WO2015068866A1 - Organic substance deposition device and organic substance deposition method using same - Google Patents

Organic substance deposition device and organic substance deposition method using same Download PDF

Info

Publication number
WO2015068866A1
WO2015068866A1 PCT/KR2013/009960 KR2013009960W WO2015068866A1 WO 2015068866 A1 WO2015068866 A1 WO 2015068866A1 KR 2013009960 W KR2013009960 W KR 2013009960W WO 2015068866 A1 WO2015068866 A1 WO 2015068866A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
organic material
scanning unit
moving
coupled
Prior art date
Application number
PCT/KR2013/009960
Other languages
French (fr)
Korean (ko)
Inventor
이영종
박찬석
Original Assignee
주식회사 선익시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 선익시스템 filed Critical 주식회사 선익시스템
Publication of WO2015068866A1 publication Critical patent/WO2015068866A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to an organic material deposition apparatus and an organic material deposition method using the same.
  • the deposition process is performed on a plurality of substrates in one chamber, but the tact time can be reduced by performing a transfer process or an alignment process on another substrate during the deposition process of one substrate.
  • the present invention relates to an organic material deposition apparatus and a deposition method using the same, which can reduce loss of organic material generated during a transfer process or an alignment process for a substrate.
  • OLED Organic Luminescence Emitting Device
  • the flat panel display device using the organic light emitting diode has a fast response speed and a wide viewing angle, which has emerged as a next generation display device.
  • the manufacturing process is simple, the production cost can be reduced more than the existing liquid crystal display device.
  • the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer which are the remaining constituent layers except the anode and the cathode electrode, are organic thin films, and the organic thin film is deposited on the substrate by a vacuum thermal deposition method. Will be deposited on.
  • a substrate is transferred into a vacuum chamber, a shadow mask in which a predetermined pattern is formed is aligned with the transferred substrate, and heat is applied to the crucible containing the organic material to sublimate the organic material on the substrate onto the substrate. It is made by deposition on.
  • the organic material is continuously sublimed in the crucible during the substrate transfer process and the shadow mask alignment process, so there is a problem that the organic material is lost.
  • the deposition process is performed on a plurality of substrates in one chamber, and a tact time can be reduced by performing a transfer process or an alignment process for another substrate during the deposition process of one substrate,
  • a tact time can be reduced by performing a transfer process or an alignment process for another substrate during the deposition process of one substrate.
  • a first substrate is divided into a first deposition region and a second deposition region, the first substrate is drawn in and out of the first deposition region in the first radiation direction from one center point, the second radiation at the center point
  • a process chamber in which a second substrate is drawn in and out of the second deposition region in a direction;
  • a transfer unit configured to transfer the organic material deposition source, wherein the organic material deposition source is coupled to the organic material deposition source so that the organic material deposition source is sprayed onto the surface of the first substrate or the second substrate.
  • a scanning unit which linearly moves along the surface of the first substrate or the second substrate; Scanning unit moving means coupled to the scanning unit and reciprocating the scanning unit to be located in the first deposition region or the second deposition region;
  • the scanning unit moving unit is coupled, the organic deposition apparatus including a scanning unit rotating means for rotating the scanning unit moving unit so that the linear organic material deposition source is parallel to one side of the first substrate or the second substrate. Is provided.
  • the scanning unit may include a moving frame including a pair of first guide bars facing each other and a first connection bar connecting the pair of first guide bars; A first rail along a length direction of the first guide bar; A first moving block coupled to the organic material deposition source and moving along the first rail; And it may include a first drive unit for moving the first moving block.
  • the first rail may include a flat rail coupled along the first guide bar and having a flat upper surface, and a mountain rail coupled along a length direction of the flat rail
  • the first moving block includes: A block body; A circular roller rotatably coupled to one side end of the block body and supported on an upper surface of the flat rail; It may include a groove roller rotatably coupled to the other side end of the block body and the groove groove is formed along the outer circumference so that the mountain rail is inserted, the first drive unit, along the longitudinal direction of the first guide bar
  • the LM motor may include a magnet row in which the N poles and the S poles are alternately arranged, and a coil part disposed to face the magnet row.
  • the scanning unit pivot means may include a rotation frame including a pair of second guide bars facing each other and a second connection bar connecting the pair of second guide bars, in this case, the scanning unit shifting means. Is, a second rail coupled in the longitudinal direction of the second guide bar; A second moving block coupled to the scanning unit and moving along the second rail; And a second driving unit for moving the second moving block.
  • the scanning unit rotation means the rotary rail is formed in a circular shape on the bottom surface of the process chamber;
  • the rotating frame is coupled, and may further include a rotating block moving along the rotating rail.
  • the first guide bar includes a pair of webs in which a plurality of holes are formed along a length direction and disposed to face each other, and a plurality of holes are formed in a length direction and transverse directions at one end and the other end of the pair of webs. It may include a box-shaped beam (beam) consisting of an upper flange and a lower flange coupled to.
  • beam box-shaped beam
  • the second guide bar has a web in which a plurality of holes are formed along a length direction, an upper flange coupled to one end of the web in a transverse direction, and the second rail coupled to an upper side thereof, and a cross direction at the other end of the web. It may include an I-beam (beam) consisting of a lower flange coupled to.
  • a method of depositing an organic material using the organic material deposition apparatus comprising the steps of: loading the first substrate in the first radial direction and seating on the first substrate loading portion; Moving the scanning unit to the first deposition region by the scanning unit moving means; Rotating the scanning unit moving unit by the scanning unit rotating unit such that the linear organic material deposition source is parallel to one side of the first substrate; Depositing organic particles on the first substrate by linearly moving the organic material deposition source along a surface of the first substrate; Simultaneously depositing organic particles on the first substrate and loading the second substrate in the second radial direction and seating the second substrate loading portion on the second substrate loading portion; Moving the scanning unit to the second deposition region by the scanning unit moving means when the deposition on the first substrate is completed; Rotating the scanning unit moving unit by the scanning unit rotating unit such that the linear organic material deposition source is parallel to one side of the second substrate;
  • the scanning unit comprises a step of depositing the organic particles on the second substrate by linearly moving the organic material deposition source is
  • the deposited first substrate is withdrawn from the process chamber, a new first substrate is loaded in the first radial direction and seated on the first substrate loading portion. It may further comprise the step of.
  • the second substrate After depositing the organic particles on the second substrate, the second substrate, which has been deposited, is withdrawn from the process chamber, and a new second substrate is loaded in the second radial direction and seated on the second substrate loading portion. It may further comprise the step of.
  • a deposition process is performed on a plurality of substrates in one chamber, and a tack time is performed by performing a transfer process or an alignment process on another substrate during the deposition process of one substrate. It is possible to reduce the loss of the organic material generated during the transfer process or the alignment process to the substrate.
  • FIG. 1 is a cross-sectional view for explaining the configuration of an organic material deposition apparatus according to an embodiment of the present invention.
  • Figure 2 is a longitudinal cross-sectional view for explaining the configuration of the organic material deposition apparatus according to an embodiment of the present invention.
  • Figure 3 is a perspective view from above of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention.
  • Figure 4 is a perspective view from below of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a portion of an organic material deposition apparatus according to an embodiment of the present invention.
  • FIG. 6 is a perspective view showing a part of an organic material deposition apparatus according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of an organic material deposition method according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view for explaining the configuration of the organic material deposition apparatus according to an embodiment of the present invention
  • Figure 2 is a longitudinal cross-sectional view for explaining the configuration of the organic material deposition apparatus according to an embodiment of the present invention
  • Figure 3 is a perspective view of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention from the top
  • Figure 4 is a perspective view of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention.
  • 5 is a cross-sectional view showing a part of an organic material deposition apparatus according to an embodiment of the present invention
  • Figure 6 is a perspective view showing a part of an organic material deposition apparatus according to an embodiment of the present invention.
  • the center point 12 the robot arm 14, the first radial direction 15, the first substrate 16, the second radial direction 18, the second substrate 20, and the first The deposition region 22, the second deposition region 24, the process chamber 26, the first substrate loading portion 28, the second substrate loading portion 30, the organic material deposition source 32, and the transfer unit 33.
  • the organic material deposition apparatus is divided into a first deposition region 22 and a second deposition region 24, and the first substrate 16 in the first radial direction 15 at one center point 12.
  • a process chamber which draws in and out of the first deposition region 22 and draws in and out of the second deposition region 24 in the second radial direction 18 from the center point 12. 26);
  • a linear organic material deposition source 32 for spraying organic material particles; It includes a transfer unit 33 for transferring the organic material deposition source (32).
  • the transfer unit 33 is the organic material deposition source 32 is coupled, the organic material deposition source (so that the organic particles are sprayed on the surface of the first substrate 16 or the second substrate 20 (
  • the scanning unit moving unit 36 is coupled to the scanning unit moving unit 36 such that the linear organic material deposition source 32 is parallel to one side of the first substrate 16 or the second substrate 20.
  • the process chamber 26 is divided into a first deposition region 22 and a second deposition region 24, and the first substrate 16 is disposed in the first radial direction 15 at one center point 12.
  • the second substrate 20 may be drawn in and out of the deposition region 22, and the second substrate 20 may be drawn in and out of the second deposition region 24 in the second radial direction 18 at the center point 12.
  • the process chamber 26 is a place where organic material deposition is performed on the substrate therein, and the inside may be maintained in a vacuum state by a vacuum pump. When the organic material is deposited at atmospheric pressure, the inside may be maintained at atmospheric pressure.
  • the process chamber 26 may be divided into a plurality of deposition regions 22 and 24 such that deposition may be performed on a plurality of substrates in one process chamber 26.
  • the deposition regions 22 and 24 denote virtual spaces in which organic deposition may be performed on one substrate according to the movement of the organic deposition source 32.
  • the process chamber 26 may be divided into the first deposition region 22 and the second deposition region 24 by the center line of the process chamber 26.
  • organic particles are deposited on the first substrate 16.
  • the organic particles on the second substrate 20 are deposited. Deposition takes place.
  • the first substrate 16 is drawn into or withdrawn from one center point 12 to the first deposition region 22 of the process chamber 26 in the first radial direction 15, and the second substrate 20 is the center point. In (12) it is introduced into or withdrawn from the second deposition region 24 of the process chamber 26 in the second radial direction 18. That is, the first substrate 16 and the second substrate 20 are drawn in or drawn out from the process chamber 26 with a predetermined slope.
  • the substrate may be drawn into or withdrawn from the process chamber 26 by a robot arm 14 in a transfer chamber connected to the process chamber 26, in which case the robot arm ( Since the substrate is taken in and out of the process chamber 26 in the radial direction at the center of rotation of 14, the substrate can be drawn in and out of the process chamber 26 with a constant inclination.
  • the rotation center of the robot arm 14 constituting the center point 12 is formed.
  • the first substrate 16 is drawn in and out of the process chamber 26 in the first radial direction with respect to the second substrate 20, and the second substrate 20 is at the center of rotation of the robot arm 14 constituting the center point 12.
  • the first arm 16 and the second substrate 20 are not limited to drawing in and out of the process chamber 26 by the robot arm 14.
  • the organic material deposition apparatus according to the present exemplary embodiment may be applied.
  • the rotation center of the robot arm 14 is the center point described above. Without forming (12), the point where the two virtual inclination lines which the inclination direction of the 1st board
  • the first substrate 16 and the second substrate 20 are loaded on the first substrate loading unit 28 and the second substrate loading unit 30, respectively.
  • the organic particles are ejected upward from the organic material deposition source 32 so that the organic material may be deposited on the substrate, and the first substrate below the first substrate loading part 28 and the second substrate loading part 30. 16 and the second substrate 20 are attached, respectively.
  • the shadow mask may be formed in each of the substrate loading units 30 and 32. 40 may be disposed on the surface of the substrate, and the substrate and the shadow mask 40 may be aligned with each other.
  • the organic material deposition source 32 is coupled to the transfer unit 33, and the organic material deposition source 32 moves between the first deposition region 22 and the second deposition region 24 by the transfer unit 33. Deposition of organics is carried out.
  • the transfer unit 33 includes a scanning unit 34 for linearly moving the organic material deposition source 32 along the surface of the first substrate 16 or the second substrate 20 and a reciprocating movement of the scanning unit 34.
  • Scanning unit rotation means for rotating the scanning unit movement means 36 such that the scanning unit movement means 36 and the linear organic material deposition source 32 are parallel to one side of the first substrate 16 or the second substrate 20. Means 38.
  • the linear organic material deposition source 32 injects organic particles onto the surface of the first substrate 16 or the second substrate 20.
  • the linear organic material deposition source 32 is linearly moved in the direction of the other side facing one side of the substrate to deposit the organic material on the substrate, it is configured in a linear corresponding to the width of the substrate.
  • the deposition of the organic material on the substrate is performed by applying heat to the crucible of the organic material deposition source 32 in which the organic material is contained and depositing organic particles sublimated in the crucible on the substrate.
  • the organic material deposition source 32 is coupled to the scanning unit 34, and the scanning unit 34 supplies the organic material deposition source 32 to spray the organic particles onto the surface of the first substrate 16 or the second substrate 20. It linearly moves along the surface of the first substrate 16 or the second substrate 20. As described above, since the organic material deposition source 32 linearly moves in the direction of the other side facing one side of the substrate to deposit the organic material on the substrate, the organic material deposition source 32 is linearly moved by the scanning unit 34.
  • the scanning unit 34 is coupled to the scanning unit moving unit 36, and the scanning unit moving unit 36 scans the scanning unit 34 so that the scanning unit 34 is positioned in the first deposition region 22 or the second deposition region 24.
  • the part 34 is reciprocated.
  • the scanning unit moving means 36 may include a scanning unit that has completed the deposition process in the first deposition region 22 ( 34 is moved to the second deposition region 24. By the scanning unit moving means 36, the scanning unit 34 reciprocates between the first deposition region 22 and the second deposition region 24 to perform the deposition process on the substrates located in each deposition region.
  • the scanning unit moving unit 38 is coupled to the scanning unit moving unit 36 and the scanning unit so that the linear organic material deposition source 32 is parallel to one side of the first substrate 16 or the second substrate 20. Rotate the moving means 36.
  • the scanning part moving means 38 is coupled to the scanning part moving means 36, the scanning part moving means 36 is coupled to the scanning part 34, and the scanning part 34 is connected to the scanning part moving means 36.
  • the organic material deposition source 32 is coupled by the source support 97.
  • the scanning unit 34 is moved to the first deposition region 22 by the scanning unit moving means 36 Is moved straight.
  • the organic material deposition source 32 of the scanning unit 34 moved to the first deposition region 22 is not parallel to one side of the inclinedly loaded first substrate 16, so that the scanning unit rotates by the scanning unit rotating means 38.
  • the moving means 36 is rotated, the linear organic material deposition source 32 is parallel to one side of the first substrate 16.
  • the scanning unit 34 moves the organic material deposition source 32 linearly from one side of the first substrate 16 to the other side to move.
  • the organic particles ejected from are deposited on the first substrate 16.
  • the scanning unit rotating unit 38 rotates to its original position and the organic material deposition source 32 is moved by the scanning unit moving unit 36.
  • the combined scanning unit 34 is linearly moved to the second deposition region 24.
  • the scanning unit rotating means 38 is used.
  • the scanning unit moving means 36 is rotated, the linear organic material deposition source 32 is parallel to one side of the second substrate 20.
  • the scanning unit 34 moves the organic material deposition source 32 linearly from one side of the second substrate 20 to the other side direction. Organic particles that are ejected during the migration process are deposited on the second substrate 20.
  • FIG. 3 is a perspective view of the transfer unit 33 of the organic material deposition apparatus according to the present embodiment from above
  • FIG. 4 is a perspective view of the transfer unit 33 of the organic material deposition apparatus according to the present embodiment viewed from below.
  • the transfer unit 33 according to the present embodiment will be described in detail.
  • the scanning unit 34 may include a moving frame 58 including a pair of first guide bars 45 facing each other and a first connection bar 46 connecting the pair of first guide bars 45.
  • a first moving block 52 coupled to the first rail 50 and the organic material deposition source 32 along the length direction of the first guide bar 45 and moving along the first rail 50; And a first driver for moving the first moving block 52.
  • the moving frame 58 is a support for supporting the organic material deposition source 32, and is composed of a pair of first guide bars 45 facing each other and a first connection bar 46 connecting them.
  • the first guide bar 45 may be provided with a linear motion guide (LM guide) for guiding the linear movement of the organic material deposition source 32 along the longitudinal direction.
  • LM guide linear motion guide
  • the first guide bar 45 includes a pair of webs 74 in which a plurality of holes 82 are formed along a length direction and are disposed to face each other, and a plurality of holes 82 are formed along a length direction. It may be composed of a box-shaped beam (80) consisting of the upper flange 76 and the lower flange 78 is coupled to one end and the other end of the pair of web 74 in the transverse direction.
  • the box-shaped beam 80 is rectangular in cross section and has high structural rigidity, and can reduce the weight of the moving frame 58 by forming a plurality of holes 82 in the web 74 or the flanges 76 and 78. .
  • the first rail 50 is coupled to the upper portion of the first guide bar 45 in the longitudinal direction, and the first moving block 52 moving along the first rail 50 is coupled to the first rail 50. do.
  • a source support 97 for coupling the organic material deposition source 32 is coupled to the first moving block 52 to perform a linear reciprocating movement along the first rail 50.
  • the first driving unit (not shown) provides a driving force to move the first moving block 52 along the first rail 50.
  • the first rail 50 is coupled along the first guide bar 45 and is coupled to the flat rail 90 having a flat upper surface, and along the longitudinal direction of the flat rail 90. It consists of a mountain rail (92).
  • the first moving block 52 is a block body 84, a circular roller 86 rotatably coupled to one side end of the block body 84, and supported on an upper surface of the flat rail 90, and a block.
  • the first drive unit includes a magnet train 94 in which the N poles and the S poles are alternately arranged along the longitudinal direction of the first guide bar 45, and a coil unit 95 disposed to face the magnet train 94. It may be composed of an LM motor 96 having a).
  • the flat rail 90 has a flat upper surface along the longitudinal direction, and the circular roller 86 of the first moving block 52 is supported on the flat upper surface.
  • a ridge rail 92 having a reverse V-shaped ridge formed along the length direction is coupled to a side end of the flat rail 90, and a groove of the first moving block 52 is formed in the ridge of the ridge rail 92.
  • the grooved groove 87 of the roller 88 is inserted.
  • the organic material deposition source 32 may be directly coupled to the block body 84, or the source support 97 may be coupled to the block body 84.
  • a circular roller 86 supported on the flat upper surface of the flat rail 90 is rotatably coupled, and at the other end, a groove roller 88 supported on the ridge of the mountain rail 92. ) Is rotatably coupled.
  • Friction between the upper surface of the flat rail 90 and the outer circumferential surface of the circular roller 86 can be minimized to minimize dust generation during driving.
  • the ridge portion of the groove roller 88 is inserted into the grooved groove 87 of the groove roller 88, the organic material deposition source 32 is prevented from being separated from the rail during driving.
  • the LM motor 96 used as the first driving unit may include a magnet string 94 and a coil portion 95.
  • the magnet string 94 includes a plurality of magnets such that N poles and S poles are alternately arranged.
  • the first guide bar 45 may be installed along the longitudinal direction, and the coil unit 95 may be coupled to the organic material deposition source 32 or the source support 97. As the current is applied to the coil unit 95, the coil unit 95 facing the magnet train 94 alternately generates repulsive force and attraction force, thereby providing driving force to the first moving block 52. .
  • the scanning unit pivot means 38 includes a rotation frame having a pair of second guide bars 54 facing each other and a second connection bar 56 connecting the pair of second guide bars 54 ( 48).
  • the scanning unit moving means 36 includes a second rail 60 coupled with the second guide bar 54 along the longitudinal direction of the second guide bar 54, and the scanning unit 34 is coupled to the second rail 60.
  • a second moving block 62 moving along; And a second driver (not shown) for moving the second moving block 62.
  • the second guide bar 54 includes a web 66 in which a plurality of holes 82 are formed along the length direction, and is laterally coupled to one end of the web 66, and a second rail 60 is coupled to the upper portion thereof.
  • the upper flange 68 and the lower flange 70 which is coupled to the other end of the web 66 in the lateral direction may be composed of an I-beam 72 (beam).
  • the I-shaped beam 72 is structurally rigid with respect to the vertical load as the I-shaped cross section, and the plurality of holes 82 are formed in the web 66 of the I-shaped beam 72 to form the rotating frame 48. The weight can be reduced.
  • the second rail 60 is coupled along the length of the second guide bar 54 in the longitudinal direction, and the second moving block 62 moving along the second rail 60 is coupled to the second rail 60. do.
  • the scanning unit 34 is coupled to the second moving block 62 so that the scanning unit 34 linearly reciprocates as the second moving block 62 moves.
  • the second driving unit (not shown) provides a driving force so that the second moving block 62 can move along the second rail 60.
  • the LM motor described above may be used as the second driving unit.
  • the scanning unit rotation means 38, the rotary rail 63 and the rotation frame 48 are arranged in a circular shape on the bottom surface of the process chamber 26 is coupled, and moves along the rotary rail 63 May comprise a rotating block 64.
  • the rotary rail 63 is disposed on the bottom surface of the process chamber 26 in a circular shape with respect to the center of rotation.
  • four circular arc-shaped rails having the same radius are disposed in a circular manner to rotate the rotary rail 63. It was made up.
  • Rotating blocks 64 are disposed on each rail having an arc shape and rotated along the rotary rails 63.
  • Rotating frame 48 is coupled to the rotary block 64 is to rotate along the rotary rail (63).
  • the scanning unit moving means 36 mounted thereon can be rotated, and thus the scanning unit
  • the organic material deposition source 32 coupled to the moving means 36 may be parallel to one side of the first substrate 16 or the second substrate 20.
  • the blocking plate 44 is disposed to face the first substrate 16 or the second substrate 20, and the organic material deposition linearly moved by the scanning unit moving means 36. It moves in a direction opposite to the source 32 to cover the first substrate 16 or the second substrate 20.
  • the blocking plate 44 moves in the opposite direction to the first substrate ( 16). This is to prevent parasitic deposition in which organic particles evaporated from the organic material deposition source 32 during the deposition of the second substrate 20 are scattered and deposited on the first substrate 16.
  • the blocking plate 44 moves in the opposite direction to cover the second substrate 20. Done.
  • the partition wall 42 is coupled to the process chamber 26 and is located between the first substrate loading portion 28 and the second substrate loading portion 30.
  • the partition wall 42 is formed by extending a predetermined distance from the upper end to the lower end inside the process chamber 26, and the blocking plate 44 is disposed in the transverse direction with respect to the lower end of the partition 42.
  • FIGS. 8 to 15 are flowcharts of the organic material deposition method according to another embodiment of the present invention.
  • the first substrate 16, 16 ′ the second substrate 20, the first deposition region 22, the second deposition region 24, the process chamber 26, and the first substrate loading
  • the unit 28, the second substrate loading unit 30, the organic material deposition source 32, the scanning unit 34, the scanning unit moving unit 36, and the scanning unit rotating unit 38 are illustrated.
  • the organic material deposition method is a method of depositing an organic material using the organic material deposition apparatus described above, loading the first substrate 16 in a first radial direction and seating on the first substrate loading portion 28. Steps;
  • the scanning unit moving means 36 moving the scanning unit 34 to the first deposition region 22; Rotating the scanning unit 34 by the scanning unit rotating means 38 such that the linear organic deposition source 32 is parallel to one side of the first substrate 16; Scanning the organic material source on the first substrate 16 by linearly moving the organic material deposition source 32 along the surface of the first substrate 16; Simultaneously depositing organic particles on the first substrate 16 and loading the second substrate 20 in a second radial direction and seating on the second substrate loading portion 30;
  • the scanning unit rotating means 38 rotating the scanning unit 34 to its original position;
  • the scanning unit moving means 36 moving the scanning unit 34 to the second deposition region 24; Rotating the scanning unit 34 by the scanning unit rotating means 38 such that the linear organic material deposition source 32 is parallel to one side
  • the first deposition region 22 in which the first substrate 16 is drawn in and out in the first radial direction from one center point, and the second deposition direction in the second radial direction from the center point 12 is formed.
  • 2 is a method of depositing an organic material on a substrate in a process chamber 26 partitioned by a second deposition region 24 into which the substrate 20 is drawn out.
  • Organic deposition is performed on the first substrate 16 in the first deposition region 22 and organic deposition is performed on the second substrate 20 in the second deposition region 24.
  • the first substrate 16 is loaded in the first radial direction and seated on the first substrate loading unit 28 (S100). .
  • the substrate may be drawn into or taken out of the process chamber 26 by a robot arm provided in a transfer chamber connected to the process chamber 26, with respect to the center of rotation of the robot arm. Since the substrate is drawn in and out of the process chamber 26 in the radial direction, the substrate may be disposed with a constant inclination in the process chamber 26.
  • the first substrate 16 when the first substrate 16 is seated on the first substrate loading portion 28 of the process chamber 26 by the robot arm, the first substrate 16 may be disposed in the first radial direction with respect to the rotation center of the robot arm constituting the center point. The substrate 16 is seated on the first substrate loading portion 28.
  • the shadow mask is disposed on the surface of the first substrate 16, and the first substrate 16 and the shadow mask are aligned.
  • the scanning unit moving unit 36 moves the scanning unit 34 to the first deposition region 22 (S200).
  • the scanning unit 34 is moved to the first deposition region 22 to perform the deposition process on the first substrate 16.
  • the present embodiment relates to a method of depositing a plurality of substrates with one organic material deposition source 32, the scanning unit 34 is a linear reciprocating movement between the deposition region by the scanning unit moving means 36 do.
  • the scanning unit rotating means 38 rotates the scanning unit moving means 36 so that the linear organic material deposition source 32 is parallel to one side of the first substrate 16 ( S300). Since the first substrate 16 and the second substrate 20 are inclined to each other and introduced into the process chamber 26, the first substrate 16 and the second substrate 20 are seated on the first substrate loading portion 28 and the second substrate loading portion 30, respectively. As the deposition source 32 linearly moves against the surface of the substrate, the linear organic material deposition source 32 may have a longitudinal direction in order to efficiently deposit organic matter on the first substrate 16 or the second substrate 20.
  • the scanning unit rotating means 38 rotates the scanning unit moving unit 36 so that one side of the substrate is parallel.
  • the scanning unit 34 linearly moves the organic material deposition source 32 along the surface of the first substrate 16 to deposit organic particles on the first substrate 16 (S400). ).
  • the organic material deposition source 32 is linearly moved by the scanning unit 34 in the other side direction facing one side of the first substrate 16 to deposit organic particles on the first substrate 16.
  • the deposition of the organic material on the first substrate 16 is performed by applying heat to the crucible of the organic material deposition source 32 in which the organic material is contained and depositing organic particles sublimated in the crucible onto the substrate.
  • the organic material deposition source 32 After the organic material deposition source 32 reaches the other side of the first substrate 16, the organic material deposition source 32 is linearly moved in the opposite direction again to prepare for the deposition process on the second substrate 20.
  • the organic particles are deposited on the first substrate 16 and the second substrate 20 is loaded in the second radial direction to be seated on the second substrate loading part 30 ( S500).
  • the second substrate 20 may be seated on the second substrate loading part 30 during the deposition process on the first substrate 16, thereby reducing the tack time, and the second substrate during the deposition process on the first substrate 16.
  • the loading of 20 can be made to reduce the loss of organic material.
  • the shadow mask is disposed on the surface of the second substrate 20, and the second substrate 20 is aligned with the shadow mask.
  • the term “simultaneously” includes not only the same time, but also means that the deposition process of the first substrate 16 and the loading process of the second substrate 20 are overlapped.
  • the scanning unit moving unit 36 moves the scanning unit 34 to the second deposition region 24. (S600).
  • the scanning unit rotating means 38 rotates the scanning unit moving means 36 to its original position, and the scanning unit moving means 36 includes: As shown in FIG. The scanning unit 34 is moved to the second deposition region 24. In this process, as shown in FIG. 13, the first substrate 16 on which the organic material deposition is completed may be taken out of the process chamber 26 in the first radial direction.
  • the scanning unit rotating means 38 rotates the scanning unit moving means 36 so that the linear organic material deposition source 32 is parallel to one side of the second substrate 20 ( S700). Similar to the step of rotating the first substrate 16, the second substrate 20 is loaded in an inclined direction in the second radial direction with respect to the process chamber 26 to be seated on the second substrate loading part 30. Therefore, in order to deposit organic material on the second substrate 20 efficiently as the organic material deposition source 32 moves linearly against the surface of the substrate, the length direction of the organic material deposition source 32 and the second substrate 20 are increased. The scanning unit rotating unit 38 rotates the scanning unit moving unit 36 so that one side of the parallel sides thereof is parallel.
  • the scanning unit 34 linearly moves the organic material deposition source 32 to deposit organic particles on the second substrate 20 (S800). Since the organic material deposition source 32 linearly moves in the other side direction facing one side of the second substrate 20 to deposit organic material on the second substrate 20, the organic material deposition source 32 using the scanning unit 34. Will move linearly.
  • a new first substrate 16 ′ may be loaded onto the first substrate loading unit 28 in the first radial direction to be seated.
  • the new first substrate 16 ′ is seated on the first substrate loading portion 28, it is aligned with the shadow mask 40 and waits for the next deposition process.
  • the second substrate 20 on which the organic material deposition is completed is withdrawn from the process chamber 26 in the second radial direction, and a new second substrate is loaded on the second substrate. Loaded into the part 30 to be seated. Once the new second substrate is seated in the second substrate loading portion 30, it aligns with the shadow mask and waits for the next deposition process.
  • the deposition process is performed on a plurality of substrates in one chamber, and the tact time is reduced by performing a transfer process or an alignment process on another substrate during the deposition process of one substrate. It is possible to reduce the loss of organic material generated during the transfer process or the alignment process to the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed are an organic substance deposition device and an organic substance deposition method using the same. The present invention relates to an organic substance deposition device and a deposition method using the same, wherein deposition processes are conducted with regard to a plurality of substrates inside a single chamber and, during a deposition process with regard to a substrate, a transfer process or an alignment process with regard to another substrate is conducted, thereby reducing tact time and reducing loss of organic substance materials occurring during processes for transferring or aligning substrates.

