WO2015068585A1 - Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same - Google Patents

Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same Download PDF

Info

Publication number
WO2015068585A1
WO2015068585A1 PCT/JP2014/078275 JP2014078275W WO2015068585A1 WO 2015068585 A1 WO2015068585 A1 WO 2015068585A1 JP 2014078275 W JP2014078275 W JP 2014078275W WO 2015068585 A1 WO2015068585 A1 WO 2015068585A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing member
sealing
resin
sealed
substrate
Prior art date
Application number
PCT/JP2014/078275
Other languages
French (fr)
Japanese (ja)
Inventor
六田 充輝
芳樹 中家
Original Assignee
ダイセル・エボニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル・エボニック株式会社 filed Critical ダイセル・エボニック株式会社
Priority to CN201480061306.6A priority Critical patent/CN105706229A/en
Priority to JP2015546598A priority patent/JPWO2015068585A1/en
Priority to KR1020167014619A priority patent/KR20160083892A/en
Publication of WO2015068585A1 publication Critical patent/WO2015068585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • H01L2924/164Material
    • H01L2924/1659Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/166Material
    • H01L2924/1679Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy

Definitions

  • the present invention relates to a sealing member useful for covering and sealing a substrate on which a component (electronic component or the like) is mounted, a sealing substrate covered and sealed with this sealing member, and a method for manufacturing the same About.
  • precision parts such as printed circuit boards, semiconductor elements, solar cells, etc. are placed in the mold cavity, fluid resin is injected, and precision parts are sealed with resin. To be done.
  • thermosetting resin for example, epoxy resin
  • additives such as a crosslinking agent or curing agent for curing are added to the thermosetting resin, quality control as a thermosetting resin is difficult not only in relation to the pot life, but also cured. For the reaction, usually a long time of several hours or more is required.
  • Patent Document 1 A method of sealing (or protecting) precision parts by injection molding of a thermoplastic resin is also known.
  • Patent Document 1 a printed circuit board on which electronic components are mounted is placed in a mold cavity, and a polyamide resin heated and melted at 160 to 230 ° C. is 2.5 to 25 kg / cm.
  • a method is disclosed in which a printed circuit board on which electronic components are mounted is sealed by being injected into the mold cavity with a pressure of 2 .
  • a polyamide resin is injected into a mold at a melting temperature of 190 ° C. and a pressure of 20 kg / cm 2 to seal a printed circuit board.
  • the electronic component may be damaged because a relatively high temperature and pressure are applied to the electronic component.
  • higher temperature and higher pressure molding conditions are required, and thus the possibility of damage to the electronic component is increased.
  • the resin cannot be completely filled into every corner of precision parts, and if a small void is generated, the electronic circuit may be corroded or short-circuited due to the influence of resin additives or low molecular weight components.
  • the resin be powdered and sealed with powder.
  • the voids are more likely to occur than in the case of injection molding, and damage to the solder due to resin expansion and contraction stress cannot be resolved.
  • the powder is easily scattered and it is difficult to efficiently seal a desired portion.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-284779 (Patent Document 2), a circuit board provided with electronic components is inserted into a cylindrical film, and both openings of the cylindrical film are closed to pack the circuit board.
  • Patent Document 3 discloses a liquid crystal display panel member in which liquid crystal display panel members made of a plurality of liquid crystal display panel members are wrapped and laminated, and polyamide is also exemplified as a plastic film. ing.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2008-282906 relates to a method of manufacturing a solar cell module in which a solar cell is sealed with a resin between a substrate and a film, and the substrate, the solar cell, A first sealing resin sheet that covers substantially the entire surface of the substrate is disposed between, and a second sealing resin sheet that covers substantially the entire surface of the substrate is disposed between the film and the solar battery cell.
  • the resin is melted and cooled and sealed, and the sealing resin is a kind of resin selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl butyral, and polyurethane. It is.
  • JP 2009-99417 A (Patent Document 5) includes a barrier film for sealing an organic electronic device formed on a substrate, and a hot melt type is provided between the organic electronic device and the barrier film.
  • An organic electronic device sealing panel in which a member is disposed is disclosed, wherein the hot melt member includes a moisture scavenger and a wax, and the hot melt member has a thin film shape with a thickness of 100 ⁇ m or less.
  • Patent Document 6 discloses a hot-melt type member for organic thin-film solar cells (a hot-melt type member having a thin film shape, a plate shape, an indeterminate shape, etc.) containing a moisture scavenger and a wax. It is disclosed.
  • any of these techniques using a film-like sealant is a technique based on the premise that the sealant is in close contact with the part to be sealed or the region to be protected of the electronic device. Therefore, such a method has various problems that occur because the electronic device and the sealant are in close contact as described above, for example, the site to be sealed and the protection due to the expansion / contraction stress of the sealant. It has potential or obvious problems due to adverse effects on the area, unintended voids and incomplete adhesion.
  • Patent Document 7 covers at least a part of a device with a film-like sealant containing a copolymerized polyamide resin, and heat-melts the sealant to cool it. Covering and sealing.
  • This film-like sealant has a high followability to the uneven portion of the device, and can tightly seal over the details of the device while preventing the generation of voids.
  • the technique of Patent Document 7 is also a technique for sealing and protecting the electronic device and the sealing agent in a form in which the electronic device and the sealing agent are in close contact, and is premised on the sealing agent being in close contact.
  • Patent Document 7 also has problems caused by the close contact between the electronic device and the sealing agent, for example, the site to be sealed due to the expansion / contraction stress of the sealing agent. And potential problems or problems caused by unintended voids and incomplete adhesion.
  • JP 2000-133665 A Japanese Patent Laid-Open No. 2001-284779 (Claims) JP-A-11-259021 (Claims, [0022]) JP 2008-282906 A (Claims) JP 2009-99417 A (Claims, [0024]) JP 2009-99805 (Claims) JP 2012-87292 A (Claims)
  • An object of the present invention is to provide a sealing member capable of selectively and effectively sealing and protecting a predetermined portion of a substrate (mounting substrate, device) including a component (a mounting component such as an electronic component), and covering with the sealing member And a sealed mounting substrate (protective substrate) and a manufacturing method thereof.
  • Another object of the present invention is to seal a substrate (mounting substrate, device) provided with a component (mounting component such as an electronic component) with a high adhesion force, and also according to temperature fluctuations under use conditions. It is in providing the sealing member which can protect a part effectively, the mounting board
  • Still another object of the present invention is a sealing member that is excellent in productivity, does not damage the mounted electronic component even if the sealing and protection area is large area, and can prevent corrosion and short circuit of the electronic circuit, It is providing the mounting board
  • Another object of the present invention is to provide a sealing member that does not require work such as excision of the outer edge of the film, even if it has a form such as a film, and is mounted and sealed with this sealing member It is providing a board
  • the present inventors have made the sealing resin follow the shape of the component and the board, and the sealing area of the mounting board is tightly adhered over the whole and sealed.
  • the present invention was completed by further developing the invention according to Patent Document 7, with an idea completely different from the idea of doing. That is, only the peripheral part of the sealing member of a predetermined form such as a film is thermally bonded to the predetermined part of the device (peripheral part of the sealed region), and the inner region of the sealing member is released from the mounting component. Covering the device with the form can not only prevent the generation of voids, but also effectively prevent the thermal expansion / contraction stress from acting on the mounting parts and solder part, and the mounting substrate while sealing tightly with high adhesion force We found that we can protect effectively.
  • the area to be sealed of the device is sealed with a sealing member.
  • the sealing device has a film-like or tray-like form, and at least a peripheral portion of the sealing member includes a thermoplastic resin; the sealing member is separated from a mounting component of the device, and the sealing device The periphery of the stop member is bonded to the device. That is, inside the sealed area of the device, the sealing member is separated from the device (including circuits and mounting components) to form a free space; the peripheral edge of the sealing member is bonded to the substrate of the device And the sealing part which seals a to-be-sealed area in the peripheral part of the to-be-sealed area of a device is formed.
  • At least the peripheral portion of the sealing member includes a thermoadhesive thermoplastic resin (for example, a copolymerized polyamide resin), and may have a film shape or a tray shape. Further, only the peripheral portion of the sealing member may be thermally bonded to the device substrate.
  • a thermoadhesive thermoplastic resin for example, a copolymerized polyamide resin
  • the film-like or tray-like sealing member may have a peripheral portion that can be in line contact or surface contact with the substrate of the device, and includes a copolymerized polyamide resin having at least one of the following characteristics. Also good.
  • Melting point or softening point is about 75 to 160 ° C. (for example, melting point is 90 to 160 ° C.)
  • Crystallinity Crystallinity and melting point of about 90 to 160 ° C.
  • the sealing member may be a multi-component copolymer, for example, a copolymer polyamide resin of a binary copolymer to a quaternary copolymer (for example, binary or ternary copolymer).
  • the copolymerized polyamide resin may have at least one unit described below.
  • A a unit derived from a long chain component having a C 8-16 alkylene group (eg, a C 10-14 alkylene group)
  • B at least selected from C 9-17 lactam and amino C 9-17 alkane carboxylic acid Units derived from one component
  • c Units derived from at least one component selected from laurolactam, aminoundecanoic acid and aminododecanoic acid.
  • the sealing member may have a laminated structure as well as a single layer structure, for example, a sealing layer containing a copolymerized polyamide-based resin, laminated on one surface of the sealing layer, and And a protective layer formed of a heat resistant resin.
  • the heat resistant resin may have, for example, a melting point or softening point of 170 ° C. or higher, and the heat resistant resin may be at least one selected from a polyester resin, a polyamide resin, and a fluororesin. .
  • the thickness (total thickness) of the sealing member may be, for example, about 10 to 1000 ⁇ m.
  • the sealing member of the present invention may be applied to both sides of the device, but is useful for application to one side of the device.
  • the present invention also includes a method of manufacturing a sealed device in which a sealed region of the device is sealed with a sealing member.
  • a sealing member having a film shape or a tray shape and having at least a peripheral portion containing a thermoplastic resin is used.
  • the peripheral portion of the sealing member is adhered to the substrate of the device (peripheral portion of the sealed region), and the sealing member A device is manufactured in which the sealed area of the device is covered and sealed.
  • At least a peripheral portion of the sealing member covers a region to be sealed of the device with a sealing member (a sealing member in the form of a film or a tray) containing a copolymerized polyamide resin, and the sealing member
  • a sealing member a sealing member in the form of a film or a tray
  • the peripheral edge of the substrate may be cooled by being thermally bonded to the substrate of the device.
  • the present invention also includes a sealing member for sealing the sealed area of the device.
  • the sealing member is formed into a film shape or a tray shape, and the peripheral portion includes a thermoplastic resin.
  • the sealing member includes an inner region for forming a free space without adhering to the device; and a peripheral portion (peripheral portion adjacent to the inner region) that can be bonded to the substrate of the device.
  • the sealing member may include a peripheral portion (adhesive portion) that can be thermally bonded (or thermally fused) to the substrate of the device, and at least the peripheral portion may include a copolymerized polyamide resin. .
  • copolymerized polyamide resin refers to not only a copolymer (copolyamide) of a plurality of amide-forming components having different types or carbon numbers, which are amide-forming components that form a homopolyamide. , And is used to include a mixture of a plurality of different types of copolymers (copolyamides) formed from a plurality of amide-forming components.
  • the term “device” means a functional member (electrical or electronic member) that is required to be protected by sealing, and an electronic component such as a functional element or an electric circuit (including a semiconductor circuit) is formed. And a substrate on which components (electronic components such as functional elements) are mounted, for example, a printed wiring board on which electronic components are mounted or mounted.
  • the “device” usually has a flat portion in many cases.
  • Free means that the device is not substantially bonded to the device, and the sealing member of the free space may be in physical contact with the component of the device and, if necessary, the substrate.
  • the sealing member is separated from the device (circuit, component, etc.) inside the sealed region of the device (forms a free space), and the periphery of the sealing member is the base substrate of the sealed region.
  • the device is sealed in a bonded form, and the mounted component and the solder part are not sealed by being molded with a sealing resin. Therefore, the predetermined part of the device can be selectively and effectively sealed and protected.
  • the bonding area of the sealing member to the substrate is small, generation of voids can be suppressed, and stress does not act on the mounting component and the solder part even if the temperature fluctuates under use conditions. Therefore, the corrosion and short circuit of the circuit can be prevented, and the mounted component and the solder portion can be protected from damage.
  • the peripheral portion of the sealing member contains a thermoplastic resin (particularly, a thermoadhesive thermoplastic resin such as a copolymerized polyamide-based resin), the peripheral portion of the sealed region can be sealed with high adhesion. . Furthermore, even if the sealed area (sealing and protection area) is a large area, the mounted electronic component is not damaged, and corrosion and short circuit of the electronic circuit can be prevented. Further, it is not necessary to melt or vacuum-form the entire film or powder resin, and the adhesion area of the sealing member to the substrate can be substantially reduced, so that the productivity of the sealing device can be improved.
  • a thermoplastic resin particularly, a thermoadhesive thermoplastic resin such as a copolymerized polyamide-based resin
  • the device can be effectively protected with high reliability simply and reliably.
  • FIG. 1 is a schematic side view showing an example of the sealing device of the present invention.
  • FIG. 2 is a schematic side view showing another example of the sealing device of the present invention.
  • FIG. 3 is a schematic plan view showing the test substrate used in the examples.
  • the sealing member for sealing the sealed region of the device has at least a peripheral portion containing a thermoplastic resin.
  • the peripheral portion (or outer edge portion) of the sealing member is sealed with the device. Adhere to the substrate in the area. Therefore, even if thermal bonding is used, damage to the device due to heat is small, and not only a sealing member having a low melting point or a low softening point, but a thermoplastic resin having a relatively high melting point or a high softening point can be used. Therefore, the type of thermoplastic resin is not particularly limited, and various thermoplastic resins can be used.
  • olefin resin low density, medium density or high density polyethylene, polyethylene such as linear low density polyethylene, ethylene-propylene, etc.
  • Ethylene copolymer of ethylene and copolymerizable monomer such as copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-vinyl acetate copolymer
  • Polyethylene resins such as polypropylene; Polypropylene resins such as polypropylene and propylene-ethylene copolymers; Cyclic olefin resins such as ethylene-norbornene copolymers], acrylic resins, styrene resins, polyester resins (ethylene terephthalate) , Alkylene arylate units such as butylene terephthalate Including such copolyester), and polyamide-based resin (a copolymer polyamide resin), etc.
  • These thermoplastic resins can be used alone or in combination
  • a preferred thermoplastic resin is a thermoadhesive thermoplastic resin that can be firmly bonded at a relatively low temperature when the sealing member is thermally bonded to the substrate, for example, an olefin resin, a copolyester containing an alkylene arylate unit, particularly a film. It is a copolymerized polyamide resin from the viewpoints of strength, chemical resistance, film-forming property, adhesion to a substrate (fusibility), and the like. Moreover, the sealing member containing the copolymerized polyamide-based resin can improve adhesion to the device, can impart high impact resistance and wear resistance to the device, and can enhance the protective effect on the device.
