored |
US10749628B2 (en) | 2015-09-17 | 2020-08-18 | Nec Corporation | Terminal apparatus, control method therefor, and recording medium in which control program for terminal apparatus is stored |
US12081347B2 (en) | 2019-12-05 | 2024-09-03 | Sony Group Corporation | Reception terminal and method |
Also Published As
Publication number | Publication date |
---|---|
JP6294346B2 (ja) | 2018-03-14 |
JPWO2015072005A1 (ja) | 2017-03-09 |
US10320520B2 (en) | 2019-06-11 |
US20160294508A1 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6294346B2 (ja) | 通信装置及びシステム及び方法 | |
JP6412160B2 (ja) | 通信装置、通信装置システム及び通信方法 | |
JP4002183B2 (ja) | パケット・チャネルを介するマルチメディア通信のための方法 | |
KR100680671B1 (ko) | 에러 정정용 데이터의 생성 방법 및 생성 장치와 생성 프로그램을 저장한 컴퓨터 판독가능한 기록 매체 | |
US9781488B2 (en) | Controlled adaptive rate switching system and method for media streaming over IP networks | |
US8004963B2 (en) | Apparatus and method for packet redundancy and recovery | |
JP2020502832A (ja) | データストリーミングの前方誤り訂正 | |
JP2016501464A (ja) | プロキシサーバを用いて通信ネットワークにおいてtcp及び他のネットワークプロトコルのパフォーマンスを向上させる方法及び装置 | |
KR20090119898A (ko) | 비디오 전송 중 패킷 손실의 영향 줄이기 | |
US11190455B2 (en) | Decoding of a media stream at a packet receiver | |
KR20130039866A (ko) | 통신 시스템에서 순방향 에러 정정 패킷을 송수신하는 방법 및 장치 | |
Toemoeskoezi et al. | On the delay characteristics for point-to-point links using random linear network coding with on-the-fly coding capabilities | |
US10003434B2 (en) | Efficient error correction that aggregates different media into encoded container packets | |
US10833710B2 (en) | Bandwidth efficient FEC scheme supporting uneven levels of protection | |
JP2014099708A (ja) | 送信装置、受信装置、送信方法、及び受信方法 | |
KR101953580B1 (ko) | 영상회의 시스템에서 데이터 송수신 장치 및 방법 | |
Toemoeskoezi et al. | On the packet delay characteristics for serially-connected links using random linear network coding with and without recoding | |
WO2018109500A1 (en) | Low delay, error resilient video transport protocol over public ip transit | |
JP5523163B2 (ja) | 送信装置、送信方法、プログラム | |
JP2014011670A (ja) | 送信装置、受信装置、送信方法、及び受信方法 | |
KR101999105B1 (ko) | 실시간 비디오 스트리밍에서 비디오 지연시간을 최소로 하면서 안정적으로 비디오 데이터를 송수신하는 방법 | |
JP6614145B2 (ja) | 受信装置、受信方法およびコンピュータプログラム | |
JP2011211617A (ja) | 動画像伝送装置、動画像伝送システム、動画像伝送方法およびプログラム | |
Gorius et al. | Predictably reliable real-time transport over large bandwidth-delay product networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13897640 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015547345 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15035569 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13897640 Country of ref document: EP Kind code of ref document: A1 |