Description

유기물 증착 장치 및 이를 이용한 유기물 증착 방법Organic material deposition apparatus and organic material deposition method using the same
본 발명은 유기물 증착 장치 및 이를 이용한 유기물 증착 방법에 관한 것이다. 보다 상세하게는, 하나의 챔버 내에서 복수의 기판에 대해 증착공정을 진행하되, 하나의 기판의 증착공정 중에 다른 기판에 대한 이송공정 또는 얼라인공정을 진행하여 택 타임(tact time)을 줄일 수 있고, 기판에 대한 이송공정 또는 얼라인공정 중에 발생하는 유기물 재료의 손실을 줄일 수 있는 유기물 증착 장치 및 이를 이용한 증착 방법에 관한 것이다.The present invention relates to an organic material deposition apparatus and an organic material deposition method using the same. In more detail, the deposition process is performed on a plurality of substrates in one chamber, but the tact time can be reduced by performing a transfer process or an alignment process on another substrate during the deposition process of one substrate. The present invention relates to an organic material deposition apparatus and a deposition method using the same, which can reduce loss of organic material generated during a transfer process or an alignment process for a substrate.
유기 전계 발광소자(Organic Luminescence Emitting Device: OLED)는 형광성 유기화합물에 전류가 흐르면 빛을 내는 전계 발광현상을 이용하는 스스로 빛을 내는 자발광소자로서, 비발광소자에 빛을 가하기 위한 백라이트가 필요하지 않기 때문에 경량이고 박형의 평판표시장치를 제조할 수 있다.Organic Luminescence Emitting Device (OLED) is a self-luminous device that emits light by using electroluminescence which emits light when a current flows through a fluorescent organic compound. Therefore, a lightweight and thin flat panel display can be manufactured.
이러한 유기 전계 발광소자를 이용한 평판표시장치는 응답속도가 빠르며, 시야각이 넓어 차세대 표시장치로서 대두 되고 있다.The flat panel display device using the organic light emitting diode has a fast response speed and a wide viewing angle, which has emerged as a next generation display device.
특히, 제조공정이 단순하기 때문에 생산원가를 기존의 액정표시장치 보다 많이 절감할 수 있는 장점이다.In particular, since the manufacturing process is simple, the production cost can be reduced more than the existing liquid crystal display device.
유기 전계 발광 소자는, 애노드 및 캐소드 전극을 제외한 나머지 구성층인 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등이 유기 박막으로 되어 있고, 이러한 유기 박막은 진공열증착방법으로 기판 상에 증착하게 된다.In the organic electroluminescent device, the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer, which are the remaining constituent layers except the anode and the cathode electrode, are organic thin films, and the organic thin film is deposited on the substrate by a vacuum thermal deposition method. Will be deposited on.
진공열증착방법은 진공의 챔버 내에 기판을 이송시키고, 일정 패턴이 형성된 쉐도우 마스크(shadow mask)를 이송된 기판에 정렬시킨 후, 유기물이 담겨 있는 도가니에 열을 가하여 도가니에서 승화되는 유기물을 기판 상에 증착하는 방식으로 이루어진다.In the vacuum thermal evaporation method, a substrate is transferred into a vacuum chamber, a shadow mask in which a predetermined pattern is formed is aligned with the transferred substrate, and heat is applied to the crucible containing the organic material to sublimate the organic material on the substrate onto the substrate. It is made by deposition on.
종래 기술에 따른 진공열증착방법은 하나의 챔버 내에서 하나의 기판에 대해 증착공정이 이루어지기 때문에 기판의 이송공정과 쉐도우 마스크 얼라인공정 중에는 기판에 대한 증착공정이 중단되어 택 타임(tack time)이 증가되는 문제점이 있었다. In the vacuum thermal deposition method according to the prior art, since a deposition process is performed on one substrate in one chamber, the deposition process on the substrate is stopped during the transfer process and the shadow mask alignment process of the substrate, thereby causing a tack time. There was an increasing problem.
또한, 기판의 이송공정과 쉐도우 마스크 얼라인공정 중에도 도가니에서 지속적으로 유기물이 승화되고 있어 유기물 재료가 손실되는 문제점이 있다.In addition, the organic material is continuously sublimed in the crucible during the substrate transfer process and the shadow mask alignment process, so there is a problem that the organic material is lost.
본 발명은 하나의 챔버 내에서 복수의 기판에 대해 증착공정을 진행하되, 하나의 기판의 증착공정 중에 다른 기판에 대한 이송공정 또는 얼라인공정을 진행하여 택 타임(tact time)을 줄일 수 있고, 기판에 대한 이송공정 또는 얼라인공정 중에 발생하는 유기물 재료의 손실을 줄일 수 있는 유기물 증착 장치 및 이를 이용한 증착 방법을 제공한다.In the present invention, the deposition process is performed on a plurality of substrates in one chamber, and a tact time can be reduced by performing a transfer process or an alignment process for another substrate during the deposition process of one substrate, Provided are an organic material deposition apparatus and a deposition method using the same, which can reduce loss of organic material generated during a transfer process or an alignment process for a substrate.
본 발명의 일 측면에 따르면, 제1 증착영역과 제2 증착영역으로 구획되며, 하나의 중심점에서 제1 방사 방향으로 제1 기판이 상기 제1 증착영역에 인출입되고, 상기 중심점에서 제2 방사 방향으로 제2 기판이 상기 제2 증착영역에 인출입되는 공정 챔버와; 상기 제1 기판이 상기 제1 방사 방향으로 로딩되어 안착되는 제1 기판 로딩부와; 상기 제2 기판이 상기 제2 방사 방향으로 로딩되어 안착되는 제2 기판 로딩부와; 유기물 입자를 분사하는 선형의 유기물 증착소스와; 상기 유기물 증착소스를 이송시키는 이송유닛을 포함하며, 상기 이송유닛은, 상기 유기물 증착소스가 결합되며, 상기 제1 기판 또는 상기 제2 기판의 표면에 상기 유기물 입자가 분사되도록 상기 유기물 증착소스를 상기 제1 기판 또는 상기 제2 기판의 표면을 따라 직선 이동시키는 스캐닝부와; 상기 스캐닝부가 결합되며, 상기 제1 증착영역 또는 상기 제2 증착영역에 위치하도록 상기 스캐닝부를 왕복 이동시키는 스캐닝부이동수단과; 상기 스캐닝부이동수단이 결합되며, 상기 선형의 유기물 증착소스가 상기 제1 기판 또는 상기 제2 기판의 일변과 평행을 이루도록 상기 스캐닝부이동수단을 회전시키는 스캐닝부회동수단을 포함하는, 유기물 증착 장치가 제공된다.According to an aspect of the present invention, a first substrate is divided into a first deposition region and a second deposition region, the first substrate is drawn in and out of the first deposition region in the first radiation direction from one center point, the second radiation at the center point A process chamber in which a second substrate is drawn in and out of the second deposition region in a direction; A first substrate loading part on which the first substrate is loaded and seated in the first radial direction; A second substrate loading part on which the second substrate is loaded and seated in the second radial direction; A linear organic material deposition source for spraying organic material particles; And a transfer unit configured to transfer the organic material deposition source, wherein the organic material deposition source is coupled to the organic material deposition source so that the organic material deposition source is sprayed onto the surface of the first substrate or the second substrate. A scanning unit which linearly moves along the surface of the first substrate or the second substrate; Scanning unit moving means coupled to the scanning unit and reciprocating the scanning unit to be located in the first deposition region or the second deposition region; The scanning unit moving unit is coupled, the organic deposition apparatus including a scanning unit rotating means for rotating the scanning unit moving unit so that the linear organic material deposition source is parallel to one side of the first substrate or the second substrate. Is provided.
상기 스캐닝부는, 서로 마주하는 한 쌍의 제1 가이드바와, 상기 한 쌍의 제1 가이드바를 연결하는 제1 연결바를 포함하는 이동프레임과; 상기 제1 가이드바의 길이 방향을 따라 제1 레일과; 상기 유기물 증착소스가 결합되며, 상기 제1 레일을 따라 이동하는 제1 이동블록; 및 상기 제1 이동블록을 이동시키는 제1 구동부을 포함할 수 있다.The scanning unit may include a moving frame including a pair of first guide bars facing each other and a first connection bar connecting the pair of first guide bars; A first rail along a length direction of the first guide bar; A first moving block coupled to the organic material deposition source and moving along the first rail; And it may include a first drive unit for moving the first moving block.
상기 제1 레일은, 상기 제1 가이드바를 따라 결합되며 상면이 평탄한 플렛 레일(flat rail)과, 상기 플렛 레일의 길이 방향을 따라 결합되는 산형 레일을 포함할 수 있고, 상기 제1 이동블록은, 블록몸체와; 상기 블록몸체의 일 측단에 회전가능하게 결합되며 상기 플렛 레일의 상면에 지지되는 원형롤러와; 상기 블록몸체의 타 측단에 회전가능하게 결합되며 상기 산형 레일이 삽입되도록 외주를 따라 골형 홈이 형성되는 홈 롤러를 포함할 수 있으며, 상기 제1 구동부는, 상기 제1 가이드바의 길이 방향을 따라 N극과 S극이 교대로 배치되는 마그넷열과, 상기 마그넷열에 대향하여 배치되는 코일부를 구비하는 LM 모터를 포함할 수 있다.The first rail may include a flat rail coupled along the first guide bar and having a flat upper surface, and a mountain rail coupled along a length direction of the flat rail, wherein the first moving block includes: A block body; A circular roller rotatably coupled to one side end of the block body and supported on an upper surface of the flat rail; It may include a groove roller rotatably coupled to the other side end of the block body and the groove groove is formed along the outer circumference so that the mountain rail is inserted, the first drive unit, along the longitudinal direction of the first guide bar The LM motor may include a magnet row in which the N poles and the S poles are alternately arranged, and a coil part disposed to face the magnet row.
상기 스캐닝부회동수단은, 서로 마주하는 한 쌍의 제2 가이드바와, 상기 한 쌍의 제2 가이드바를 연결하는 제2 연결바를 포함하는 회동프레임을 포함할 수 있으며, 이 경우, 상기 스캐닝부이동수단은, 상기 제2 가이드바의 길이 방향을 따라 결합되는 제2 레일과; 상기 스캐닝부가 결합되며, 상기 제2 레일을 따라 이동하는 제2 이동블록; 및 상기 제2 이동블록을 이동시키는 제2 구동부를 포함할 수 있다.The scanning unit pivot means may include a rotation frame including a pair of second guide bars facing each other and a second connection bar connecting the pair of second guide bars, in this case, the scanning unit shifting means. Is, a second rail coupled in the longitudinal direction of the second guide bar; A second moving block coupled to the scanning unit and moving along the second rail; And a second driving unit for moving the second moving block.
상기 스캐닝부회동수단은, 상기 공정 챔버의 바닥면에 원형을 이루어 배치되는 회전 레일과; 상기 회전프레임이 결합되며, 상기 회전 레일을 따라 이동하는 회전 블록을 더 포함할 수 있다.The scanning unit rotation means, the rotary rail is formed in a circular shape on the bottom surface of the process chamber; The rotating frame is coupled, and may further include a rotating block moving along the rotating rail.
상기 제1 가이드바는, 다수의 홀이 길이 방향을 따라 형성되며 서로 마주하여 배치되는 한 쌍의 웨브와, 다수의 홀이 길이 방향으로 따라 형성되며 상기 한 쌍의 웨브의 일단 및 타단에 횡방향으로 결합되는 상부플랜지 및 하부플랜지로 구성되는 박스형 빔(beam)을 포함할 수 있다.The first guide bar includes a pair of webs in which a plurality of holes are formed along a length direction and disposed to face each other, and a plurality of holes are formed in a length direction and transverse directions at one end and the other end of the pair of webs. It may include a box-shaped beam (beam) consisting of an upper flange and a lower flange coupled to.
상기 제2 가이드바는, 다수의 홀이 길이 방향을 따라 형성되는 웨브와, 상기 웨브의 일단에 횡방향으로 결합되며 상기 제2 레일이 상부에 결합되는 상부플랜지와, 상기 웨브의 타단에 횡방향으로 결합되는 하부플랜지로 구성되는 I형 빔(beam)을 포함할 수 있다.The second guide bar has a web in which a plurality of holes are formed along a length direction, an upper flange coupled to one end of the web in a transverse direction, and the second rail coupled to an upper side thereof, and a cross direction at the other end of the web. It may include an I-beam (beam) consisting of a lower flange coupled to.
본 발명의 다른 측면에 따르면, 상기의 유기물 증착 장치를 이용하여 유기물을 증착하는 방법으로서, 상기 제1 기판을 상기 제1 방사 방향으로 로딩하여 상기 제1 기판 로딩부에 안착시키는 단계와; 상기 스캐닝부이동수단이 상기 스캐닝부를 제1 증착영역으로 이동시키는 단계와; 상기 선형의 유기물 증착소스가 상기 제1 기판의 일변과 평행을 이루도록 상기 스캐닝부회동수단이 상기 스캐닝부이동수단을 회전시키는 단계와; 상기 스캐닝부가 상기 유기물 증착소스를 제1 기판의 표면을 따라 직선 이동시켜 상기 제1 기판에 유기물 입자를 증착시키는 단계와; 상기 제1 기판에 유기물 입자를 증착시키는 단계와 동시에 상기 제2 기판을 상기 제2 방사 방향으로 로딩하여 상기 제2 기판 로딩부에 안착시키는 단계와; 상기 제1 기판에 대한 증착이 완료되면, 상기 스캐닝부이동수단이 상기 스캐닝부를 상기 제2 증착영역으로 이동시키는 단계와; 상기 선형의 유기물 증착소스가 상기 제2 기판의 일변과 평행을 이루도록 상기 스캐닝부회동수단이 상기 스캐닝부이동수단을 회전시키는 단계와; 상기 스캐닝부가 상기 유기물 증착소스를 직선 이동시켜 상기 제2 기판에 유기물 입자를 증착시키는 단계를 포함하는, 유기물 증착 방법이 제공된다.According to another aspect of the present invention, a method of depositing an organic material using the organic material deposition apparatus, comprising the steps of: loading the first substrate in the first radial direction and seating on the first substrate loading portion; Moving the scanning unit to the first deposition region by the scanning unit moving means; Rotating the scanning unit moving unit by the scanning unit rotating unit such that the linear organic material deposition source is parallel to one side of the first substrate; Depositing organic particles on the first substrate by linearly moving the organic material deposition source along a surface of the first substrate; Simultaneously depositing organic particles on the first substrate and loading the second substrate in the second radial direction and seating the second substrate loading portion on the second substrate loading portion; Moving the scanning unit to the second deposition region by the scanning unit moving means when the deposition on the first substrate is completed; Rotating the scanning unit moving unit by the scanning unit rotating unit such that the linear organic material deposition source is parallel to one side of the second substrate; The scanning unit comprises a step of depositing the organic particles on the second substrate by linearly moving the organic material deposition source is provided.
상기 제1 기판에 유기물 입자를 증착시키는 단계 이후에, 증착이 완료된 상기 제1 기판을 상기 공정 챔버에서 인출시키고, 새로운 제1 기판을 상기 제1 방사 방향으로 로딩하여 상기 제1 기판 로딩부에 안착시키는 단계를 더 포함할 수 있다.After depositing the organic particles on the first substrate, the deposited first substrate is withdrawn from the process chamber, a new first substrate is loaded in the first radial direction and seated on the first substrate loading portion. It may further comprise the step of.
상기 제2 기판에 유기물 입자를 증착시키는 단계 이후에, 증착이 완료된 상기 제2 기판을 상기 공정 챔버에서 인출시키고, 새로운 제2 기판을 상기 제2 방사 방향으로 로딩하여 상기 제2 기판 로딩부에 안착시키는 단계를 더 포함할 수 있다.After depositing the organic particles on the second substrate, the second substrate, which has been deposited, is withdrawn from the process chamber, and a new second substrate is loaded in the second radial direction and seated on the second substrate loading portion. It may further comprise the step of.