  • the copolymerized polyamide-based resin includes a copolymerized polyamide (thermoplastic copolymerized polyamide) and a polyamide elastomer.
  • the thermoplastic copolymer polyamide may be an alicyclic copolymer polyamide, but is usually an aliphatic copolymer polyamide in many cases.
  • the copolymerized polyamide can be formed by combining a diamine component, a dicarboxylic acid component, a lactam component, and an aminocarboxylic acid component. Both the diamine component and the dicarboxylic acid component can form an amide bond of the copolymerized polyamide, and the lactam component and the aminocarboxylic acid component can each independently form an amide bond of the copolymerized polyamide.
  • the copolymerized polyamide can be obtained by copolymerization of a plurality of amide-forming components selected from a pair of components (both components combining a diamine component and a dicarboxylic acid component), a lactam component, and an aminocarboxylic acid component. .
  • the copolymerized polyamide is at least one amide-forming component selected from the pair of components, lactam component, and aminocarboxylic acid component, and is different from the amide-forming component (or the same type and different in carbon number). It can be obtained by copolymerization with an amide-forming component.
  • the lactam component and the aminocarboxylic acid component may be handled as equivalent components as long as they have the same carbon number and branched chain structure.
  • a copolymerized polyamide comprising an amide-forming component, wherein at least one of a diamine component and a dicarboxylic acid component is composed of a plurality of components having different carbon numbers; a first amide-forming component, and a second A copolymerized polyamide with an amide-forming component (at least one component selected from a lactam component and an aminocarboxylic acid component); a second amide-forming component (at least one component selected from a lactam component and an aminocarboxylic acid component)
  • a copolyamide formed, one of a lactam component and an aminocarboxylic acid component It may be a copolyamide of the same carbon number or different lactam component and aminocarboxylic acid component; components are different copolymerized polyamide comprising an amide-forming component, wherein at least one of a diamine component and a dicarboxylic acid component is composed of a plurality of components having different carbon numbers; a first amide-forming component, and
  • diamine component examples include aliphatic diamine or alkylene diamine components (for example, C 4-16 alkylene diamine such as tetramethylene diamine, hexamethylene diamine, trimethyl hexamethylene diamine, octamethylene diamine, and dodecane diamine). These diamine components can be used alone or in combination of two or more.
  • a preferred diamine component contains at least an alkylene diamine (preferably a C 6-14 alkylene diamine, more preferably a C 6-12 alkylene diamine).
  • an alicyclic diamine component (diaminocycloalkane such as diaminocyclohexane (diamino C 5-10 cycloalkane etc.); bis (4-aminocyclohexyl) methane, bis (4-amino-) Bis (aminocycloalkyl) alkanes such as 3-methylcyclohexyl) methane and 2,2-bis (4′-aminocyclohexyl) propane [bis (aminoC 5-8 cycloalkyl) C 1-3 alkane etc.]; hydrogenated Xylylenediamine etc.) and aromatic diamine components (metaxylylenediamine etc.) may be used in combination.
  • the diamine component (for example, an alicyclic diamine component) may have a substituent such as an alkyl group (C 1-4 alkyl group such as a methyl group or an ethyl group).
  • the proportion of the alkylenediamine component is 50 to 100 mol%, preferably 60 to 100 mol% (eg 70 to 97 mol%), more preferably 75 to 100 mol% (eg 80 to 95 mol%).
  • dicarboxylic acid component examples include aliphatic dicarboxylic acid or alkane dicarboxylic acid components (for example, about 4 to 36 carbon atoms such as adipic acid, pimelic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid or hydrogenated product thereof). And dicarboxylic acid or C4-36 alkanedicarboxylic acid). These dicarboxylic acid components can be used alone or in combination of two or more.
  • Preferred dicarboxylic acid components include C 6-36 alkane dicarboxylic acids (eg, C 6-16 alkane dicarboxylic acids, preferably C 8-14 alkane dicarboxylic acids, etc.).
  • an alicyclic dicarboxylic acid component such as C 5-10 cycloalkane-dicarboxylic acid such as cyclohexane-1,4-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid, etc.
  • aromatic dicarboxylic acid Terephthalic acid, isophthalic acid, etc.
  • diamine component and dicarboxylic acid component an alicyclic ring obtained by using the aliphatic diamine component and / or aliphatic dicarboxylic acid component exemplified above together with the alicyclic diamine component and / or alicyclic dicarboxylic acid component.
  • the group polyamide resin is known as so-called transparent polyamide, and has high transparency.
  • the proportion of the alkanedicarboxylic acid component is 50 to 100 mol%, preferably 60 to 100 mol% (eg 70 to 97 mol%), more preferably 75 to 100 mol% (eg 80 About 95 mol%).
  • the diamine component in the first amide-forming component, can be used in a range of about 0.8 to 1.2 mol, preferably about 0.9 to 1.1 mol, relative to 1 mol of the dicarboxylic acid component.
  • lactam component examples include C such as ⁇ -valerolactam, ⁇ -caprolactam, ⁇ -heptalactam, ⁇ -octalactam, ⁇ -decane lactam, ⁇ -undecanactam, ⁇ -laurolactam (or ⁇ -laurinlactam). such as 4-20 lactam.
  • aminocarboxylic acid component for example, .omega.-aminodecanoic acid, .omega.-aminoundecanoic acid, C 6-20 aminocarboxylic acids such as .omega.-aminododecanoic acid can be exemplified. These lactam components and aminocarboxylic acid components can also be used alone or in combination of two or more.
  • Preferred lactam components include C 6-19 lactam, preferably C 8-17 lactam, more preferably C 10-15 lactam (such as laurolactam).
  • Preferred aminocarboxylic acids are amino C 6-19 alkanecarboxylic acids, preferably amino C 8-17 alkanecarboxylic acids, more preferably amino C 10-15 alkanecarboxylic acids (aminoundecanoic acid, aminododecanoic acid, etc.). Contains.
  • the copolymerized polyamide may be a modified polyamide such as a polyamide having a branched chain structure using a small amount of a polycarboxylic acid component and / or a polyamine component.
  • a first amide-forming component both components combining a diamine component and a dicarboxylic acid component
  • a second amide-forming component at least one amide-forming component selected from a lactam component and an aminocarboxylic acid component
  • the copolymerized polyamide preferably includes a long chain component having a long chain fatty chain (long chain alkylene group or alkenylene group) as a constituent unit (or includes a unit derived from the long chain component).
  • a long chain component includes a long chain fatty chain having about 8 to 36 carbon atoms or a component having an alkylene group (preferably a C 8-16 alkylene group, more preferably a C 10-14 alkylene group).
  • long chain component examples include C 8-18 alkane dicarboxylic acid (preferably C 10-16 alkane dicarboxylic acid, more preferably C 10-14 alkane dicarboxylic acid, etc.), C 9-17 lactam (preferably laurolactam, etc.) And C11-15 lactams) and amino C 9-17 alkanecarboxylic acids (preferably amino C 11-15 alkanecarboxylic acids such as aminoundecanoic acid and aminododecanoic acid). These long chain components can be used alone or in combination of two or more.
  • At least one component selected from a lactam component and / or an aminoalkanecarboxylic acid component such as laurolactam, aminoundecanoic acid and aminododecanoic acid is often used.
  • Copolyamides containing such component-derived units have high water resistance and are excellent in adhesion, wear resistance and impact resistance to electronic devices, and can effectively protect electronic devices.
  • the ratio of the long chain component is 10 to 100 mol% (for example, 25 to 95 mol%), preferably 30 to 90 mol% (for example, 40 to 85 mol%) with respect to the whole monomer component forming the copolymer polyamide. Mol%), more preferably about 50 to 80 mol% (for example, 55 to 75 mol%).
  • the copolyamide may be a multi-component copolymer of the amide-forming component, for example, a binary copolymer to a quaternary copolymer, but is usually a binary copolymer to a quaternary copolymer. In many cases, the polymer is a binary copolymer or a ternary copolymer.
  • the copolymerized polyamide often includes, for example, an amide-forming component selected from polyamide 11, polyamide 12, polyamide 610, polyamide 612, and polyamide 1010 as a constituent unit (or a unit derived from the amide-forming component).
  • the copolymerized polyamide may be a copolymer of a plurality of these amide-forming components, and the one or more amide-forming components and other amide-forming components (at least one selected from polyamide 6 and polyamide 66). It may be a copolymer with an amide-forming component or the like).
  • examples of the copolyamide include copolyamide 6/11, copolyamide 6/12, copolyamide 66/11, copolyamide 66/12, copolyamide 610/11, copolyamide 612/11, copolyamide Polyamide 610/12, copolyamide 612/12, copolyamide 10/10/12, copolyamide 6/11/610, copolyamide 6/11/612, copolyamide 6/12/610, copolyamide 6/12/612, etc. Can be mentioned. These copolyamides can be used alone or in combination of two or more. In these copolyamides, the component separated by a slash “/” indicates an amide-forming component.
  • the sealing member may have at least one unit described below.
  • A a unit derived from a long chain component having a C 8-16 alkylene group
  • b a unit derived from at least one component selected from C 9-17 lactam and amino C 9-17 alkanecarboxylic acid
  • c Units derived from at least one component selected from laurolactam, aminoundecanoic acid and aminododecanoic acid.
  • a polyamide elastomer polyamide block copolymer
  • a polyamide segment for example, polyamide 11
  • a hard segment or hard block
  • Polyamide 12 Polyamide 12, polyamide 610, polyamide 612 and polyamide segment derived from an amide-forming component selected from polyamide 1010) and a soft block (or soft block) polyamide block copolymer, for example, polyamide Polyether block copolymer, polyamide - polyester block copolymer, a polyamide - like polycarbonate block copolymer.
  • a soft block polyamide block copolymer for example, polyamide Polyether block copolymer, polyamide - polyester block copolymer, a polyamide - like polycarbonate block copolymer.
  • a typical polyamide elastomer is a polyamide-polyether block copolymer, for example, a polyether amide [eg, a polyamide block having a diamine end and a polyalkylene glycol block having a dicarboxyl end (or polyoxyalkylene block) Block copolymers, block copolymers of polyamide blocks having dicarboxyl ends and polyalkylene glycol blocks having diamine ends (or polyoxyalkylene blocks)], polyetheresteramides [polyamide blocks having dicarboxyl ends] And a block copolymer of a dialkylene-terminated polyalkylene glycol block (or polyoxyalkylene block) and the like.
  • a polyether amide eg, a polyamide block having a diamine end and a polyalkylene glycol block having a dicarboxyl end (or polyoxyalkylene block)
  • polyether examples include polyalkylene glycol (for example, poly C 2-6 alkylene glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, preferably poly C 2-4 alkylene glycol). Can be mentioned.
  • the polyamide elastomer may have an ester bond.
  • the number average molecular weight of the soft segment can be selected from the range of, for example, about 100 to 10,000, preferably 300 to 6000 (for example, 300 to 5000), more preferably 500 to 4000 ( For example, it may be about 500 to 3000), particularly about 1000 to 2000.
  • copolyamide resins may be used alone or in combination of two or more.
  • copolymer polyamide resins copolymer polyamides (non-polyamide elastomers or polyamide random copolymers) are preferable from the viewpoint of sealing properties of electronic devices.
  • amide-forming components derived from polyamide 12 are constituent units. Copolyamides included as are preferred.
  • the amino group concentration of the copolymerized polyamide resin is not particularly limited, and may be, for example, about 10 to 300 mmol / kg, preferably about 15 to 280 mmol / kg, and more preferably about 20 to 250 mmol / kg.
  • the amino group concentration of the copolymerized polyamide-based resin is high, the adhesiveness can be improved when another layer (such as a protective layer described later) is laminated on the sealing member, which is advantageous.
  • the carboxyl group concentration of the copolymerized polyamide resin is not particularly limited, and may be, for example, about 10 to 300 mmol / kg, preferably about 15 to 280 mmol / kg, and more preferably about 20 to 250 mmol / kg.
  • the thermal stability is high, which is advantageous in terms of long-term stability (continuous processability).
  • the number average molecular weight of the copolymerized polyamide resin can be selected from the range of, for example, about 5,000 to 200,000, for example, 6000 to 100,000, preferably 7000 to 70000 (for example, 7000 to 15000), and more preferably 8000 to 40,000 (for example, 8000 to 12000), and usually about 8000 to 30000.
  • the molecular weight of the copolymerized polyamide resin can be measured in terms of polymethyl methacrylate by gel permeation chromatography using HFIP (hexafluoroisopropanol) as a solvent.
  • the amide bond content of the copolymerized polyamide-based resin can be selected, for example, from a range of 100 units or less per copolymerized polyamide-based resin, and is 30 to 90 units, preferably 40 to 80 units, from the viewpoint of device sealing performance. More preferably, it may be about 50 to 70 units (for example, 55 to 60 units).
  • the amide bond content can be calculated, for example, by dividing the number average molecular weight by the molecular weight of the repeating unit (1 unit).
  • the copolymerized polyamide resin may be amorphous or may have crystallinity.
  • the degree of crystallinity of the copolymerized polyamide resin is, for example, 20% or less (eg, 1 to 18%), preferably 15% or less (eg, 2 to 13%), more preferably 10% or less (eg, 2 to 2%). 8%).
  • the crystallinity can be measured by a conventional method, for example, a measurement method based on density or heat of fusion, an X-ray diffraction method, an infrared absorption method, or the like.
  • the heat melting property of the amorphous copolymerized polyamide resin can be measured as a softening temperature with a differential scanning calorimeter, and the melting point of the crystalline copolymerized polyamide resin can be measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the melting point or softening point of the copolyamide resin is 75 to 160 ° C. (eg 80 to 150 ° C.), preferably 90 to 140 ° C. (eg 95 to 135 ° C.), Preferably, it may be about 100 to 130 ° C, and is usually about 90 to 160 ° C (eg, 100 to 150 ° C). Since the copolymerized polyamide-based resin has a low melting point or softening point and high adhesiveness, it can be melted at a relatively low temperature and firmly bonded to the device surface (substrate).
  • the melting point of the copolymerized polyamide resin means a temperature corresponding to a single peak when each component is compatible and a single peak is generated in DSC, each component is incompatible, and DSC When a plurality of peaks occur, the temperature corresponding to the peak on the high temperature side among the plurality of peaks is meant.
  • the copolymerized polyamide-based resin may have at least one of the following characteristics.
  • melt flow rate (MFR) of a thermoplastic resin is 1 to 350 g / 10 minutes, preferably 3 to 300 g / 10 minutes, more preferably at a temperature of 160 ° C. and a load of 2.16 kg. It may be about 5 to 250 g / 10 minutes.
  • the thermoplastic resin for example, copolymerized polyamide-based resin
  • the proportion of the homopolyamide is 30 parts by weight or less (for example, 1 to 25 parts by weight), preferably 2 to 20 parts by weight, and more preferably about 3 to 15 parts by weight with respect to 100 parts by weight of the copolymer polyamide resin. There may be.
  • the polyamides may be compatible with each other.
