WO2015070619A1 - 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用 - Google Patents

鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用 Download PDF

Info

Publication number
WO2015070619A1
WO2015070619A1 PCT/CN2014/080938 CN2014080938W WO2015070619A1 WO 2015070619 A1 WO2015070619 A1 WO 2015070619A1 CN 2014080938 W CN2014080938 W CN 2014080938W WO 2015070619 A1 WO2015070619 A1 WO 2015070619A1
Authority
WO
WIPO (PCT)
Prior art keywords
irisin
myocardial
reperfusion
ischemia
preparation
Prior art date
Application number
PCT/CN2014/080938
Other languages
English (en)
French (fr)
Inventor
曾春雨
韩愈
王震
陈垦
李郁
Original Assignee
中国人民解放军第三军医大学第三附属医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军第三军医大学第三附属医院 filed Critical 中国人民解放军第三军医大学第三附属医院
Priority to US15/035,646 priority Critical patent/US9682121B2/en
Publication of WO2015070619A1 publication Critical patent/WO2015070619A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones

Definitions

  • the invention belongs to the field of medicine, and particularly relates to the application of irisin in the preparation of a medicament for preventing myocardial ischemia and reperfusion injury.
  • Ischemic cardiomyopathy is one of the most serious diseases in the world, which seriously endangers people's health. Ischemic cardiomyopathy is a blockage of blood vessels caused by coronary arteriosclerosis or thrombosis. The circulation or interruption of blood circulation causes the balance of myocardial oxygen and energy supply to be broken, and the myocardial energy metabolism is disordered, leading to histopathological damage such as myocardial infarction and heart failure.
  • the most effective treatment for overcoming ischemia is to re-circulate blood flow and restore blood supply, including balloon dilatation, arteriovenous thrombolysis, extracorporeal circulation, coronary artery bypass grafting, etc., ie reperfusion.
  • reperfusion since the first myocardial ischemia-reperfusion injury was proposed in I960, this problem has plagued medical workers.
  • a large number of animal experiments and clinical results have shown that reperfusion has greatly improved the problem of myocardial blood supply, but As a large amount of blood rich in oxygen and other nutrients enters the ischemic area, it will lead to aggravation of tissue damage caused by ischemia, causing complications such as arrhythmia, heart rupture, and heart failure.
  • myocardial ischemia-reperfusion injury The specific mechanism of myocardial ischemia-reperfusion injury remains unclear.
  • Myocardial ischemia Insufficient energy metabolism, ATP depletion, intracellular calcium overload during reperfusion, production of a large number of oxygen free radicals, directly or indirectly destroy membrane phospholipids, proteins, DNA; at the same time, chemotaxis, infiltration and inflammation of inflammatory cells such as neutrophils
  • the production and secretion of factors also play an important role in myocardial reperfusion injury. These inflammatory reactions not only directly damage myocardial tissue, but also cause immune vascular damage.
  • the superoxide proliferation-activated receptor synergistic activator (PGC-l ci ) is a transcriptional coactivator that mediates many of the energy-related biological processes, especially in the regulation of mitochondrial biogenesis and oxidative metabolism in a variety of cells. .
  • PGC-l ci The superoxide proliferation-activated receptor synergistic activator (PGC-l ci ) is a transcriptional coactivator that mediates many of the energy-related biological processes, especially in the regulation of mitochondrial biogenesis and oxidative metabolism in a variety of cells.
  • BostrSm found that exercise promoted the expression of PGC-1 ⁇ in skeletal muscle, while PGC-1 ⁇ increased the level of fibronectin type III domain containing protein 5 (FNDC5), a 196 amino acid fibronectin.
  • the type III domain contains a protein transmembrane protein, which is a potent inducer of brown fat formation. Its hydrolyzed fragments can be secreted into the bloodstream.
  • FNDC5 is abundant in the myocardium and its functional effects on the heart are currently present. It is unclear, and clinical studies have found a decrease in FNDC5 expression in patients with heart failure. FNDC5 cleaves the caudal signal peptide and is cleaved at GLU142 to form a polypeptide of about 110 amino acids, which is named Irisin. Whether appendix has an effect on myocardial ischemia-reperfusion injury is still unknown.
  • Irisin Whether appendix has an effect on myocardial ischemia-reperfusion injury is still unknown.
  • the myocardial enzyme marker is lactate dehydrogenase, troponin or creatine kinase.
  • iris in the preparation of a medicament for preventing an inflammatory reaction caused by muscle ischemia-reperfusion. Further, the application of iris in the preparation of a medicament for preventing oxidative stress caused by myocardial ischemia-reperfusion.
  • the invention has the beneficial effects that the invention discloses the application of irisin in the preparation of a medicament for preventing myocardial ischemia-reperfusion injury, and constructing a myocardial ischemia-reperfusion model of SD rats to explore the effect of irisin on ischemia-reperfusion
  • exogenous appendix can significantly attenuate myocardial infarct size and release of myocardial enzyme markers (cTnI, LDH and CK) caused by ischemia-reperfusion, inhibit ischemia-reperfusion
  • the resulting left ventricular ejection fraction decreases and shrinks, and the end-diastolic volume increases.
  • appendix can attenuate myocardial structural damage and increased load caused by ischemia-reperfusion.
  • appendix significantly reduces ischemia-reperfusion-induced Cardiomyocyte apoptosis, inflammatory factor synthesis and release, inflammatory cell infiltration, and oxidative stress, further demonstrates the role of irisin against myocardial ischemia-reperfusion injury; the present invention also passes H9C2 cardiomyocyte experiments in vitro (including deficiency/replication) processing oxygen and 02), the analog in vivo myocardial ischemia and reperfusion, myocardial Discussion irisin cell deficient / reoxygenation
  • exogenous appendix effectively inhibits the decrease of myocardial cell viability caused by deficiency/reoxygenation, reduces the release of LDH caused by deficiency/reoxygenation, and is dosed.
  • the present invention also studies part of the signaling mechanism of irisin against ischemia-reperfusion injury.
  • the results show that in myocardial cells of ischemia-reperfusion, irisin promotes the translocation of PPAR Y from the cytoplasm to the nucleus and inhibits NF- The translocation of ic B from the cytoplasm to the nucleus; thus confirming that the appendix partially acts against cardiomyocyte damage through PPAR Y; and the present invention also makes an effect on how the appendix affects the translocation of PPAR Y in cardiomyocytes.
  • Nystatin when an excessive amount of Nystatin is added, the effect of irisin on myocardial hypoxia injury is significantly reduced.
  • the appendix may partially function through lipid rafts to regulate PPAR ⁇ and NF- ic B.
  • the main component of lipid rafts is Caveolin-1 is an important scaffold protein, so appendixin may cause upregulation of caveolin-1, and appendix may partially promote nuclear translocation of PPAR Y via caveolin-1 to inhibit NF- ic B nuclear translocation. , thus playing a protective role.
  • the present invention finds that the appendix can be used for the prevention and treatment of myocardial ischemia-reperfusion injury (increase in myocardial infarction, increase in myocardial marker release, increase in myocardial load, increase in inflammatory response, oxidative stress and apoptosis), inhibition of inflammation
  • Myocardial ischemia-reperfusion injury increase in myocardial infarction, increase in myocardial marker release, increase in myocardial load, increase in inflammatory response, oxidative stress and apoptosis
  • sexual responses can be explained by the following mechanisms: Inhibition of NF- ⁇ B-associated inflammatory factor expression by promoting PPARs to nuclear translocation, reducing the infiltration of inflammatory cells into tissues, and significantly reducing the inflammatory response after reperfusion.
  • Figure 5 shows the left ventricular ejection fraction measurement results.
  • Figure 7 shows the results of TUNEL staining for measuring myocardial apoptosis.
  • Figure 8 shows the expression of the apoptotic proteins Bcl-2, Bax and caspase-3.
  • Figure 9 shows the results of detection of apoptosis protein caspase-3 activity.
  • Figure 10 shows the results of oxidative stress indication after ischemia-reperfusion (A: MP0 detection result; B: MDA detection result; C: SOD detection result).
  • Figure 11 shows the measurement results of plasma inflammatory factor production (A: TNF- ⁇ detection result; B: IL-6 detection result).
  • Figure 12 shows the measurement results of myocardial tissue inflammatory factors (A: TNF- ⁇ test results; B: IL-6 test results).
  • Figure 13 shows the effect of irisin on the absence/reoxygenation of H9C2 cardiomyocytes by immunofluorescence technique.
  • Figure 14 shows the cell viability and LDH measurements of Irisin on H9C2 cardiomyocytes after HR (A: cell viability; B: LDH measurement).
  • Figure 15 is a (A: immunofluorescence technique for the determination of irisin and irisin with clathrin inhibitor-mediated endocytic pathway CPZ, lipid raft-mediated endocytic pathway inhibitor Nystatin or macrotuberculosis inhibitor DMA composition Effects of reoxygenated H9C2 cardiomyocytes; B: cell viability; C: LDH measurement results).
  • Figure 16 shows the effect of Irisin on 02- treated H9C2 cardiomyocytes (A: LDH measurement; B: cell viability).
  • Figure 17 shows the results of immunofluorescence technique (A: the effect of irisin on PPAR Y nuclear translocation; B: the effect of irisin on NF- ⁇ nuclear translocation).
  • Figure 18 shows the results of Western blotting measurement of PPAR Y, NF-IC B nuclear translocation.
  • the animals used in the experiment were SD rats weighing 250-260 g provided by the Experimental Animal Center of the Third affiliated Hospital of the Third Military Medical University. The operation during the operation was in accordance with the regulations of the Experimental Animal Association of Daping Hospital.
  • Irisin effectively improved cardiac dysfunction caused by myocardial ischemia-reperfusion.
  • SD rats were randomly divided into five groups: control group (sham operation); ischemia-reperfusion (IR) group; ischemia-reperfusion + Irisin group (I+Irisin); ischemia-reperfusion + appendixin and antibody complex (1:5) group (IR+ Irisin/Ab); ischemic reperfusion + high temperature inactivation of the iris group (IR+ Irisin (HI) )).
  • the rats were placed on a thermal plate to maintain body temperature (37 ° C). After the surgery, the incision is sutured, providing enough energy and water for the rat to recover. After 24 hours of reperfusion, blood and myocardial tissue were collected to measure myocardial infarct size and myocardial zymogram expression, so as to understand the effect and influence of irisin on cardiac dysfunction caused by myocardial ischemia-reperfusion.
  • Infarct size measurement The SD rat heart was first taken, then the blood of the coronary artery was washed away with a physiological saline solution, and then the left anterior descending artery was ligated and 1% Evans blue was injected from the jugular vein. The hearts were then cross-sectioned into 5 pieces, and these transverse sections were stained with a 1% TTC solution for 15 minutes at 37 ° C, and the infarct size was measured by Image J, and the results are shown in Fig. 1. As can be seen from Figure 1, the infarct size of the ischemia-reperfusion + appendix group was significantly smaller than that of the other experimental groups, indicating that irisin may have the effect of reducing ischemia-reperfusion injury.
  • Myocardial zymography measurement The blood of the SD rat was collected and centrifuged at 3000 g for 10 minutes, and the serum was collected and placed in an ice bath for use.