본 발명의 실시예에 따르면, 하나의 챔버 내에서 복수의 기판에 대해 증착공정을 진행하되, 하나의 기판의 증착공정 중에 다른 기판에 대한 이송공정 또는 얼라인공정을 진행하여 택 타임(tact time)을 줄일 수 있고, 기판에 대한 이송공정 또는 얼라인공정 중에 발생하는 유기물 재료의 손실을 줄일 수 있다.According to an embodiment of the present invention, a deposition process is performed on a plurality of substrates in one chamber, and a tack time is performed by performing a transfer process or an alignment process on another substrate during the deposition process of one substrate. It is possible to reduce the loss of the organic material generated during the transfer process or the alignment process to the substrate.
도 1은 본 발명의 일 실시예에 따른 유기물 증착 장치의 구성을 설명하기 위한 횡단면도.1 is a cross-sectional view for explaining the configuration of an organic material deposition apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유기물 증착 장치의 구성을 설명하기 위한 종단면도.Figure 2 is a longitudinal cross-sectional view for explaining the configuration of the organic material deposition apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 유기물 증착 장치의 이송유닛을 상부에서 바라본 사시도.Figure 3 is a perspective view from above of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 유기물 증착 장치의 이송유닛을 하부에서 바라본 사시도.Figure 4 is a perspective view from below of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 유기물 증착 장치의 일부를 도시한 단면도.5 is a cross-sectional view showing a portion of an organic material deposition apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 유기물 증착 장치의 일부를 도시한 사시도.6 is a perspective view showing a part of an organic material deposition apparatus according to an embodiment of the present invention.
도 7는 본 발명의 다른 실시예에 따른 유기물 증착 방법의 순서도.7 is a flow chart of an organic material deposition method according to another embodiment of the present invention.
도 8 내지 도 15는 본 발명의 다른 실시예에 따른 유기물 증착 방법의 흐름도.8 to 15 are flowcharts of an organic material deposition method according to another embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명에 따른 유기물 증착 장치 및 이를 이용한 유기물 증착 방법의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, an embodiment of an organic material deposition apparatus and an organic material deposition method using the same according to the present invention will be described in detail with reference to the accompanying drawings, in the description with reference to the accompanying drawings, the same or corresponding components are the same reference numerals. And duplicate description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 유기물 증착 장치의 구성을 설명하기 위한 횡단면도이고, 도 2는 본 발명의 일 실시예에 따른 유기물 증착 장치의 구성을 설명하기 위한 종단면도이다. 그리고, 도 3은 본 발명의 일 실시예에 따른 유기물 증착 장치의 이송유닛을 상부에서 바라본 사시도이고, 도 4는 본 발명의 일 실시예에 따른 유기물 증착 장치의 이송유닛을 하부에서 바라본 사시도이다. 그리고, 도 5는 본 발명의 일 실시예에 따른 유기물 증착 장치의 일부를 도시한 단면도이며, 도 6은 본 발명의 일 실시예에 따른 유기물 증착 장치의 일부를 도시한 사시도이다.1 is a cross-sectional view for explaining the configuration of the organic material deposition apparatus according to an embodiment of the present invention, Figure 2 is a longitudinal cross-sectional view for explaining the configuration of the organic material deposition apparatus according to an embodiment of the present invention. And, Figure 3 is a perspective view of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention from the top, Figure 4 is a perspective view of the transfer unit of the organic material deposition apparatus according to an embodiment of the present invention. 5 is a cross-sectional view showing a part of an organic material deposition apparatus according to an embodiment of the present invention, Figure 6 is a perspective view showing a part of an organic material deposition apparatus according to an embodiment of the present invention.
도 1 내지 도 6에는, 중심점(12), 로봇 암(14), 제1 방사방향(15), 제1 기판(16), 제2 방사방향(18), 제2 기판(20), 제1 증착영역(22), 제2 증착영역(24), 공정 챔버(26), 제1 기판 로딩부(28), 제2 기판 로딩부(30), 유기물 증착소스(32), 이송유닛(33), 스캐닝부(34), 스캐닝부이동수단(36), 스캐닝부회동수단(38), 쉐도우 마스크(40), 격벽(42), 차단판(44), 제1 가이드바(45), 제1 연결바(46), 회동프레임(48), 제1 레일(50), 제1 이동블록(52), 제2 가이드바(54), 제2 연결바(56), 이동프레임(58), 제2 레일(60), 제2 이동블록(62), 회전 레일(63), 회전 블록(64), 웨브(66, 74), 상부플랜지(68, 76), 하부플랜지(70, 78), I형 빔(72), 박스형 빔(80), 홀(82), 블록몸체(84), 원형 롤러(86), 골형 홈(87), 홈 롤러(88), 플렛 레일(90), 산형 레일(92), 마그넷열(94), 코일부(95), LM 모터(96), 소스지지대(97)가 도시되어 있다.1 to 6, the center point 12, the robot arm 14, the first radial direction 15, the first substrate 16, the second radial direction 18, the second substrate 20, and the first The deposition region 22, the second deposition region 24, the process chamber 26, the first substrate loading portion 28, the second substrate loading portion 30, the organic material deposition source 32, and the transfer unit 33. , The scanning unit 34, the scanning unit moving unit 36, the scanning unit rotating unit 38, the shadow mask 40, the partition wall 42, the blocking plate 44, the first guide bar 45, the first Connecting bar 46, rotating frame 48, the first rail 50, the first moving block 52, the second guide bar 54, the second connecting bar 56, the moving frame 58, the first 2 rail 60, second moving block 62, rotary rail 63, rotary block 64, webs 66, 74, upper flanges 68, 76, lower flanges 70, 78, I Beam 72, box beam 80, hole 82, block body 84, circular roller 86, bone groove 87, groove roller 88, flat rail 90, mountain rail ( 92, magnet train 94, coil portion 95, LM motor 96, and source support 97 are shown.
본 실시예에 따른 유기물 증착 장치는, 제1 증착영역(22)과 제2 증착영역(24)으로 구획되며, 하나의 중심점(12)에서 제1 방사 방향(15)으로 제1 기판(16)이 상기 제1 증착영역(22)에 인출입되고, 상기 중심점(12)에서 제2 방사 방향(18)으로 제2 기판(20)이 상기 제2 증착영역(24)에 인출입되는 공정 챔버(26)와; 상기 제1 기판(16)이 상기 제1 방사 방향(15)으로 로딩되어 안착되는 제1 기판 로딩부(28)와; 상기 제2 기판(20)이 상기 제2 방사 방향(18)으로 로딩되어 안착되는 제2 기판 로딩부(30)와; 유기물 입자를 분사하는 선형의 유기물 증착소스(32)와; 상기 유기물 증착소스(32)를 이송시키는 이송유닛(33)을 포함한다. 그리고, 상기 이송유닛(33)은, 상기 유기물 증착소스(32)가 결합되며, 상기 제1 기판(16) 또는 상기 제2 기판(20)의 표면에 상기 유기물 입자가 분사되도록 상기 유기물 증착소스(32)를 상기 제1 기판(16) 또는 상기 제2 기판(20)의 표면을 따라 직선 이동시키는 스캐닝부(34)와; 상기 스캐닝부(34)가 결합되며, 상기 제1 증착영역(22) 또는 상기 제2 증착영역(24)에 위치하도록 상기 스캐닝부(34)를 왕복 이동시키는 스캐닝부이동수단(36)과; 상기 스캐닝부이동수단(36)이 결합되며, 상기 선형의 유기물 증착소스(32)가 상기 제1 기판(16) 또는 상기 제2 기판(20)의 일변과 평행을 이루도록 상기 스캐닝부이동수단(36)을 회전시키는 스캐닝부회동수단(38)을 포함한다.The organic material deposition apparatus according to the present embodiment is divided into a first deposition region 22 and a second deposition region 24, and the first substrate 16 in the first radial direction 15 at one center point 12. A process chamber which draws in and out of the first deposition region 22 and draws in and out of the second deposition region 24 in the second radial direction 18 from the center point 12. 26); A first substrate loading part 28 on which the first substrate 16 is loaded and seated in the first radial direction 15; A second substrate loading part 30 on which the second substrate 20 is loaded and seated in the second radial direction 18; A linear organic material deposition source 32 for spraying organic material particles; It includes a transfer unit 33 for transferring the organic material deposition source (32). In addition, the transfer unit 33 is the organic material deposition source 32 is coupled, the organic material deposition source (so that the organic particles are sprayed on the surface of the first substrate 16 or the second substrate 20 ( A scanning unit (34) for linearly moving 32 along the surface of the first substrate (16) or the second substrate (20); A scanning unit moving means (36) coupled to the scanning unit (34) to move the scanning unit (34) back and forth to be located in the first deposition region (22) or the second deposition region (24); The scanning unit moving unit 36 is coupled to the scanning unit moving unit 36 such that the linear organic material deposition source 32 is parallel to one side of the first substrate 16 or the second substrate 20. Scanning unit pivot means (38) for rotating;
공정 챔버(26)는, 제1 증착영역(22)과 제2 증착영역(24)으로 구획되며, 하나의 중심점(12)에서 제1 방사 방향(15)으로 제1 기판(16)이 제1 증착영역(22)에 인출입되고, 중심점(12)에서 제2 방사 방향(18)으로 제2 기판(20)이 제2 증착영역(24)에 인출입되도록 구성될 수 있다.The process chamber 26 is divided into a first deposition region 22 and a second deposition region 24, and the first substrate 16 is disposed in the first radial direction 15 at one center point 12. The second substrate 20 may be drawn in and out of the deposition region 22, and the second substrate 20 may be drawn in and out of the second deposition region 24 in the second radial direction 18 at the center point 12.
공정 챔버(26)는 그 내부에서 기판에 대해 유기물 증착이 이루어지는 곳으로, 진공 펌프에 의하여 내부가 진공 상태로 유지될 수 있다. 대기압 상태에서 유기물 증착이 이루어지는 경우에는 내부가 대기압 상태로 유지되는 것도 가능하다. 하나의 공정 챔버(26) 내에서 복수의 기판에 대해 증착이 이루어질 수 있도록 공정 챔버(26)는 복수의 증착영역(22, 24)으로 구획될 수 있다.The process chamber 26 is a place where organic material deposition is performed on the substrate therein, and the inside may be maintained in a vacuum state by a vacuum pump. When the organic material is deposited at atmospheric pressure, the inside may be maintained at atmospheric pressure. The process chamber 26 may be divided into a plurality of deposition regions 22 and 24 such that deposition may be performed on a plurality of substrates in one process chamber 26.
증착영역(22, 24)은 유기물 증착소스(32)의 이동에 따라 하나의 기판에 대해 유기물 증착이 수행될 수 있는 가상의 공간을 의미하는 것으로, 도 1을 참조하면, 도 1의 1점 쇄선으로 나타낸 공정 챔버(26)의 중심선에 의해 공정 챔버(26)가 제1 증착영역(22)과 제2 증착영역(24)으로 구획될 수 있다. 제1 증착영역(22)에서는 제1 기판(16)에 대한 유기물 입자의 증착이 이루어지며 제1 증착영역(22)에 인접한 제2 증착영역(24)에서는 제2 기판(20)에 대한 유기물 입자의 증착이 이루어진다.The deposition regions 22 and 24 denote virtual spaces in which organic deposition may be performed on one substrate according to the movement of the organic deposition source 32. Referring to FIG. 1, the dashed-dotted line in FIG. The process chamber 26 may be divided into the first deposition region 22 and the second deposition region 24 by the center line of the process chamber 26. In the first deposition region 22, organic particles are deposited on the first substrate 16. In the second deposition region 24 adjacent to the first deposition region 22, the organic particles on the second substrate 20 are deposited. Deposition takes place.
제1 기판(16)은 하나의 중심점(12)에서 제1 방사 방향(15)으로 공정 챔버(26)의 제1 증착영역(22)으로 인입되거나 인출되고, 제2 기판(20)은 상기 중심점(12)에서 제2 방사 방향(18)으로 공정 챔버(26)의 제2 증착영역(24)으로 인입되거나 인출된다. 즉, 제1 기판(16)과 제2 기판(20)은 공정 챔버(26)에 일정한 경사를 가지고 인입되거나 인출된다.The first substrate 16 is drawn into or withdrawn from one center point 12 to the first deposition region 22 of the process chamber 26 in the first radial direction 15, and the second substrate 20 is the center point. In (12) it is introduced into or withdrawn from the second deposition region 24 of the process chamber 26 in the second radial direction 18. That is, the first substrate 16 and the second substrate 20 are drawn in or drawn out from the process chamber 26 with a predetermined slope.
클러스터 타입(cluster type)의 증착 시스템에 있어서, 기판은 공정 챔버(26)와 연결된 트랜스퍼 챔버 내의 로봇 암(14)에 의해 공정 챔버(26) 내로 인입되거나 인출될 수 있는데, 이 경우, 로봇 암(14)의 회전 중심에서 방사 방향으로 기판이 공정 챔버(26)로 인출입되기 때문에 기판이 공정 챔버(26)에 일정한 경사를 가지고 인출입될 수 있다.In a cluster type deposition system, the substrate may be drawn into or withdrawn from the process chamber 26 by a robot arm 14 in a transfer chamber connected to the process chamber 26, in which case the robot arm ( Since the substrate is taken in and out of the process chamber 26 in the radial direction at the center of rotation of 14, the substrate can be drawn in and out of the process chamber 26 with a constant inclination.
따라서, 로봇 암(14)에 의해 제1 기판(16)과 제2 기판(20)이 공정 챔버(26)로 인입되거나 인출되는 경우, 중심점(12)을 구성하는 로봇 암(14)의 회전 중심에 대해 제1 방사 방향(15)으로 제1 기판(16)이 공정 챔버(26)에 인출입되고, 제2 기판(20)은 중심점(12)을 구성하는 로봇 암(14)의 회전 중심에 대해 제1 방사 방향(15)과 다른 제2 방사 방향(18)으로 공정 챔버(26)에 인출입될 수 있다.Therefore, when the first substrate 16 and the second substrate 20 are introduced into or withdrawn from the process chamber 26 by the robot arm 14, the rotation center of the robot arm 14 constituting the center point 12 is formed. The first substrate 16 is drawn in and out of the process chamber 26 in the first radial direction with respect to the second substrate 20, and the second substrate 20 is at the center of rotation of the robot arm 14 constituting the center point 12. Withdrawal to and from the process chamber 26 in a second radial direction 18 different from the first radial direction 15.
다만, 로봇 암(14)에 의해 공정 챔버(26)에 제1 기판(16)과 제2 기판(20)이 인출입되는 것에 한정되지 않고, 공정 챔버(26)에 제1 기판(16)과 제2 기판(20)이 서로 경사를 가지고 인출입되는 경우에는 본 실시예에 따른 유기물 증착 장치가 적용될 수 있다. 예를 들면, 두 개의 로봇 암(14)에 의해 제1 기판(16)과 제2 기판(20)이 공정 챔버(26)에 인출입되는 경우에는 로봇 암(14)의 회전 중심이 상술한 중심점(12)을 구성하지 않고, 제1 기판(16)과 제2 기판(20)의 경사 방향이 이루는 가상의 두 경사선이 만나는 점이 중심점(12)을 구성하게 된다.However, the first arm 16 and the second substrate 20 are not limited to drawing in and out of the process chamber 26 by the robot arm 14. When the second substrate 20 is inclined and drawn out with each other, the organic material deposition apparatus according to the present exemplary embodiment may be applied. For example, when the first substrate 16 and the second substrate 20 are drawn in and out of the process chamber 26 by the two robot arms 14, the rotation center of the robot arm 14 is the center point described above. Without forming (12), the point where the two virtual inclination lines which the inclination direction of the 1st board | substrate 16 and the 2nd board | substrate 20 meet meets the center point 12. As shown in FIG.