  • the sealing member may contain the other thermoplastic resin, for example, ethylene-vinyl acetate copolymer, if necessary.
  • the ratio of the other resin is, for example, 100 parts by weight or less (eg, about 1 to 80 parts by weight), preferably 2 to 70 parts by weight, more preferably 2 to 50 parts per 100 parts by weight of the copolymer polyamide resin. It may be 30 parts by weight or less (for example, about 3 to 20 parts by weight).
  • Thermoplastic resins are optionally added with various additives such as fillers, stabilizers (heat stabilizers, weathering stabilizers, etc.), colorants, plasticizers, lubricants, flame retardants, An antistatic agent, a heat conductive agent, and the like may be included.
  • additives may be used alone or in combination of two or more. Of these additives, stabilizers, heat conducting agents and the like are widely used.
  • the sealing member of the present invention includes a copolymerized polyamide resin, a mixture of a plurality of copolymerized polyamide resins, or a copolymerized polyamide resin and other components (such as a homopolyamide and an additive). You may form with a mixture (copolymerization polyamide-type resin composition).
  • the sealing member of the present invention is formed into a film shape (or a sheet shape) or a tray shape (or a case shape).
  • the film-like or tray-like sealing member only needs to have a peripheral portion containing the thermoplastic resin (such as a heat-adhesive resin such as a copolyamide-based resin) in order to improve the bondability with the substrate.
  • the periphery may be in line or surface contact with the substrate of the device.
  • the peripheral portion of the sealing member may be formed of the thermoplastic resin
  • the peripheral portion of the sealing member may be formed of the thermoplastic resin.
  • a film may be formed, but usually the entire sealing member including the peripheral portion often contains the thermoplastic resin.
  • the sealing member in such a form includes an inner region for forming a free space without adhering to a device (circuit or mounting component of the substrate); Peripheral edge adjacent to the inner area).
  • the sealing member does not adhere to the device, and stress due to the sealing member can be prevented from acting on the device (such as a mounted component in the free space).
  • the sealing region of the device can be selectively sealed. That is, the peripheral part of the desired sealing region (a specific part or all of the device) of the device can be sealed with high adhesion by the thermoplastic resin of the sealing member.
  • the film-like (or sheet-like) sealing member may be an unstretched film or a stretched film (uniaxial or biaxially stretched film).
  • the stretch ratio of the film may be, for example, about 1.2 to 10 times (preferably 1.5 to 7 times, more preferably 2 to 5 times) in one direction.
  • the film-like sealing member can be produced by using a conventional film forming method, for example, a casting method, an extrusion molding method, a blow molding method, or the like. If necessary, the film may be stretched at a predetermined magnification using a uniaxial or biaxial stretching machine.
  • the thickness of the single-layer film-shaped sealing member can be selected from the range of, for example, about 1 to 1000 ⁇ m, and is usually 5 to 500 ⁇ m (for example, 5 to 300 ⁇ m), preferably 10 to 250 ⁇ m (for example, 25 to 200 ⁇ m), More preferably, it may be about 50 to 200 ⁇ m (for example, 75 to 150 ⁇ m). If the thickness is too small, the mounted component may not be effectively protected in the sealed region, and if the thickness is too large, the adhesion of the sealing member to the substrate may be reduced.
  • the water vapor permeability (40 ° C., 90% RH) of the single-layer film-shaped sealing member is, for example, 100 g / m 2 / day or less, preferably 50 g / m 2 / day or less (for example, 0) in terms of 1 mm thickness. .About 0.01-30 g / m 2 / day).
  • a sealing member containing a copolymerized polyamide has excellent water vapor barrier properties, and the water vapor permeability is, for example, 0.01 to 2 g / m 2 / day, preferably 0.05 to 1.5 g in terms of a thickness of 1 mm. / M 2 / day, more preferably about 0.1 to 1 g / m 2 / day.
  • the water vapor permeability can be measured by a conventional method, for example, the cup method of JIS Z0208.
  • the film-like sealing member may be a single layer film or a laminated film (or laminated sheet).
  • the laminated film is not particularly limited as long as it includes at least a sealing layer formed of the thermoplastic resin (for example, a sealing layer formed of a copolymerized polyamide-based resin).
  • the thermoplastic resin A sealing layer including (a thermoadhesive thermoplastic resin such as a copolymerized polyamide-based resin) and a protection layered on one surface of the sealing layer and formed of a heat-resistant resin (or hydrophobic resin) Layer (heat-resistant resin layer or hydrophobic resin layer).
  • the protective layer may be laminated over the entire surface of the sealing layer, except for the peripheral portion of the sealing layer (the portion corresponding to the peripheral portion of the sealing member) (that is, in the inner region of the sealing layer). )
  • a protective layer may be laminated.
  • the peripheral portion of the sealing member can be bonded to the device with the protective layer facing away from the device, and in the latter laminated form, the peripheral portion of the sealing member is directed toward the device side. It may be glued to the device.
  • a plurality of protective layers may be laminated on one surface of the sealing layer.
  • the protective layer is used to protect the device from external adverse factors such as heat and moisture.
  • the heat-resistant resin layer can prevent the film from being broken due to the adhesion of the peripheral portion, and the hydrophobic resin layer is caused by moisture. Device corrosion can be prevented and device durability can be improved.
  • the heat-resistant resin is not particularly limited as long as it has heat resistance enough to withstand the bonding member's bonding temperature (or heat bonding temperature).
  • ketone resins for example, polyether ketone (PEK), polyether ether ketone (PEEK), etc.
  • polyphenylene sulfide resins for example, polyether ketone (PEK), polyether ether ketone (PEEK), etc.
  • polyphenylene sulfide resins polyether sulfone resins, cellulose derivatives, aromatic epoxy resins, and the like.
  • heat resistant resins may be used alone or in combination of two or more.
  • aromatic polyester resins such as aromatic polyamides
  • polycarbonate resins such as polycarbonate resins
  • polyamide resins such as aromatic polyamides
  • polyphenylene ether resins such as aromatic polyamides
  • polyphenylene sulfide resins such as polyphenylene sulfide resins
  • polyimide resins such as polyimide resins
  • fluorine resins are preferable.
  • typical heat resistant resins include polyester resins (such as aromatic polyesters), polyamide resins, and fluororesins.
  • polyester resins include polyalkylene arylate resins [homopolyesters (eg, poly C 2-4 alkylene arylates such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate), copolyesters (eg, C 2-4 alkylene). And the like)], polyarylate resins, liquid crystal polyesters, and the like.
  • the polyester resin also includes a polyester elastomer.
  • polyester block copolymer a polyester block copolymer composed of an aromatic polyester as a hard segment (or hard block) and a soft segment (or soft block), for example, aromatic polyester-poly
  • aromatic polyester-poly examples include ether block copolymers, aromatic polyester-aliphatic polyester block copolymers, and the like.
  • the aromatic polyester segment (or block) can be composed of the polyalkylene arylate resin (for example, poly C 2-4 alkylene terephthalate such as polybutylene terephthalate), and the soft segment is a polyether exemplified by the polyamide elastomer (for example, , Poly C 2-6 alkylene glycol such as polytetramethylene glycol) and the like.
  • the ratio of the aromatic polyester block (hard segment) is, for example, about 25 to 95% by weight, preferably about 30 to 90% by weight (for example, 50 to 85% by weight) with respect to all segments. Also good.
  • the polyamide resin As the polyamide resin, the homopolyamide (for example, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 1010, polyamide 1012, etc.), a copolymer different from the copolymer polyamide resin contained in the sealing member is used. Examples thereof include polyamide resins (and polyamide elastomers).
  • the polyamide-based resin is usually a polyamide-based resin other than the copolymerized polyamide.
  • fluororesin examples include homopolymers such as polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polytrifluoroethylene (PTrFE), polychlorotrifluoroethylene, polytetrafluoroethylene (PTFE), and ethylene.
  • -Tetrafluoroethylene copolymer ETFE
  • ethylene-chlorotrifluoroethylene copolymer tetrafluoroethylene-hexafluoropropylene copolymer
  • tetrafluoroethylene-perfluoropropyl vinyl ether copolymer and the like.
  • the heat-resistant resin may be a highly hydrophobic resin such as an olefin resin, a styrene resin, or a fluororesin.
  • the melting point or softening point of the heat resistant resin may be, for example, 160 ° C. or higher (for example, about 165 to 250 ° C.), preferably 170 ° C. or higher (for example, about 175 to 220 ° C.).
  • fusing point or a softening point can be measured by a conventional method, for example, a differential scanning calorimeter (DSC).
  • the heat distortion temperature of the heat-resistant resin can be selected from the range of 160 ° C. or less, for example, under the condition of high load (1.82 MPa) in accordance with ISO 75-1, and is 40 to 155 ° C., preferably 50 to 150 ° C. It may be a degree.
  • the thickness of the protective layer (when a plurality of protective layers are formed, the total thickness of each protective layer) is not particularly limited as long as the peripheral portion of the laminated film can contact the device surface. It may be about 800 ⁇ m (for example, 5 to 700 ⁇ m), preferably about 10 to 600 ⁇ m (for example, 20 to 500 ⁇ m), more preferably about 30 to 400 ⁇ m (for example, 50 to 300 ⁇ m). When the thickness of the protective layer is too small, the protective layer is easily broken and the function as the protective layer is lowered. When a plurality of protective layers are formed, the thickness of each protective layer may be, for example, about 1 to 100 ⁇ m, preferably about 5 to 50 ⁇ m.
  • the laminated film may be, for example, a laminated film in which a protective layer is directly formed on one surface of the sealing layer, and the protective layer is formed on one surface of the sealing layer via an adhesive layer (intermediate layer). It may be a laminated film. Further, if necessary, an intermediate layer (adhesive layer) may be interposed between the plurality of protective layers.
  • the adhesive layer is a conventional adhesive or pressure-sensitive adhesive such as vinyl chloride adhesive, vinyl acetate adhesive, olefin adhesive, acrylic adhesive, polyester adhesive, urethane adhesive, epoxy adhesive. Alternatively, a rubber adhesive may be used.
  • the thickness of the adhesive layer is not particularly limited, and may be, for example, 1 to 50 ⁇ m (for example, 3 to 30 ⁇ m), preferably about 2 to 10 ⁇ m.
  • the thickness (total thickness) of the sealing member including the laminated film may be, for example, about 10 to 1000 ⁇ m, preferably 30 to 800 ⁇ m, and more preferably about 50 to 500 ⁇ m.
  • the laminated film can improve properties such as heat resistance, chemical resistance and water resistance as compared with a single layer film.
  • the heat distortion temperature (maximum use temperature) of the laminated film is, for example, about 160 to 300 ° C., preferably 170 to 280 ° C., and more preferably about 180 to 250 ° C.
  • the heat distortion temperature of the single layer film is 100
  • the heat distortion temperature of the laminated film is, for example, about 120 to 200, preferably about 125 to 180, and more preferably about 130 to 160.
  • the heat deformation temperature means the minimum temperature at which the film is deformed by heat treatment for 15 seconds.
  • the laminated film is chemically resistant to both organic components (for example, aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ketones, etc.) and inorganic components (for example, inorganic acids such as hydrochloric acid).
  • organic components for example, aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ketones, etc.
  • inorganic components for example, inorganic acids such as hydrochloric acid.
  • chemical resistance against alcohols such as methanol can be improved.
  • Laminated films can be obtained by conventional methods such as lamination (heat lamination, dry lamination, etc.), co-extrusion using a general-purpose feedblock die or multi-manifold die, coating (including printing such as screen printing). For example, it can be prepared by laminating a sealing layer and a protective layer.
  • the preferred form of the sealing member is a tray.
  • This tray-shaped sealing member usually includes an accommodating portion (accommodating concave portion) that can be accommodated by covering the mounted component in accordance with the height of the mounted component of the device, and an outer peripheral edge portion (a collar portion) extending from the accommodating portion. ).
  • the accommodating portion (accommodating concave portion) has, for example, a curved and swollen shape (a shape such as an inverted U-shaped cross section or a mountain shape), a wall surface and a ceiling wall depending on the component mounting form.
  • the sealing member may have a single storage part (accommodation concave part), adjacent to each other or at a predetermined interval.
  • the peripheral part (ridge part) of a sealing member is surface contactable with the board
  • the peripheral part of the film-like or tray-like sealing member may be adhered to the substrate with an adhesive if necessary, but is preferably adhered by thermal bonding.
  • the peripheral edge portion (ridge portion) of the tray-shaped sealing member may be capable of being thermally bonded or thermally fused to the substrate of the device. It should be noted that at least the peripheral edge of the sealing member only needs to be bonded to the substrate of the device. In a sealing member having a plurality of receiving recesses, the portion between the receiving recesses is also bonded to the device substrate as necessary. It may be.
  • the method for molding the sealing member into a tray shape is not particularly limited, and the tray-shaped sealing member is formed of the single-layer or laminated film-shaped (or sheet-shaped) sealing member by a conventional container molding method such as pressure forming. It can be prepared by molding into a predetermined shape by a molding method such as vacuum molding. Note that the tray-shaped sealing member does not necessarily have a shape along the electronic component mounted on the electronic device.
  • the sealing member may be applied to both sides of the device if necessary, but is usually applied to one side of the device.
  • the sealed region of the device is sealed with the sealing member, but the sealing member is separated from the mounting component of the device, and the peripheral portion of the sealing member is Adhered to the device. That is, on the inner side (inner region) of the sealed region of the device, the sealing member is separated from the device (substrate circuit, mounted component, etc.) to form a free space; the periphery of the sealed region of the device In the portion, the peripheral portion of the sealing member is bonded to the substrate of the device to form a sealing portion. In such a sealing form, even if the sealing member is in physical contact with the mounting component or the like in the free space, the adhesive strength between the sealing member and the mounting component is substantially “0”.
  • the stress by the sealing member does not substantially act on the device in the space. Furthermore, since the peripheral edge of the sealing member is in close contact with the substrate, the free space forms a buffer space filled with a gas such as air, and the mounted parts in the free space are made more effective by the buffering property of the gas. Can protect.
  • the sealing member is formed of a thermoplastic resin having flexibility (particularly, a thermoadhesive thermoplastic resin such as a copolymerized polyamide-based resin)
  • the sealed area of the substrate is formed by a balloon-shaped sealing member. Even if an external force is applied, the balloon-like sealing member and the buffer space can protect the mounted components in the free space.
  • the peripheral part of the sealing member is bonded to the device substrate, the generation of voids can be greatly reduced. Therefore, circuit corrosion and short circuit can be effectively prevented.
  • a thermoadhesive thermoplastic resin such as the above-mentioned copolymerized polyamide resin
  • the peripheral portion of the desired sealing region of the device is bonded to the sealing member with high adhesion. Can be sealed.
  • a predetermined part (sealing region) of the device can be selectively sealed according to the mounting component and the mounting form of the component.
  • FIG. 1 is a schematic side view showing an example of the sealing device of the present invention.
  • the tray-shaped sealing member 11 covers the predetermined sealing area of the electronic device 1 and can be accommodated, and extends outward (sideward direction) from the opening periphery of the accommodating recess, and the electronic device 1 substrate 2 and a peripheral edge portion 13 that can be bonded.