  • the Beckman Coulter AU clinical biochemical kit and immunoassay kit were used to determine the content of lactate dehydrogenase (LDH), troponin (cTnI) and creatine kinase (CK) in the samples.
  • the detection method was carried out according to the kit instructions. as shown in picture 2.
  • the expression of LDH, cTnl and CK in the IR group was significantly higher than that in the control group, and the expression levels of LDH, cTnl and CK were greatly reduced after the injection of the iris.
  • a complex of iris and its antibody or an iris treated with high temperature inactivation is used, its protective effect on the myocardium almost disappears.
  • Cardiac B-ultrasound detection of cardiac function The experimental SD rats were anesthetized and fixed on the operation plate, and the left ventricular long-axis section was measured using a 76 (Hz ultrasonic probe), and then the left ventricular ejection fraction (LVEF) was calculated based on the ultrasonic test results. ), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), each rat was measured 3 times, taking the average And the standard deviation is calculated, and the result is shown in Fig. 3.
  • LVEDV left ventricular end-diastolic volume
  • LVESV left ventricular end-systolic volume
  • the procedure was the same as that of the ischemia-reperfusion + iris group, except that 0.1 ⁇ g/kg, 0.5 ⁇ g/kg, 1 ⁇ g/kg, and 5 ⁇ g/kg of irisin were administered separately.
  • the LDH, cTnl and CK contents of the experimental SD rats were then determined using the same method as above, and the results are shown in Fig. 4. It can be seen from Fig. 4 that infusion of irisin can reduce the content of LDH, cTnl and CK in SD rats with ischemia-reperfusion and dose-dependent relationship. The higher the concentration of irisin, the more obvious the improvement effect, the effect of 5 ⁇ g/kg irisin The strongest.
  • the experimental SD rats were prepared with a myocardial ischemia model, and 5 ⁇ g/kg of irisin was injected 30 minutes before (pro) or post-operative (post), and the sham operation model was used as a control. Then, the left ventricular ejection fraction was measured. And myocardial enzymes. The left ventricular ejection fraction measurement results are shown in Figure 5, and the myocardial zymogram results are shown in Figure 6. As can be seen from Fig. 5 and Fig. 6, the use of irisin before ischemia (30 min) and after ischemia can significantly reduce myocardial infarction area caused by ischemia-reperfusion, lactate dehydrogenase, troponin, creatine kinase.
  • Irisin reduces inflammatory reaction, oxidative stress and withering caused by myocardial ischemia-reperfusion.
  • TUNEL staining was used to measure myocardial apoptosis, specifically: using an in situ cell death kit (purchased from Roche Biotechnology Co., Ltd.) for the control group (sham surgery), ischemia-reperfusion (IR) group, and ischemia-reperfusion + Irisin group (I+Irisin)
  • the heart slice of the SD rats was tested, and then the tissue sections were placed in a 65 ° C environment for heating and hydration, then washed with xylene to soak and dewax, and then the volume fraction was 100%, 95 %, 80%, 70% alcohol was rehydrated, then the sections were placed in a solution containing 20 ⁇ g/mL protein kinase K, and the sections were placed at a mass fraction of 1 after treatment at 37 ° C for 60 minutes.
  • Fig. 7 As can be seen from Fig. 7, compared with the control group, the number of TUNEL-positive cells measured in the 200 X field of the IR group was significantly increased, but the decrease was very significant after the use of the irisin, indicating that the iris protein inhibited apoptosis. .
  • the expression levels of the apoptotic proteins Bcl-2, Bax and caspase-3 were detected by Western blotting, specifically: collection of control group (sham operation), ischemia-reperfusion (I/R) group and ischemia-reperfusion + appendix
  • the infarcted myocardium of SD rats was isolated from the group, and the supernatant was separated after homogenization. 50 mg of the sample was subjected to polyacrylamide gel electrophoresis, and then transferred to a PVDF membrane and contained in 5% (by volume) of fat-free milk.
  • the TBS solution was blocked for 1 hour, and then the PVDF membrane was diluted at a concentration of 1:500 Bcl-2 antibody, 1:500 Bax antibody, 1:500 caspase-3 antibody or 1:1000 ⁇ -actin antibody.
  • the medium was cultured at 4 ° C overnight, then the PVDF membrane was washed three times with TBS solution, and finally the membrane was placed in a goat anti-rabbit IgG secondary antibody with a dilution concentration of 1:10000 for 1 hour at room temperature, staining observation, knot As shown in Figure 8. As can be seen from Fig.
  • the activity of the apoptotic protein caspase-3 was measured, specifically: 100 lysate was added per 10 mg of tissue, homogenized with a glass homogenizer on an ice bath, and then the homogenate was transferred to a 1.5 mL centrifuge tube, and lyophilized in an ice bath. After 5 minutes, it was centrifuged at 4 ° C, 16, OOOg for 10 minutes. After centrifugation, the supernatant was transferred to an ice bath pre-cooled centrifuge tube. Take the sample to determine the protein concentration by Bradford method, so that 10 proteins are contained in every 10 samples to be tested.
  • ELISA was used to detect oxidative stress indicators after ischemia-reperfusion (peroxidase MP0, malonate MDA and superoxide dismutase SOD), specifically: control group (sham operation), ischemia-reperfusion
  • control group sham operation
  • ischemia-reperfusion The heart tissue of the (I/R) group and the ischemia-reperfusion + iris group SD rats were mixed with a grinder in pre-cooled tissue lysis buffer, and then centrifuged at 1600 g for 10 minutes at 4 ° C. The supernatant was taken for the detection of MP0, MDA and S0D content (the test kit was provided by Shanghai Biyuntian Biotechnology Co., Ltd.), and the test results are shown in Fig. 10.
  • the tissue samples were prepared as described above, and the inflammatory factors in plasma and myocardial tissue were detected by R&D Systems ELISA kit.
  • the results of inflammatory factors in plasma are shown in Figure 11.
  • the results of inflammatory factors in myocardial tissue are shown in Figure 12. Show.
  • Irisin reduces myocardial cell damage caused by deficiency/reoxygenation and 02
  • the H9C2 cardiomyocyte cell line was placed in a DMEM solution containing 10% by volume of high temperature inactivated FBS, 10 OOU/mL penicillin G, 100 mg/mL streptomycin and 2 mM L-glutamine.
  • the cultured cells were divided into 3 groups: one group was the control group, no treatment was done, the second group was the HR group (passing N 2 ), and the third group was the HR+irisin group (passing N 2 and being accessed) Different concentrations of irisin in the cell culture medium were added 30 minutes before the N 2 treatment). Place the H9C2 cardiomyocyte culture plate in the lack/reoxygenation model box. There are two holes on the lid.
  • the cell viability of the above three groups of experimental H9C2 cardiomyocytes was determined by MTT method.
  • the specific method was as follows: the cell mixture was removed from the supernatant, the cells were washed three times with PBS solution, and 200 5% of the thiazolyl solution was added to each well of the cell culture plate. After culturing for 4 hours, after the completion of the culture, carefully remove the culture solution in the well, add 150 L of DMS0 solution, shake gently for 10 minutes, and finally measure the optical density of the well plate at a wavelength of 490 nm with a microplate reader. The result is shown in Fig. 14A. At the same time, the LDH content was measured using a kit, and the results are shown in Fig. 14B.
  • the HR+irisin group was subdivided into 4 subgroups: one group was HR+irisin, the second group was HR+irisin+CPZ (casein inhibitor), and the third group was HR+irisin+Nystatin (lipid inhibition)
  • the fourth group was HR+irisin+DMA (macrocytidine inhibitor), and the effect of irisin on H9C2 cardiomyocyte deficiency/reoxygenation was determined by immunofluorescence technique (Fig. 15A), LDH content (Fig. 15B) and Optical density value at 490 nm wavelength (Fig. 15C). From the results See, the OD value of the HR group was significantly lower than that of the control group. The level of 0D was significantly up-regulated after the use of irisin.
  • H9C2 cardiomyocytes were cultured in the same manner as above, and then divided into 3 groups, one group was the control group, and no treatment was performed.
  • the second group was 0 2 groups (adding H9C2 cardiomyocytes to 3 ⁇ 40 2 to a final concentration of ⁇ ⁇ ⁇ Then, cultured at 37 ° C, 5% C0 2 cell culture incubator for 24 hours), the third group was H 2 0 2 + irisin group (adding irisin to H9C2 cardiomyocytes, adding 0 2 to final concentration after 30 minutes) ⁇ ⁇ ⁇ , then cultured in a 37 ° C, 5% C0 2 cell incubator for 24 hours), the model box was placed in an anoxic environment at 37 ° C for 16 hours of reoxygenation for 3 hours to form anoxic complex The oxygen model was then used to determine the LDH content using a kit and the optical density value was measured at a wavelength of 490 nm.
  • irisin has obvious ability to resist myocardial cell deficiency/reoxygenation injury.
  • Irisin promotes nuclear translocation of PPAR y after deficiency/reoxygenation, inhibits nuclear translocation of NF- ⁇ , and exerts inhibition of I/R myocardial inflammation and oxidative stress.
  • Immunization of H9C2 cardiomyocytes from the above control group, HR group and HR+irisin group Fluorescence staining detection specifically: aspirate the culture solution, wash once with PBS, add the fixative, fix for 30 minutes, remove the fixative, wash 3 times with PBS, treat with 0.3% methanol, and block the immunostaining blocking solution at room temperature.
  • the culture solution was aspirated, washed once with PBS, fixed solution, fixed for 15 minutes; washed three times with PBS, added to immunostaining blocking solution, blocked at room temperature for one hour; remove blocking solution, add NF-icB p65 antibody, 4 °C Incubate overnight, wash PBS 3 times; add anti-rabbit Cy3, incubate for 1 hour at room temperature, wash twice with PBS; add DAPI, stain at room temperature for 5 minutes, wash 3 times with PBS; add appropriate amount of anti-fluorescence quenching seal solution, cover
  • the slides were mounted under a fluorescence microscope and the results are shown in Fig. 17.
  • PPAR- ⁇ is mainly located in the cytoplasm, and the content of cytoplasmic NF- ⁇ is higher, while the content of nuclear NF- ⁇ is less.
  • HR group PPAR- ⁇ is present in both cytoplasm and nucleus. Expression, cytosolic IB content decreased significantly, nuclear NF- ⁇ B content increased; HR+irisin group (compared with HR group), PPAR- y mainly distributed in the nucleus, cytoplasmic protein 1 and NF The expression of - ⁇ increased and the content of nuclear NF- ⁇ decreased.
  • PPAR- ⁇ is normally distributed mainly in the cytoplasm.
  • caveolin-1 is decreased, which makes PPAR- ⁇ unable to effectively transfer to the nucleus to inhibit NF-icB activity.
  • NF- ⁇ B is normally in the cell.
  • NF- ⁇ B is combined into a complex, and the NF- ⁇ content is decreased due to lack/reoxygenation, which leads to an increase in NF- ⁇ nuclear translocation.
  • Iris Upregulation of caveolin-1 expression promotes PPAR- ⁇ translocation into the nucleus.
  • PPAR- ⁇ binds to NF-ic ⁇ in the nucleus to inhibit the transcriptional activity of its target gene associated with inflammatory factors; while irisin up-regulates ⁇ , making NF- ⁇ decreased to nuclear translocation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Endocrinology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurosurgery (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用,实验结果表明,鸢尾素能够减小缺血再灌注引起的心肌梗死面积和降低缺血再灌注引起的乳酸脱氢酶(LDH)、肌钙蛋白(cTnI)、肌酸激酶(CK)等心肌酶标志物的含量增加,同时降低心肌缺血再灌注引起的炎性反应,心肌细胞凋亡和氧化应激反应,并促进过氧化物酶体增殖物激活受体Y核移位和抑制核转录因子NF-κΒ核移位,从而减弱缺血再灌注引起的心肌结构损伤和负荷增加,因此能够用于预防和减弱心肌再灌注损伤,对治疗心肌缺血具有重要的临床意义。