제1 기판 로딩부(28) 및 제2 기판 로딩부(30)에는 제1 기판(16)과 제2 기판(20)이 각각 로딩되어 안착된다. 본 실시예에서는, 유기물 증착소스(32)에서 유기물 입자가 상향으로 분출되어 기판에 유기물 증착이 이루어질 수 있도록 제1 기판 로딩부(28) 및 제2 기판 로딩부(30)의 하부에 제1 기판(16) 및 제2 기판(20)이 각각 부착된다.The first substrate 16 and the second substrate 20 are loaded on the first substrate loading unit 28 and the second substrate loading unit 30, respectively. In the present embodiment, the organic particles are ejected upward from the organic material deposition source 32 so that the organic material may be deposited on the substrate, and the first substrate below the first substrate loading part 28 and the second substrate loading part 30. 16 and the second substrate 20 are attached, respectively.
제1 기판 로딩부(28) 및 제2 기판 로딩부(30)에 제1 기판(16)과 제2 기판(20)이 각각 로딩되어 안착되면 각 기판 로딩부(30, 32)에서는 쉐도우 마스크(40)가 기판의 표면에 배치되고, 기판과 쉐도우 마스크(40)는 서로 얼라인이 이루어질 수 있다.When the first substrate 16 and the second substrate 20 are loaded and seated on the first substrate loading unit 28 and the second substrate loading unit 30, respectively, the shadow mask may be formed in each of the substrate loading units 30 and 32. 40 may be disposed on the surface of the substrate, and the substrate and the shadow mask 40 may be aligned with each other.
이송유닛(33)에는 유기물 증착소스(32)가 결합되며, 이송유닛(33)에 의해 유기물 증착소스(32)가 제1 증착영역(22)과 제2 증착영역(24) 간을 이동하면서 기판에 대한 유기물 증착이 이루어진다.The organic material deposition source 32 is coupled to the transfer unit 33, and the organic material deposition source 32 moves between the first deposition region 22 and the second deposition region 24 by the transfer unit 33. Deposition of organics is carried out.
이송유닛(33)은, 유기물 증착소스(32)를 제1 기판(16) 또는 제2 기판(20)의 표면을 따라 직선 이동시키는 스캐닝부(34)와, 스캐닝부(34)를 왕복 이동시키는 스캐닝부이동수단(36)과, 선형의 유기물 증착소스(32)가 제1 기판(16) 또는 제2 기판(20)의 일변과 평행을 이루도록 스캐닝부이동수단(36)을 회전시키는 스캐닝부회동수단(38)을 포함한다.The transfer unit 33 includes a scanning unit 34 for linearly moving the organic material deposition source 32 along the surface of the first substrate 16 or the second substrate 20 and a reciprocating movement of the scanning unit 34. Scanning unit rotation means for rotating the scanning unit movement means 36 such that the scanning unit movement means 36 and the linear organic material deposition source 32 are parallel to one side of the first substrate 16 or the second substrate 20. Means 38.
선형의 유기물 증착소스(32)는 제1 기판(16) 또는 제2 기판(20)의 표면에 유기물 입자를 분사한다. 선형의 유기물 증착소스(32)는, 기판의 일변에서 마주하는 타변 방향으로 직선 이동하여 유기물을 기판에 증착하게 되는데, 기판의 폭에 대응하여 선형으로 구성된다. 기판에 대한 유기물의 증착은 유기물의 담겨 있는 유기물 증착소스(32)의 도가니에 열을 가하여 도가니에서 승화되는 유기물 입자를 기판 상에 증착하는 방식으로 이루어진다.The linear organic material deposition source 32 injects organic particles onto the surface of the first substrate 16 or the second substrate 20. The linear organic material deposition source 32 is linearly moved in the direction of the other side facing one side of the substrate to deposit the organic material on the substrate, it is configured in a linear corresponding to the width of the substrate. The deposition of the organic material on the substrate is performed by applying heat to the crucible of the organic material deposition source 32 in which the organic material is contained and depositing organic particles sublimated in the crucible on the substrate.
스캐닝부(34)에는 유기물 증착소스(32)가 결합되며, 제1 기판(16) 또는 제2 기판(20)의 표면에 유기물 입자가 분사되도록 스캐닝부(34)가 유기물 증착소스(32)를 제1 기판(16) 또는 제2 기판(20)의 표면을 따라 직선 이동시킨다. 상술한 바와 같이, 유기물 증착소스(32)가 기판의 일변에서 마주하는 타변 방향으로 직선 이동하여 기판에 유기물을 증착시키게 되므로 스캐닝부(34)에 의해 유기물 증착소스(32)가 직선 이동하게 된다.The organic material deposition source 32 is coupled to the scanning unit 34, and the scanning unit 34 supplies the organic material deposition source 32 to spray the organic particles onto the surface of the first substrate 16 or the second substrate 20. It linearly moves along the surface of the first substrate 16 or the second substrate 20. As described above, since the organic material deposition source 32 linearly moves in the direction of the other side facing one side of the substrate to deposit the organic material on the substrate, the organic material deposition source 32 is linearly moved by the scanning unit 34.
스캐닝부이동수단(36)에는 스캐닝부(34)가 결합되며, 스캐닝부이동수단(36)은 스캐닝부(34)가 제1 증착영역(22) 또는 제2 증착영역(24)에 위치하도록 스캐닝부(34)를 왕복 이동시킨다. 제1 기판(16)에 대한 증착이 완료되면 제2 기판(20)에 대한 증착을 수행하여야 하는데, 스캐닝부이동수단(36)은 제1 증착영역(22)에서 증착공정을 완료한 스캐닝부(34)를 제2 증착영역(24)으로 이동시키게 된다. 스캐닝부이동수단(36)에 의해 스캐닝부(34)가 제1 증착영역(22)과 제2 증착영역(24) 간을 왕복 이동하면서 각 증착영역에 위치한 기판에 대해 증착공정을 수행하도록 한다.The scanning unit 34 is coupled to the scanning unit moving unit 36, and the scanning unit moving unit 36 scans the scanning unit 34 so that the scanning unit 34 is positioned in the first deposition region 22 or the second deposition region 24. The part 34 is reciprocated. When the deposition on the first substrate 16 is completed, the deposition on the second substrate 20 should be performed. The scanning unit moving means 36 may include a scanning unit that has completed the deposition process in the first deposition region 22 ( 34 is moved to the second deposition region 24. By the scanning unit moving means 36, the scanning unit 34 reciprocates between the first deposition region 22 and the second deposition region 24 to perform the deposition process on the substrates located in each deposition region.
스캐닝부회동수단(38)에는, 스캐닝부이동수단(36)이 결합되며, 선형의 유기물 증착소스(32)가 제1 기판(16) 또는 제2 기판(20)의 일변과 평행을 이루도록 스캐닝부이동수단(36)을 회전시킨다. The scanning unit moving unit 38 is coupled to the scanning unit moving unit 36 and the scanning unit so that the linear organic material deposition source 32 is parallel to one side of the first substrate 16 or the second substrate 20. Rotate the moving means 36.
도 3을 참고하면, 스캐닝부회동수단(38)에는 스캐닝부이동수단(36)이 결합되어 있고, 스캐닝부이동수단(36)에는 스캐닝부(34)가 결합되어 있으며, 스캐닝부(34)에는 소스지지대(97)에 의해 유기물 증착소스(32)가 결합된다. Referring to FIG. 3, the scanning part moving means 38 is coupled to the scanning part moving means 36, the scanning part moving means 36 is coupled to the scanning part 34, and the scanning part 34 is connected to the scanning part moving means 36. The organic material deposition source 32 is coupled by the source support 97.
기판에 대한 증착과정을 살펴보면, 제1 기판 로딩부(28)에 제1 기판(16)이 로딩되면, 스캐닝부이동수단(36)에 의해 스캐닝부(34)가 제1 증착영역(22)으로 직선 이동된다. 제1 증착영역(22)으로 이동된 스캐닝부(34)의 유기물 증착소스(32)는 경사지게 로딩된 제1 기판(16)의 일변과 평행하지 않기 때문에 스캐닝부회동수단(38)에 의해 스캐닝부이동수단(36)이 회전되면서 선형의 유기물 증착소스(32)가 제1 기판(16)의 일변과 평행을 이루게 된다. 유기물 증착소스(32)와 제1 기판(16)의 일변이 평행을 이루면, 스캐닝부(34)가 유기물 증착소스(32)를 제1 기판(16)의 일변에서 타변 방향으로 직선 이동시켜 이동과정에서 분출되는 유기물 입자를 제1 기판(16)에 증착하게 된다. 이 후, 제2 기판 로딩부(30)에 제2 기판(20)이 로딩되면, 스캐닝부회동수단(38)이 원위치로 회전하고 스캐닝부이동수단(36)에 의해 유기물 증착소스(32)가 결합된 스캐닝부(34)가 제2 증착영역(24)으로 직선 이동된다. 마찬가지로, 제2 증착영역(24)으로 이동된 스캐닝부(34)의 유기물 증착소스(32)는 경사지게 로딩된 제2 기판(20)의 일변과 평행하지 않기 때문에 스캐닝부회동수단(38)에 의해 스캐닝부이동수단(36)이 회전되면서 선형의 유기물 증착소스(32)가 제2 기판(20)의 일변과 평행을 이루게 된다. 그리고, 유기물 증착소스(32)와 제2 기판(20)의 일변이 평행을 이루면, 스캐닝부(34)가 유기물 증착소스(32)를 제2 기판(20)의 일변에서 타변 방향으로 직선 이동시켜 이동과정에서 분출되는 유기물 입자를 제2 기판(20)에 증착하게 된다.Looking at the deposition process for the substrate, when the first substrate 16 is loaded on the first substrate loading unit 28, the scanning unit 34 is moved to the first deposition region 22 by the scanning unit moving means 36 Is moved straight. The organic material deposition source 32 of the scanning unit 34 moved to the first deposition region 22 is not parallel to one side of the inclinedly loaded first substrate 16, so that the scanning unit rotates by the scanning unit rotating means 38. As the moving means 36 is rotated, the linear organic material deposition source 32 is parallel to one side of the first substrate 16. When one side of the organic material deposition source 32 and the first substrate 16 are parallel, the scanning unit 34 moves the organic material deposition source 32 linearly from one side of the first substrate 16 to the other side to move. The organic particles ejected from are deposited on the first substrate 16. Thereafter, when the second substrate 20 is loaded on the second substrate loading unit 30, the scanning unit rotating unit 38 rotates to its original position and the organic material deposition source 32 is moved by the scanning unit moving unit 36. The combined scanning unit 34 is linearly moved to the second deposition region 24. Similarly, since the organic material deposition source 32 of the scanning unit 34 moved to the second deposition region 24 is not parallel to one side of the inclinedly loaded second substrate 20, the scanning unit rotating means 38 is used. As the scanning unit moving means 36 is rotated, the linear organic material deposition source 32 is parallel to one side of the second substrate 20. When one side of the organic material deposition source 32 and the second substrate 20 are parallel to each other, the scanning unit 34 moves the organic material deposition source 32 linearly from one side of the second substrate 20 to the other side direction. Organic particles that are ejected during the migration process are deposited on the second substrate 20.
도 3은 본 실시예에 따른 유기물 증착 장치의 이송유닛(33)을 상부에서 바라본 사시도이고, 도 4는 본 실시예에 따른 유기물 증착 장치의 이송유닛(33)을 하부에서 바라본 사시도인데, 이를 참조하여 본 실시예에 따른 이송유닛(33)에 대해 자세히 살펴보기로 한다.3 is a perspective view of the transfer unit 33 of the organic material deposition apparatus according to the present embodiment from above, and FIG. 4 is a perspective view of the transfer unit 33 of the organic material deposition apparatus according to the present embodiment viewed from below. The transfer unit 33 according to the present embodiment will be described in detail.
스캐닝부(34)는, 서로 마주하는 한 쌍의 제1 가이드바(45)와 한 쌍의 제1 가이드바(45)를 연결하는 제1 연결바(46)를 포함하는 이동프레임(58)과, 제1 가이드바(45)의 길이 방향을 따라 제1 레일(50)과, 유기물 증착소스(32)가 결합되며, 제1 레일(50)을 따라 이동하는 제1 이동블록(52); 및 제1 이동블록(52)을 이동시키는 제1 구동부을 포함한다.The scanning unit 34 may include a moving frame 58 including a pair of first guide bars 45 facing each other and a first connection bar 46 connecting the pair of first guide bars 45. A first moving block 52 coupled to the first rail 50 and the organic material deposition source 32 along the length direction of the first guide bar 45 and moving along the first rail 50; And a first driver for moving the first moving block 52.
이동프레임(58)은, 유기물 증착소스(32)를 지지하기 위한 지지체로서, 서로 마주하는 한 쌍의 제1 가이드바(45)와, 이를 연결하는 제1 연결바(46)로 구성된다.The moving frame 58 is a support for supporting the organic material deposition source 32, and is composed of a pair of first guide bars 45 facing each other and a first connection bar 46 connecting them.
제1 가이드바(45)에는 유기물 증착소스(32)의 직선 이동을 가이드하기 위한 LM 가이드(linear motion guide)가 길이 방향을 따라 설치될 수 있다. The first guide bar 45 may be provided with a linear motion guide (LM guide) for guiding the linear movement of the organic material deposition source 32 along the longitudinal direction.
제1 가이드바(45)는, 다수의 홀(82)이 길이 방향을 따라 형성되며 서로 마주하여 배치되는 한 쌍의 웨브(74)와, 다수의 홀(82)이 길이 방향으로 따라 형성되며 한 쌍의 웨브(74)의 일단 및 타단에 횡방향으로 결합되는 상부플랜지(76) 및 하부플랜지(78)로 구성되는 박스형 빔(80)(beam)으로 구성될 수 있다. 박스형 빔(80)은 단면이 사각형 형태로서 구조적으로 강성이 높고, 웨브(74)나 플랜지(76, 78)에 다수의 홀(82)을 형성함으로써 이동프레임(58)의 무게를 감소시킬 수 있다.The first guide bar 45 includes a pair of webs 74 in which a plurality of holes 82 are formed along a length direction and are disposed to face each other, and a plurality of holes 82 are formed along a length direction. It may be composed of a box-shaped beam (80) consisting of the upper flange 76 and the lower flange 78 is coupled to one end and the other end of the pair of web 74 in the transverse direction. The box-shaped beam 80 is rectangular in cross section and has high structural rigidity, and can reduce the weight of the moving frame 58 by forming a plurality of holes 82 in the web 74 or the flanges 76 and 78. .
제1 레일(50)은 제1 가이드바(45)의 상부에 길이 방향으로 따라 결합되며, 제1 레일(50)에는 제1 레일(50)을 따라 이동하는 제1 이동블록(52)이 결합된다. 제1 이동블록(52)에는 유기물 증착소스(32)를 결합하기 위한 소스지지대(97)가 결합되어 제1 레일(50)을 따라 직선 왕복 이동이 이루어진다. 제1 구동부(미도시)는 제1 이동블록(52)이 제1 레일(50)을 따라 이동할 수 있도록 구동력을 제공한다. The first rail 50 is coupled to the upper portion of the first guide bar 45 in the longitudinal direction, and the first moving block 52 moving along the first rail 50 is coupled to the first rail 50. do. A source support 97 for coupling the organic material deposition source 32 is coupled to the first moving block 52 to perform a linear reciprocating movement along the first rail 50. The first driving unit (not shown) provides a driving force to move the first moving block 52 along the first rail 50.