  • region of the electronic device 1 is covered with the tray-shaped sealing member 11 arrange
  • the mounting components 3a to 3c of the electronic device 1 are accommodated in the accommodating recess 12 of the sealing member 11, and the mounting components 3a to 3c including the substrate part 2 in the sealing region are sealed.
  • a free space 15 is formed between the stopper member 11 and the stopper member 11.
  • FIG. 2 is a schematic side view showing another example of the sealing device of the present invention.
  • symbol is attached
  • the sealing member 21 includes a plurality of receiving recesses 22a and 22b having different depths and volumes, and a plurality of receiving recesses depending on the mounting and arrangement form of the plurality of electronic components 3a to 3c in the device 1.
  • a contact portion 24 that extends in a curved or bent direction toward the substrate and that can contact the substrate 2 of the device 1, and a peripheral portion 23 that is formed on the outer peripheral portion and can contact the device 1.
  • a plurality of regions to be sealed are covered with a plurality of receiving recesses 22 a and 22 b, and a portion (contact portion) between the peripheral edge 23 of the sealing member 21 and the plurality of receiving recesses 22 a and 22 b.
  • 24 can be bonded to the substrate 2 of the device 1, and free spaces (or buffer spaces) 25 a and 25 b can be formed by the receiving recesses 22 a and 22 b.
  • the sealing member is bonded to the substrate of the device, and not only the sealing member having one or a plurality of housing recesses, but also a film-like sealing member, if necessary, It may be bonded (or thermally bonded) to the substrate in a spot shape or a linear shape (or a strip shape) even in the inner region of the sealing member as long as it does not adversely affect components and circuits.
  • the sealing device at least the peripheral part of the sealing member is bonded to the substrate of the device, thereby closing the sealing part in a frame shape (frame shape such as a square frame, a polygonal frame, a loop shape). (Closed sealing part) is formed.
  • frame shape such as a square frame, a polygonal frame, a loop shape.
  • the peripheral part of the sealing member can be sealed (or bonded) to the substrate with a predetermined width, and may be sealed (or bonded) in a linear or belt-like form.
  • the predetermined sealing region of the device is covered with the sealing member separated from the mounting component in the sealing region of the device, and the peripheral portion of the sealing member is bonded to the substrate of the device.
  • a device in which the sealed region of the device is covered and sealed with the sealing member can be manufactured.
  • the predetermined sealing region of the device is covered with a sealing member in the form of a film (or sheet) or a tray, and the step of adhering the peripheral portion of the sealing member
  • a sealing member in the form of a film (or sheet) or a tray
  • the sealing member is formed in the region to be sealed.
  • Examples of the device include various organic or inorganic devices such as semiconductor elements, electroluminescence (EL) elements, light emitting diodes, precision components such as solar cells, circuit boards on which circuits (including filter circuits) are formed, Examples include electronic components (particularly precision electronic components or electronic devices) such as printed circuit boards (printed substrates) on which various electronic components or components such as electronic elements (capacitors, filters, etc.) are mounted.
  • organic or inorganic devices such as semiconductor elements, electroluminescence (EL) elements, light emitting diodes, precision components such as solar cells, circuit boards on which circuits (including filter circuits) are formed.
  • Examples include electronic components (particularly precision electronic components or electronic devices) such as printed circuit boards (printed substrates) on which various electronic components or components such as electronic elements (capacitors, filters, etc.) are mounted.
  • the area to be sealed of the device may be covered with a sealing member, and the entire area of one surface of the device or a specific area of the device (electronic component mounting area, wiring area, etc.) may be covered.
  • the peripheral edge of the sealing member is preferably in line or surface contact with the substrate.
  • the unevenness (or undulation) due to the electronic components on the substrate is not so large, for example, a film-shaped sealing member is stacked on the substrate without being previously formed into a tray shape or a case shape, and the periphery of the sealing member By merely fusing the part (outer edge part), the electronic component or solder part in the sealed region does not adhere to the sealing member, and the effect of the present invention can be achieved.
  • the sealing member molded in a tray or case shape is put on the sealing region of the device, and only the outer edge portion of the sealing member is fused. Is preferred.
  • the area to be sealed of the device is usually a part that is easily damaged, for example, an electronic element mounting part or a wiring part.
  • the most important point in the bonding step is that the bonding area (bonding site) between the substrate and the sealing member is small, and the peripheral edge (outer edge) of the sealing member is bonded to the substrate.
  • the method of bonding is not particularly limited, and examples thereof include heating with a laser beam and heating with a heat sealing device such as a heat sealer, and a method of heating and bonding only the bonding site is preferable.
  • the entire sealing member may be heated as necessary, but under the condition that the entire sealing member is melted, the sealing member is non-uniformly fused to the electronic component on the electronic device, It is not preferable because it melts and contacts a solder part or a circuit part of an electronic component, or the thickness of the sealing part can be reduced by melting, or a hole may be opened depending on circumstances. However, as long as such a problem does not occur, the sealing member may be preheated and bonded.
  • the laser When laser is used for fusion, the laser is transmitted through the peripheral edge (or outer edge) of the sealing member as in normal laser welding, and the substrate is heated, and the peripheral edge of the sealing member is heated by the heat.
  • a method of melting and fusing may be employed, but the laser intensity may be adjusted according to the type of device (for example, the color of the substrate, the presence or absence of a circuit inside the substrate, etc.). For example, if there is a display part that can absorb laser light (such as dark colored characters that can absorb laser light) on the substrate, the laser will be strongly absorbed by the display part, generating more heat than necessary. Yes, there is a possibility of fire in extreme cases.
  • thermoplastic resin composition (laser-absorbing thermoplastic resin composition) containing a colorant (pigment or dye such as carbon black) capable of absorbing laser light and a thermoplastic resin at least at the peripheral portion of the sealing member
  • a colorant pigment or dye such as carbon black
  • the whole sealing member may be shape
  • the heating temperature of the peripheral edge (outer edge) of the sealing member is, for example, 75 to 200 ° C., preferably 80 to 180 ° C., more preferably 100 to 100 ° C., depending on the melting point and softening point of the thermoplastic resin of the sealing member. It may be about 175 ° C. (for example, 110 to 150 ° C.).
  • the heating temperature is equal to or higher than the melting point of the thermoplastic resin (for example, the melting point + 5 ° C. or higher, preferably the melting point + 10 ° C. or higher) and the melting point of the heat resistant resin forming the protective layer + 10 ° C. or lower (for example, , Melting point + 5 ° C.
  • the heating temperature may be usually not less than the glass transition temperature of the heat-resistant resin forming the protective layer (preferably not less than the heat distortion temperature). Heating can be performed in air or in an inert gas atmosphere. If necessary, adhesion may be performed under normal pressure, increased pressure, or reduced pressure. Furthermore, if necessary, thermal bonding may be repeated.
  • the peripheral edge (outer edge) of the thermally bonded sealing member may be naturally cooled, cooled stepwise or continuously, or rapidly cooled.
  • Resin A Copolymer polyamide (“Vestamelt X1038P1” manufactured by Evonik, containing C 10-14 alkylene group, melting point 125 ° C.)
  • Resin B Copolyamide (“Vestamelt X1051” manufactured by Evonik, containing C 10-14 alkylene group, melting point 130 ° C.)
  • Resin C Copolyamide (“Vestamelt X1333P1” manufactured by Evonik, containing C 10-14 alkylene group, melting point 105 ° C.)
  • Resin D Copolyamide (“Vestamelt 4680” manufactured by Evonik, containing C 10-14 alkylene group, melting point 105 ° C.)
  • Resin E Copolyamide (“Vestamelt X7079” manufactured by Evonik, containing C 10-14 alkylene group, melting point 130 ° C.)
  • Resin F a melt blend obtained by compounding two types of copolymerized polyamides (a composition containing
  • a flat plate (vertical 100 mm, horizontal 100 mm, thickness 3 mm) formed of polyetheretherketone resin (Evonik's “VESTAKEEP-J ZV7403”) has a predetermined four locations (vertical and horizontal ends, 30 mm inward, respectively)
  • the test was conducted by drilling holes (diameter: 2 mm) in four places where straight lines extending in the vertical and horizontal directions intersect, and inserting a copper wire (diameter: 1 mm, length: 10 mm) and fixing with solder.
  • a substrate was prepared.
  • the solder used was a tin-copper-nickel alloy lead-free solder.
  • test substrate was sealed by the methods of Examples and Comparative Examples, and the presence or absence of cracks in the solder portion was observed with a fiberscope.
  • a comb-shaped electrode portion was formed between the wirings of a printed wiring board (wires attached to a glass epoxy resin substrate with copper foil) to prepare a test substrate.
  • the test substrate thickness: 1.5 mm
  • the test substrate has a pair of counter electrode portions (width: 4.4 mm, length: 29 mm) formed in a straight line with an interval of 20.1 mm.
  • the length (overlap width) W of the adjacent comb teeth that overlap in the direction facing each other is 16.5 mm.
  • the outer periphery of the film-shaped sealing member that seals the test substrate is indicated by a dotted line.
  • test pieces were sealed by the methods of Examples and Comparative Examples and subjected to the following tests.
  • test substrate a test substrate (Examples 1, 2, 5 and Comparative Examples 1-6, 13-15) on which comb-shaped electrodes having a pitch (interval) of 0.4 mm were formed and a pitch of 0 were used.
  • a test substrate on which a 25 mm comb-shaped electrode was formed (other examples and comparative examples) was used.
  • Example 1 Resin A was hot-pressed to prepare a film having a thickness of 100 ⁇ m. Then, the obtained film is cut to a size corresponding to the sealed region of each test substrate, and only the peripheral portion of the film of a predetermined size is fused to the substrate of the test substrate with a heat sealer and sealed with resin. A stopped specimen was prepared.
  • the test substrate is covered with a film-like sealing member cut to a size of 100 mm in length and 100 mm in width, and only the peripheral part (outer edge part having a width of about 3 mm) of the sealing member is covered.
  • a test piece was prepared by heat-sealing the test substrate over the entire circumference and sealing with a sealing member. The film-like sealing member after heat sealing was not in contact with the copper wire, and was separated from the test substrate, the solder portion, and the copper wire without bonding except for the heat sealing portion.
  • the film-shaped sealing member cut into a size of 38 mm in length and 38 mm in width was cut and a pair of counter electrode portions and comb-shaped electrode portions (including at least comb-shaped electrode portions) of the test substrate were used.
  • the region indicated by the dotted line of Fig. 2 is covered, and only the peripheral edge portion (outer edge portion having a width of about 3 mm) of the sealing member is heat-sealed to the substrate portion and the electrode portion of the test substrate, and fusion-sealed to prepare a test piece.
  • the film-shaped sealing member was separated from the comb-shaped electrode portion and the substrate except for the heat seal portion.
  • Comparative Example 1 A test in which each test substrate was inserted into a vertical injection molding machine, the entire test piece was overmolded with resin A and sealed with resin A under the conditions of a cylinder temperature of 200 ° C., an injection pressure of 10 MPa, and a mold temperature of 30 ° C. Pieces were prepared. The thickness of the sealed resin was about 5 mm.
  • Comparative Example 2 A powder obtained by freezing and pulverizing the resin A was spread on each test substrate and heated in an oven at 180 ° C. for 5 minutes to prepare a test piece sealed with the resin A.
  • the thickness of the sealed resin was about 5 mm.
  • Example 6 In Example 1, instead of Resin A, Resin B (Example 2), Resin C (Example 3), Resin D (Example 4), Resin E (Example 5), Resin F (Example 6) A test piece was prepared in the same manner as in Example 1 except that.
  • Comparative Example 4 In Comparative Example 1, a test piece was prepared in the same manner as Comparative Example 1 except that Resin B was used instead of Resin A.
  • Comparative Example 5 In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin B was used instead of Resin A.
  • Comparative Example 6 In Comparative Example 3, a test piece was prepared in the same manner as Comparative Example 3 except that Resin B was used instead of Resin A.
  • Comparative Example 7 In Comparative Example 1, a test piece was prepared in the same manner as in Comparative Example 1 except that Resin C was used instead of Resin A and the cylinder temperature was changed to 170 ° C.
  • Comparative Example 8 In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin C was used instead of Resin A.
  • Comparative Example 9 In Comparative Example 3, a test piece was prepared in the same manner as in Comparative Example 3 except that Resin C was used instead of Resin A.
  • Comparative Example 10 In Comparative Example 1, a test piece was prepared in the same manner as in Comparative Example 1 except that Resin D was used instead of Resin A and the cylinder temperature was changed to 170 ° C.
  • Comparative Example 11 In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin D was used instead of Resin A.
  • Comparative Example 12 In Comparative Example 3, a test piece was prepared in the same manner as Comparative Example 3 except that Resin D was used instead of Resin A.
  • Comparative Example 13 In Comparative Example 1, a test piece was prepared in the same manner as Comparative Example 1 except that Resin E was used instead of Resin A.
  • Comparative Example 14 In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin E was used instead of Resin A.
  • Comparative Example 15 In Comparative Example 3, a test piece was prepared in the same manner as Comparative Example 3 except that Resin E was used instead of Resin A.
  • Example 1 In the moisture resistance test, in Example 1 and Example 2, it was 5 ⁇ 10 8 ⁇ at 500 hours.
  • Example 1 In the heat shock test, in Example 1, Example 2, and Comparative Example 1, it was 1.0 ⁇ 10 9 ⁇ at the time of 500 cycles (500 times).
  • Example 3 In the moisture resistance test, in Example 3 and Example 4, it was 5 ⁇ 10 8 ⁇ at 500 hours.
  • Example 3 In the heat shock test, in Example 3, Example 4, and Comparative Example 7, it was 1.0 ⁇ 10 9 ⁇ at the time of 500 cycles (500 times).
  • Example 5 In the voltage application test, in Example 5 and Comparative Examples 13 to 15, a test substrate having a comb electrode pitch of 0.4 mm was used, and in Example 6, a test substrate having a comb electrode pitch of 0.25 mm was used. did.
  • Example 5 In the moisture resistance test, in Example 5 and Example 6, it was 5 ⁇ 10 8 ⁇ at 500 hours.
  • Example 5 In the heat shock test, in Example 5, Example 6, and Comparative Example 13, it was 1.0 ⁇ 10 9 ⁇ at the time of 500 cycles (500 times).
  • all of the embodiments can be sealed with high adhesion, and the sealed area of the substrate can be effectively protected even if only the peripheral edge of the sealing member is bonded to the substrate.
  • the present invention is useful for sealing electronic elements or electronic components such as semiconductor elements, EL elements, solar cells, printed circuit boards mounted with various electronic components or electronic elements, and the like.