Description

鸢尾素在制备预防心肌缺血再灌注损伤的药物 中的应用
技术领域
本发明属于医药领域,具体涉及鸢尾素在制备预防心肌缺血再灌 注损伤的药物中的应用。 背景技术 缺血心肌病是全球致死率最主要的疾病之一,严重危害着人们的 健康。 缺血性心肌病是由于冠状动脉硬化或者血栓造成的血管堵塞, 血流循环受阻或中断使得心肌氧和能量供应平衡被打破,心肌能量代 谢紊乱, 从而导致心肌梗塞、 心衰等组织病理损害。 目前克服缺血最 有效的治疗方法是重新疏通血流、 恢复血液供应, 包括球囊扩张、 动 静脉溶栓、 体外循环、 冠脉搭桥等, 即再灌注。 但是, 自从 I960年 第一次提出了心肌缺血再灌注损伤之后,这一难题就一直困扰着医学 工作者, 大量动物实验和临床结果表明, 再灌注虽然极大地改善了心 肌供血的问题,但是由于大量富含氧和其他营养物质的血液进入缺血 区, 反而会导致缺血时产生的组织损伤进一歩加剧, 引起心律失常、 心脏破裂、 心衰等并发症。 临床研究显示, 心肌缺血再灌注损伤在心 血管外科手术中非常常见, 其在冠脉搭桥早期死亡、 心肌梗死、 心脏 移植失败等情况中占着很大的比例。 因此, 如何预防和减弱心肌再灌 注损伤已成为重大的临床课题。
心肌缺血再灌注损伤的具体机制仍然不是很清楚。心肌缺血时导 致能量代谢不足, ATP耗竭, 再灌注过程中细胞内钙超载、 产生大量 氧自由基, 直接或间接破坏膜磷脂、 蛋白质、 DNA; 同时, 中性粒细 胞等炎症细胞的趋化、浸润以及炎症因子的产生和分泌在心肌再灌注 损伤中也起着重要作用, 这些炎症反应不仅直接损伤心肌组织, 还会 造成免疫性血管损伤。 但是, 通过清除自由氧(超氧化物歧化酶、 还 原性谷胱甘肽等)、 改善缺血组织代谢(如护心通、 万爽力等)、 添加 免疫抑制剂等防治心肌再灌注损伤在临床中应用的效果并不佳。 因 此,亟需一种有效而副作用小的治疗方法或药剂来实现预防和治疗心 肌缺血再灌注损伤。
过氧化物增殖激活受体协同激活子 (PGC-l ci ) 是一种转录共激 活因子, 介导了很多能量代谢有关的生物过程, 尤其是在多种细胞进 行的调节线粒体生物合成和氧化代谢。 2012年, BostrSm发现运动促 使骨骼肌表达 PGC-1 α 增强,而 PGC-1 α 又使纤维连结蛋白 III型域 包含蛋白 5 (FNDC5 )水平上升, FNDC5是一种全长 196氨基酸的纤维 连结蛋白 III型域包含蛋白的跨膜蛋白,是一种强有力的诱导棕色脂 肪形成的诱导剂, 其水解片段可分泌入血进入血液循环, FNDC5在心 肌的含量很丰富, 其对心脏的功能影响目前尚不清楚, 并且临床研究 发现在心衰患者中 FNDC5表达有所下降。 FNDC5切除 Ν端信号肽后在 GLU142处被裂解形成约 110个氨基酸的多肽, 该多肽被命名为鸢尾 素 (Irisin)。 鸢尾素是否对心肌缺血再灌注损伤有影响目前仍然未 知。 发明内容 有鉴于此,本发明的目的之一在于提供鸢尾素在制备预防心肌缺 血再灌注损伤的药物中的应用。
为实现上述发明目的, 提供如下技术方案:
鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用。其中鸢 尾素的氨基酸序列如下 SEQ ID NO. 1所示, 具体为:
Asp Ser Pro Ser Ala Pro Val Asn Val Thr Val Thr Val Arg His Leu Lys Ala Asn Ser Ala Val Val Ser Trp Asp Val Leu Glu Asp Glu Val Val l ie Gly Phe Ala l ie Ser Gin Gin Lys Lys Asp Val Arg Met Leu Arg Phe l ie Gin Glu Val Asn Thr Thr Arg Ser Cys Ala Leu Trp Asp Leu Glu Glu Asp Thr Glu Tyr l ie Val His Val Glu Ala l ie Ser lie Gin Gly Glu Ser Pro Ala Ser Glu Pro Val Leu Phe Lys Thr Pro Arg Glu Ala Glu Lys Met Ala Ser Lys Asn Lys Asp Glu Val Thr Met Lys Glu
进一歩,鸢尾素在制备预防心肌缺血再灌注引起心肌梗死的药物 中的应用。
进一歩,鸢尾素在制备预防心肌缺血再灌注引起心肌酶标志物升 高的药物中的应用。
更进一歩, 所述心肌酶标志物为乳酸脱氢酶、肌钙蛋白或肌酸激 酶。
进一歩,鸢尾素在制备预防肌缺血再灌注引起炎性反应的药物中 的应用。 进一歩,鸢尾素在制备预防心肌缺血再灌注引起氧化应激的药物 中的应用。
进一歩,鸢尾素在制备预防心肌缺血再灌注引起心肌细胞凋亡的 药物中的应用。
进一歩, 鸢尾素在制备促进过氧化物酶体增殖物激活受体 Y 核 移位的药物中的应用。
进一歩, 鸢尾素在制备抑制核转录因子 NF- ic B核移位的药物中 的应用。
本发明的有益效果在于:本发明公开了鸢尾素在制备预防心肌缺 血再灌注损伤的药物中的应用, 通过构建 SD大鼠心肌缺血再灌注模 型, 探究鸢尾素对缺血再灌注引起的心脏功能障碍的作用影响, 通过 实验证明了外源性鸢尾素能够明显减弱缺血再灌注引起的心肌梗死 面积扩大和心肌酶谱标志物(cTnI、 LDH和 CK) 的释放, 抑制缺血再 灌注引起的左心室射血分数的下降和收缩、舒张末期容积的上升, 因 此鸢尾素能够减弱缺血再灌注引起的心肌结构损伤和负荷增加; 此 夕卜, 鸢尾素明显降低了缺血再灌注引起的心肌细胞凋亡、 炎症因子合 成和释放、 炎症细胞浸润以及氧化应激, 进一歩证明了鸢尾素抵抗心 肌缺血再灌注损伤的作用;本发明还通过体外 H9C2心肌细胞实验(包 括缺 /复氧和 02处理), 模拟体内心肌缺血再灌注, 探讨鸢尾素对心 肌细胞缺 /复氧损伤的作用和影响, 体外实验与体内实验结果相似, 即外源性的鸢尾素有效抑制缺 /复氧引起的心肌细胞活力下降, 减少 缺 /复氧引起的心肌细胞 LDH的释放, 并且呈剂量依赖的关系; 通过 免疫荧光实验表明, 当心肌细胞缺 /复氧时, 进入心肌细胞胞浆的鸢 尾素增多, 加入过量外源性的鸢尾素后, 心肌细胞的 DNA凝集现象明 显减弱; 鸢尾素对 02处理的心肌细胞的影响与前者相似; 这些结果 证明了鸢尾素确实具有抵抗心肌细胞缺 /复氧损伤的作用。
本发明还对鸢尾素抵抗缺血再灌注损伤的部分信号机制作了研 究, 结果表明在缺血再灌注的心肌细胞中, 鸢尾素促进 PPAR Y从胞 浆向胞核的转位而抑制 NF- ic B从胞浆向胞核的转位; 从而证实了鸢 尾素部分通过 PPAR Y发挥抵抗心肌细胞损伤的作用; 同时本发明对 鸢尾素在心肌细胞中是怎么影响 PPAR Y 的转位也做了研究, 当加入 过量 Nystatin后, 鸢尾素抵抗心肌缺氧损伤的作用明显下降, 鸢尾 素可能部分通过脂筏进入细胞内调节 PPAR γ及 NF- ic B而发挥作用; 而脂筏的主要构成成分为小窝蛋白 1, 是一种重要的支架蛋白, 因此 鸢尾素可能会引起的小窝蛋白 1上调,鸢尾素可能部分通过小窝蛋白 1促进 PPAR Y 的核转位抑制 NF- ic B核转位, 从而发挥保护作用。
