WO2015070719A1 - 照明设备 - Google Patents

照明设备 Download PDF

Info

Publication number
WO2015070719A1
WO2015070719A1 PCT/CN2014/090408 CN2014090408W WO2015070719A1 WO 2015070719 A1 WO2015070719 A1 WO 2015070719A1 CN 2014090408 W CN2014090408 W CN 2014090408W WO 2015070719 A1 WO2015070719 A1 WO 2015070719A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
emitting diode
filter
green
Prior art date
Application number
PCT/CN2014/090408
Other languages
English (en)
French (fr)
Inventor
李屹
徐应荣
张权
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2015070719A1 publication Critical patent/WO2015070719A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors

Definitions

  • the invention relates to a lighting device, in particular to a lighting device for a stage.
  • LED Light source is widely used in various industries due to its advantages of energy saving, environmental protection, brightness and color temperature control. It has a tendency to replace traditional light sources. There is reason to believe that in the near future, with light-emitting diodes (LEDs) With reduced cost and improved light efficiency, semiconductor light-emitting diode (LED) sources are likely to completely replace traditional light sources.
  • High-power three primary colors (red (R), green (G) and blue (B)) LEDs have been proposed for stage lighting computer moving head lights.
  • Light source (as shown in Figure 1).
  • all synthetic colors are controlled by red (R), green (G) and blue (B) three primary color light-emitting diodes (LEDs).
  • the drive current is used to achieve the color ratio.
  • This scheme uses three primary color LEDs to directly emit light because the LED's luminescence spectrum is narrow spectrum, that is, its spectral width is small (for example, the full width at half maximum of the luminescence spectrum of the green LED is The color of the monochromatic light of the three primary colors is high, which satisfies the requirements for the vividness of the stage performance.
  • an array of light emitting diodes respectively emitting red, blue and green light, 2, 3, the array comprises a light-emitting diode 6 .
  • the light-emitting line is concentrated on the pattern sheet 9 via the light combining device 5, the light-sharing device 7, and the lens 8.
  • the applicant's research found that the main reason is that the luminous efficiency of the green light chip is far lower than that of the blue light chip and the red light chip, and at the same time, when synthesizing white light, the green light The brightness component is also insufficient, so that the overall brightness output of the light source is not high, especially the brightness output of white light is not high.
  • the problem to be solved by the present invention is mainly to increase the brightness of the green light of the light source, thereby improving the efficiency of the entire light source.
  • the present invention provides a lighting device comprising: a first light source for emitting red light and blue light; and a second light source comprising a first light emitting diode chip and a fluorescent substance disposed on the first light emitting diode chip, Light emitted by the first light emitting diode chip can excite the fluorescent substance such that the second light source emits green or yellow light; a light combining device for emitting red light and blue light from the first light source and Green or yellow light from the second source is combined and output.
  • a second light emitting diode chip is further included, and the light emitted by the second light emitting diode chip is guided to the fluorescent material of the second light source and excites the fluorescent substance to emit light.
  • the secondary excitation of the fluorescent substance is realized, and the luminous efficiency of the second light source (ie, the green light source) is greatly improved, which compensates for the prior art. Insufficient.
  • the light emitted by the first LED chip and the second LED chip is blue light
  • the fluorescent substance is a yellow light and/or a green light fluorescent substance.
  • the fluorescent material is disposed on a top surface of the first LED chip facing the light combining device, and a bottom surface of the first LED chip remote from the light combining device is capable of reflecting light.
  • the light emitted by the fluorescent substance excited by the light from the second light emitting diode chip is reflected by the bottom surface of the first light emitting diode chip onto the light combining device. In this way, the light emitted by the fluorescent substance is ingeniously guided to the light combining device.
  • a plurality of the first light emitting diode chips are packaged onto a second substrate, and the plurality of the second light emitting diode chips are packaged onto a first substrate, the first light source comprising a package onto the third substrate A plurality of red light emitting diode chips and a plurality of blue light emitting diode chips.
  • the first substrate, the second substrate, and the third substrate form three sides of a rectangle, and the first substrate and the third substrate are arranged in parallel, and the light combining device is A plate shape and constituting an angle bisector of the second substrate and the third substrate.
  • the light combining device includes a filter, and at least one side of the filter is plated with a filter film that transmits green light and reflects red light and blue light.
  • the light combining device includes a filter plated with a first filter film that reflects blue light and transmits red and green light on a first surface facing the second light source.
  • the filter is plated with a second filter film that reflects red light and transmits blue light and green light on the second surface facing the first light source.
  • the first filter film has a cutoff wavelength of 470 nm to 510 nm. Within the range of the second filter film, the cutoff wavelength is in the range of 550 nm to 620 nm.
  • the light combining device includes at least two filters, and a surface of the filter closest to the second light source facing the second light source is plated with reflected blue light and transmits red light and green light.
  • the light combining device includes a filter, and at least one surface of the filter is plated with an anti-reflection film.
  • the antireflection film can effectively increase the transmittance of the light combining device.
  • the number ratio of the red light emitting diode chip and the blue light emitting diode chip is at 1/4 to 3/4 range. Of course, this can be adjusted according to the color of light required.
  • the first substrate, the second substrate, and the third substrate form three sides of a rectangle, and the first substrate and the second substrate are parallel, and the light combining device is a plate. Forming and forming an angle bisector of the second substrate and the third substrate, the light combining device is capable of reflecting green light and transmitting red light and blue light. The optical effect of this configuration is the same as that described above, indicating that the device is flexible in construction.
  • a light collecting means is arranged on the second light emitting diode chip for quantifying the light of the second light emitting diode chip up to a set divergence angle. This can improve the utilization of light energy and reduce dissipation.
  • a homogenizing means for homogenizing light from the light combining means, a lens for focusing the homogenized light, and a pattern sheet, the lens focusing the light to the On the pattern piece.
  • a downstream filter that transmits green light in front of the optical path of the pattern sheet and reflects red light and blue light in accordance with the optical path direction is further included for ensuring saturation of the green light.
  • the secondary excitation of the fluorescent substance is achieved by the arrangement of the second LED chip and the arrangement of the optical device and the optical path, and the second light source (ie, green light is greatly improved)
  • the second light source ie, green light is greatly improved
  • the luminous efficiency of the light source compensates for the deficiencies in the prior art.
  • the illumination device has the following advantages: first, the overall brightness of the system can be significantly improved due to the increase in the brightness of the green light; and second, since the green light is a broad spectrum, when white light is synthesized from the three primary colors, it can be improved.