Abstract

 A sealed region of a device (1) is housed by a sealing member (11) having a film-shaped or tray-shaped form, at least a peripheral edge part (13) of which includes a thermoplastic resin (copolymer polyamide-based resin or the like), the peripheral edge part of the sealing member (11) is heat-bonded to a substrate (2) of the device (1) in a form in which the sealing member (11) is separated from surface-mounted components (3a-3c) of the device (1) inside the sealed region, and a sealed device is manufactured in which the sealed region of the device (1) is covered by the sealing member (11). The copolymer polyamide-based resin may include units derived from a long-chain component having a C8-16 alkylene group (a C9-17 lactam, amino C9-17 alkane carboxylic acid, or the like). The sealing member selectively and effectively seals and protects a predetermined part of the device.

Description

封止部材、この封止部材で封止された封止基板及びその製造方法Sealing member, sealing substrate sealed with this sealing member, and method for manufacturing the same
 本発明は、部品(電子部品など)が実装された基板をカバーして封止するのに有用な封止部材、この封止部材でカバーして封止された封止基板、並びにその製造方法に関する。 The present invention relates to a sealing member useful for covering and sealing a substrate on which a component (electronic component or the like) is mounted, a sealing substrate covered and sealed with this sealing member, and a method for manufacturing the same About.
 水分、塵芥などから保護するため、プリント基板、半導体素子、太陽電池セルなどの精密部品(又は電子デバイス)を金型キャビティ内に配置して流動性樹脂を注入し、精密部品を樹脂で封止することが行われている。 In order to protect against moisture, dust, etc., precision parts (or electronic devices) such as printed circuit boards, semiconductor elements, solar cells, etc. are placed in the mold cavity, fluid resin is injected, and precision parts are sealed with resin. To be done.
 代表的な方法では、低粘度で流動性の高い熱硬化性樹脂(例えば、エポキシ樹脂)が使用されている。しかし、熱硬化性樹脂には、硬化のための架橋剤又は硬化剤などの添加物が添加されるため、可使時間との関係で熱硬化性樹脂としての品質管理が難しいだけでなく、硬化反応のために、通常、数時間以上といった長時間が必要とされる。 In a typical method, a thermosetting resin (for example, epoxy resin) having low viscosity and high fluidity is used. However, since additives such as a crosslinking agent or curing agent for curing are added to the thermosetting resin, quality control as a thermosetting resin is difficult not only in relation to the pot life, but also cured. For the reaction, usually a long time of several hours or more is required.
 熱可塑性樹脂を射出成形して精密部品を封止(又は保護)する方法も知られている。しかし、封止面積が大きくなればなるほど、樹脂には高い流動性が求められる。そのため、成形条件をより高温、高圧にせざるを得ず、熱や圧力によって実装された精密部品が損傷する場合がある。特開2000-133665号公報(特許文献1)には、金型キャビティ内に電子部品が実装されたプリント基板を配置し、160~230℃に加熱溶融したポリアミド樹脂を2.5~25kg/cmの圧力で前記金型キャビティ内に注入し、電子部品が実装されたプリント基板を封止する方法が開示されている。この文献の実施例では、ポリアミド樹脂を溶融温度190℃、圧力20kg/cmで金型内に注入してプリント基板を封止したことが記載されている。しかし、この方法でも電子部品に比較的高温高圧が作用するため、電子部品が損傷する場合がある。特に、封止面積が大きくなると、より高温及び高圧の成形条件が必要になるため、電子部品の損傷の可能性が高くなる。 A method of sealing (or protecting) precision parts by injection molding of a thermoplastic resin is also known. However, the greater the sealing area, the higher the fluidity required for the resin. For this reason, the molding conditions have to be higher and higher pressure, and the mounted precision parts may be damaged by heat or pressure. In Japanese Patent Laid-Open No. 2000-133665 (Patent Document 1), a printed circuit board on which electronic components are mounted is placed in a mold cavity, and a polyamide resin heated and melted at 160 to 230 ° C. is 2.5 to 25 kg / cm. A method is disclosed in which a printed circuit board on which electronic components are mounted is sealed by being injected into the mold cavity with a pressure of 2 . In an example of this document, it is described that a polyamide resin is injected into a mold at a melting temperature of 190 ° C. and a pressure of 20 kg / cm 2 to seal a printed circuit board. However, even in this method, the electronic component may be damaged because a relatively high temperature and pressure are applied to the electronic component. In particular, when the sealing area is increased, higher temperature and higher pressure molding conditions are required, and thus the possibility of damage to the electronic component is increased.
 また、精密部品の隅々にまで樹脂を完全に充填できず、小さなボイドなどが生じると、樹脂の添加物や低分子量成分などの影響により、電子回路が腐食したり短絡することもある。 Also, the resin cannot be completely filled into every corner of precision parts, and if a small void is generated, the electronic circuit may be corroded or short-circuited due to the influence of resin additives or low molecular weight components.
 さらに、使用条件下での樹脂の膨張及び収縮応力により、基板に対して電子部品を固定するハンダ部に微細なクラックが発生し損傷する場合もある。このようにハンダ部が損傷すると、電子デバイスの動作不良が生じる。近年問題となっている、電子部品の端子からの金属ウィスカーの発生も、こうした樹脂と電子部品やその端子との接触、あるいは不完全な封止が一因となっている可能性がある。 Furthermore, due to the expansion and contraction stress of the resin under the use conditions, a fine crack may be generated and damaged in the solder part for fixing the electronic component to the substrate. When the solder portion is damaged in this manner, an electronic device malfunctions. The occurrence of metal whiskers from the terminals of electronic components, which has been a problem in recent years, may be due to such contact between the resin and the electronic components and their terminals, or incomplete sealing.
 射出成形での熱や圧力による悪影響を回避するために、樹脂をパウダー化し、パウダーで封止する提案もされている。しかし、パウダーを用いると、射出成形の場合よりも前記ボイドが生じやすくなり、樹脂の膨張及び収縮応力によるハンダ部の損傷については解消されない。しかも、パウダーは飛散しやすく、所望の箇所を効率よく封止することも困難である。 In order to avoid the adverse effects of heat and pressure in injection molding, it has also been proposed that the resin be powdered and sealed with powder. However, when powder is used, the voids are more likely to occur than in the case of injection molding, and damage to the solder due to resin expansion and contraction stress cannot be resolved. In addition, the powder is easily scattered and it is difficult to efficiently seal a desired portion.
 一方、フィルムを用いて封止する方法も提案されている。フィルムの場合は、射出成形での熱及び圧力の悪影響を回避でき、形状が薄いためにハンダ部の損傷の問題も解決できる。特開2001-284779号公報(特許文献2)には、電子部品を備えた回路基板を筒状フィルム内に挿入し、上記筒状フィルムの両方の開口部を閉塞して上記回路基板を梱包する方法、前記電子部品が備えられた領域をシート状フィルムにより覆う方法、回路基板の表裏両面を2枚のシート状フィルムにより覆うとともに上記シート状フィルムにより上記回路基板を梱包する方法により、電子回路形成品を製造する方法が開示され、予め加熱して軟化させたフィルムで覆うこと、上記フィルムと上記基板との間を減圧して、上記フィルムを上記部品又は上記基板に追従させることも記載されている。特開平11-259021号公報(特許文献3)には、複数の液晶表示パネル部材からなる液晶表示パネル部材類をフィルムで包み込んでラミネートした液晶表示パネル部材が開示され、プラスチックフィルムとしてポリアミドも例示されている。しかし、これらの方法では、電子デバイスの特定の部分だけを保護又は非保護することができない。例えば、電子デバイスが、着脱が必要なコネクタ類を有する場合、このコネクタ部位まで梱包されてしまう。そのため、コネクタ類を電機・電子製品の1部品として機能させることができず、電子デバイスの意味を成さず、実用的ではない。また、実装された電子部品などとの密着が不均一であることに起因して、電子回路の腐食や短絡などの問題はなおも残る。さらに、フィルムによる封止では、電子デバイス表面の凹凸部に対してフィルムを如何にして追従させるか、ということがひとつの技術的焦点となっている。そのため、真空成形などが提案されているが、真空成形では基板の特定部位のみを保護することは技術上困難である。また、基板との複合化が完了した後、不必要なフィルムの外縁部を切除する必要がある。 On the other hand, a method of sealing using a film has also been proposed. In the case of a film, the adverse effects of heat and pressure in injection molding can be avoided, and the problem of solder damage can be solved because the shape is thin. In Japanese Patent Laid-Open No. 2001-284779 (Patent Document 2), a circuit board provided with electronic components is inserted into a cylindrical film, and both openings of the cylindrical film are closed to pack the circuit board. A method, a method of covering an area provided with the electronic component with a sheet-like film, a method of covering both front and back surfaces of a circuit board with two sheet-like films and packing the circuit board with the sheet-like film, and forming an electronic circuit A method of manufacturing an article is disclosed, covering with a preheated and softened film, depressurizing between the film and the substrate, and causing the film to follow the component or the substrate. Yes. Japanese Patent Application Laid-Open No. 11-259021 (Patent Document 3) discloses a liquid crystal display panel member in which liquid crystal display panel members made of a plurality of liquid crystal display panel members are wrapped and laminated, and polyamide is also exemplified as a plastic film. ing. However, these methods cannot protect or unprotect only certain parts of the electronic device. For example, when an electronic device has connectors that need to be attached and detached, the electronic device is packed up to this connector part. For this reason, the connectors cannot function as a single part of an electric / electronic product, do not make an electronic device, and are not practical. In addition, problems such as corrosion and short circuits of the electronic circuit still remain due to non-uniform contact with the mounted electronic components. Furthermore, in the sealing with a film, one technical focus is how to make the film follow the uneven portion on the surface of the electronic device. For this reason, vacuum forming or the like has been proposed, but it is technically difficult to protect only a specific portion of the substrate in vacuum forming. In addition, after the composite with the substrate is completed, it is necessary to cut off unnecessary outer edges of the film.
 また、特開2008-282906号公報(特許文献4)には、基板とフィルムとの間に太陽電池セルが樹脂で封止された太陽電池モジュールの製造方法に関し、前記基板と前記太陽電池セルとの間に前記基板の実質的に全面を覆う第1封止樹脂シートを配置し、前記フィルムと前記太陽電池セルとの間に前記基板の実質的に全面を覆う第2封止樹脂シートを配置して積層体を作製し、該積層体を複数段積み重ねるとともに、最上段の積層体の前記フィルムの外側に当て板を配置し、前記基板と前記フィルムとの間の空気を排出し、加熱して樹脂を溶融させて冷却して封止することが開示され、前記封止樹脂が、エチレン-酢酸ビニル共重合体、ポリビニルブチラール及びポリウレタンからなる群から選択される一種の樹脂であることも記載されている。 Japanese Patent Application Laid-Open No. 2008-282906 (Patent Document 4) relates to a method of manufacturing a solar cell module in which a solar cell is sealed with a resin between a substrate and a film, and the substrate, the solar cell, A first sealing resin sheet that covers substantially the entire surface of the substrate is disposed between, and a second sealing resin sheet that covers substantially the entire surface of the substrate is disposed between the film and the solar battery cell. To produce a laminated body, stack the laminated body in a plurality of stages, place a backing plate on the outer side of the film of the uppermost laminated body, exhaust air between the substrate and the film, and heat It is disclosed that the resin is melted and cooled and sealed, and the sealing resin is a kind of resin selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl butyral, and polyurethane. It is.
 さらに、特開2009-99417号公報(特許文献5)には、基板上に形成された有機電子デバイスを封止するバリアフィルムを含み、前記有機電子デバイスと前記バリアフィルムとの間にホットメルト型部材が配置された有機電子デバイス封止パネルが開示され、前記ホットメルト型部材が水分捕捉剤及びワックスを含むこと、前記ホットメルト型部材の厚みが100μm以下の薄膜状であることが記載されている。また、特開2009-99805号公報(特許文献6)には、水分捕捉剤及びワックスを含む有機薄膜太陽電池用ホットメルト型部材(薄膜状、板状、不定形状などのホットメルト型部材)が開示されている。 Furthermore, JP 2009-99417 A (Patent Document 5) includes a barrier film for sealing an organic electronic device formed on a substrate, and a hot melt type is provided between the organic electronic device and the barrier film. An organic electronic device sealing panel in which a member is disposed is disclosed, wherein the hot melt member includes a moisture scavenger and a wax, and the hot melt member has a thin film shape with a thickness of 100 μm or less. Yes. Japanese Patent Application Laid-Open No. 2009-99805 (Patent Document 6) discloses a hot-melt type member for organic thin-film solar cells (a hot-melt type member having a thin film shape, a plate shape, an indeterminate shape, etc.) containing a moisture scavenger and a wax. It is disclosed.
 しかし、これらのフィルム状封止剤を用いる技術は、いずれも、電子デバイスの被封止部位や被保護対象領域に対して、封止剤が密着することを前提にした技術である。そのため、このような方法は、前述のような、電子デバイスと封止剤とが密着しているが故に発生する諸問題、例えば、封止剤の膨張・収縮応力による被封止部位や被保護領域に対する悪影響、意図せぬボイドや不完全な密着に起因する問題を潜在的又は顕在的に有している。 However, any of these techniques using a film-like sealant is a technique based on the premise that the sealant is in close contact with the part to be sealed or the region to be protected of the electronic device. Therefore, such a method has various problems that occur because the electronic device and the sealant are in close contact as described above, for example, the site to be sealed and the protection due to the expansion / contraction stress of the sealant. It has potential or obvious problems due to adverse effects on the area, unintended voids and incomplete adhesion.
 特開2012-87292号公報(特許文献7)には、デバイスの少なくとも一部を、共重合ポリアミド系樹脂を含むフィルム状封止剤で覆い、この封止剤を加熱溶融させて冷却し、デバイスを被覆して封止することが記載されている。このフィルム状封止剤はデバイスの凹凸部に対する追従性が高く、ボイドの発生を防止しつつ、デバイスの細部に亘り緊密に封止できる。しかし、この特許文献7の技術も、電子デバイスと封止剤とを密着させた形態で封止して保護する技術であり、封止剤が密着することを前提にしている。そのため、前記と同様に、特許文献7に記載の方法も、電子デバイスと封止剤とが密着しているが故に発生する諸問題、例えば、封止剤の膨張・収縮応力による被封止部位や被保護領域に対する悪影響、意図せぬボイドや不完全な密着に起因する問題を潜在的又は顕在的に有している。 Japanese Patent Application Laid-Open No. 2012-87292 (Patent Document 7) covers at least a part of a device with a film-like sealant containing a copolymerized polyamide resin, and heat-melts the sealant to cool it. Covering and sealing. This film-like sealant has a high followability to the uneven portion of the device, and can tightly seal over the details of the device while preventing the generation of voids. However, the technique of Patent Document 7 is also a technique for sealing and protecting the electronic device and the sealing agent in a form in which the electronic device and the sealing agent are in close contact, and is premised on the sealing agent being in close contact. Therefore, in the same manner as described above, the method described in Patent Document 7 also has problems caused by the close contact between the electronic device and the sealing agent, for example, the site to be sealed due to the expansion / contraction stress of the sealing agent. And potential problems or problems caused by unintended voids and incomplete adhesion.