도 5 및 도 6은 유기물 증착소스(32)의 이동을 제어하기 위한 이송부를 도시한 도면으로서, 이러한 이송부로 유기물 증착소스(32)의 직선 왕복 이동을 정밀하게 제어할 수 있다. 보다 자세히 살펴보면, 상기의 제1 레일(50)은, 제1 가이드바(45)를 따라 결합되며 상면이 평탄한 플렛 레일(90)(flat rail)과, 플렛 레일(90)의 길이 방향을 따라 결합되는 산형 레일(92)로 구성된다. 그리고, 제1 이동블록(52)은, 블록몸체(84)와, 블록몸체(84)의 일 측단에 회전가능하게 결합되며 플렛 레일(90)의 상면에 지지되는 원형 롤러(86)와, 블록몸체(84)의 타 측단에 회전가능하게 결합되며 산형 레일(92)이 삽입되도록 외주를 따라 골형 홈(87)이 형성되는 홈 롤러(88)로 구성된다. 그리고, 제1 구동부는, 제1 가이드바(45)의 길이 방향을 따라 N극과 S극이 교대로 배치되는 마그넷열(94)과, 마그넷열(94)에 대향하여 배치되는 코일부(95)를 구비하는 LM 모터(96)로 구성될 수 있다.5 and 6 illustrate a transfer part for controlling the movement of the organic material deposition source 32, and the transfer part may precisely control the linear reciprocation of the organic material deposition source 32. In more detail, the first rail 50 is coupled along the first guide bar 45 and is coupled to the flat rail 90 having a flat upper surface, and along the longitudinal direction of the flat rail 90. It consists of a mountain rail (92). The first moving block 52 is a block body 84, a circular roller 86 rotatably coupled to one side end of the block body 84, and supported on an upper surface of the flat rail 90, and a block. It is composed of a groove roller 88 is rotatably coupled to the other end of the body 84 and the grooved groove 87 is formed along the outer circumference so that the mountain rail 92 is inserted. The first drive unit includes a magnet train 94 in which the N poles and the S poles are alternately arranged along the longitudinal direction of the first guide bar 45, and a coil unit 95 disposed to face the magnet train 94. It may be composed of an LM motor 96 having a).
플렛 레일(90)은 길이 방향을 따라 평탄한 상면을 가지고 있으며, 이러한 평탄한 상면에 제1 이동블록(52)의 원형 롤러(86)가 지지된다. 그리고, 플렛 레일(90)의 측단에는 역 V자 형태의 산형부가 길이 방향으로 따라 형성된 산형 레일(92)이 결합되어 있으며, 산형 레일(92)의 산형부에는 제1 이동블록(52)의 홈 롤러(88)의 골형 홈(87)이 삽입된다.The flat rail 90 has a flat upper surface along the longitudinal direction, and the circular roller 86 of the first moving block 52 is supported on the flat upper surface. In addition, a ridge rail 92 having a reverse V-shaped ridge formed along the length direction is coupled to a side end of the flat rail 90, and a groove of the first moving block 52 is formed in the ridge of the ridge rail 92. The grooved groove 87 of the roller 88 is inserted.
블록몸체(84)에는 유기물 증착소스(32)가 직접 결합되거나 소스지지대(97)가 결합될 수 있다. 블록몸체(84)의 일 측단에는 플렛 레일(90)의 평탄한 상면에 지지되는 원형 롤러(86)가 회전가능하게 결합되며, 타 측단에는 산형 레일(92)의 산형부에 지지되는 홈 롤러(88)가 회전가능하게 결합된다. The organic material deposition source 32 may be directly coupled to the block body 84, or the source support 97 may be coupled to the block body 84. At one end of the block body 84, a circular roller 86 supported on the flat upper surface of the flat rail 90 is rotatably coupled, and at the other end, a groove roller 88 supported on the ridge of the mountain rail 92. ) Is rotatably coupled.
플렛 레일(90)의 상면과 원형 롤러(86)의 외주면 간에는 마찰력이 최소화되어 구동 시 분진발생을 최소화할 수 있다. 그리고, 홈 롤러(88)의 골형 홈(87)에는 홈 롤러(88)의 산형부가 삽입되기 때문에 구동 시 유기물 증착소스(32)가 레일을 이탈하는 것을 방지하게 된다.Friction between the upper surface of the flat rail 90 and the outer circumferential surface of the circular roller 86 can be minimized to minimize dust generation during driving. In addition, since the ridge portion of the groove roller 88 is inserted into the grooved groove 87 of the groove roller 88, the organic material deposition source 32 is prevented from being separated from the rail during driving.
제1 구동부로서 사용되는 LM 모터(96)는, 마그넷열(94)과 코일부(95)를 포함할 수 있는데, 마그넷열(94)은 N극과 S극이 교대로 배치되도록 다수의 마그넷이 제1 가이드바(45)의 길이 방향을 따라 설치되어 구성되며, 이에 대향하여 코일부(95)는 유기물 증착소스(32)나 소스지지대(97)에 결합될 수 있다. 코일부(95)에 전류를 인가함에 따라 마그넷열(94)과 대향하여 있는 코일부(95)에는 척력과 인력이 교대로 발생하게 되며 이에 따라 제1 이동블록(52)에 구동력을 제공하게 된다.The LM motor 96 used as the first driving unit may include a magnet string 94 and a coil portion 95. The magnet string 94 includes a plurality of magnets such that N poles and S poles are alternately arranged. The first guide bar 45 may be installed along the longitudinal direction, and the coil unit 95 may be coupled to the organic material deposition source 32 or the source support 97. As the current is applied to the coil unit 95, the coil unit 95 facing the magnet train 94 alternately generates repulsive force and attraction force, thereby providing driving force to the first moving block 52. .
스캐닝부회동수단(38)은, 서로 마주하는 한 쌍의 제2 가이드바(54)와, 한 쌍의 제2 가이드바(54)를 연결하는 제2 연결바(56)를 구비하는 회동프레임(48)을 포함할 수 있다. 이 경우, 스캐닝부이동수단(36)은, 제2 가이드바(54)의 길이 방향을 따라 결합되는 제2 레일(60)과, 스캐닝부(34)가 결합되며, 제2 레일(60)을 따라 이동하는 제2 이동블록(62); 및 제2 이동블록(62)을 이동시키는 제2 구동부(미도시)로 구성될 수 있다.The scanning unit pivot means 38 includes a rotation frame having a pair of second guide bars 54 facing each other and a second connection bar 56 connecting the pair of second guide bars 54 ( 48). In this case, the scanning unit moving means 36 includes a second rail 60 coupled with the second guide bar 54 along the longitudinal direction of the second guide bar 54, and the scanning unit 34 is coupled to the second rail 60. A second moving block 62 moving along; And a second driver (not shown) for moving the second moving block 62.
제2 가이드바(54)는, 다수의 홀(82)이 길이 방향을 따라 형성되는 웨브(66)와, 웨브(66)의 일단에 횡방향으로 결합되며 제2 레일(60)이 상부에 결합되는 상부플랜지(68)와, 웨브(66)의 타단에 횡방향으로 결합되는 하부플랜지(70)로 구성되는 I형 빔(72)(beam)으로 구성될 수 있다. I형 빔(72)은 단면이 I형 형태로서 수직 하중에 대해 구조적으로 강성이 높으며, I형 빔(72)의 웨브(66)에 다수의 홀(82)을 형성함으로써 회동프레임(48)의 무게가 감소될 수 있다.The second guide bar 54 includes a web 66 in which a plurality of holes 82 are formed along the length direction, and is laterally coupled to one end of the web 66, and a second rail 60 is coupled to the upper portion thereof. The upper flange 68 and the lower flange 70 which is coupled to the other end of the web 66 in the lateral direction may be composed of an I-beam 72 (beam). The I-shaped beam 72 is structurally rigid with respect to the vertical load as the I-shaped cross section, and the plurality of holes 82 are formed in the web 66 of the I-shaped beam 72 to form the rotating frame 48. The weight can be reduced.
제2 레일(60)은 제2 가이드바(54)의 상부에 길이 방향으로 따라 결합되며, 제2 레일(60)에는 제2 레일(60)을 따라 이동하는 제2 이동블록(62)이 결합된다. 제2 이동블록(62)에는 스캐닝부(34)가 결합되어 제2 이동블록(62)의 이동에 따라 스캐닝부(34)가 직선 왕복 이동을 하게 된다. 제2 구동부(미도시)는 제2 이동블록(62)이 제2 레일(60)을 따라 이동할 수 있도록 구동력을 제공한다. 제2 구동부로는 상술한 LM 모터가 사용될 수 있다.The second rail 60 is coupled along the length of the second guide bar 54 in the longitudinal direction, and the second moving block 62 moving along the second rail 60 is coupled to the second rail 60. do. The scanning unit 34 is coupled to the second moving block 62 so that the scanning unit 34 linearly reciprocates as the second moving block 62 moves. The second driving unit (not shown) provides a driving force so that the second moving block 62 can move along the second rail 60. The LM motor described above may be used as the second driving unit.
한편, 스캐닝부회동수단(38)은, 공정 챔버(26)의 바닥면에 원형을 이루어 배치되는 회전 레일(63)과, 회동프레임(48)이 결합되며, 회전 레일(63)을 따라 이동하는 회전 블록(64)을 포함할 수 있다. 회전 레일(63)은 회전 중심에 대해 원형의 형태로 공정 챔버(26)의 바닥면에 배치되는데, 본 실시예에서는 동일 반경을 갖는 4개의 원호 형상의 레일을 원형으로 배치하여 회전 레일(63)을 구성하였다. 원호 형상의 각 레일에는 회전 블록(64)이 배치되어 회전 레일(63)을 따라 회전된다. 회동프레임(48)은 회전 블록(64)에 결합되어 회전 레일(63)을 따라 회전하게 된다.On the other hand, the scanning unit rotation means 38, the rotary rail 63 and the rotation frame 48 are arranged in a circular shape on the bottom surface of the process chamber 26 is coupled, and moves along the rotary rail 63 May comprise a rotating block 64. The rotary rail 63 is disposed on the bottom surface of the process chamber 26 in a circular shape with respect to the center of rotation. In this embodiment, four circular arc-shaped rails having the same radius are disposed in a circular manner to rotate the rotary rail 63. It was made up. Rotating blocks 64 are disposed on each rail having an arc shape and rotated along the rotary rails 63. Rotating frame 48 is coupled to the rotary block 64 is to rotate along the rotary rail (63).
스캐닝부회동수단(38)의 회동프레임(48)을 자체를 공정 챔버(26)의 바닥면에 대해 회전시킴으로써 그 위에 탑재되어 있는 스캐닝부이동수단(36)을 회전시킬 수 있고, 이에 따라 스캐닝부이동수단(36)에 결합되어 있는 유기물 증착소스(32)를 제1 기판(16) 또는 제2 기판(20)의 일변에 평행을 이루도록 할 수 있다. By rotating the pivot frame 48 of the scanning unit rotating means 38 itself with respect to the bottom surface of the process chamber 26, the scanning unit moving means 36 mounted thereon can be rotated, and thus the scanning unit The organic material deposition source 32 coupled to the moving means 36 may be parallel to one side of the first substrate 16 or the second substrate 20.
한편, 차단판(44)은, 도 2에 도시된 바와 같이, 제1 기판(16) 또는 제2 기판(20)에 대향하여 배치되고, 스캐닝부이동수단(36)에 의해 직선 이동 하는 유기물 증착소스(32)와 반대 방향으로 이동하여 제1 기판(16) 또는 제2 기판(20)을 커버한다. 도 2를 참조하면, 제2 기판(20)을 증착하기 위해 유기물 증착소스(32)가 제2 증착영역(24)으로 이동하는 경우 이와 반대 방향으로 차단판(44)이 이동하여 제1 기판(16)을 커버하게 된다. 이는 제2 기판(20)을 증착하는 동안 유기물 증착소스(32)에서 증발되는 유기물 입자가 제1 기판(16)으로 비산되어 증착되는 기생증착을 방지하기 위한 것이다. 또한, 제1 기판(16)을 증착하기 위해 유기물 증착소스(32)가 제1 증착영역(22)으로 이동하는 경우 이와 반대 방향으로 차단판(44)이 이동하여 제2 기판(20)을 커버하게 된다.Meanwhile, as shown in FIG. 2, the blocking plate 44 is disposed to face the first substrate 16 or the second substrate 20, and the organic material deposition linearly moved by the scanning unit moving means 36. It moves in a direction opposite to the source 32 to cover the first substrate 16 or the second substrate 20. Referring to FIG. 2, when the organic material deposition source 32 moves to the second deposition region 24 to deposit the second substrate 20, the blocking plate 44 moves in the opposite direction to the first substrate ( 16). This is to prevent parasitic deposition in which organic particles evaporated from the organic material deposition source 32 during the deposition of the second substrate 20 are scattered and deposited on the first substrate 16. In addition, when the organic material deposition source 32 moves to the first deposition region 22 to deposit the first substrate 16, the blocking plate 44 moves in the opposite direction to cover the second substrate 20. Done.
격벽(42)은 공정 챔버(26) 내에 결합되며, 제1 기판 로딩부(28)와 제2 기판 로딩부(30) 사이에 위치한다. 공정 챔버(26) 내부의 상단에서 하단으로 일정 거리 연장되어 격벽(42)이 형성되어 있으며 격벽(42)의 하단에 대해 횡방향으로 차단판(44)이 배치된다. 이러한 격벽(42)과 차단판(44)에 의해 인접 기판에의 유기물의 기생증착을 방지할 수 있다.The partition wall 42 is coupled to the process chamber 26 and is located between the first substrate loading portion 28 and the second substrate loading portion 30. The partition wall 42 is formed by extending a predetermined distance from the upper end to the lower end inside the process chamber 26, and the blocking plate 44 is disposed in the transverse direction with respect to the lower end of the partition 42. By such a partition wall 42 and the blocking plate 44, parasitic deposition of organic substances on adjacent substrates can be prevented.
도 7는 본 발명의 다른 실시예에 따른 유기물 증착 방법의 순서도이고, 도 8 내지 도 15는 본 발명의 다른 실시예에 따른 유기물 증착 방법의 흐름도이다.7 is a flowchart of an organic material deposition method according to another embodiment of the present invention, and FIGS. 8 to 15 are flowcharts of the organic material deposition method according to another embodiment of the present invention.
도 8 내지 도 15에는, 제1 기판(16, 16’), 제2 기판(20), 제1 증착영역(22), 제2 증착영역(24), 공정 챔버(26), 제1 기판 로딩부(28), 제2 기판 로딩부(30), 유기물 증착소스(32), 스캐닝부(34), 스캐닝부이동수단(36), 스캐닝부회동수단(38)이 도시되어 있다.8 to 15, the first substrate 16, 16 ′, the second substrate 20, the first deposition region 22, the second deposition region 24, the process chamber 26, and the first substrate loading The unit 28, the second substrate loading unit 30, the organic material deposition source 32, the scanning unit 34, the scanning unit moving unit 36, and the scanning unit rotating unit 38 are illustrated.
본 실시예에 따른 유기물 증착 방법은, 상술한 유기물 증착 장치를 이용하여 유기물을 증착하는 방법으로서, 제1 기판(16)을 제1 방사 방향으로 로딩하여 제1 기판 로딩부(28)에 안착시키는 단계와; 스캐닝부이동수단(36)이 스캐닝부(34)를 제1 증착영역(22)으로 이동시키는 단계와; 선형의 유기물 증착소스(32)가 제1 기판(16)의 일변과 평행을 이루도록 스캐닝부회동수단(38)이 스캐닝부(34)를 회전시키는 단계와; 스캐닝부(34)가 유기물 증착소스(32)를 제1 기판(16)의 표면을 따라 직선 이동시켜 제1 기판(16)에 유기물 입자를 증착시키는 단계와; 제1 기판(16)에 유기물 입자를 증착시키는 단계와 동시에 제2 기판(20)을 제2 방사 방향으로 로딩하여 제2 기판 로딩부(30)에 안착시키는 단계와; 제1 기판(16)에 대한 증착이 완료되면, 스캐닝부회동수단(38)이 스캐닝부(34)를 원위치로 회전시키는 단계와; 스캐닝부이동수단(36)이 스캐닝부(34)를 제2 증착영역(24)으로 이동시키는 단계와; 선형의 유기물 증착소스(32)가 제2 기판(20)의 일변과 평행을 이루도록 스캐닝부회동수단(38)이 스캐닝부(34)를 회전시키는 단계와; 스캐닝부(34)가 유기물 증착소스(32)를 직선 이동시켜 제2 기판(20)에 유기물 입자를 증착시키는 단계를 포함하여, 하나의 챔버 내에서 복수의 기판에 대해 증착공정을 진행하되, 하나의 기판의 증착공정 중에 다른 기판에 대한 이송공정 또는 얼라인공정을 진행하여 택 타임(tact time)을 줄일 수 있고, 기판에 대한 이송공정 또는 얼라인공정 중에 발생하는 유기물 재료의 손실을 줄일 수 있다.The organic material deposition method according to the present embodiment is a method of depositing an organic material using the organic material deposition apparatus described above, loading the first substrate 16 in a first radial direction and seating on the first substrate loading portion 28. Steps; The scanning unit moving means 36 moving the scanning unit 34 to the first deposition region 22; Rotating the scanning unit 34 by the scanning unit rotating means 38 such that the linear organic deposition source 32 is parallel to one side of the first substrate 16; Scanning the organic material source on the first substrate 16 by linearly moving the organic material deposition source 32 along the surface of the first substrate 16; Simultaneously depositing organic particles on the first substrate 16 and loading the second substrate 20 in a second radial direction and seating on the second substrate loading portion 30; When the deposition on the first substrate 16 is completed, the scanning unit rotating means 38 rotating the scanning unit 34 to its original position; The scanning unit moving means 36 moving the scanning unit 34 to the second deposition region 24; Rotating the scanning unit 34 by the scanning unit rotating means 38 such that the linear organic material deposition source 32 is parallel to one side of the second substrate 20; Scanning unit 34 includes a step of depositing the organic particles on the second substrate 20 by linearly moving the organic material deposition source 32, the process of depositing a plurality of substrates in one chamber, one It is possible to reduce the tact time by performing a transfer process or an alignment process for other substrates during the deposition process of the substrate, and to reduce the loss of organic material generated during the transfer process or the alignment process for the substrate. .