  • the connectivity of the spectrum improves the color rendering of the light source.
  • the filter can be used to obtain high-saturation green light without affecting The color mixing of the RGB system; fourth, according to actual needs, a high color gamut system with wide color gamut, high saturation green light and high brightness white light can be obtained.
  • Figure 1 shows a prior art lighting device
  • Figure 2 shows a lighting device according to the invention
  • Figure 3 shows a second light source of a lighting device according to the invention
  • Figure 4 A transmittance curve diagram of a light combining device of a lighting apparatus according to the present invention in the first embodiment, wherein the horizontal axis is the wavelength of the light and the vertical axis is the transmittance;
  • Figure 5 is a view showing the structure of a light combining device of a lighting device according to the present invention in a second embodiment
  • FIG. 6 The transmittance curve of the first filter film of the light combining device of the illumination device according to the present invention in the second embodiment is shown, wherein the horizontal axis is the wavelength of the light and the vertical axis is the transmittance;
  • Figure 7 A transmittance curve of a second filter film of the light combining device of the illumination device according to the present invention in the second embodiment, wherein the horizontal axis is the wavelength of the light and the vertical axis is the transmittance;
  • Figure 8 is a view showing the structure of a light combining device of a lighting device according to the present invention in a third embodiment
  • Figure 9 shows the color gamut of a lighting device in accordance with the present invention.
  • Figure 10 shows a spectral comparison diagram of a lighting device according to the present invention.
  • Figure 11 shows a white light spectrum comparison of a lighting device in accordance with the present invention.
  • FIG. 2 shows a lighting device 50 in accordance with the present invention.
  • Lighting device 50 includes a first light source 100 For emitting red and blue light.
  • the illumination device 50 also includes a second light source 200.
  • Figure 3 shows in detail the structure of the second light source 200.
  • the second light source 200 includes a first light emitting diode chip 12 and a fluorescent substance 13 disposed on the first light emitting diode chip 12, and the light emitted by the first light emitting diode chip 12
  • the fluorescent substance 13 can be excited to enable the second light source 200 to emit green light. This excitation can be called the first excitation.
  • the illumination of the first LED chip 12 can be driven by current.
  • the first LED chip 12 has a corresponding light collecting device 30 for collecting the first LED chip 12
  • the light emitted by the fluorescent substance 13 is excited and collimated into light having a certain divergence angle.
  • the illumination device 50 further includes a light combining device 11 for receiving the first light source 100.
  • the red and blue light and the green light from the second light source 200 are combined and output.
  • the illumination device 50 further includes a second LED chip 20.
  • image 3 It is shown how the second LED chip 20 cooperates with the second light source 200. Referring to Figure 3, the light 15 emitted by the second LED chip 20 passes through an optical system (e.g., the light combining device 11 ) is guided to the fluorescent substance 13 of the second light source 200 and excites the fluorescent substance 13 . This excitation can be called the second excitation.
  • a light collecting means is arranged on the second light emitting diode chip 20 for aligning the light of the second light emitting diode chip 20 until Within the set divergence angle. This can improve energy efficiency and reduce light dissipation.
  • the collimated light passes through the reflection of the light combining device 11 and passes through the first light emitting diode chip 12
  • the corresponding light-receiving means are focused onto the phosphor 13 on the respective first light-emitting diode chip 12.
  • the arrows in Figure 3 show the path of light propagation.
  • the first light emitting diode chip 12 faces the light combining device 11
  • a phosphor 13 is disposed on the top surface thereof, and the bottom surface of the first LED chip 12 remote from the light combining device 11 is capable of reflecting light (for example, by coating a reflective film).
  • From the second LED chip The light of 20 is excited by the fluorescent material 13 (i.e., the second excitation) reaches the bottom surface of the first LED chip 12 and is reflected to the light combining device 11 (Fig. 3 Not shown).
  • the second excitation of the fluorescent substance 13 caused by the second light-emitting diode chip 20 enhances the fluorescent substance 13 The luminous efficiency, thereby increasing the luminous efficiency of the second light source 200 and the intensity of the green light.
  • the first light emitting diode chip 12 The light emitted by the second LED chip 20 is blue light, and the fluorescent material of the second light source 200 13 It is a fluorescent substance which is excited to generate yellow light or green light, such as a yellow fluorescent powder or a green fluorescent powder, and no fluorescent substance is provided on the surface of the second light emitting diode chip 20.
  • Figure 2 also schematically shows the geometry of the illumination device 50.
  • the first LED chip 12 Packaged onto the second substrate 22 the second LED chip 20 is packaged onto the first substrate 23, and the first source 100 includes a package to the third substrate 24 Red light emitting diode chip and blue light emitting diode chip.
  • the substrate on which the LED chip is packaged may be a ceramic substrate, or the LED chip may be directly packaged on a metal-based printed circuit board (MCPCB) On.
  • MCPCB metal-based printed circuit board
  • the number of red light emitting diode chips and blue light emitting diode chips is at 1/4 Within the range of 3/4.
  • the specific quantity ratio can be adjusted according to the white balance requirement.
  • the arrangement of the red light emitting diode chip and the blue light emitting diode chip of the first light source 100 may be arranged in a cross arrangement, or may be according to specific design requirements.
  • the patterns are arranged to be arranged.
  • the first substrate 23, the second substrate 22, and the third substrate 24 form three sides of a rectangle, and the first substrate 23 and the third substrate 24 are arranged in parallel, and the light combining device 11 has a plate shape and constitutes an angle bisector of the second substrate 22 and the third substrate 24.
  • the light combining device 11 A filter is disposed, the surface of the filter facing the second light source is plated with a filter film that transmits green light and reflects red light and blue light, and the other surface is coated with an anti-reflection film.
  • Its transmittance curve is shown in Figure 4. As shown, the horizontal axis is the wavelength and the vertical axis is the transmittance.
  • the red light and the blue light from the first light source 100 are reflected by the filter of the light combining device 11 toward the light homogenizing device 7
  • the first light-emitting diode chip 12 in the second light source 200 emits blue light
  • the fluorescent substance 13 is a green phosphor
  • the blue light excites the green phosphor to emit green light
  • the second light-emitting diode chip 20 The blue light is reflected by the filter of the light combining device 11 to the second light source 200, and causes a second excitation of the fluorescent substance 13 in the second light source 200, so that the second light source 200
  • the green light is again emitted as a whole, and the two green light passes through the filter of the light combining device 11 and is projected to the light homogenizing device 7 together with the red light and the blue light from the first light source 100.
  • the fluorescent substance 13 It can also be a yellow phosphor that is excited to produce yellow light. The yellow light reaches the filter of the light combining device 11, the separated green light is transmitted, and