本发明第一次发现鸢尾素可以用于预防和治疗心肌缺血再灌注 损伤(心梗面积扩大, 心肌标志物释放增加, 心肌负荷增加, 炎症反 应、氧化应激和凋亡增加), 抑制炎性反应可以通过以下的机制解释: 通过促进 PPARs向核移位而抑制了 NF- κ B相关的炎性因子表达, 减 少了炎症细胞对组织的浸润, 明显降低了再灌注后的炎性反应。本发 明首次提出并证明了鸢尾素具有抵抗组织器官缺血再灌注损伤的作 用, 不仅仅拓宽了鸢尾素的研究和应用, 同时也为预防和治疗缺血再 灌注损伤提供了新的靶点和视野。 由于鸢尾素是人体自身的分泌蛋 白, 其所带来的副作用相对较小, 因此可应用于药品和保健品之中。 附图说明 本发明的进一歩特点在下面的图示中进行了更加全面的描述: 图 1为 TTC染色法测量心肌缺血再灌注梗死面积的结果 (*表示 与对照组比较, #表示与 I/R组比较, P〈0.05, n=12) 。
图 2为心肌缺血再灌注心肌酶谱表达结果(A: cTnl表达结果; B: LDH表达结果; C: CK表达结果, *表示与对照组比较, #表示与 I/R 组比较, P〈0.05, n=12) 。
图 3为 irisin对心肌缺血再灌注的影响(A: irisin对心肌缺血 再灌注的超声图片; B: 为左心室射血分数测量结果, C: 左心室舒张 末容积; D: 左心室收缩末容积; *表示与对照组比较, #表示与 I/R 组比较, P〈0.05, n=12) 。
图 4为不同浓度鸢尾素对心肌缺血再灌注心肌酶谱表达结果 (A: cTnl表达结果; B: LDH表达结果; C: CK表达结果, *表示与对照组 比较, #表示与 I/R组比较, P〈0.05, n=12) 。
图 5为左心室射血分数测量结果。
图 6为缺血前 (30min) 和缺血后使用鸢尾素对心肌缺血再灌注 损伤的影响(A: cTnl表达结果; B: LDH表达结果; C: CK表达结果; *表示与对照组(control)比较, #表示与 I/R组比较, P〈0.05, n=13)。
图 7为 TUNEL染色法测量心肌凋亡的结果。
图 8为凋亡蛋白 Bcl-2、 Bax和 caspase-3的表达结果。
图 9为凋亡蛋白 caspase-3活性检测结果。 图 10为缺血再灌注后的氧化应激指示检测结果 (A: MP0检测结 果; B: MDA检测结果; C: SOD检测结果) 。
图 11为血浆炎性因子生成的测量结果(A: TNF- α 检测结果; B: IL-6检测结果) 。
图 12为心肌组织炎性因子含量的测量结果(A: TNF- α 检测结果; B: IL-6检测结果) 。
图 13为免疫荧光技术测定鸢尾素对 H9C2心肌细胞缺 /复氧的影 响。
图 14为 Irisin对 H9C2心肌细胞 HR后细胞活力和 LDH测量结果 (A: 细胞活力; B: LDH测量结果) 。
图 15为 (A: 免疫荧光技术测定鸢尾素及鸢尾素与网格蛋白抑制 剂介导胞吞途径 CPZ、 脂筏介导胞吞途径抑制剂 Nystatin或巨胞吞 抑制剂 DMA组合物对缺 /复氧 H9C2心肌细胞的影响; B:细胞活力; C: LDH测量结果) 。
图 16为 Irisin对 02处理的 H9C2心肌细胞的影响 (A: LDH测 量结果; B: 细胞活力) 。
图 17为免疫荧光技术结果图 (A : 鸢尾素对 PPAR Y核移位的影 响; B: 鸢尾素对 NF- κ Β核移位的影响) 。
图 18为蛋白质印迹法测量 PPAR Y、 NF- IC B核移位的结果。 具体实施方式 下面将结合附图, 对本发明的优选实施例进行详细的描述。 实施 例中未注明具体条件的实验方法, 通常按照常规条件, 例如分子克隆 实验指南 (第三版, J. 萨姆布鲁克等著) 中所述的条件, 或按照制 造厂商所建议的条件。
实验所用的动物是由第三军医大学第三附属医院实验动物中心 提供的重 250-260g的 SD大鼠,实验过程中的手术操作符合大坪医院 实验动物协会的规定。
以下实施例采用 SPSS 12.0统计分析软件对实验数据进行分析, 所有数据以 "均值士标准差"表示, 采用 AN0VA (单因素方差分析) 组间两两对比分析差异, P〈0.05具有显著统计学意义。
一、 鸢尾素有效改善心肌缺血再灌注引起的心功能障碍 将 SD大鼠随机分为五组, 分别为对照组(假手术处理); 缺血再 灌注 (IR) 组; 缺血再灌注 +鸢尾素组 (IR+ Irisin); 缺血再灌注 + 鸢尾素和抗体复合物 (1:5) 组 (IR+ Irisin/Ab); 缺血再灌注 +高温 失活处理的鸢尾素组 (IR+ Irisin (HI))。 将缺血再灌注 +鸢尾素组; 缺血再灌注 +鸢尾素和抗体复合物 (1:5) 组; 缺血再灌注 +高温失活 处理的鸢尾素组手术前 30分钟分别注射 5 g/kg鸢尾素, 5 g/kg 鸢尾素和抗体复合物 (质量浓度比为 1:5) 和 5 μ g/kg高温失活处理 的鸢尾素, 然后对所有实验 SD大鼠腹腔内注射 50mg/kg的戊巴比妥 钠进行麻醉, 并对 SD大鼠做左侧胸廓切开术, 结扎冠状动脉的左前 降支 30分钟, 之后松开结扎处进行缺血再灌注, 同时对缺血再灌注 + 鸢尾素组; 缺血再灌注 +鸢尾素和抗体复合物(1:5)组; 缺血再灌注 +高温失活处理的 SD大鼠分别注射 5 μ g/kg鸢尾素, 5 μ g/kg鸢尾素 和抗体复合物 (质量浓度比为 1:5) 和 5μ g/kg高温失活处理的鸢尾 素。 手术期间, 大鼠一直被放置在保温板上保持体温 (37°C)。 手术之 后, 切口被缝合, 提供足够的能量和水以便大鼠恢复。 恢复灌注 24 小时之后, 收集血液和心肌组织测量心肌梗死面积和心肌酶谱表达, 从而了解鸢尾素对心肌缺血再灌注引起的心功能障碍的作用及影响。
梗死面积测量: 首先取实验 SD大鼠心脏, 然后用生理盐水溶液 冲洗掉冠状动脉的血液, 之后将左前降支结扎并从颈静脉处注射 1% 的伊凡斯兰。 再将心脏横切成 5片, 将这些横切片在 37°C环境中用 1%TTC溶液染色 15分钟, 通过 Image J测定梗死面积, 结果如图 1 所示。 由图 1可知, 缺血再灌注 +鸢尾素组的梗死面积明显小于其它 实验组, 表明鸢尾素可能具有降低缺血再灌注损伤的效果。
心肌酶谱测量: 收集实验 SD大鼠血液, 在转速为 3000g条件下 离心 10分钟,收集血清然后置于冰浴中以供使用。分别使用 Beckman Coulter AU 临床生化试剂盒和免疫检测试剂盒测定样品中乳酸脱氢 酶(LDH)和肌钙蛋白 (cTnI )、 肌酸激酶(CK)含量, 检测方法按试 剂盒说明书进行,检测结果如图 2所示。由图 2可知,与对照组相比, IR组的 LDH、 cTnl和 CK的表达明显增高, 而注射鸢尾素后极大地降 低了 LDH、 cTnl和 CK的表达量。 当使用的是鸢尾素与其抗体的复合 物或者是高温失活处理的鸢尾素时, 其对心肌的保护作用几乎消失。