特開2000-133665号公報(特許請求の範囲、実施例)JP 2000-133665 A (Claims, Examples) 特開2001-284779号公報(特許請求の範囲)Japanese Patent Laid-Open No. 2001-284779 (Claims) 特開平11-259021号公報(特許請求の範囲、[0022])JP-A-11-259021 (Claims, [0022]) 特開2008-282906号公報(特許請求の範囲)JP 2008-282906 A (Claims) 特開2009-99417号公報(特許請求の範囲、[0024])JP 2009-99417 A (Claims, [0024]) 特開2009-99805号公報(特許請求の範囲)JP 2009-99805 (Claims) 特開2012-87292号公報(特許請求の範囲)JP 2012-87292 A (Claims)
 本発明の目的は、部品(電子部品などの実装部品)を備えた基板(実装基板、デバイス)の所定部を選択的かつ有効に封止して保護できる封止部材、この封止部材によりカバーされ、かつ封止された実装基板(保護基板)、およびその製造方法を提供することにある。 An object of the present invention is to provide a sealing member capable of selectively and effectively sealing and protecting a predetermined portion of a substrate (mounting substrate, device) including a component (a mounting component such as an electronic component), and covering with the sealing member And a sealed mounting substrate (protective substrate) and a manufacturing method thereof.
 本発明の他の目的は、部品(電子部品などの実装部品)を備えた基板(実装基板、デバイス)を高い密着力で封止できるとともに、使用条件下の温度の変動によっても実装部品及びハンダ部を有効に保護できる封止部材、この封止部材により封止された実装基板(保護基板)、およびその製造方法を提供することにある。 Another object of the present invention is to seal a substrate (mounting substrate, device) provided with a component (mounting component such as an electronic component) with a high adhesion force, and also according to temperature fluctuations under use conditions. It is in providing the sealing member which can protect a part effectively, the mounting board | substrate (protection board | substrate) sealed with this sealing member, and its manufacturing method.
 本発明のさらに他の目的は、生産性に優れ、封止及び保護領域が大面積であっても実装された電子部品を損傷せず、しかも電子回路の腐食や短絡を防止できる封止部材、この封止部材により封止された実装基板(保護基板)、およびその製造方法を提供することにある。 Still another object of the present invention is a sealing member that is excellent in productivity, does not damage the mounted electronic component even if the sealing and protection area is large area, and can prevent corrosion and short circuit of the electronic circuit, It is providing the mounting board | substrate (protection board | substrate) sealed with this sealing member, and its manufacturing method.
 本発明の別の目的は、フィルム状などの形態を有していても、フィルムの外縁部の切除などの作業が不要な封止部材、この封止部材でカバーされ、かつ封止された実装基板、およびその製造方法を提供することにある。 Another object of the present invention is to provide a sealing member that does not require work such as excision of the outer edge of the film, even if it has a form such as a film, and is mounted and sealed with this sealing member It is providing a board | substrate and its manufacturing method.
 前記のように、従来の方法は、いずれも基板及び/又は部品と封止樹脂との間にボイドがあると、水分やガスなどが侵入して封止性を低下させるとの認識のもと、部品及び/又は基板に封止樹脂を緊密に密着させ、ボイドを形成することなく封止することを前提としている。しかし、このような方法では、部品、基板及びハンダ部が封止樹脂と緊密に接着しているため、封止樹脂の膨張・収縮応力が部品及びハンダ部に直接的に作用し、ハンダ部にクラック又は亀裂を生じさせる可能性がある。さらに、不可避的にボイドが生成する危険性もある。 As described above, all the conventional methods are based on the recognition that if there is a void between the substrate and / or the component and the sealing resin, moisture, gas or the like enters and the sealing performance is lowered. It is assumed that the sealing resin is closely adhered to the component and / or the substrate and sealing is performed without forming a void. However, in such a method, since the component, the substrate, and the solder portion are closely bonded to the sealing resin, the expansion / contraction stress of the sealing resin acts directly on the component and the solder portion, and the solder portion Cracks or cracks can occur. Furthermore, there is a risk that voids are inevitably generated.
 本発明者らは、前記課題を達成するため鋭意検討した結果、部品及び基板の形状に対して封止樹脂を追従させ、実装基板の被封止域を全体に亘り緊密に密着させて封止するという発想とは全く異なる発想で、特許文献7に係る発明をさらに発展させ、本発明を完成した。すなわち、フィルム状などの所定の形態の封止部材の周縁部だけをデバイスの所定部(被封止域の周縁部)に熱接着させ、封止部材の内方域を実装部品から遊離させた形態でデバイスを覆うと、ボイドの発生を防止できるだけでなく、実装部品及びハンダ部に熱膨張・収縮応力が作用するのを有効に防止できること、高い密着力で緊密に封止しつつ、実装基板を有効に保護できることを見いだした。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have made the sealing resin follow the shape of the component and the board, and the sealing area of the mounting board is tightly adhered over the whole and sealed. The present invention was completed by further developing the invention according to Patent Document 7, with an idea completely different from the idea of doing. That is, only the peripheral part of the sealing member of a predetermined form such as a film is thermally bonded to the predetermined part of the device (peripheral part of the sealed region), and the inner region of the sealing member is released from the mounting component. Covering the device with the form can not only prevent the generation of voids, but also effectively prevent the thermal expansion / contraction stress from acting on the mounting parts and solder part, and the mounting substrate while sealing tightly with high adhesion force We found that we can protect effectively.
 本発明の封止デバイスは、デバイスの被封止域が封止部材で封止されている。この封止デバイスは、フィルム状又はトレイ状の形態を有し、かつ前記封止部材の少なくとも周縁部が熱可塑性樹脂を含み;前記封止部材がデバイスの実装部品と遊離した形態で、前記封止部材の周縁部がデバイスと接着している。すなわち、デバイスの被封止域の内側では、前記封止部材がデバイス(回路や実装部品などを含む)と遊離して遊離空間が形成され;前記封止部材の周縁部がデバイスの基板と接着し、デバイスの被封止域の周縁部で被封止域を封止する封止部が形成されている。 In the sealed device of the present invention, the area to be sealed of the device is sealed with a sealing member. The sealing device has a film-like or tray-like form, and at least a peripheral portion of the sealing member includes a thermoplastic resin; the sealing member is separated from a mounting component of the device, and the sealing device The periphery of the stop member is bonded to the device. That is, inside the sealed area of the device, the sealing member is separated from the device (including circuits and mounting components) to form a free space; the peripheral edge of the sealing member is bonded to the substrate of the device And the sealing part which seals a to-be-sealed area in the peripheral part of the to-be-sealed area of a device is formed.
 前記封止部材の少なくとも周縁部は熱接着性熱可塑性樹脂(例えば、共重合ポリアミド系樹脂)を含み、フィルム状又はトレイ状の形態を有していてもよい。また、封止部材の周縁部だけがデバイスの基板と熱接着していてもよい。 At least the peripheral portion of the sealing member includes a thermoadhesive thermoplastic resin (for example, a copolymerized polyamide resin), and may have a film shape or a tray shape. Further, only the peripheral portion of the sealing member may be thermally bonded to the device substrate.
 さらに、フィルム状又はトレイ状の封止部材は、デバイスの基板と線又は面接触可能な周縁部を有していてもよく、以下の少なくとも1つの特性を有する共重合ポリアミド系樹脂を含んでいてもよい。 Further, the film-like or tray-like sealing member may have a peripheral portion that can be in line contact or surface contact with the substrate of the device, and includes a copolymerized polyamide resin having at least one of the following characteristics. Also good.
 (1)融点又は軟化点が75~160℃(例えば、融点が90~160℃)程度である
 (2)結晶性を有する
 (3)結晶性を有するとともに、融点90~160℃程度を有する。
(1) Melting point or softening point is about 75 to 160 ° C. (for example, melting point is 90 to 160 ° C.) (2) Crystallinity (3) Crystallinity and melting point of about 90 to 160 ° C.
 さらに、封止部材は、多元共重合体、例えば、二元共重合体~四元共重合体(例えば、二元又は三元共重合体)の共重合ポリアミド系樹脂であってもよく、この共重合ポリアミド系樹脂は、以下の少なくとも1つの単位を有していてもよい。 Further, the sealing member may be a multi-component copolymer, for example, a copolymer polyamide resin of a binary copolymer to a quaternary copolymer (for example, binary or ternary copolymer). The copolymerized polyamide resin may have at least one unit described below.
 (a)C8-16アルキレン基(例えば、C10-14アルキレン基)を有する長鎖成分に由来する単位
 (b)C9-17ラクタム及びアミノC9-17アルカンカルボン酸から選択された少なくとも一種の成分に由来する単位
 (c)ラウロラクタム、アミノウンデカン酸及びアミノドデカン酸から選択された少なくとも一種の成分に由来する単位。
(A) a unit derived from a long chain component having a C 8-16 alkylene group (eg, a C 10-14 alkylene group) (b) at least selected from C 9-17 lactam and amino C 9-17 alkane carboxylic acid Units derived from one component (c) Units derived from at least one component selected from laurolactam, aminoundecanoic acid and aminododecanoic acid.
 さらに、封止部材は、単層構造に限らず積層構造を有していてもよく、例えば、共重合ポリアミド系樹脂を含む封止層と、この封止層の一方の面に積層され、かつ耐熱性樹脂で形成された保護層とを含んでいてもよい。耐熱性樹脂は、例えば、170℃以上の融点又は軟化点を有していてもよく、耐熱性樹脂は、ポリエステル系樹脂、ポリアミド系樹脂、及びフッ素樹脂から選択された少なくとも一種であってもよい。封止部材の厚み(全体の厚み)は、例えば、10~1000μm程度であってもよい。本発明の封止部材は、デバイスの両面に適用してもよいが、デバイスの一方の面に適用するのに有用である。 Furthermore, the sealing member may have a laminated structure as well as a single layer structure, for example, a sealing layer containing a copolymerized polyamide-based resin, laminated on one surface of the sealing layer, and And a protective layer formed of a heat resistant resin. The heat resistant resin may have, for example, a melting point or softening point of 170 ° C. or higher, and the heat resistant resin may be at least one selected from a polyester resin, a polyamide resin, and a fluororesin. . The thickness (total thickness) of the sealing member may be, for example, about 10 to 1000 μm. The sealing member of the present invention may be applied to both sides of the device, but is useful for application to one side of the device.
 本発明は、封止部材でデバイスの被封止域が封止された封止デバイスを製造する方法も包含する。この方法では、フィルム状又はトレイ状の形態を有し、かつ少なくとも周縁部が熱可塑性樹脂を含む封止部材を用いる。そして、被封止域の内側で封止部材がデバイスの実装部品と遊離した形態で、封止部材の周縁部をデバイスの基板(被封止域の周縁部)と接着させ、封止部材でデバイスの被封止域がカバー及びシールされたデバイスを製造する。 The present invention also includes a method of manufacturing a sealed device in which a sealed region of the device is sealed with a sealing member. In this method, a sealing member having a film shape or a tray shape and having at least a peripheral portion containing a thermoplastic resin is used. Then, in a form in which the sealing member is separated from the device mounting component inside the sealed region, the peripheral portion of the sealing member is adhered to the substrate of the device (peripheral portion of the sealed region), and the sealing member A device is manufactured in which the sealed area of the device is covered and sealed.
 上記製造方法では、封止部材の少なくとも周縁部が共重合ポリアミド系樹脂を含む封止部材(フィルム状又はトレイ状の形態の封止部材)でデバイスの被封止域を覆い、前記封止部材の周縁部をデバイスの基板と熱接着させて冷却してもよい。 In the manufacturing method, at least a peripheral portion of the sealing member covers a region to be sealed of the device with a sealing member (a sealing member in the form of a film or a tray) containing a copolymerized polyamide resin, and the sealing member The peripheral edge of the substrate may be cooled by being thermally bonded to the substrate of the device.
 さらに、本発明は、デバイスの被封止域を封止するための封止部材も包含する。この封止部材は、フィルム状又はトレイ状に成形され、かつ周縁部が熱可塑性樹脂を含んでいる。そして、封止部材は、デバイスと接着することなく遊離した遊離空間を形成するための内方域と;デバイスの基板と接着可能な周縁部(前記内方域に隣接する周縁部)とを備えている。この封止部材は、デバイスの基板と熱接着(又は熱融着)可能な周縁部(接着部)とを備えていてもよく、少なくとも前記周縁部は共重合ポリアミド系樹脂を含んでいてもよい。 Furthermore, the present invention also includes a sealing member for sealing the sealed area of the device. The sealing member is formed into a film shape or a tray shape, and the peripheral portion includes a thermoplastic resin. The sealing member includes an inner region for forming a free space without adhering to the device; and a peripheral portion (peripheral portion adjacent to the inner region) that can be bonded to the substrate of the device. ing. The sealing member may include a peripheral portion (adhesive portion) that can be thermally bonded (or thermally fused) to the substrate of the device, and at least the peripheral portion may include a copolymerized polyamide resin. .
 なお、本明細書において、「共重合ポリアミド系樹脂」とは、ホモポリアミドを形成するアミド形成成分であって種類又は炭素数の異なる複数のアミド形成成分の共重合体(コポリアミド)のみならず、複数のアミド形成成分により形成され、かつ種類の異なる複数の共重合体(コポリアミド)の混合物をも含む意味で用いる。 In this specification, the term “copolymerized polyamide resin” refers to not only a copolymer (copolyamide) of a plurality of amide-forming components having different types or carbon numbers, which are amide-forming components that form a homopolyamide. , And is used to include a mixture of a plurality of different types of copolymers (copolyamides) formed from a plurality of amide-forming components.
 「デバイス」とは、広く、封止により保護することが要求される機能性部材(電気又は電子部材)を意味し、機能素子などの電子部品、電気的回路(半導体回路を含む)が形成された基板、部品(機能素子などの電子部品など)が実装された基板、例えば、電子部品が実装又は搭載されたプリント配線基板などを包含する。「デバイス」は、通常、平坦部を有している場合が多い。 The term “device” means a functional member (electrical or electronic member) that is required to be protected by sealing, and an electronic component such as a functional element or an electric circuit (including a semiconductor circuit) is formed. And a substrate on which components (electronic components such as functional elements) are mounted, for example, a printed wiring board on which electronic components are mounted or mounted. The “device” usually has a flat portion in many cases.
 「遊離」とは、デバイスと実質的に接着していないことを意味し、遊離空間の封止部材は、デバイスの部品や必要により基板と物理的に接触していてもよい。 “Free” means that the device is not substantially bonded to the device, and the sealing member of the free space may be in physical contact with the component of the device and, if necessary, the substrate.