  • Figure 5 shows the light combining device 11 of the lighting device 50 according to the present invention in the second embodiment.
  • the light combining device 11 includes a filter plated on the first surface with a first filter film that reflects blue light and transmits red and green light.
  • the filter is plated on the second surface with a second filter film 26 that reflects red light and transmits blue and green light.
  • the first surface may be a surface facing the second light source 200, and the second surface may be toward the first light source. The surface of 100.
  • Figure 6 shows the first filter film 25 of the light combining device 11 of the illumination device 50 according to the present invention in the second embodiment.
  • Transmittance curve 16 The horizontal axis is the wavelength and the vertical axis is the transmittance.
  • the cutoff wavelength of the first filter film 25 is in the range of 470 nm to 510 nm;
  • the transmittance curve of the second filter film 26 of the light combining device 11 of the illumination device 50 according to the present invention in the second embodiment is shown.
  • the horizontal axis is the wavelength and the vertical axis is the transmittance.
  • the cutoff wavelength of the second filter film is in the range of 550 nm to 620 nm.
  • the blue light from the first light source 100 is applied to the first filter film 25 of the filter of the light combining device 11
  • the reflection is directed toward the light homogenizing means 7, and the red light from the first light source 100 is reflected by the second filter film 26 of the filter of the light combining means 11 toward the light homogenizing means 7, the fluorescent substance 13
  • the blue light emitted by the first light-emitting diode chip 12 in the second light source 200 excites the fluorescent substance 13 to emit green light
  • the blue light from the second light-emitting diode chip 20 is combined with the light-emitting device.
  • the first filter film 25 of the filter of 11 is reflected to the second light source 200, and causes a second excitation of the fluorescent substance 13 in the second light source 200, so that the second light source 200
  • the green light is emitted twice in total, and the two green light passes through the first filter film 25 and the second filter film 26 of the filter of the light combining device 11 to be projected together with the red light and the blue light from the first light source 100.
  • the fluorescent substance 13 may also be a yellow phosphor which is excited by blue light to generate yellow light which passes through the first filter film 25 and which separates green light from the second filter film 26 through the second filter film 26 The separated red light is reflected and transmitted through the first filter film 25.
  • Fig. 8 is a view showing the construction of the light combining means 11 of the lighting apparatus 50 according to the present invention in the third embodiment.
  • the light combining device 11 includes two filters 111, 112, and the filter 111 closest to the second light source 200 faces the second light source 200.
  • the surface is plated with a third filter film 27 that reflects blue light and transmits red and green light, and the filter 112 that is furthest from the second light source 200 faces away from the second light source 200.
  • the surface is plated with a fourth filter film 28 that reflects red light and transmits blue and green light.
  • the antireflection film 29 may be plated on the remaining filter surface to increase the transmittance.
  • the blue light from the first light source 100 is applied to the third filter film 27 of the filter 111 of the light combining device 11.
  • the reflection is directed toward the light homogenizing device 7, and the red light from the first light source 100 is reflected by the fourth filter film 28 of the filter 112 of the light combining device 11 toward the light homogenizing device 7, and the second light source 200
  • the blue light emitted by the first light-emitting diode chip 12 excites the fluorescent substance 13 to emit yellow or green light
  • the blue light from the second light-emitting diode chip 20 is filtered by the filter 111 of the light combining device 11.
  • the third filter film 27 is reflected to the second light source 200, and causes a second excitation to the fluorescent substance 13 in the second light source 200, so that the second light source 200
  • the green light is emitted as a whole, and the green light is transmitted through the filter 111 and the filter 112 of the light combining device 11 to the light homogenizing device 7 together with the red light and the blue light from the first light source 100.
  • the width between the two filters is between 0.1 mm and 5 mm.
  • the air gap within the range.
  • the two filters can also be bonded together by optical glue without an air gap, and the glued surface is not coated.
  • the lighting device 50 It is also possible to have different optical geometries.
  • the first substrate, the second substrate, and the third substrate form three sides of a rectangle, and the first substrate and the second substrate are parallel, and the light combining device 11 is plate-shaped and The corner bisectors of the second substrate and the third substrate are formed while the light combining means 11 is capable of reflecting green light and transmitting red light and blue light. That is, the first light source 100 and the second light source 200 in FIG. 2 The position is exchanged while the optical properties of the light combining device 11 are changed accordingly. So arranged, the optical effect of the illumination device 50 is unchanged, and the luminous efficiency of the second light source and the saturation of the green light can also be improved.
  • the illumination device 50 in accordance with the present invention further includes a homogenizing means for homogenizing the light from the light combining means 11. 7.
  • the lens 8 and the pattern sheet 9 which focus the homogenized light, and the lens 8 focuses the light onto the pattern sheet 9.
  • the lighting device The 50 further includes a downstream filter 10 that transmits green light downstream of the pattern sheet 9 and reflects red light and blue light in accordance with the optical path direction for ensuring saturation of the green light.
  • the downstream filter 10 The short-band cutoff wavelength can be around 500 nm, and the long-band cutoff wavelength can be around 550 nm.
  • the spectral transmittance of the downstream filter 10 can also be as shown in Fig. 4. Referring to Figure 4, the bandwidth is narrower. In order to ensure the saturation of the green light, the short-wavelength partial cut-off wavelength is around 500 nm, and the long-wavelength cut-off wavelength is around 550 nm. When high brightness white light is required, the downstream filter can be used 10 Rotate outside the light path to achieve high brightness white light.
  • Lighting device 50 in accordance with the present invention has the following advantages: First, due to the increase of the brightness of the green light, the overall brightness of the system can be significantly improved; secondly, since the green light is a broad spectrum, when the white light is synthesized from the three primary colors, the spectral connectivity can be improved, and the light source can be improved. Color rendering; third, although the color rendering of the light source is improved, it is still possible to obtain high-saturation green light through the filter without affecting The color mixing of the RGB system; fourth, according to actual needs, a high color gamut system with wide color gamut, high saturation green light and high brightness white light can be obtained.
  • Figure 10 shows a lighting device 50 in accordance with the present invention.
  • Spectral comparison chart The horizontal axis is the wavelength and the vertical axis is the power. The beneficial effects of the preferred embodiment of the add-on downstream filter 10 of the present invention can be seen.
  • Figure 11 shows a lighting device 50 in accordance with the present invention.
  • White light spectrum comparison chart The horizontal axis is the wavelength and the vertical axis is the power.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Led Device Packages (AREA)