心脏 B超的检测心功能:将实验 SD大鼠麻醉后固定于操作板上, 使用 76( Hz的超声探头, 测定左室长轴切面情况, 然后根据超声检 测结果计算左心室射血分数 (LVEF)、 左心室舒张末容积 (LVEDV)、 左心室收缩末容积 (LVESV) , 每只大鼠分别测定 3 次, 取其平均值 并计算标准差, 其结果如图 3所示。结果显示再灌注后左心室射血分 数显著下降, 而舒张末和收缩末的容积显著升高, 但使用鸢尾素后这 些变化有了明显的减小; 使用鸢尾素与其抗体复合物 (1 : 5 ) 或高温 失活处理的鸢尾素时该作用几乎消失。 由此可见, 适当浓度的鸢尾素 可以有效改善心肌缺血再灌注引起的心功能障碍,而且发挥作用的是 鸢尾素的功能成分而不是结构成分。
按照与缺血再灌注 +鸢尾素组相同的方法进行操作, 区别在于分 别注射 0. 1 μ g/kg, 0. 5 μ g/kg, 1 μ g/kg和 5 μ g/kg鸢尾素, 然后使 用与上述相同的方法测定实验 SD大鼠 LDH、 cTnl和 CK含量, 结果如 图 4所示。 由图 4可知, 灌注鸢尾素后能够降低缺血再灌注 SD大鼠 LDH、 cTnl和 CK含量, 并呈现剂量依赖关系, 鸢尾素浓度越高, 改 善作用越明显, 5 μ g/kg鸢尾素作用最强。
将实验 SD大鼠制备心肌缺血模型, 并于手术前 30分钟 (pro) 或手术后 (post ) 注射 5 μ g/kg鸢尾素, 同时以假手术模型为对照, 然后测定左心室射血分数和心肌酶谱。左心室射血分数测量结果如图 5所示,心肌酶谱结果如图 6所示。由图 5和图 6可知,缺血前(30min) 和缺血后使用鸢尾素都可以较明显地降低缺血再灌注引起的心肌梗 死面积、 乳酸脱氢酶、 肌钙蛋白、 肌酸激酶的上升, 其中缺血前施药 效果更加明显, 证明了鸢尾素既可用于预防也可用于治疗再灌注损 二、鸢尾素降低心肌缺血再灌注引起的炎性反应、氧化应激和凋 TUNEL染色法测定心肌调亡, 具体为: 利用原位细胞死亡探测盒 (购自罗氏生物科技有限公司) 分别对对照组 (假手术处理), 缺血 再灌注 (IR) 组和缺血再灌注 +鸢尾素组 (IR+ Irisin) 实验 SD大鼠 的心脏切片, 然后将组织切片置于 65°C环境中加热水化, 之后用二 甲苯清洗浸泡脱蜡, 再依次用体积分数为 100%, 95%, 80%, 70%的酒 精进行再水化,然后将切片置于含有 20 μ g/mL蛋白激酶 K的溶液中, 在 37°C条件下处理 60分钟后将切片置于质量分数为 1%的三硝基甲苯 X-100 中处理 8分钟, 然后将切片用 PBS溶液冲洗两次, 最后加入 50 μ L的 TUNEL反应混合物, 将切片在 37°C避光的水浴箱中孵育 60 分钟, 核用 DAPI染色, 其结果如图 7所示。 由图 7可知, 与对照组 相比, IR组在 200 X的视野中测得的 TUNEL阳性细胞数显著升高, 但 是使用了鸢尾素之后下降非常明显,表明鸢尾素具有抑制细胞凋亡的 作用。
利用蛋白质印迹检测凋亡蛋白 Bcl-2、 Bax和 caspase-3的表达 量, 具体为: 分别收集对照组(假手术处理), 缺血再灌注(I/R) 组 和缺血再灌注 +鸢尾素组实验 SD大鼠的梗死的心肌组织,匀浆后分离 上清, 取 50mg的样品进行聚丙烯酰胺凝胶电泳, 再转移到 PVDF膜上 并在含有 5% (体积百分比) 无脂牛奶的 TBS溶液中封闭 1小时, 然 后将 PVDF膜分别在稀释浓度为 1 : 500 的 Bcl-2抗体、 1 : 500的 Bax 抗体、 1 : 500的 caspase-3抗体或 1 : 1000的 β 肌动蛋白抗体中 4°C 过夜培养, 然后用 TBS溶液将 PVDF膜冲洗三次, 最后将膜置于稀释 浓度为 1 : 10000的羊抗兔 IgG二抗中室温培养 1小时, 染色观察, 结 果如图 8所示。 由图 8可知, 与对照组相比, IR组 caspase-3和 BAX 凋亡蛋白表达量明显上升, Bcl-2表达量下降, 但是使用了鸢尾素之 后 caspase-3和 BAX表达量明显下降, 但 Bcl_2表达量反而升高, 上 述结果表明了鸢尾素具有明显的抑制凋亡的作用。
检测凋亡蛋白 caspase-3的活性,具体为: 按照每 10mg组织加入 100 裂解液, 在冰浴上用玻璃匀浆器匀浆, 然后将匀浆液转移到 1. 5mL离心管中, 冰浴裂解 5分钟, 然后在 4°C、 16, OOOg条件下离心 10 分钟, 离心后将上清转移到冰浴预冷的离心管中。取样品用 Bradford 法测定蛋白浓度, 使每 10 待测样品中含有 10 蛋白, 样本测定加 入待测缓冲液、 样本蛋白和 Ac-DEVD-pNA (2mM)加入 37°C孵育 60分钟; 空白对照加入待测缓冲液和 Ac-DEVD-pNA (2mM), 发现颜色变化比较 明显时即可测定 405nm条件下的吸光度。 样品 A4Q5扣除空白对照的 A4Q5, 即为样品中 caspase 3催化产生的 pNA产生的吸光度, 计算结果如图 9 所示。 由图 9可知, 与对照组相比, IR组 caspase-3活性升高, 但使用 鸢尾素后 caspase-3明显降低, 此结果同样表明了鸢尾素具有明显的 抑制凋亡的作用。
ELISA实验检测缺血再灌注后的氧化应激指标 (过氧化物酶 MP0、 丙二酸 MDA和超氧化物歧化酶 SOD ) , 具体为: 分别取对照组(假手术 处理) , 缺血再灌注(I/R )组和缺血再灌注 +鸢尾素组 SD大鼠的心脏 组织, 在预冷的组织裂解缓冲液中用研磨器混匀, 然后在 4°C、 1600g 条件下离心 10分钟, 取上清液用于检测 MP0,MDA和 S0D含量(检测试剂 盒由上海碧云天生物技术有限公司提供) , 检测结果如图 10所示。 按 照上述准备组织样品, 用 R&D Systems公司的 ELISA试剂盒检测血浆和 心肌组织中炎性因子含量, 血浆中炎性因子检测结果如图 11所示, 心 肌组织中炎性因子检测结果如图 12所示。
由图 10〜12可知, MP0、 IL-6和 TNF- α 的测量结果中, IR组炎 性因子水平明显比对照组要高得多,而使用鸢尾素后有效地降低了氧 化应激指标和炎性因子的水平;反映了鸢尾素对抑制炎性和氧化应激 反应的作用。 MDA测量结果和前面的相似, 而 SOD测量结果中, IR组 的水平明显下降, 使用鸢尾素后则大幅度的升高。这些结果同样表明 了鸢尾素可以明显抑制再灌注引起的炎性反应和氧化应激反应。
三、 鸢尾素减少缺 /复氧和 02引起的心肌细胞损伤