 本発明では、デバイスの被封止域の内側では封止部材がデバイス(回路や部品など)から遊離(遊離空間を形成)し、かつ封止部材の周縁部が被封止域のベース基板に接着した形態でデバイスを封止しており、実装部品及びハンダ部を封止樹脂でモールドして封止することがない。そのため、デバイスの所定部を選択的かつ有効に封止して保護できる。特に、基板に対する封止部材の接着面積が小さいため、ボイドの発生を抑制でき、使用条件下で温度が変動しても応力が実装部品及びハンダ部に作用することがない。従って、回路の腐食や短絡を防止できるとともに、実装部品及びハンダ部を損傷から保護できる。しかも、封止部材の少なくとも周縁部が熱可塑性樹脂(特に、共重合ポリアミド系樹脂などの熱接着性熱可塑性樹脂など)を含むため、高い密着力で被封止域の周縁部を封止できる。さらに、被封止域(封止及び保護領域)が大面積であっても実装された電子部品を損傷せず、しかも電子回路の腐食や短絡を防止できる。また、フィルム状やパウダー状樹脂全体を溶融させたり、真空成形する必要がなく、基板に対する封止部材の接着面積も実質的に低減できるため、封止デバイスの生産性も向上できる。さらに、被封止域に適合したサイズの封止部材を用いればよいため、フィルムの外縁部の切除作業も不要である。なお、上記の形態で封止しても、熱可塑性樹脂の封止部材により、実装部品及びハンダ部を水分から有効に保護できる。このように、本発明では、簡便かつ確実にデバイスを高い信頼性で有効に保護できる。 In the present invention, the sealing member is separated from the device (circuit, component, etc.) inside the sealed region of the device (forms a free space), and the periphery of the sealing member is the base substrate of the sealed region. The device is sealed in a bonded form, and the mounted component and the solder part are not sealed by being molded with a sealing resin. Therefore, the predetermined part of the device can be selectively and effectively sealed and protected. In particular, since the bonding area of the sealing member to the substrate is small, generation of voids can be suppressed, and stress does not act on the mounting component and the solder part even if the temperature fluctuates under use conditions. Therefore, the corrosion and short circuit of the circuit can be prevented, and the mounted component and the solder portion can be protected from damage. Moreover, since at least the peripheral portion of the sealing member contains a thermoplastic resin (particularly, a thermoadhesive thermoplastic resin such as a copolymerized polyamide-based resin), the peripheral portion of the sealed region can be sealed with high adhesion. . Furthermore, even if the sealed area (sealing and protection area) is a large area, the mounted electronic component is not damaged, and corrosion and short circuit of the electronic circuit can be prevented. Further, it is not necessary to melt or vacuum-form the entire film or powder resin, and the adhesion area of the sealing member to the substrate can be substantially reduced, so that the productivity of the sealing device can be improved. Furthermore, since it is sufficient to use a sealing member having a size suitable for the region to be sealed, it is not necessary to cut off the outer edge of the film. Even if the sealing is performed in the above-described form, the mounting component and the solder part can be effectively protected from moisture by the thermoplastic resin sealing member. Thus, according to the present invention, the device can be effectively protected with high reliability simply and reliably.
図1は本発明の封止デバイスの一例を示す概略側面図である。FIG. 1 is a schematic side view showing an example of the sealing device of the present invention. 図2は本発明の封止デバイスの他の例を示す概略側面図である。FIG. 2 is a schematic side view showing another example of the sealing device of the present invention. 図3は実施例で用いた試験用基板を示す概略平面図である。FIG. 3 is a schematic plan view showing the test substrate used in the examples.
 [封止部材]
 デバイスの被封止域を封止するための封止部材は、少なくとも周縁部が熱可塑性樹脂を含んでおり、本発明では、封止部材の周縁部(又は外縁部)をデバイスの被封止領域の基板に接着させる。そのため、熱接着を利用しても、熱によりデバイスに与えるダメージが小さく、低融点又は低軟化点の封止部材に限らず、比較的高融点又は高軟化点の熱可塑性樹脂が使用できる。そのため、熱可塑性樹脂の種類は特に制限されず、種々の熱可塑性樹脂が使用でき、例えば、オレフィン系樹脂[低密度、中密度又は高密度ポリエチレン、線状低密度ポリエチレンなどのポリエチレン、エチレン-プロピレン共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのエチレンと共重合性単量体とのエチレン系共重合体などのポリエチレン系樹脂;ポリプロピレン、プロピレン-エチレン共重合体などのポリプロピレン系樹脂;エチレン-ノルボルネン共重合体などの環状オレフィン系樹脂など]、アクリル系樹脂、スチレン系樹脂、ポリエステル系樹脂(エチレンテレフタレート、ブチレンテレフタレートなどのアルキレンアリレート単位を含む共重合ポリエステルなど)、ポリアミド系樹脂(共重合ポリアミド系樹脂など)などが使用できる。これらの熱可塑性樹脂は単独で又は二種以上組み合わせて使用できる。
[Sealing member]
The sealing member for sealing the sealed region of the device has at least a peripheral portion containing a thermoplastic resin. In the present invention, the peripheral portion (or outer edge portion) of the sealing member is sealed with the device. Adhere to the substrate in the area. Therefore, even if thermal bonding is used, damage to the device due to heat is small, and not only a sealing member having a low melting point or a low softening point, but a thermoplastic resin having a relatively high melting point or a high softening point can be used. Therefore, the type of thermoplastic resin is not particularly limited, and various thermoplastic resins can be used. For example, olefin resin [low density, medium density or high density polyethylene, polyethylene such as linear low density polyethylene, ethylene-propylene, etc. Ethylene copolymer of ethylene and copolymerizable monomer such as copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-vinyl acetate copolymer Polyethylene resins such as polypropylene; Polypropylene resins such as polypropylene and propylene-ethylene copolymers; Cyclic olefin resins such as ethylene-norbornene copolymers], acrylic resins, styrene resins, polyester resins (ethylene terephthalate) , Alkylene arylate units such as butylene terephthalate Including such copolyester), and polyamide-based resin (a copolymer polyamide resin), etc. can be used. These thermoplastic resins can be used alone or in combination of two or more.
 好ましい熱可塑性樹脂は、基板に封止部材を熱接着させる場合、比較的低温で強固に接着できる熱接着性熱可塑性樹脂、例えば、オレフィン系樹脂、アルキレンアリレート単位を含む共重合ポリエステル、特に、膜強度、耐薬品性、製膜性、基板との密着性(融着性)などの点から共重合ポリアミド系樹脂である。また、共重合ポリアミド系樹脂を含む封止部材は、デバイスに対する密着性を向上でき、高い耐衝撃性及び耐摩耗性をデバイスに付与でき、デバイスに対する保護効果を高めることができる。共重合ポリアミド系樹脂には、共重合ポリアミド(熱可塑性共重合ポリアミド)とポリアミドエラストマーとが含まれる。 A preferred thermoplastic resin is a thermoadhesive thermoplastic resin that can be firmly bonded at a relatively low temperature when the sealing member is thermally bonded to the substrate, for example, an olefin resin, a copolyester containing an alkylene arylate unit, particularly a film. It is a copolymerized polyamide resin from the viewpoints of strength, chemical resistance, film-forming property, adhesion to a substrate (fusibility), and the like. Moreover, the sealing member containing the copolymerized polyamide-based resin can improve adhesion to the device, can impart high impact resistance and wear resistance to the device, and can enhance the protective effect on the device. The copolymerized polyamide-based resin includes a copolymerized polyamide (thermoplastic copolymerized polyamide) and a polyamide elastomer.
 熱可塑性共重合ポリアミドは、脂環族共重合ポリアミドであってもよいが、通常、脂肪族共重合ポリアミドである場合が多い。共重合ポリアミドは、ジアミン成分、ジカルボン酸成分、ラクタム成分、アミノカルボン酸成分を組み合わせて形成できる。なお、ジアミン成分及びジカルボン酸成分の双方の成分は、共重合ポリアミドのアミド結合を形成可能であり、ラクタム成分及びアミノカルボン酸成分はそれぞれ単独で共重合ポリアミドのアミド結合を形成可能である。そのため、共重合ポリアミドは、一対の成分(ジアミン成分とジカルボン酸成分とを組合せた両成分)、ラクタム成分、及びアミノカルボン酸成分から選択された複数のアミド形成成分の共重合により得ることができる。また、共重合ポリアミドは、前記一対の成分、ラクタム成分、及びアミノカルボン酸成分から選択された少なくとも一種のアミド形成成分と、このアミド形成成分と異種の(又は同種であって炭素数の異なる)アミド形成成分との共重合により得ることができる。また、ラクタム成分とアミノカルボン酸成分とは、炭素数及び分岐鎖構造が共通していれば等価な成分として取り扱ってもよい。 The thermoplastic copolymer polyamide may be an alicyclic copolymer polyamide, but is usually an aliphatic copolymer polyamide in many cases. The copolymerized polyamide can be formed by combining a diamine component, a dicarboxylic acid component, a lactam component, and an aminocarboxylic acid component. Both the diamine component and the dicarboxylic acid component can form an amide bond of the copolymerized polyamide, and the lactam component and the aminocarboxylic acid component can each independently form an amide bond of the copolymerized polyamide. Therefore, the copolymerized polyamide can be obtained by copolymerization of a plurality of amide-forming components selected from a pair of components (both components combining a diamine component and a dicarboxylic acid component), a lactam component, and an aminocarboxylic acid component. . The copolymerized polyamide is at least one amide-forming component selected from the pair of components, lactam component, and aminocarboxylic acid component, and is different from the amide-forming component (or the same type and different in carbon number). It can be obtained by copolymerization with an amide-forming component. In addition, the lactam component and the aminocarboxylic acid component may be handled as equivalent components as long as they have the same carbon number and branched chain structure.
 そのため、ジアミン成分とジカルボン酸成分とを組合せた一対の成分を第1のアミド形成成分、ラクタム成分及びアミノカルボン酸成分を第2のアミド形成成分とすると、例えば、共重合ポリアミドは、第1のアミド形成成分による共重合ポリアミドであって、ジアミン成分及びジカルボン酸成分のうち少なくとも一方の成分が炭素数の異なる複数の成分で構成された共重合ポリアミド;第1のアミド形成成分と、第2のアミド形成成分(ラクタム成分及びアミノカルボン酸成分から選択された少なくとも一種の成分)との共重合ポリアミド;第2のアミド形成成分(ラクタム成分及びアミノカルボン酸成分から選択された少なくとも一種の成分)で形成された共重合ポリアミドであって、ラクタム成分及びアミノカルボン酸成分のうち一方の成分が炭素数の異なる複数の成分で構成された共重合ポリアミド;炭素数が同一又は互いに異なるラクタム成分とアミノカルボン酸成分との共重合ポリアミドなどであってもよい。 Therefore, when a pair of components obtained by combining a diamine component and a dicarboxylic acid component is a first amide-forming component, and a lactam component and an aminocarboxylic acid component are second amide-forming components, for example, A copolymerized polyamide comprising an amide-forming component, wherein at least one of a diamine component and a dicarboxylic acid component is composed of a plurality of components having different carbon numbers; a first amide-forming component, and a second A copolymerized polyamide with an amide-forming component (at least one component selected from a lactam component and an aminocarboxylic acid component); a second amide-forming component (at least one component selected from a lactam component and an aminocarboxylic acid component) A copolyamide formed, one of a lactam component and an aminocarboxylic acid component It may be a copolyamide of the same carbon number or different lactam component and aminocarboxylic acid component; components are different copolyamide composed of a plurality of components of the carbon number.
 ジアミン成分としては、脂肪族ジアミン又はアルキレンジアミン成分(例えば、テトラメチレンジアミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、オクタメチレンジアミン、ドデカンジアミンなどのC4-16アルキレンジアミンなど)などが例示できる。これらのジアミン成分は単独で又は二種以上組み合わせて使用できる。好ましいジアミン成分は、少なくともアルキレンジアミン(好ましくはC6-14アルキレンジアミン、さらに好ましくはC6-12アルキレンジアミン)を含んでいる。 Examples of the diamine component include aliphatic diamine or alkylene diamine components (for example, C 4-16 alkylene diamine such as tetramethylene diamine, hexamethylene diamine, trimethyl hexamethylene diamine, octamethylene diamine, and dodecane diamine). These diamine components can be used alone or in combination of two or more. A preferred diamine component contains at least an alkylene diamine (preferably a C 6-14 alkylene diamine, more preferably a C 6-12 alkylene diamine).
 なお、必要であれば、ジアミン成分として、脂環族ジアミン成分(ジアミノシクロヘキサンなどのジアミノシクロアルカン(ジアミノC5-10シクロアルカンなど);ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、2,2-ビス(4’-アミノシクロヘキシル)プロパンなどのビス(アミノシクロアルキル)アルカン[ビス(アミノC5-8シクロアルキル)C1-3アルカンなど];水添キシリレンジアミンなど)、芳香族ジアミン成分(メタキシリレンジアミンなど)を併用してもよい。ジアミン成分(例えば、脂環族ジアミン成分)は、アルキル基(メチル基、エチル基などのC1-4アルキル基)などの置換基を有していてもよい。 If necessary, as the diamine component, an alicyclic diamine component (diaminocycloalkane such as diaminocyclohexane (diamino C 5-10 cycloalkane etc.); bis (4-aminocyclohexyl) methane, bis (4-amino-) Bis (aminocycloalkyl) alkanes such as 3-methylcyclohexyl) methane and 2,2-bis (4′-aminocyclohexyl) propane [bis (aminoC 5-8 cycloalkyl) C 1-3 alkane etc.]; hydrogenated Xylylenediamine etc.) and aromatic diamine components (metaxylylenediamine etc.) may be used in combination. The diamine component (for example, an alicyclic diamine component) may have a substituent such as an alkyl group (C 1-4 alkyl group such as a methyl group or an ethyl group).
 アルキレンジアミン成分の割合は、ジアミン成分全体に対して、50~100モル%、好ましくは60~100モル%(例えば、70~97モル%)、さらに好ましくは75~100モル%(例えば、80~95モル%)程度であってもよい。 The proportion of the alkylenediamine component is 50 to 100 mol%, preferably 60 to 100 mol% (eg 70 to 97 mol%), more preferably 75 to 100 mol% (eg 80 to 95 mol%).
 ジカルボン酸成分としては、脂肪族ジカルボン酸又はアルカンジカルボン酸成分(例えば、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸又はその水素添加物などの炭素数4~36程度のジカルボン酸又はC4-36アルカンジカルボン酸など)などが挙げられる。これらのジカルボン酸成分は単独で又は二種以上組み合わせて使用できる。好ましいジカルボン酸成分は、C6-36アルカンジカルボン酸(例えば、C6-16アルカンジカルボン酸、好ましくはC8-14アルカンジカルボン酸など)を含んでいる。さらに、必要であれば、脂環族ジカルボン酸成分(シクロヘキサン-1,4-ジカルボン酸、シクロヘキサン-1,3-ジカルボン酸などのC5-10シクロアルカン-ジカルボン酸など)、芳香族ジカルボン酸(テレフタル酸、イソフタル酸など)を併用してもよい。なお、ジアミン成分及びジカルボン酸成分として、脂環族ジアミン成分及び/又は脂環族ジカルボン酸成分と共に、前記例示の脂肪族ジアミン成分及び/又は脂肪族ジカルボン酸成分を併用して得られた脂環族ポリアミド樹脂は、いわゆる透明ポリアミドとして知られており、透明性が高い。 Examples of the dicarboxylic acid component include aliphatic dicarboxylic acid or alkane dicarboxylic acid components (for example, about 4 to 36 carbon atoms such as adipic acid, pimelic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid or hydrogenated product thereof). And dicarboxylic acid or C4-36 alkanedicarboxylic acid). These dicarboxylic acid components can be used alone or in combination of two or more. Preferred dicarboxylic acid components include C 6-36 alkane dicarboxylic acids (eg, C 6-16 alkane dicarboxylic acids, preferably C 8-14 alkane dicarboxylic acids, etc.). Further, if necessary, an alicyclic dicarboxylic acid component (such as C 5-10 cycloalkane-dicarboxylic acid such as cyclohexane-1,4-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid, etc.), aromatic dicarboxylic acid ( Terephthalic acid, isophthalic acid, etc.) may be used in combination. As the diamine component and dicarboxylic acid component, an alicyclic ring obtained by using the aliphatic diamine component and / or aliphatic dicarboxylic acid component exemplified above together with the alicyclic diamine component and / or alicyclic dicarboxylic acid component. The group polyamide resin is known as so-called transparent polyamide, and has high transparency.