Abstract

一种照明设备(50),包括:第一光源(100),用于发出红光和蓝光;第二光源(200),包括第一发光二极管芯片(12)和设置在第一发光二极管芯片(12)上的荧光物质(13),第一发光二极管芯片(12)所发出的光线(14)能够激发荧光物质(13),从而使得第二光源(200)发出绿光或黄光;合光装置(11),其用于将来自第一光源(100)的红光和蓝光以及来自第二光源(200)的绿光或黄光合并在一起并输出。这种照明设备加强了绿光的亮度。

Description

照明设备 技术领域
本发明涉及一种照明设备,特别涉及一种舞台用照明设备。
背景技术
随着近年来半导体固体光源技术的发展以及困扰全球的能源紧张、全球气候变暖等问题日益突出,半导体发光二极管 (LED) 光源以其节能、环保、光亮度及色温可控等优点,在各行各业上被广泛应用,大有取代传统光源的趋势。有理由相信,在不久的将来,随着发光二极管 (LED) 成本的降低及光效率的提高,半导体发光二极管 (LED) 光源有可能全面取代传统光源。
针对舞台灯光电脑摇头图案灯,曾提出了大功率三基色(红 (R) 、绿 (G) 和蓝 (B) ) LED 光源(如图 1 所示)。在此光源装置中,所有的合成颜色都是通过分别控制红 (R) 、绿 (G) 和蓝 (B) 三基色发光二极管 (LED) 的驱动电流来实现颜色的配比。这种方案采用三基色 LED 直接发光,因为 LED 的发光光谱为窄谱,即其光谱的宽度较小(例如绿光 LED 的发光光谱的半高全宽为 50nm 左右),所以三基色发光的单色光的颜色饱和度较高,能够满足舞台演出对颜色鲜艳度的要求。
参照图 1 ,在现有技术的照明设备中,具有分别发出红光、蓝光和绿光的发光二级管 (LED) 阵列 1 、 2 、 3 ,所述阵列包括发光二级管 6 。其所发光线经合光装置 5 、匀光装置 7 、透镜 8 等汇聚到图案片 9 上。
上述光源中三基色 LED 发出的单色光的颜色饱和度非常高,因此能够满足舞台演出对于颜色鲜艳度的要求。但采用红 (R) 、绿 (G) 和蓝 (B) 三基色 LED 光源的一个缺点是光源整体亮度输出不高,尤其是白光的亮度输出不高。
技术问题
针对上述现有技术中的缺陷,申请人研究发现,其主要原因是目前为止,绿光芯片的发光效率远低于蓝光芯片,也低于红光芯片,同时,在合成白光时,绿光的亮度成分也不足,因而造成光源整体亮度输出不高,尤其是白光的亮度输出不高。
针对以上问题,本发明要解决的问题主要是提高光源绿光的亮度,从而提高整个光源的效率。
本发明提出了一种照明设备,包括:第一光源,用于发出红光和蓝光;第二光源,包括第一发光二极管芯片和设置在所述第一发光二极管芯片上的荧光物质,所述第一发光二极管芯片所发出的光线能够激发所述荧光物质,从而使得所述第二光源发出绿光或黄光;合光装置,其用于将来自所述第一光源的红光和蓝光以及来自所述第二光源的绿光或黄光合并在一起并输出。
在一个实施例中,还包括第二发光二极管芯片,所述第二发光二极管芯片所发出的光被引导到所述第二光源的荧光物质上并激发所述荧光物质发光。通过第二发光二级管芯片的设置,以及光学器件和光路的设置,实现了荧光物质的二次激发,大大提高了第二光源(即绿光光源)的发光效率,弥补了现有技术中的不足。
在一个实施例中,所述第一发光二级管芯片和所述第二发光二极管芯片所发的光线为蓝光,所述荧光物质为黄光和 / 或绿光荧光物质。
在一个实施例中,所述第一发光二极管芯片的朝向所述合光装置的顶面上布置有所述荧光物质,所述第一发光二极管芯片的远离所述合光装置的底面能够反射光线,由来自所述第二发光二极管芯片的光线所激发的所述荧光物质所发出的光经所述第一发光二级管芯片的底面反射到所述合光装置上。如此设置,巧妙地将荧光物质所发的光线引导至合光装置。
在一个实施例中,多个所述第一发光二极管芯片封装到第二基板上,多个所述第二发光二极管芯片封装到第一基板上,所述第一光源包括封装到第三基板上的多个红光发光二极管芯片和多个蓝光发光二极管芯片。
在一个实施例中,所述第一基板、所述第二基板和所述第三基板构成矩形的三条边,而所述第一基板和所述第三基板平行布置,所述合光装置呈板状且构成所述第二基板和所述第三基板的角平分线。
在一个实施例中,所述合光装置包括滤光片,所述滤光片的至少一面上镀有透射绿光并反射红光和蓝光的滤光膜。
在一个实施例中,所述合光装置包括滤光片,所述滤光片在面向所述第二光源的第一表面上镀有反射蓝光并透射红光和绿光的第一滤光膜,所述滤光片在面向所述第一光源的第二表面上镀有反射红光并透射蓝光和绿光的第二滤光膜。
在一个实施例中,所述第一滤光膜的截止波长处于 470nm-510nm 的范围内,所述第二滤光膜的截止波长处于 550nm-620nm 的范围内。
在一个实施例中,所述合光装置包括至少两个滤光片,最靠近所述第二光源的滤光片的朝向所述第二光源的表面上镀有反射蓝光并透射红光和绿光的第三滤光膜,最远离所述第二光源的滤光片的背离所述第二光源的表面上镀有反射红光并透射蓝光和绿光的第四滤光膜。
在一个实施例中,所述合光装置包括滤光片,所述滤光片的至少一个表面上镀有增透膜。增透膜能够有效增大合光装置的透光度。
在一个实施例中,在所述第三基板上,所述红光发光二极管芯片和所述蓝光发光二极管芯片的数量比处于 1/4 到 3/4 的范围内。当然,这可以根据所需要的光色来调节。
在一个实施例中,所述第一基板、所述第二基板和所述第三基板构成矩形的三条边,而所述第一基板和所述第二基板平行,所述合光装置呈板状且构成所述第二基板和所述第三基板的角平分线,所述合光装置能够反射绿光并透射红光和蓝光。此构造的光学效果与上面所述的实施方案相同,说明本设备构造灵活。
在一个实施例中,在所述第二发光二极管芯片上布置有收光装置,用于将所述第二发光二极管芯片的光线准直到所设定的发散角度内。如此可提高光能的利用率,降低耗散。
在一个实施例中,还包括用于将来自所述合光装置的光线均匀化的匀光装置、将均匀化后的光线聚焦的透镜以及图案片,所述透镜将所述光线聚焦到所述图案片上。
在一个实施例中,还包括按照光路方向设置在所述图案片光路前方的透射绿光并反射红光和蓝光的下游滤光片,用于保证绿光的饱和度。