H9C2心肌细胞系放置于 DMEM溶液中, 其中含有体积分别为 10% 的高温灭活的 FBS, lOOU/mL青霉素 G, 100mg/mL链霉素和 2mM的 L- 谷氨酰胺。 将培养细胞分为 3组: 一组为对照组, 不做任何处理, 第 二组为 HR组(通入 N2), 第三组为 HR+irisin组(通入 N2, 并在通入 N2处理前 30分钟加入不同浓度的鸢尾素于细胞培养液中)。 将 H9C2 心肌细胞培养板置于缺 /复氧模型盒中, 盒盖上有两个孔, 一孔接通 空气, 另一孔通入过量 N2使模型盒内排尽空气后, 立即密闭两孔; 将模型盒放到 37°C缺氧环境中进行缺复 16小时复氧 3小时从而形成 缺氧复氧模型。 然后用免疫荧光技术测定对照组和缺 /复氧组鸢尾素 对 H9C2心肌细胞缺 /复氧的影响, 结果如图 13所示。 由图 13可知, 缺 /复氧时心肌细胞的染色质凝集明显要强得多, 且有更多的鸢尾素 会向胞浆聚集, 这一现象说明了鸢尾素在心肌细胞缺 /复氧时可能参 与细胞修复,也解释了心肌缺血再灌注后血液中鸢尾素的含量会下降 这一现象。
将上述 3组的实验 H9C2心肌细胞用 MTT法测定细胞活力, 具体 方法为: 将细胞混合液去上清, 用 PBS溶液清洗细胞 3次, 在细胞培 养板各孔加入 200 5%的噻唑兰溶液培养 4小时, 培养结束后, 小 心移去孔内的培养液, 再各加入 150 L的 DMS0溶液, 轻微震荡 10 分钟, 最后将该孔板用酶标仪在 490nm波长处进行检测光密度值, 结 果如图 14A所示。同时利用试剂盒测量 LDH含量,结果如图 14B所示。 结果表明, 当心肌细胞在正常的培养条件下, 鸢尾素对细胞活力并没 有明显的影响; 而在缺 /复氧的情况下, 可看到 0D值明显减小, 但使 用鸢尾素后能够某种程度恢复 0D值, 并且该作用与鸢尾素呈剂量依 赖关系, 当鸢尾素的剂量超过 500ng/mL后, 其能力最强, 0D值与细 胞活力近似成正比, 因此, 说明鸢尾素可以增强心肌细胞活力, 抵抗 缺 /复氧引起的细胞活力减退。 由于心肌缺 /复氧时, 胞内的 LDH释放 到保外, 引起 LDH浓度增高; 从 14B可以看出, HR组的 LDH浓度远 远高于对照组,而使用了鸢尾素后 LDH浓度降低,呈现剂量依赖关系, 使用 500ng/mL鸢尾素时效果最明显。
将 HR+irisin组再分为 4个亚组: 一组为 HR+irisin, 第二组为 HR+irisin+CPZ (网格蛋白抑制剂), 第三组为 HR+irisin+Nystatin (脂筏抑制剂), 第四组为 HR+irisin+DMA (巨胞吞抑制剂), 并利用 免疫荧光技术测定鸢尾素对 H9C2心肌细胞缺 /复氧的影响(图 15A), LDH含量 (图 15B) 和 490nm波长处的光密度值 (图 15C)。 由结果可 见, HR组的 OD值与对照组相比明显减低了, 使用鸢尾素之后 0D值 水平明显上调, 加入 CPZ和 DMA后对鸢尾素抑制 0D值下调的作用无 明显影响,而加入 Nystatin之后几乎完全阻断了鸢尾素抑制 0D值下 调的能力。在 LDH浓度水平测定结果中, 同样 CPZ和 DMA对鸢尾素抑 制缺 /复氧引起的 LDH浓度升高的能力无明显作用,而 Nystatin则很 大程度地抑制了鸢尾素的作用。鸢尾素对 02处理的心肌细胞的影响 与缺 /复氧结果相似。这两部分的结果说明鸢尾素抵抗缺 /复氧损伤的 作用部分由脂筏介导的。
按照与上述相同的方法培养 H9C2心肌细胞, 然后分为 3组, 一 组为对照组, 不做任何处理, 第二组为 02组 (将 H9C2心肌细胞加 入 ¾02至终浓度为 ΙΟΟ μ Μ, 然后于 37°C、 5% C02细胞培养箱中培养 24小时),第三组为 H202+irisin组 (向 H9C2心肌细胞中加入鸢尾素, 30分钟后加入 02至终浓度为 ΙΟΟ μ Μ, 然后于 37°C、 5% C02细胞培 养箱中培养 24小时), 将模型盒放到 37°C缺氧环境中进行缺复 16小 时复氧 3小时从而形成缺氧复氧模型,然后利用试剂盒测定 LDH含量, 并在 490nm波长处检测光密度值, 结果如图 16所示。 由图 16可知, 鸢尾素对 02处理的心肌细胞的影响与缺 /复氧结果相似。从 0D值和 LDH浓度这两方面来看, 鸢尾素具有明显的抵抗心肌细胞缺 /复氧损 伤的能力。
四、 鸢尾素促进缺 /复氧后 PPAR y 的核移位而抑制 NF- κ Β的核 移位, 发挥抑制 I/R心肌炎症、 氧化应激作用
将上述对照组、 HR组和 HR+irisin组的 H9C2心肌细胞采用免疫 荧光染色检测, 具体为: 吸除培养液,用 PBS洗涤 1次,加入固定液, 固定 30分钟, 移去固定液, PBS洗涤 3次, 用 0.3%的甲醇处理后, 免疫染色封闭液室温封闭一小时,移去封闭液,按 1: 50加入 PPAR- y 一抗, 4°C孵育过夜,之后 PBS洗涤 3次, 再加入 TRITC标记二抗(羊 抗兔), 37°C孵育 40min; 再用 DAPI显色, PBS洗后常规脱水, 甘油 封片,激光共聚焦观察。吸除培养液,用 PBS洗涤 1次,加入固定液, 固定 15分钟; PBS洗涤 3次, 加入免疫染色封闭液, 室温封闭一小 时; 移除封闭液, 加入 NF-icB p65抗体, 4°C孵育过夜, PBS洗涤 3 次; 加入抗兔 Cy3, 室温孵育 1小时, PBS洗涤 2次; 加入 DAPI, 室 温染色 5分钟, PBS洗涤 3次; 滴加适当量的抗荧光淬灭封片液, 盖 玻片封片后荧光显微镜下观察, 结果如图 17可知。 由图可知, 对照 组中 PPAR-γ 主要位于细胞质中, 胞浆 NF-κΒ的含量较高, 而胞核 NF-κΒ的含量较少; HR组中 PPAR-γ 在胞浆和胞核均有表达, 胞浆 I B的含量大幅度减少, 胞核 NF- κ B的含量增高; HR+irisin组中 (与 HR组相比), PPAR- y 主要分布在细胞核, 胞浆小窝蛋白 1 和 NF-κΒ表达增加, 胞核 NF-κΒ的含量降低。
同时用蛋白质印迹法测量对照组、 HR组和 HR+irisin组中细胞 核和细胞质中 PPAR γ和 NF-κ B表达情况,结果如图 18所示。 PPAR-γ 正常情况下主要分布于细胞质, 发生缺 /复氧时, 由于小窝蛋白 1表 达下降, 使得 PPAR-γ 不能有效转位于细胞核抑制 NF-icB 活性; NF- κ B正常情况下在胞浆中与 NF- κ B结合成复合体, 由于缺 /复氧 使得 NF-κΒ含量下降, 从而导致 NF- κΒ向核转位增加。表明鸢尾素 上调小窝蛋白 1表达从而促进 PPAR- γ 向核转位, PPAR-γ在细胞核 内与 NF-ic Β结合抑制其与炎性因子相关靶基因的转录活性; 同时鸢 尾素上调 ΙκΒ, 使得 NF-κΒ向核转位减少。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而 非限制, 尽管通过上述优选实施例已经对本发明进行了详细的描述, 但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各 样的改变, 而不偏离本发明权利要求书所限定的范围。