본 실시예에 따른 유기물 증착 방법은, 하나의 중심점에서 제1 방사 방향으로 제1 기판(16)이 인출입되는 제1 증착영역(22)과, 상기 중심점(12)에서 제2 방사 방향으로 제2 기판(20)이 인출입되는 제2 증착영역(24)으로 구획되는 공정 챔버(26) 내에서 기판에 유기물을 증착하는 방법에 관한 것이다. 제1 증착영역(22)에서는 제1 기판(16)에 대해 유기물 증착이 이루어지며 제2 증착영역(24)에서는 제2 기판(20)에 대해 유기물 증착이 이루어진다.In the organic material deposition method according to the present embodiment, the first deposition region 22 in which the first substrate 16 is drawn in and out in the first radial direction from one center point, and the second deposition direction in the second radial direction from the center point 12 is formed. 2 is a method of depositing an organic material on a substrate in a process chamber 26 partitioned by a second deposition region 24 into which the substrate 20 is drawn out. Organic deposition is performed on the first substrate 16 in the first deposition region 22 and organic deposition is performed on the second substrate 20 in the second deposition region 24.
본 실시예에 따른 유기물 증착 방법을 살펴 보면, 먼저, 도 8에 도시된 바와 같이, 제1 기판(16)을 제1 방사 방향으로 로딩하여 제1 기판 로딩부(28)에 안착시킨다(S100).Referring to the organic material deposition method according to the present embodiment, first, as shown in FIG. 8, the first substrate 16 is loaded in the first radial direction and seated on the first substrate loading unit 28 (S100). .
클러스터 타입(cluster type)의 증착 시스템에 있어서, 기판은 공정 챔버(26)와 연결된 트랜스퍼 챔버 내에 구비된 로봇 암에 의해 공정 챔버(26) 내로 인입되거나 인출될 수 있는데, 로봇 암의 회전 중심에 대해 방사 방향으로 기판이 공정 챔버(26)로 인출입되기 때문에 기판이 공정 챔버(26)에 일정한 경사를 가지고 배치될 수 있다.In a cluster type deposition system, the substrate may be drawn into or taken out of the process chamber 26 by a robot arm provided in a transfer chamber connected to the process chamber 26, with respect to the center of rotation of the robot arm. Since the substrate is drawn in and out of the process chamber 26 in the radial direction, the substrate may be disposed with a constant inclination in the process chamber 26.
따라서, 로봇 암에 의해 제1 기판(16)이 공정 챔버(26)의 제1 기판 로딩부(28)에 안착되는 경우, 중심점을 구성하는 로봇 암의 회전 중심에 대해 제1 방사 방향으로 제1 기판(16)이 제1 기판 로딩부(28)에 안착된다.Accordingly, when the first substrate 16 is seated on the first substrate loading portion 28 of the process chamber 26 by the robot arm, the first substrate 16 may be disposed in the first radial direction with respect to the rotation center of the robot arm constituting the center point. The substrate 16 is seated on the first substrate loading portion 28.
본 단계에서 제1 기판(16)이 제1 기판 로딩부(28)에 안착되면 쉐도우 마스크를 제1 기판(16)의 표면에 배치하고 제1 기판(16)과 쉐도우 마스크의 얼라인이 이루어진다.In this step, when the first substrate 16 is seated on the first substrate loading part 28, the shadow mask is disposed on the surface of the first substrate 16, and the first substrate 16 and the shadow mask are aligned.
그리고, 도 8에 도시된 바와 같이, 스캐닝부이동수단(36)이 스캐닝부(34)를 제1 증착영역(22)으로 이동시킨다(S200). 제1 기판(16)에 대한 증착공정을 수행하기 위해 스캐닝부(34)를 제1 증착영역(22)으로 이동시킨다. 본 실시예는 하나의 유기물 증착소스(32)로 복수의 기판에 대한 증착을 수행하는 방법에 관한 것으로, 스캐닝부(34)는 스캐닝부이동수단(36)에 의해 증착영역 간을 직선 왕복 이동하게 된다.As shown in FIG. 8, the scanning unit moving unit 36 moves the scanning unit 34 to the first deposition region 22 (S200). The scanning unit 34 is moved to the first deposition region 22 to perform the deposition process on the first substrate 16. The present embodiment relates to a method of depositing a plurality of substrates with one organic material deposition source 32, the scanning unit 34 is a linear reciprocating movement between the deposition region by the scanning unit moving means 36 do.
그리고, 도 9에 도시된 바와 같이, 선형의 유기물 증착소스(32)가 제1 기판(16)의 일변과 평행을 이루도록 스캐닝부회동수단(38)이 스캐닝부이동수단(36)을 회전시킨다(S300). 제1 기판(16)과 제2 기판(20)이 서로 경사를 가지고 공정 챔버(26) 내로 인입되어 제1 기판 로딩부(28) 및 제2 기판 로딩부(30)에 각각 안착되기 때문에, 유기물 증착소스(32)가 기판의 표면에 대향하여 직선 이동함에 따라 효율적으로 제1 기판(16) 또는 제2 기판(20)에 유기물을 증착하기 위해서, 선형의 유기물 증착소스(32)의 길이 방향과 기판의 일변이 평행을 이루도록 스캐닝부회동수단(38)이 스캐닝부이동수단(36)을 회전시키게 된다. And, as shown in FIG. 9, the scanning unit rotating means 38 rotates the scanning unit moving means 36 so that the linear organic material deposition source 32 is parallel to one side of the first substrate 16 ( S300). Since the first substrate 16 and the second substrate 20 are inclined to each other and introduced into the process chamber 26, the first substrate 16 and the second substrate 20 are seated on the first substrate loading portion 28 and the second substrate loading portion 30, respectively. As the deposition source 32 linearly moves against the surface of the substrate, the linear organic material deposition source 32 may have a longitudinal direction in order to efficiently deposit organic matter on the first substrate 16 or the second substrate 20. The scanning unit rotating means 38 rotates the scanning unit moving unit 36 so that one side of the substrate is parallel.
그리고, 도 10에 도시된 바와 같이, 스캐닝부(34)가 유기물 증착소스(32)를 제1 기판(16)의 표면을 따라 직선 이동시켜 제1 기판(16)에 유기물 입자를 증착시킨다(S400). 유기물 증착소스(32)가 스캐닝부(34)에 의해 제1 기판(16)의 일변에서 마주하는 타변 방향으로 직선 이동되어 제1 기판(16)에 유기물 입자를 증착한다. 제1 기판(16)에 대한 유기물의 증착은 유기물의 담겨 있는 유기물 증착소스(32)의 도가니에 열을 가하여 도가니에서 승화되는 유기물 입자를 기판 상에 증착하는 방식으로 이루어진다.As shown in FIG. 10, the scanning unit 34 linearly moves the organic material deposition source 32 along the surface of the first substrate 16 to deposit organic particles on the first substrate 16 (S400). ). The organic material deposition source 32 is linearly moved by the scanning unit 34 in the other side direction facing one side of the first substrate 16 to deposit organic particles on the first substrate 16. The deposition of the organic material on the first substrate 16 is performed by applying heat to the crucible of the organic material deposition source 32 in which the organic material is contained and depositing organic particles sublimated in the crucible onto the substrate.
유기물 증착소스(32)가 제1 기판(16)의 타변에 도달한 후에는 다시 반대 방향으로 직선 이동하여 제2 기판(20)에 대한 증착 공정 진행을 위한 준비를 하게 된다.After the organic material deposition source 32 reaches the other side of the first substrate 16, the organic material deposition source 32 is linearly moved in the opposite direction again to prepare for the deposition process on the second substrate 20.
그리고, 도 11에 도시된 바와 같이, 제1 기판(16)에 유기물 입자를 증착시킴과 동시에 제2 기판(20)을 제2 방사 방향으로 로딩하여 제2 기판 로딩부(30)에 안착시킨다(S500). 제1 기판(16)에 대한 증착 공정 중에 제2 기판(20)을 제2 기판 로딩부(30)에 안착시켜 택 타임을 줄일 수 있고, 제1 기판(16)에 대한 증착 공정 중에 제2 기판(20)의 로딩이 이루어져 유기물 재료의 손실을 줄일 수 있다.As shown in FIG. 11, the organic particles are deposited on the first substrate 16 and the second substrate 20 is loaded in the second radial direction to be seated on the second substrate loading part 30 ( S500). The second substrate 20 may be seated on the second substrate loading part 30 during the deposition process on the first substrate 16, thereby reducing the tack time, and the second substrate during the deposition process on the first substrate 16. The loading of 20 can be made to reduce the loss of organic material.
본 단계에서 제2 기판(20)이 제2 기판 로딩부(30)에 안착되면 쉐도우 마스크를 제2 기판(20)의 표면에 배치하고 제2 기판(20)과 쉐도우 마스크의 얼라인이 이루어진다.When the second substrate 20 is seated on the second substrate loading part 30 in this step, the shadow mask is disposed on the surface of the second substrate 20, and the second substrate 20 is aligned with the shadow mask.
본 실시예에서 ‘동시에’라는 의미는 시간적으로 동일하다는 의미뿐만 아니라 제1 기판(16)에 대한 증착 공정과 제2 기판(20)의 로딩 공정이 겹쳐서 이루어진다는 의미를 포함한다.In the present embodiment, the term “simultaneously” includes not only the same time, but also means that the deposition process of the first substrate 16 and the loading process of the second substrate 20 are overlapped.
그리고, 도 12 및 도 13에 도시된 바와 같이, 제1 기판(16)에 대한 증착이 완료되면, 스캐닝부이동수단(36)이 스캐닝부(34)를 제2 증착영역(24)으로 이동시킨다(S600). 제1 기판(16)에 대한 증착이 완료되면, 도 12에 도시된 바와 같이 스캐닝부회동수단(38)은 스캐닝부이동수단(36)을 원위치로 회전시키고, 스캐닝부이동수단(36)은, 도 13에 도시된 바와 같이. 스캐닝부(34)를 제2 증착영역(24)으로 이동시킨다. 이 과정에서, 도 13에 도시된 바와 같이, 유기물 증착이 완료된 제1 기판(16)을 공정 챔버(26)에서 제1 방사 방향으로 인출시킬 수 있다.12 and 13, when the deposition on the first substrate 16 is completed, the scanning unit moving unit 36 moves the scanning unit 34 to the second deposition region 24. (S600). When the deposition on the first substrate 16 is completed, as shown in FIG. 12, the scanning unit rotating means 38 rotates the scanning unit moving means 36 to its original position, and the scanning unit moving means 36 includes: As shown in FIG. The scanning unit 34 is moved to the second deposition region 24. In this process, as shown in FIG. 13, the first substrate 16 on which the organic material deposition is completed may be taken out of the process chamber 26 in the first radial direction.
그리고, 도 14에 도시된 바와 같이, 선형의 유기물 증착소스(32)가 제2 기판(20)의 일변과 평행을 이루도록 스캐닝부회동수단(38)이 스캐닝부이동수단(36)을 회전시킨다(S700). 상기 제1 기판(16)을 회전시키는 단계와 유사하게, 제2 기판(20)이 공정 챔버(26)에 대해 제2 방사 방향으로 경사를 이루어 로딩되어 제2 기판 로딩부(30)에 안착되기 때문에, 유기물 증착소스(32)가 기판의 표면에 대향하여 직선 이동함에 따라 효율적으로 제2 기판(20)에 유기물을 증착하기 위해서, 유기물 증착소스(32)의 길이 방향과 제2 기판(20)의 일변이 평행을 이루도록 스캐닝부회동수단(38)은 스캐닝부이동수단(36)을 회전시킨다.And, as shown in FIG. 14, the scanning unit rotating means 38 rotates the scanning unit moving means 36 so that the linear organic material deposition source 32 is parallel to one side of the second substrate 20 ( S700). Similar to the step of rotating the first substrate 16, the second substrate 20 is loaded in an inclined direction in the second radial direction with respect to the process chamber 26 to be seated on the second substrate loading part 30. Therefore, in order to deposit organic material on the second substrate 20 efficiently as the organic material deposition source 32 moves linearly against the surface of the substrate, the length direction of the organic material deposition source 32 and the second substrate 20 are increased. The scanning unit rotating unit 38 rotates the scanning unit moving unit 36 so that one side of the parallel sides thereof is parallel.
그리고, 도 15에 도시된 바와 같이, 스캐닝부(34)가 유기물 증착소스(32)를 직선 이동시켜 제2 기판(20)에 유기물 입자를 증착시킨다(S800). 유기물 증착소스(32)가 제2 기판(20)의 일변에서 마주하는 타변 방향으로 직선 이동하여 제2 기판(20)에 유기물을 증착시키게 되므로 스캐닝부(34)를 이용하여 유기물 증착소스(32)를 직선 이동시키게 된다.As shown in FIG. 15, the scanning unit 34 linearly moves the organic material deposition source 32 to deposit organic particles on the second substrate 20 (S800). Since the organic material deposition source 32 linearly moves in the other side direction facing one side of the second substrate 20 to deposit organic material on the second substrate 20, the organic material deposition source 32 using the scanning unit 34. Will move linearly.
제2 기판(20)에 유기물 입자를 증착시킴과 동시에 제1 방사 방향으로 새로운 제1 기판(16’)을 제1 기판 로딩부(28)로 로딩하여 안착시킬 수 있다. 새로운 제1 기판(16’)이 제1 기판 로딩부(28)에 안착되면 쉐도우 마스크(40)와 얼라인하고 다음의 증착 공정을 위해 대기한다. While depositing the organic particles on the second substrate 20, a new first substrate 16 ′ may be loaded onto the first substrate loading unit 28 in the first radial direction to be seated. When the new first substrate 16 ′ is seated on the first substrate loading portion 28, it is aligned with the shadow mask 40 and waits for the next deposition process.
또한, 제2 기판(20)에 대한 증착 공정이 완료되면, 유기물 증착이 완료된 제2 기판(20)을 공정 챔버(26)에서 제2 방사 방향으로 인출시키고, 새로운 제2 기판을 제2 기판 로딩부(30)로 로딩하여 안착시킨다. 새로운 제2 기판이 제2 기판 로딩부(30)에 안착되면 쉐도우 마스크와 얼라인하고 다음의 증착 공정을 위해 대기하다.In addition, when the deposition process on the second substrate 20 is completed, the second substrate 20 on which the organic material deposition is completed is withdrawn from the process chamber 26 in the second radial direction, and a new second substrate is loaded on the second substrate. Loaded into the part 30 to be seated. Once the new second substrate is seated in the second substrate loading portion 30, it aligns with the shadow mask and waits for the next deposition process.
상술한 방법에 따라, 하나의 챔버 내에서 복수의 기판에 대해 증착공정을 진행하되, 하나의 기판의 증착공정 중에 다른 기판에 대한 이송공정 또는 얼라인공정을 진행하여 택 타임(tact time)을 줄일 수 있고, 기판에 대한 이송공정 또는 얼라인공정 중에 발생하는 유기물 재료의 손실을 줄일 수 있다.According to the above-described method, the deposition process is performed on a plurality of substrates in one chamber, and the tact time is reduced by performing a transfer process or an alignment process on another substrate during the deposition process of one substrate. It is possible to reduce the loss of organic material generated during the transfer process or the alignment process to the substrate.
상기에서는 본 발명의 특정의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the foregoing has been described with reference to specific embodiments of the present invention, those skilled in the art may vary the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. It will be understood that modifications and changes can be made.
전술한 실시예 외의 많은 실시예들이 본 발명의 특허청구범위 내에 존재한다.Many embodiments other than the above-described embodiments are within the scope of the claims of the present invention.