上述技术特征可以各种适合的方式组合或由等效的技术特征来替代,只要能够达到本发明的目的。
根据本发明的设备及其改进的实施方案,通过第二发光二级管芯片的设置,以及光学器件和光路的设置,实现了荧光物质的二次激发,大大提高了第二光源(即绿光光源)的发光效率,弥补了现有技术中的不足。
另外,根据本发明的照明设备具有如下优势:第一,由于绿光亮度的提高,可以显著提高系统的整体亮度;第二,由于绿光为宽光谱,在由三基色合成白光时,可以提高光谱的连输性,提高光源的显色性;第三,虽然光源的显色性提高,仍然可以通过滤光片来获得高饱和度的绿光,而且不会影响 RGB 系统的混色;第四,根据实际需要,可以获得宽色域高饱和的绿光和高亮度白光的高显指色域系统。
附图说明
在下文中将基于仅为非限定性的实施例并参考附图来对本发明进行更详细的描述。其中:
图 1 显示了现有技术中的照明设备;
图 2 显示了根据本发明的照明设备;
图 3 显示了根据本发明的照明设备的第二光源;
图 4 显示了第一实施例中的根据本发明的照明设备的合光装置的透光度曲线图,其中横轴为光线波长,纵轴为透光度;
图 5 显示了第二实施例中的根据本发明的照明设备的合光装置的结构示意图;
图 6 显示了第二实施例中的根据本发明的照明设备的合光装置的第一滤光膜的透光度曲线图,其中横轴为光线波长,纵轴为透光度;
图 7 显示了第二实施例中的根据本发明的照明设备的合光装置的第二滤光膜的透光度曲线图,其中横轴为光线波长,纵轴为透光度;
图 8 显示了第三实施例中的根据本发明的照明设备的合光装置的结构示意图;
图 9 显示了根据本发明的照明设备的色域;
图 10 显示了根据本发明的照明设备的光谱对比图;
图 11 显示了根据本发明的照明设备的白光光谱对比图。
在图中,相同的构件由相同的附图标记标示。附图并未按照实际的比例绘制。
本发明的实施方式
下面将参照附图来详细地介绍本发明。
图 2 显示了根据本发明的照明设备 50 。照明设备 50 包括第一光源 100 ,用于发出红光和蓝光。
照明设备 50 还包括第二光源 200 。图 3 详细显示了第二光源 200 的结构。参照图 3 ,第二光源 200 包括第一发光二极管芯片 12 和设置在第一发光二极管芯片上 12 的荧光物质 13 ,第一发光二极管芯片 12 所发出的光线 14 能够激发荧光物质 13 ,从而使得第二光源 200 能够发出绿光。此次激发可以称作第一次激发。第一发光二极管芯片 12 的 发光可以通过电流来驱动。
在一个实施例中,第一发光二级管芯片 12 具有相应的收光装置 30 ,用来收集第一发光二级管芯片 12 激发荧光物质 13 后所发出的光线,并将其准直成有一定发散角的光线。
再次参照图 2 ,照明设备 50 还包括合光装置 11 ,其用于将来自所述第一光源 100 的红光和蓝光以及来自所述第二光源 200 的绿光合并在一起并输出。
在一个优选的实施例中,照明设备 50 还包括第二发光二极管芯片 20 。图 3 显示了第二发光二级管芯片 20 如何与第二光源 200 相互协作。参照图 3 ,第二发光二极管芯片 20 所发出的光 15 通过光学系统(例如合光装置 11 )被引导到第二光源 200 的荧光物质 13 上并激发荧光物质 13 。此次激发可以称作第二次激发。
优选地,在第二发光二极管芯片 20 上布置有收光装置,用于将第二发光二极管芯片 20 的光线准直到 所设定 的发散角度内。如此可以提高能量利用率,减少光的耗散。准直后的光线经过合光装置 11 的反射,再经过与第一发光二极管芯片 12 所相应的收光装置而聚焦到相应的第一发光二极管芯片 12 上的荧光物质 13 上。
图 3 中的箭头显示了光的传播路线。参照图 3 , 第一发光二极管芯片 12 的朝向合光装置 11 的顶面上布置有荧光物质 13 ,第一发光二极管芯片 12 的远离合光装置 11 的底面能够反射光线(例如通过涂布反射膜来实现)。 由来自第二发光二极管芯片 20 的光线 15 激发荧光物质 13 (即第二次激发)所发出的光到达第一发光二级管芯片 12 的底面后被反射到合光装置 11 (图 3 中未示出)上。
由第二发光二级管芯片 20 所造成的荧光物质 13 的第 二次激发提高了荧光物质 13 的发光效率,从而提升了第二光源 200 的发光效率和绿光的强度。
为了使第二光源 200 发 出适合的绿光,在一个实施例中,第一发光二级管芯片 12 和第二发光二极管芯片 20 所发的光线为蓝光,所述第二光源 200 的荧光物质 13 为受激发产生黄光或绿光的荧光物质,例如黄色荧光粉、绿色荧光粉,而第二发光二极管芯片 20 表面没有设置荧光物质。
图 2 也示意性显示了照明装置 50 的几何构型。参照图 2 ,第一发光二极管芯片 12 封装到第二基板 22 上,第二发光二极管芯片 20 封装到第一基板上 23 ,而第一光源 100 包括封装到第三基板 24 上的红光发光二极管芯片和蓝光发光二极管芯片。
封装 LED 芯片的基板可以为陶瓷基板,或将 LED 芯片直接封装在金属基印刷电路板 (MCPCB) 上。
在一个实施例中,在第三基板 24 上,红光发光二极管芯片和蓝光发光二极管芯片的数量比处于 1/4 到 3/4 的范围内。具体数量比可根据白平衡需求来调节。第一光源 100 的红光发光二级管芯片和蓝光发光二极管芯片的排列可以为交叉排列,也可以根据具体设计需求以 所设定 的图案来排列。
在一个实施例中,第一基板 23 、第二基板 22 和第三基板 24 构成矩形的三条边,而第一基板 23 和第三基板 24 平行布置,合光装置 11 呈板状且 构成所述第二基板 22 和所述第三基板 24 的角平分线。
在合光装置 11 的第一实施例中,合光装置 11 包括滤光片,所述滤光片的朝向所述第二光源的表面上镀有透射绿光并反射红光和蓝光的滤光膜,另一面上镀有增透膜。其透光度曲线如图 4 所示,其中横轴为波长,纵轴为透光度。