Claims

权利要求书
1. 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用。
2. 根据权利要求 1所述的应用, 其特征在于: 鸢尾素在制备预防心肌 缺血再灌注弓 I起心肌梗死的药物中的应用。
3. 根据权利要求 1所述的应用, 其特征在于: 鸢尾素在制备预防心肌 缺血再灌注引起心肌酶标志物升高的药物中的应用。
4. 根据权利要求 3所述的应用, 其特征在于: 所述心肌酶标志物为乳 酸脱氢酶、 肌钙蛋白或肌酸激酶。
5. 根据权利要求 1所述的应用, 其特征在于: 鸢尾素在制备预防肌缺 血再灌注引起炎性反应的药物中的应用。
6. 根据权利要求 1所述的应用, 其特征在于: 鸢尾素在制备预防心肌 缺血再灌注引起氧化应激的药物中的应用。
7. 根据权利要求 1所述的应用, 其特征在于: 鸢尾素在制备预防心肌 缺血再灌注引起心肌细胞凋亡的药物中的应用。
8. 根据权利要求 1所述的应用, 其特征在于: 鸢尾素在制备促进过氧 化物酶体增殖物激活受体 Y核移位的药物中的应用。
9. 根据权利要求 1所述的应用, 其特征在于: 鸢尾素在制备抑制核转 录因子 NF- ic B核移位的药物中的应用
PCT/CN2014/080938 2013-11-16 2014-06-27 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用 WO2015070619A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/035,646 US9682121B2 (en) 2013-11-16 2014-06-27 Application of irisin in myocardial ischemia reperfusion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310572068.2 2013-11-16
CN201310572068.2A CN103585620B (zh) 2013-11-16 2013-11-16 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用