Claims (10)

  1. 제1 증착영역과 제2 증착영역으로 구획되며, 하나의 중심점에서 제1 방사 방향으로 제1 기판이 상기 제1 증착영역에 인출입되고, 상기 중심점에서 제2 방사 방향으로 제2 기판이 상기 제2 증착영역에 인출입되는 공정 챔버와;A first substrate is divided into a first deposition region and a second deposition region, and a first substrate is drawn in and out of the first deposition region in a first radial direction at one center point, and the second substrate is formed in the second radiation direction at the center point. A process chamber drawn in and out of the second deposition region;
    상기 제1 기판이 상기 제1 방사 방향으로 로딩되어 안착되는 제1 기판 로딩부와;A first substrate loading part on which the first substrate is loaded and seated in the first radial direction;
    상기 제2 기판이 상기 제2 방사 방향으로 로딩되어 안착되는 제2 기판 로딩부와;A second substrate loading part on which the second substrate is loaded and seated in the second radial direction;
    유기물 입자를 분사하는 선형의 유기물 증착소스와;A linear organic material deposition source for spraying organic material particles;
    상기 유기물 증착소스를 이송시키는 이송유닛을 포함하며,It includes a transfer unit for transferring the organic material deposition source,
    상기 이송유닛은,The transfer unit,
    상기 유기물 증착소스가 결합되며, 상기 제1 기판 또는 상기 제2 기판의 표면에 상기 유기물 입자가 분사되도록 상기 유기물 증착소스를 상기 제1 기판 또는 상기 제2 기판의 표면을 따라 직선 이동시키는 스캐닝부와;A scanning unit coupled to the organic material deposition source and linearly moving the organic material deposition source along the surface of the first substrate or the second substrate such that the organic material particles are sprayed onto the surface of the first substrate or the second substrate; ;
    상기 스캐닝부가 결합되며, 상기 제1 증착영역 또는 상기 제2 증착영역에 위치하도록 상기 스캐닝부를 왕복 이동시키는 스캐닝부이동수단과;Scanning unit moving means coupled to the scanning unit and reciprocating the scanning unit to be located in the first deposition region or the second deposition region;
    상기 스캐닝부이동수단이 결합되며, 상기 선형의 유기물 증착소스가 상기 제1 기판 또는 상기 제2 기판의 일변과 평행을 이루도록 상기 스캐닝부이동수단을 회전시키는 스캐닝부회동수단을 포함하는 것을 특징으로 하는, 유기물 증착 장치.The scanning unit movement means is coupled, and the scanning unit rotation means for rotating the scanning unit movement means so that the linear organic material deposition source is parallel to one side of the first substrate or the second substrate. Organic matter deposition apparatus.
  2. 제1항에 있어서,The method of claim 1,
    상기 스캐닝부는,The scanning unit,
    서로 마주하는 한 쌍의 제1 가이드바와, 상기 한 쌍의 제1 가이드바를 연결하는 제1 연결바를 포함하는 이동프레임과;A moving frame including a pair of first guide bars facing each other and a first connection bar connecting the pair of first guide bars;
    상기 제1 가이드바의 길이 방향을 따라 제1 레일과;A first rail along a length direction of the first guide bar;
    상기 유기물 증착소스가 결합되며, 상기 제1 레일을 따라 이동하는 제1 이동블록; 및A first moving block coupled to the organic material deposition source and moving along the first rail; And
    상기 제1 이동블록을 이동시키는 제1 구동부을 포함하는 것을 특징으로 하는, 유기물 증착 장치.And a first driving part to move the first moving block.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 레일은,The first rail,
    상기 제1 가이드바를 따라 결합되며 상면이 평탄한 플렛 레일(flat rail)과, 상기 플렛 레일의 길이 방향을 따라 결합되는 산형 레일을 포함하며,A flat rail coupled along the first guide bar and having a flat upper surface, and a mountain rail coupled along a length direction of the flat rail;
    상기 제1 이동블록은,The first moving block is,
    블록몸체와;A block body;
    상기 블록몸체의 일 측단에 회전가능하게 결합되며 상기 플렛 레일의 상면에 지지되는 원형롤러와;A circular roller rotatably coupled to one side end of the block body and supported on an upper surface of the flat rail;
    상기 블록몸체의 타 측단에 회전가능하게 결합되며 상기 산형 레일이 삽입되도록 외주를 따라 골형 홈이 형성되는 홈 롤러를 포함하고,A groove roller rotatably coupled to the other side end of the block body and having a groove formed along an outer circumference such that the mountain rail is inserted therein;
    상기 제1 구동부는,The first driving unit,
    상기 제1 가이드바의 길이 방향을 따라 N극과 S극이 교대로 배치되는 마그넷열과, 상기 마그넷열에 대향하여 배치되는 코일부를 구비하는 LM 모터를 포함하는 것을 특징으로 하는, 유기물 증착 장치.And an LM motor having magnet rows in which the N poles and the S poles are alternately arranged along the longitudinal direction of the first guide bar, and an LM motor arranged to face the magnet rows.
  4. 제1항에 있어서,The method of claim 1,
    상기 스캐닝부회동수단은,The scanning unit rotation means,
    서로 마주하는 한 쌍의 제2 가이드바와, 상기 한 쌍의 제2 가이드바를 연결하는 제2 연결바를 포함하는 회동프레임을 포함하며,A rotation frame including a pair of second guide bars facing each other and a second connection bar connecting the pair of second guide bars,
    상기 스캐닝부이동수단은,The scanning unit moving means,
    상기 제2 가이드바의 길이 방향을 따라 결합되는 제2 레일과;A second rail coupled along the longitudinal direction of the second guide bar;
    상기 스캐닝부가 결합되며, 상기 제2 레일을 따라 이동하는 제2 이동블록; 및A second moving block coupled to the scanning unit and moving along the second rail; And
    상기 제2 이동블록을 이동시키는 제2 구동부를 포함하는 것을 특징으로 하는, 유기물 증착 장치.And a second driving unit to move the second moving block.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 스캐닝부회동수단은,The scanning unit rotation means,
    상기 공정 챔버의 바닥면에 원형을 이루어 배치되는 회전 레일과;A rotating rail disposed in a circular shape on a bottom surface of the process chamber;
    상기 회전프레임이 결합되며, 상기 회전 레일을 따라 이동하는 회전 블록을 더 포함하는 것을 특징으로 하는, 유기물 증착 장치.The rotating frame is coupled, characterized in that it further comprises a rotating block moving along the rotating rail, organic deposition apparatus.
  6. 제2항에 있어서,The method of claim 2,
    상기 제1 가이드바는,The first guide bar,
    다수의 홀이 길이 방향을 따라 형성되며 서로 마주하여 배치되는 한 쌍의 웨브와, 다수의 홀이 길이 방향으로 따라 형성되며 상기 한 쌍의 웨브의 일단 및 타단에 횡방향으로 결합되는 상부플랜지 및 하부플랜지로 구성되는 박스형 빔(beam)을 포함하는 것을 특징으로 하는, 유기물 증착 장치.A plurality of holes are formed along the longitudinal direction and arranged to face each other, and a plurality of holes are formed along the length direction and the upper flange and the lower side coupled to the one end and the other end of the pair of web in the transverse direction An organic material deposition apparatus, characterized in that it comprises a box-shaped beam (beam) consisting of a flange.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 제2 가이드바는,The second guide bar,
    다수의 홀이 길이 방향을 따라 형성되는 웨브와, 상기 웨브의 일단에 횡방향으로 결합되며 상기 제2 레일이 상부에 결합되는 상부플랜지와, 상기 웨브의 타단에 횡방향으로 결합되는 하부플랜지로 구성되는 I형 빔(beam)을 포함하는 것을 특징으로 하는, 유기물 증착 장치.A web having a plurality of holes formed along a longitudinal direction, an upper flange coupled to one end of the web in a lateral direction, and the second rail coupled to an upper portion thereof, and a lower flange coupled to the other end of the web in a lateral direction. Characterized in that it comprises an I-beam (beam), organic material deposition apparatus.
  8. 제1항에 따른 유기물 증착 장치를 이용하여 유기물을 증착하는 방법으로서, A method of depositing an organic material using the organic material deposition apparatus according to claim 1,
    상기 제1 기판을 상기 제1 방사 방향으로 로딩하여 상기 제1 기판 로딩부에 안착시키는 단계와;Loading the first substrate in the first radial direction and seating the first substrate on the first substrate loading unit;
    상기 스캐닝부이동수단이 상기 스캐닝부를 제1 증착영역으로 이동시키는 단계와;Moving the scanning unit to the first deposition region by the scanning unit moving means;
    상기 선형의 유기물 증착소스가 상기 제1 기판의 일변과 평행을 이루도록 상기 스캐닝부회동수단이 상기 스캐닝부이동수단을 회전시키는 단계와;Rotating the scanning unit moving unit by the scanning unit rotating unit such that the linear organic material deposition source is parallel to one side of the first substrate;
    상기 스캐닝부가 상기 유기물 증착소스를 제1 기판의 표면을 따라 직선 이동시켜 상기 제1 기판에 유기물 입자를 증착시키는 단계와;Depositing organic particles on the first substrate by linearly moving the organic material deposition source along a surface of the first substrate;
    상기 제1 기판에 유기물 입자를 증착시키는 단계와 동시에 상기 제2 기판을 상기 제2 방사 방향으로 로딩하여 상기 제2 기판 로딩부에 안착시키는 단계와;Simultaneously depositing organic particles on the first substrate and loading the second substrate in the second radial direction and seating the second substrate loading portion on the second substrate loading portion;
    상기 제1 기판에 대한 증착이 완료되면, 상기 스캐닝부이동수단이 상기 스캐닝부를 상기 제2 증착영역으로 이동시키는 단계와;Moving the scanning unit to the second deposition region by the scanning unit moving means when the deposition on the first substrate is completed;
    상기 선형의 유기물 증착소스가 상기 제2 기판의 일변과 평행을 이루도록 상기 스캐닝부회동수단이 상기 스캐닝부이동수단을 회전시키는 단계와;Rotating the scanning unit moving unit by the scanning unit rotating unit such that the linear organic material deposition source is parallel to one side of the second substrate;
    상기 스캐닝부가 상기 유기물 증착소스를 직선 이동시켜 상기 제2 기판에 유기물 입자를 증착시키는 단계를 포함하는, 유기물 증착 방법.And depositing organic particles on the second substrate by linearly moving the organic material deposition source by the scanning unit.
  9. 제8항에 있어서,The method of claim 8,
    상기 제1 기판에 유기물 입자를 증착시키는 단계 이후에,After depositing the organic particles on the first substrate,
    증착이 완료된 상기 제1 기판을 상기 공정 챔버에서 인출시키고, 새로운 제1 기판을 상기 제1 방사 방향으로 로딩하여 상기 제1 기판 로딩부에 안착시키는 단계를 더 포함하는, 유기물 증착 방법.Extracting the first substrate having been deposited from the process chamber, and loading a new first substrate in the first radial direction and seating the first substrate on the first substrate loading unit.
  10. 제8항에 있어서,The method of claim 8,
    상기 제2 기판에 유기물 입자를 증착시키는 단계 이후에,After depositing the organic particles on the second substrate,
    증착이 완료된 상기 제2 기판을 상기 공정 챔버에서 인출시키고, 새로운 제2 기판을 상기 제2 방사 방향으로 로딩하여 상기 제2 기판 로딩부에 안착시키는 단계를 더 포함하는, 유기물 증착 방법.Extracting the second substrate having been deposited from the process chamber, and loading a new second substrate in the second radial direction and seating the second substrate on the second substrate loading unit.
PCT/KR2013/009960 2013-11-05 2013-11-05 Organic substance deposition device and organic substance deposition method using same WO2015068866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0133604 2013-11-05
KR1020130133604A KR20150051732A (en) 2013-11-05 2013-11-05 Apparatus for depositing organic material and method for depositing organic material using the same