在第一实施例中,来自第一光源 100 的红光和蓝光被合光装置 11 的滤光片反射朝向匀光装置 7 ,第二光源 200 中的第一发光二极管芯片 12 发出蓝光,荧光物质 13 为绿色荧光粉,则该蓝光激发绿色荧光粉发出绿光,而来自第二发光二极管芯片 20 的蓝光被合光装置 11 的滤光片反射到第二光源 200 ,并对第二光源 200 中的荧光物质 13 造成第二次激发,使得第二光源 200 整体再次发出绿光,该两次绿光透过合光装置 11 的滤光片,与来自第一光源 100 的红光和蓝光一齐投射向匀光装置 7 。该荧光物质 13 也可以是黄色荧光粉,从而受激发产生黄光。黄光达到合光装置 11 的滤光片,分出的绿光透射,而分出的红光被反射。
图 5 显示了第二实施例中的根据本发明的照明设备 50 的合光装置 11 的结构示意图。在第二实施例中,合光装置 11 包括滤光片,所述滤光片在第一表面上镀有反射蓝光并透射红光和绿光的第一滤光膜 25 ,所述滤光片在第二表面上镀有反射红光并透射蓝光和绿光的第二滤光膜 26 。如图所示,第一表面可以为朝向第二光源 200 的表面,而第二表面可以为朝向第一光源 100 的表面。
图 6 显示了第二实施例中的根据本发明的照明设备 50 的合光装置 11 的第一滤光膜 25 的透光度曲线 16 。其中横轴为波长,纵轴为透光度。优选地,第一滤光膜 25 的截止波长处于 470nm-510nm 的范围内;图 7 显示了第二实施例中的根据本发明的照明设备 50 的合光装置 11 的第二滤光膜 26 的透光度曲线 17 。其中横轴为波长,纵轴为透光度。优选地,第二滤光膜的截止波长处于 550nm-620nm 的范围内。
在第二实施例中,来自第一光源 100 的蓝光被合光装置 11 的滤光片的第一滤光膜 25 反射朝向匀光装置 7 ,来自第一光源 100 的红光被合光装置 11 的滤光片的第二滤光膜 26 反射朝向匀光装置 7 ,荧光物质 13 为绿色荧光粉,第二光源 200 中的第一发光二极管芯片 12 发出的蓝光激发荧光物质 13 以发出绿色的光线,而来自第二发光二极管芯片 20 的蓝光被合光装置 11 的滤光片的第一滤光膜 25 反射到第二光源 200 ,并对第二光源 200 中的荧光物质 13 造成第二次激发,使得第二光源 200 整体发出两次绿光,该两次绿光透过合光装置 11 的滤光片的第一滤光膜 25 和第二滤光膜 26 ,与来自第一光源 100 的红光和蓝光一齐投射向匀光装置 7 。同样,荧光物质 13 也可为黄色荧光粉,受蓝光激发产生黄光,其穿过第一滤光膜 25 ,并在第二滤光膜 26 上分出绿光透过第二滤光膜 26 ,而分出的红光被反射并透过第一滤光膜 25 出射。
图 8 显示了第三实施例中的根据本发明的照明设备 50 的合光装置 11 的结构示意图。参照图 8 ,在第三实施例中,合光装置 11 包括两个滤光片 111 、 112 , 最靠近第二光源 200 的滤光片 111 的朝向第二光源 200 的表面上镀有反射蓝光并透射红光和绿光的第三滤光膜 27 ,最远离第二光源 200 的滤光片 112 的背向第二光源 200 的表面上镀有反射红光并透射蓝光和绿光的第四滤光膜 28 。优选地,可以在其余的滤光片表面上镀增透膜 29 ,以增大透光度。
在第三实施例中,来自第一光源 100 的蓝光被合光装置 11 的滤光片 111 的第三滤光膜 27 反射朝向匀光装置 7 ,来自第一光源 100 的红光被合光装置 11 的滤光片 112 的第四滤光膜 28 反射朝向匀光装置 7 ,第二光源 200 中的第一发光二极管芯片 12 发出的蓝光激发荧光物质 13 以发出黄色或绿色的光线,而来自第二发光二极管芯片 20 的蓝光被合光装置 11 的滤光片 111 的第三滤光膜 27 反射到第二光源 200 ,并对第二光源 200 中的荧光物质 13 造成第二次激发,使得第二光源 200 整体发出绿色光,该绿色光透过合光装置 11 的滤光片 111 和滤光片 112 ,与来自第一光源 100 的红光和蓝光一齐投射向匀光装置 7 。
在上述实施例中,两个滤光片之间具有宽度位于 0.1mm-5mm 的范围之内的气隙。当然,这两个滤光片也可以通过光学胶粘贴到一起而不具有气隙,其胶合面不镀膜。
在另一个附图未示出的实施例中,照明设备 50 也可以具有不同的光学几何构造。其中,上述第一基板、第二基板和第三基板构成矩形的三条边,而第一基板和所述第二基板平行,同时合光装置 11 呈板状且 构成第二基板和第三基板的角平分线,同时合光装置 11 能够反射绿光并透射红光和蓝光。即将图 2 中的第一光源 100 和第二光源 200 交换位置,同时相应改变合光装置 11 的光学性质。如此布置,照明设备 50 的光学效果不变,同样可以提升第二光源的发光效率和绿光的饱和度。
再次参照图 2 ,根据本发明的照明设备 50 还包括用于将来自合光装置 11 的光线均匀化的匀光装置 7 、将均匀化后的光线聚焦的透镜 8 以及图案片 9 ,透镜 8 将光线聚焦到图案片 9 上。
参照图 9 ,当合光装置 11 的带宽比较宽时,绿光的颜色饱和度不高,颜色不鲜艳,另外,其色域也比较小,特别是蓝绿光的表现。因此,在一个优选的实施例中,当要表现饱和的绿光或蓝绿光时,照明设备 50 还包括按照光路方向设置在图案片 9 下游的透射绿光并反射红光和蓝光的下游滤光片 10 ,用于保证绿光的饱和度。优选地,下游滤光片 10 的短波段截止波长可以为 500nm 附近 ,长波段截止波长可以为 550nm 附近 。
下游滤光片 10 的光谱透过率也可如图 4 所示。参照图 4 ,其带宽较窄 , 以保证透过绿光的饱和度,其短波段部分截止波长位于 500nm 左右,长光波段的截止波长位于 550nm 左右。当需要高亮度的白光时,可以将下游滤光片 10 旋转到光路外,这样可以获得高亮度的白光。
根据本发明的照明设备 50 具有如下优势:第一,由于绿光亮度的提高,可以显著提高系统的整体亮度;第二,由于绿光为宽光谱,在由三基色合成白光时,可以提高光谱的连输性,提高光源的显色性;第三,虽然光源的显色性提高,仍然可以通过滤光片来获得高饱和度的绿光,而且不会影响 RGB 系统的混色;第四,根据实际需要,可以获得宽色域高饱和的绿光和高亮度白光的高显指色域系统。
图 10 显示了根据本发明的照明设备 50 的光谱对比图。其中横轴为波长,纵轴为功率。可以从中看出本发明的增设下游滤光片 10 的优选实施方案所带来的有益效果。