Publications (1)

Publication Number Publication Date
WO2015070619A1 true WO2015070619A1 (zh) 2015-05-21

Family

ID=50076073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080938 WO2015070619A1 (zh) 2013-11-16 2014-06-27 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用

Country Status (3)

Country Link
US (1) US9682121B2 (zh)
CN (1) CN103585620B (zh)
WO (1) WO2015070619A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160256522A1 (en) * 2015-03-05 2016-09-08 National Sun Yat-Sen University Method for enhancing wound healing

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103585620B (zh) * 2013-11-16 2014-11-19 中国人民解放军第三军医大学第三附属医院 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用
CN104725500A (zh) * 2015-03-11 2015-06-24 广州健坤生物科技有限公司 一种具有鸢尾素结构域类似功能的蛋白、包含该蛋白的组合物及其用途
CN104673802A (zh) * 2015-03-12 2015-06-03 山东大学第二医院 一种编码irisin蛋白的核酸分子以及利用该核酸分子高效表达irisin蛋白的方法
CN106349356A (zh) * 2016-08-31 2017-01-25 广州健坤生物科技有限公司 一种具有鸢尾素功能结构的蛋白及其应用
CN108635571B (zh) * 2018-07-19 2021-10-22 西安交通大学医学院第一附属医院 鸢尾素(irisin)在制备预防及治疗重症急性胰腺炎药物中的应用
CN110101845B (zh) * 2019-05-24 2022-02-25 北京大学 鸢尾素在制备防治术后认知功能障碍以及血脑屏障受损所介导脑病的药物中的应用
CN113559273B (zh) * 2021-07-23 2022-06-14 中国人民解放军空军军医大学 一种静脉注射用成体干细胞的预处理方法、成体干细胞注射液及应用
CN114773447B (zh) * 2022-04-06 2023-06-06 华中科技大学同济医学院附属协和医院 一种etge多肽在制备治疗多器官缺血再灌注损伤药物中的应用
CN114917220A (zh) * 2022-05-30 2022-08-19 武汉大学 鸢尾苷元在制备防治心肌重构药物中的应用
CN116139117A (zh) * 2022-05-31 2023-05-23 西南医科大学附属医院 衣康酸及其衍生物在防治阿霉素诱导的心脏毒性中的应用
CN114886910B (zh) * 2022-06-21 2023-09-22 上海市同仁医院 Linc00938在神经细胞凋亡中的应用
CN115337401A (zh) * 2022-08-25 2022-11-15 天津医科大学 抑制脂氧合酶表达量和/或活性的物质在降低心脏缺血再灌注损伤中的应用
CN115684608B (zh) * 2022-11-03 2024-01-09 大连珍奥药业股份有限公司 一种靶向心肌肽治疗心肌缺血再灌注损伤的代谢标志物及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092111A1 (de) * 2001-05-15 2002-11-21 Bionorica Ag Verwendung von extrakten und zubereitungen aus irisgewächsen und tectorigenin als arzneimittel
CN103585620A (zh) * 2013-11-16 2014-02-19 中国人民解放军第三军医大学第三附属医院 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964948B2 (en) * 1999-06-25 2005-11-15 Xoma Technology Ltd. Therapeutic peptide-based constructs derived from Domain II of bactericidal/permeability-increasing protein
US20100286136A1 (en) * 2009-05-08 2010-11-11 Simon Jones Dihydronaphthyridinyl and related compounds for use in treating ophthalmological disorders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092111A1 (de) * 2001-05-15 2002-11-21 Bionorica Ag Verwendung von extrakten und zubereitungen aus irisgewächsen und tectorigenin als arzneimittel
CN103585620A (zh) * 2013-11-16 2014-02-19 中国人民解放军第三军医大学第三附属医院 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LECKER, S.H. ET AL.: "Expression of the Irisin Precursor FNDC5 in Skeletal Muscle Correlates With Aerobic Exercise Performance in Patients With Heart Failure", CIRCULATION HEART FAILURE, vol. 5, 20 September 2012 (2012-09-20), pages 812 - 818 *
YANG, YEYI ET AL.: "Research Process of Myocardial Ischemia Reperfusion Injury Preservative Agent", PRACTICAL PREVENTIVE MEDICINE, vol. 15, no. 02, 30 April 2008 (2008-04-30), pages 616 - 618 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160256522A1 (en) * 2015-03-05 2016-09-08 National Sun Yat-Sen University Method for enhancing wound healing

Also Published As

Publication number Publication date
US20160296598A1 (en) 2016-10-13
CN103585620B (zh) 2014-11-19
CN103585620A (zh) 2014-02-19
US9682121B2 (en) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2015070619A1 (zh) 鸢尾素在制备预防心肌缺血再灌注损伤的药物中的应用
Arroba et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice
Yao et al. MG53 permeates through blood-brain barrier to protect ischemic brain injury
Lu et al. Melatonin suppresses microglial necroptosis by regulating deubiquitinating enzyme A20 after intracerebral hemorrhage
Tan et al. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling
Guan et al. Puerarin ameliorates retinal ganglion cell damage induced by retinal ischemia/reperfusion through inhibiting the activation of TLR4/NLRP3 inflammasome
Xiong et al. Irisin attenuates sepsis-induced cardiac dysfunction by attenuating inflammation-induced pyroptosis through a mitochondrial ubiquitin ligase-dependent mechanism
Guggilam et al. In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure
Li et al. Ferulic acid protects cardiomyocytes from TNF-α/cycloheximide-induced apoptosis by regulating autophagy
EP3375450B1 (en) Composition for preventing or treating an ischemic cerebrovascular disease through nasal administration
Hu et al. Protective effects of Xinji′ erkang on myocardial infarction induced cardiac injury in mice
Zhou et al. Effects of kallistatin on oxidative stress and inflammation on renal ischemia-reperfusion injury in mice
Li et al. Zerumbone, a humulane sesquiterpene from Syringa pinnatifolia, attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice
Jia et al. The nanoformula of zoledronic acid and calcium carbonate targets osteoclasts and reverses osteoporosis
Geng et al. Rip 1-dependent endothelial necroptosis participates in ischemia-reperfusion injury of mouse flap
CN104640559A (zh) 用于预防或治疗糖尿病性血管渗漏诱导的疾病的含c-肽的组合物
Mei et al. GDF11 protects against glucotoxicity-induced mice retinal microvascular endothelial cell dysfunction and diabetic retinopathy disease
Tan et al. Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies
Xie et al. Uncaria Rhynchophylla attenuates angiotensin Ⅱ-induced myocardial fibrosis via suppression of the RhoA/ROCK1 pathway
EP3119414B1 (en) Ostreolysin for use in the treatment of overweight and obesity
Scroyen et al. Effect of fumagillin on adipocyte differentiation and adipogenesis
KR20170036928A (ko) IKKε 억제제를 유효성분으로 함유하는 만성 부비동염 예방 또는 치료용 약학조성물
KR20180048395A (ko) 담즙산을 포함하는 허혈성 재관류 손상의 예방 또는 치료용 약학적 조성물
Ma et al. Danqi soft caspule prevents atrial fibrillation by ameliorating left atrial remodeling through inhibiting cardiac fibroblasts differentiation and function
WO2007094193A1 (ja) 血管新生阻害剤及び血管新生を伴う疾病に対する予防又は治療剤並びに食品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15035646

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862685

Country of ref document: EP

Kind code of ref document: A1