Publications (1)

Publication Number Publication Date
WO2015068866A1 true WO2015068866A1 (en) 2015-05-14

Family

ID=53041634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009960 WO2015068866A1 (en) 2013-11-05 2013-11-05 Organic substance deposition device and organic substance deposition method using same

Country Status (2)

Country Link
KR (1) KR20150051732A (en)
WO (1) WO2015068866A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102617955B1 (en) * 2016-07-15 2023-12-26 주식회사 선익시스템 Organic material depositing apparatus with position calibration and automatic oil injection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120081A (en) * 2009-05-04 2010-11-12 삼성모바일디스플레이주식회사 Apparatus for depositing organic material and depositing method thereof
KR101237507B1 (en) * 2012-08-06 2013-02-26 주식회사 선익시스템 Apparatus for depositing organic material and method for depositing organic material
KR101239906B1 (en) * 2012-08-06 2013-03-06 주식회사 선익시스템 Apparatus for depositing organic material and method for depositing organic material using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120081A (en) * 2009-05-04 2010-11-12 삼성모바일디스플레이주식회사 Apparatus for depositing organic material and depositing method thereof
KR101237507B1 (en) * 2012-08-06 2013-02-26 주식회사 선익시스템 Apparatus for depositing organic material and method for depositing organic material
KR101239906B1 (en) * 2012-08-06 2013-03-06 주식회사 선익시스템 Apparatus for depositing organic material and method for depositing organic material using the same

Also Published As

Publication number Publication date
KR20150051732A (en) 2015-05-13

Similar Documents

Publication Publication Date Title
US9461277B2 (en) Organic light emitting display apparatus
JP6328766B2 (en) Evaporation source for organic material, deposition apparatus for depositing organic material in vacuum chamber, and method for evaporating organic material
JP6602465B2 (en) Substrate carrier and mask carrier positioning apparatus, substrate carrier and mask carrier transfer system, and method therefor
KR102161185B1 (en) Apparatus for vacuum processing of substrates, system for vacuum processing of substrates, and method for transport of substrate carriers and mask carriers in vacuum chambers
US20160111689A1 (en) Organic layer deposition apparatus, method of manufacturing organic light emitting display device using the apparatus, and organic light emitting display device manufactured using the method
KR20140060171A (en) Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140007686A (en) Method for manufacturing of organic light emitting display apparatus and organic light emitting display apparatus manufactured by the method
KR20140010304A (en) Flat panel display device and manufacturing method thereof
US20210269912A1 (en) Evaporation source for organic material, deposition apparatus for depositing organic materials in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
KR20170017056A (en) Organic light display apparatus, apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
WO2017217816A1 (en) Substrate processing apparatus
KR101237507B1 (en) Apparatus for depositing organic material and method for depositing organic material
JP2015001024A (en) Organic layer deposition apparatus, and organic light-emitting display apparatus manufacturing method using the organic layer deposition apparatus
WO2015068866A1 (en) Organic substance deposition device and organic substance deposition method using same
KR102069189B1 (en) Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
KR20140115164A (en) Deposition apparatus, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the same
WO2016002982A1 (en) Evaporation source unit and deposition device
JP6343036B2 (en) Evaporation source for organic material, deposition apparatus for depositing organic material in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
KR101239906B1 (en) Apparatus for depositing organic material and method for depositing organic material using the same
CN110612362A (en) Vacuum processing system and method of operating a vacuum processing system
WO2015115696A1 (en) Deposition apparatus
KR20140115162A (en) Deposition apparatus for organic layer, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP6605073B2 (en) Evaporation source for organic material, deposition apparatus for depositing organic material in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
KR20150071446A (en) Apparatus for transferring deposition source and apparatus for depositing organic material
KR20150042759A (en) Flat panel display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13897185

Country of ref document: EP

Kind code of ref document: A1