图 11 显示了根据本发明的照明设备 50 的白光光谱对比图。其中横轴为波长,纵轴为功率。可以看到根据本发明的增设第二发光二极管芯片和进行荧光物质的二次激发的优选实施方案所带来的有益效果。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种照明设备 (50) ,包括:
    第一光源 (100) ,用于发出红光和蓝光;
    第二光源 (200) ,包括第一发光二极管芯片 (12) 和设置在所述第一发光二极管芯片上 (12) 的荧光物质 (13) ,所述第一发光二极管芯片 (12) 所发出的光线能够激发所述荧光物质 (13) ,从而使得所述第二光源 (200) 发出绿光或黄光;
    合光装置 (11) ,其用于将来自所述第一光源 (100) 的红光和蓝光以及来自所述第二光源 (200) 的绿光或黄光合并在一起并输出。
  2. 根据权利要求 1 所述的照明设备 (50) ,其特征在于,还包括第二发光二极管芯片 (20) ,所述第二发光二极管芯片 (20) 所发出的光 (15) 被引导到所述第二光源 (200) 的荧光物质 (13) 上并激发所述荧光物质 (13) 发光。
  3. 根据权利要求 2 所述的照明设备 (50) ,其特征在于,所述第一发光二级管芯片 (12) 和所述第二发光二极管芯片 (20) 所发的光线为蓝光,所述荧光物质 (13) 为黄光和 / 或绿光荧光物质。
  4. 根据权利要求 2 所述的照明设备 (50) ,其特征在于,所述第一发光二极管芯片 (12) 的朝向所述合光装置 (11) 的顶面上布置有所述荧光物质 (13) ,所述第一发光二极管芯片 (12) 的远离所述合光装置 (11) 的底面能够反射光线,由来自所述第二发光二极管芯片 (20) 的光线 (15) 所激发的所述荧光物质 (13) 所发出的光经所述第一发光二级管芯片 (12) 的底面反射到所述合光装置 (11) 上。
  5. 根据权利要求 2 到 4 中任一项所述的照明设备 (50) ,其特征在于,多个所述第一发光二极管芯片 (12) 封装到第二基板 (22) 上,多个所述第二发光二极管芯片 (20) 封装到第一基板上 (23) ,所述第一光源 (100) 包括封装到第三基板 (24) 上的多个红光发光二极管芯片和多个蓝光发光二极管芯片。
  6. 根据权利要求 5 所述的照明设备 (50) ,其特征在于,所述第一基板 (23) 、所述第二基板 (22) 和所述第三基板 (24) 构成矩形的三条边,而所述第一基板 (23) 和所述第三基板 (24) 平行布置,所述合光装置 (11) 呈板状且构成所述第二基板 (22) 和所述第三基板 (24) 的角平分线。
  7. 根据权利要求 6 所述的照明设备 (50) ,其特征在于,所述合光装置包括滤光片,所述滤光片的至少一面上镀有透射绿光并反射红光和蓝光的滤光膜。
  8. 根据权利要求 6 所述的照明设备 (50) ,其特征在于,所述合光装置 (11) 包括滤光片,所述滤光片在面向所述第二光源 (200) 的第一表面上镀有反射蓝光并透射红光和绿光的第一滤光膜 (25) ,所述滤光片在面向所述第一光源 (100) 的第二表面上镀有反射红光并透射蓝光和绿光的第二滤光膜 (26) 。
  9. 根据权利要求 8 所述的照明设备 (50) ,其特征在于,所述第一滤光膜 (25) 的截止波长处于 470nm-510nm 的范围内,所述第二滤光膜 (26) 的截止波长处于 550nm-620nm 的范围内。
  10. 根据权利要求 6 所述的照明设备,其特征在于,所述合光装置 (11) 包括至少两个滤光片,最靠近所述第二光源 (200) 的滤光片 (111) 的朝向所述第二光源 (200) 的表面上镀有反射蓝光并透射红光和绿光的第三滤光膜 (27) ,最远离所述第二光源 (200) 的滤光片 (112) 的背离所述第二光源 (200) 的表面上镀有反射红光并透射蓝光和绿光的第四滤光膜 (28) 。
  11. 根据权利要求 5 所述的照明设备,其特征在于,所述合光装置 (11) 包括滤光片,所述滤光片的至少一个表面上镀有增透膜。
  12. 根据权利要求 5 所述的照明设备,其特征在于, 在所述第三基板 (24) 上,所述红光发光二极管芯片和所述蓝光发光二极管芯片的数量比处于 1/4 到 3/4 的范围内。
  13. 根据权利要求 5 所述的照明设备,其特征在于,所述第一基板 (23) 、所述第二基板和所述第三基板构成矩形的三条边,而所述第一基板 (23) 和所述第二基板平行,所述合光装置 (11) 呈板状且构成所述第二基板和所述第三基板的角平分线,所述合光装置 (11) 能够反射绿光并透射红光和蓝光。
  14. 根据权利要求 5 所述的照明设备,其特征在于,在所述第二发光二极管芯片 (20) 上布置有收光装置,用于将所述第二发光二极管芯片 (20) 的光线准直到所设定的发散角度内。
  15. 根据权利要求 1 到 4 中任一项所述的照明设备,其特征在于,还包括用于将来自所述合光装置 (11) 的光线均匀化的匀光装置 (7) 、将均匀化后的光线聚焦的透镜 (8) 以及图案片 (9) ,所述透镜 (8) 将所述光线聚焦到所述图案片 (9) 上。
  16. 根据权利要求 15 所述的照明设备,其特征在于,还包括按照光路方向设置在所述图案片 (9) 光路前方的透射绿光并反射红光和蓝光的下游滤光片 (10) ,用于保证绿光的饱和度。
PCT/CN2014/090408 2013-11-18 2014-11-06 照明设备 WO2015070719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310577015.XA CN104654052A (zh) 2013-11-18 2013-11-18 照明设备
CN201310577015.X 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015070719A1 true WO2015070719A1 (zh) 2015-05-21

Family

ID=53056756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090408 WO2015070719A1 (zh) 2013-11-18 2014-11-06 照明设备

Country Status (2)

Country Link
CN (1) CN104654052A (zh)
WO (1) WO2015070719A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154599A (zh) * 2023-04-23 2023-05-23 中国工程物理研究院激光聚变研究中心 一种紧凑化光谱合成装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205301793U (zh) * 2015-12-01 2016-06-08 深圳市光峰光电技术有限公司 一种照明系统
CN108019634B (zh) * 2017-10-25 2020-04-14 广州市欧玛灯光设备有限公司 一种白光led灯具照明方法以及led照明装置
CN208535741U (zh) * 2018-07-25 2019-02-22 深圳市绎立锐光科技开发有限公司 一种led照明装置
CN111271681A (zh) * 2018-12-04 2020-06-12 深圳市绎立锐光科技开发有限公司 一种照明光源及车灯
CN113805417A (zh) * 2020-06-12 2021-12-17 深圳光峰科技股份有限公司 一种投影显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637585A (zh) * 2003-12-19 2005-07-13 卡尔蔡斯耶拿有限公司 用于物体照明的装置
CN101361022A (zh) * 2005-12-23 2009-02-04 3M创新有限公司 偏振、基于多色led的照明源
CN101364037A (zh) * 2007-08-07 2009-02-11 立景光电股份有限公司 灯源装置及应用其的投影系统
CN201984274U (zh) * 2011-03-18 2011-09-21 红蝶科技(深圳)有限公司 基于荧光粉的多泵浦光源及使用其的投影光学引擎
CN102330888A (zh) * 2010-07-12 2012-01-25 红蝶科技(深圳)有限公司 混光式带荧光粉激发的单色光源及使用其的投影光学引擎
CN202710914U (zh) * 2012-08-05 2013-01-30 深圳市绎立锐光科技开发有限公司 光源系统及投影系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407664B2 (ja) * 2009-08-27 2014-02-05 セイコーエプソン株式会社 プロジェクター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637585A (zh) * 2003-12-19 2005-07-13 卡尔蔡斯耶拿有限公司 用于物体照明的装置
CN101361022A (zh) * 2005-12-23 2009-02-04 3M创新有限公司 偏振、基于多色led的照明源
CN101364037A (zh) * 2007-08-07 2009-02-11 立景光电股份有限公司 灯源装置及应用其的投影系统
CN102330888A (zh) * 2010-07-12 2012-01-25 红蝶科技(深圳)有限公司 混光式带荧光粉激发的单色光源及使用其的投影光学引擎
CN201984274U (zh) * 2011-03-18 2011-09-21 红蝶科技(深圳)有限公司 基于荧光粉的多泵浦光源及使用其的投影光学引擎
CN202710914U (zh) * 2012-08-05 2013-01-30 深圳市绎立锐光科技开发有限公司 光源系统及投影系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154599A (zh) * 2023-04-23 2023-05-23 中国工程物理研究院激光聚变研究中心 一种紧凑化光谱合成装置
CN116154599B (zh) * 2023-04-23 2023-12-29 中国工程物理研究院激光聚变研究中心 一种紧凑化光谱合成装置

Also Published As

Publication number Publication date
CN104654052A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2015070719A1 (zh) 照明设备
US11520156B2 (en) Multi-channels high brightness light engine apparatus
WO2014084489A1 (ko) 광원유닛과 이를 포함하는 영상투사장치
US8662690B2 (en) Multi-colored illumination system with wavelength converter and method
US9222643B2 (en) LED illuminating device for stage lighting and method for improving color uniformity of the device
WO2018028240A1 (zh) 光源系统及投影设备
JP5692078B2 (ja) 光源装置およびそれを用いた投射型表示装置
US20140211170A1 (en) Illuminator and image display device
US8888300B2 (en) Illumination unit having at least two solid state light sources in the same wavelength band
WO2013063976A1 (zh) 发光装置及投影系统
CA2636786C (en) Light-source lamp and projector
WO2015149700A1 (zh) 一种光源系统及投影系统
WO2018107634A1 (zh) 光源系统及投影装置
TWI440956B (zh) 投影機光源裝置
US20090040463A1 (en) Illumination system of LED for projection display
WO2017101773A1 (zh) 一种光源系统及照明系统
WO2011060618A1 (zh) 封装固态发光芯片的方法、结构及使用该封装结构的光源装置
WO2014183583A1 (zh) 一种发光装置及舞台灯系统
WO2018095019A1 (zh) 光源系统、投影系统及照明装置
CN108767099B (zh) 波长变换设备、光源装置、照明装置及影像显示装置
JP6868842B2 (ja) 波長変換デバイス、光源装置、照明装置、及び、投写型映像表示装置
CN202756978U (zh) 一种可调色温的白光led照明装置
CN102081289A (zh) 基于CF-LCoS的色域扩展紧凑型微型光引擎
WO2013104325A1 (zh) 排灯装置
JP2005129877A (ja) 発光ダイオードの配列、結線方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861387

Country of ref document: EP

Kind code of ref document: A1