 アルカンジカルボン酸成分の割合は、ジカルボン酸成分に対して、50~100モル%、好ましくは60~100モル%(例えば、70~97モル%)、さらに好ましくは75~100モル%(例えば、80~95モル%)程度であってもよい。 The proportion of the alkanedicarboxylic acid component is 50 to 100 mol%, preferably 60 to 100 mol% (eg 70 to 97 mol%), more preferably 75 to 100 mol% (eg 80 About 95 mol%).
 第1のアミド形成成分において、ジアミン成分は、ジカルボン酸成分1モルに対して0.8~1.2モル、好ましくは0.9~1.1モル程度の範囲で使用できる。 In the first amide-forming component, the diamine component can be used in a range of about 0.8 to 1.2 mol, preferably about 0.9 to 1.1 mol, relative to 1 mol of the dicarboxylic acid component.
 ラクタム成分としては、例えば、δ-バレロラクタム、ε-カプロラクタム、ω-ヘプタラクタム、ω-オクタラクタム、ω-デカンラクタム、ω-ウンデカンラクタム、ω-ラウロラクタム(又はω-ラウリンラクタム)などのC4-20ラクタムなどが例示でき、アミノカルボン酸成分としては、例えば、ω-アミノデカン酸、ω-アミノウンデカン酸、ω-アミノドデカン酸などのC6-20アミノカルボン酸などが例示できる。これらのラクタム成分及びアミノカルボン酸成分も単独で又は二種以上組み合わせて使用できる。 Examples of the lactam component include C such as δ-valerolactam, ε-caprolactam, ω-heptalactam, ω-octalactam, ω-decane lactam, ω-undecanactam, ω-laurolactam (or ω-laurinlactam). such as 4-20 lactam. Examples of the aminocarboxylic acid component, for example, .omega.-aminodecanoic acid, .omega.-aminoundecanoic acid, C 6-20 aminocarboxylic acids such as .omega.-aminododecanoic acid can be exemplified. These lactam components and aminocarboxylic acid components can also be used alone or in combination of two or more.
 好ましいラクタム成分は、C6-19ラクタム、好ましくはC8-17ラクタム、さらに好ましくはC10-15ラクタム(ラウロラクタムなど)を含んでいる。また、好ましいアミノカルボン酸は、アミノC6-19アルカンカルボン酸、好ましくはアミノC8-17アルカンカルボン酸、さらに好ましくはアミノC10-15アルカンカルボン酸(アミノウンデカン酸、アミノドデカン酸など)を含んでいる。 Preferred lactam components include C 6-19 lactam, preferably C 8-17 lactam, more preferably C 10-15 lactam (such as laurolactam). Preferred aminocarboxylic acids are amino C 6-19 alkanecarboxylic acids, preferably amino C 8-17 alkanecarboxylic acids, more preferably amino C 10-15 alkanecarboxylic acids (aminoundecanoic acid, aminododecanoic acid, etc.). Contains.
 なお、共重合ポリアミドは、少量のポリカルボン酸成分及び/又はポリアミン成分を用い、分岐鎖構造を導入したポリアミドなどの変性ポリアミドであってもよい。 The copolymerized polyamide may be a modified polyamide such as a polyamide having a branched chain structure using a small amount of a polycarboxylic acid component and / or a polyamine component.
 第1のアミド形成成分(ジアミン成分とジカルボン酸成分とを組合せた両成分)と、第2のアミド形成成分(ラクタム成分、及びアミノカルボン酸成分から選択された少なくとも一種のアミド形成成分)との割合(モル比)は、前者/後者=100/0~0/100の範囲から選択でき、例えば、90/10~0/100(例えば、80/20~5/95)、好ましくは75/25~10/90(例えば、70/30~15/85)、さらに好ましくは60/40~20/80程度であってもよい。 A first amide-forming component (both components combining a diamine component and a dicarboxylic acid component) and a second amide-forming component (at least one amide-forming component selected from a lactam component and an aminocarboxylic acid component) The ratio (molar ratio) can be selected from the range of the former / the latter = 100/0 to 0/100, for example, 90/10 to 0/100 (for example, 80/20 to 5/95), preferably 75/25. It may be about 10/90 (for example, 70/30 to 15/85), more preferably about 60/40 to 20/80.
 さらに、共重合ポリアミドは、長鎖脂肪鎖(長鎖アルキレン基又はアルケニレン基)を有する長鎖成分を構成単位として含む(又は長鎖成分に由来する単位を含む)のが好ましい。このような長鎖成分としては、炭素数8~36程度の長鎖脂肪鎖又はアルキレン基(好ましくはC8-16アルキレン基、さらに好ましくはC10-14アルキレン基)を有する成分が含まれる。長鎖成分としては、例えば、C8-18アルカンジカルボン酸(好ましくはC10-16アルカンジカルボン酸、さらに好ましくはC10-14アルカンジカルボン酸など)、C9-17ラクタム(好ましくはラウロラクタムなどのC11-15ラクタム)及びアミノC9-17アルカンカルボン酸(好ましくはアミノウンデカン酸、アミノドデカン酸などのアミノC11-15アルカンカルボン酸)から選択された少なくとも一種の成分が例示できる。これらの長鎖成分は単独で又は二種以上組み合わせて使用できる。これらの長鎖成分のうち、ラクタム成分及び/又はアミノアルカンカルボン酸成分、例えば、ラウロラクタム、アミノウンデカン酸及びアミノドデカン酸から選択された少なくとも一種の成分を用いる場合が多い。このような成分由来の単位を含む共重合ポリアミドは、耐水性が高いとともに、電子デバイスに対する密着性、耐摩耗性及び耐衝撃性に優れており、電子デバイスを有効に保護できる。 Furthermore, the copolymerized polyamide preferably includes a long chain component having a long chain fatty chain (long chain alkylene group or alkenylene group) as a constituent unit (or includes a unit derived from the long chain component). Such a long chain component includes a long chain fatty chain having about 8 to 36 carbon atoms or a component having an alkylene group (preferably a C 8-16 alkylene group, more preferably a C 10-14 alkylene group). Examples of the long chain component include C 8-18 alkane dicarboxylic acid (preferably C 10-16 alkane dicarboxylic acid, more preferably C 10-14 alkane dicarboxylic acid, etc.), C 9-17 lactam (preferably laurolactam, etc.) And C11-15 lactams) and amino C 9-17 alkanecarboxylic acids (preferably amino C 11-15 alkanecarboxylic acids such as aminoundecanoic acid and aminododecanoic acid). These long chain components can be used alone or in combination of two or more. Of these long-chain components, at least one component selected from a lactam component and / or an aminoalkanecarboxylic acid component such as laurolactam, aminoundecanoic acid and aminododecanoic acid is often used. Copolyamides containing such component-derived units have high water resistance and are excellent in adhesion, wear resistance and impact resistance to electronic devices, and can effectively protect electronic devices.
 長鎖成分の割合は、共重合ポリアミドを形成する単量体成分全体に対して、10~100モル%(例えば、25~95モル%)、好ましくは30~90モル%(例えば、40~85モル%)、さらに好ましくは50~80モル%(例えば、55~75モル%)程度であってもよい。 The ratio of the long chain component is 10 to 100 mol% (for example, 25 to 95 mol%), preferably 30 to 90 mol% (for example, 40 to 85 mol%) with respect to the whole monomer component forming the copolymer polyamide. Mol%), more preferably about 50 to 80 mol% (for example, 55 to 75 mol%).
 さらに、共重合ポリアミドは、前記アミド形成成分の多元共重合体、例えば、二元共重合体~五元共重合体などであってもよいが、通常、二元共重合体~四元共重合体、特に二元共重合体又は三元共重合体である場合が多い。 Further, the copolyamide may be a multi-component copolymer of the amide-forming component, for example, a binary copolymer to a quaternary copolymer, but is usually a binary copolymer to a quaternary copolymer. In many cases, the polymer is a binary copolymer or a ternary copolymer.
 共重合ポリアミドは、例えば、ポリアミド11,ポリアミド12、ポリアミド610、ポリアミド612及びポリアミド1010から選択されたアミド形成成分を構成単位として含む(又は上記アミド形成成分に由来する単位を含む)場合が多い。共重合ポリアミドは、これらの複数のアミド形成成分の共重合体であってもよく、上記1又は複数のアミド形成成分と、他のアミド形成成分(ポリアミド6及びポリアミド66から選択された少なくとも1つのアミド形成成分など)との共重合体であってもよい。 The copolymerized polyamide often includes, for example, an amide-forming component selected from polyamide 11, polyamide 12, polyamide 610, polyamide 612, and polyamide 1010 as a constituent unit (or a unit derived from the amide-forming component). The copolymerized polyamide may be a copolymer of a plurality of these amide-forming components, and the one or more amide-forming components and other amide-forming components (at least one selected from polyamide 6 and polyamide 66). It may be a copolymer with an amide-forming component or the like).
 具体的には、共重合ポリアミドとしては、例えば、コポリアミド6/11、コポリアミド6/12、コポリアミド66/11、コポリアミド66/12、コポリアミド610/11、コポリアミド612/11、コポリアミド610/12、コポリアミド612/12、コポリアミド1010/12、コポリアミド6/11/610、コポリアミド6/11/612、コポリアミド6/12/610、コポリアミド6/12/612などが挙げられる。これらの共重合ポリアミドは単独で又は二種以上組み合わせて使用できる。なお、これらの共重合ポリアミドにおいて、スラッシュ「/」で分離された成分はアミド形成成分を示している。 Specifically, examples of the copolyamide include copolyamide 6/11, copolyamide 6/12, copolyamide 66/11, copolyamide 66/12, copolyamide 610/11, copolyamide 612/11, copolyamide Polyamide 610/12, copolyamide 612/12, copolyamide 10/10/12, copolyamide 6/11/610, copolyamide 6/11/612, copolyamide 6/12/610, copolyamide 6/12/612, etc. Can be mentioned. These copolyamides can be used alone or in combination of two or more. In these copolyamides, the component separated by a slash “/” indicates an amide-forming component.
 前記のように、封止部材は、以下の少なくとも1つの単位を有していてもよい。 As described above, the sealing member may have at least one unit described below.
 (a)C8-16アルキレン基を有する長鎖成分に由来する単位
 (b)C9-17ラクタム及びアミノC9-17アルカンカルボン酸から選択された少なくとも一種の成分に由来する単位
 (c)ラウロラクタム、アミノウンデカン酸及びアミノドデカン酸から選択された少なくとも一種の成分に由来する単位
 ポリアミドエラストマー(ポリアミドブロック共重合体)としては、ハードセグメント(又はハードブロック)としてのポリアミドセグメント(例えば、ポリアミド11,ポリアミド12、ポリアミド610、ポリアミド612及びポリアミド1010から選択されたアミド形成成分に由来するポリアミドセグメント)とソフトセグメント(又はソフトブロック)とで構成されたポリアミドブロック共重合体、例えば、ポリアミド-ポリエーテルブロック共重合体、ポリアミド-ポリエステルブロック共重合体、ポリアミド-ポリカーボネートブロック共重合体などが挙げられる。代表的なポリアミドエラストマーは、ポリアミド-ポリエーテルブロック共重合体であり、例えば、ポリエーテルアミド[例えば、ジアミン末端を有するポリアミドブロックとジカルボキシル末端を有するポリアルキレングリコールブロック(又はポリオキシアルキレンブロック)とのブロック共重合体、ジカルボキシル末端を有するポリアミドブロックとジアミン末端を有するポリアルキレングリコールブロック(又はポリオキシアルキレンブロック)とのブロック共重合体など]、ポリエーテルエステルアミド[ジカルボキシル末端を有するポリアミドブロックとジヒドロキシ末端を有するポリアルキレングリコールブロック(又はポリオキシアルキレンブロック)とのブロック共重合体など]などが挙げられる。ポリエーテル(ポリエーテルブロック)としては、例えば、ポリアルキレングリコール(例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリC2-6アルキレングリコール、好ましくはポリC2-4アルキレングリコール)などが挙げられる。なお、ポリアミドエラストマーは、エステル結合を有していてもよい。
(A) a unit derived from a long chain component having a C 8-16 alkylene group (b) a unit derived from at least one component selected from C 9-17 lactam and amino C 9-17 alkanecarboxylic acid (c) Units derived from at least one component selected from laurolactam, aminoundecanoic acid and aminododecanoic acid. As a polyamide elastomer (polyamide block copolymer), a polyamide segment (for example, polyamide 11) as a hard segment (or hard block) is used. , Polyamide 12, polyamide 610, polyamide 612 and polyamide segment derived from an amide-forming component selected from polyamide 1010) and a soft block (or soft block) polyamide block copolymer, for example, polyamide Polyether block copolymer, polyamide - polyester block copolymer, a polyamide - like polycarbonate block copolymer. A typical polyamide elastomer is a polyamide-polyether block copolymer, for example, a polyether amide [eg, a polyamide block having a diamine end and a polyalkylene glycol block having a dicarboxyl end (or polyoxyalkylene block) Block copolymers, block copolymers of polyamide blocks having dicarboxyl ends and polyalkylene glycol blocks having diamine ends (or polyoxyalkylene blocks)], polyetheresteramides [polyamide blocks having dicarboxyl ends] And a block copolymer of a dialkylene-terminated polyalkylene glycol block (or polyoxyalkylene block) and the like. Examples of the polyether (polyether block) include polyalkylene glycol (for example, poly C 2-6 alkylene glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, preferably poly C 2-4 alkylene glycol). Can be mentioned. The polyamide elastomer may have an ester bond.
 ポリアミドエラストマーにおいて、ソフトセグメント(ポリエーテルブロックなど)の数平均分子量は、例えば、100~10000程度の範囲から選択でき、好ましくは300~6000(例えば、300~5000)、さらに好ましくは500~4000(例えば、500~3000)、特に1000~2000程度であってもよい。 In the polyamide elastomer, the number average molecular weight of the soft segment (polyether block or the like) can be selected from the range of, for example, about 100 to 10,000, preferably 300 to 6000 (for example, 300 to 5000), more preferably 500 to 4000 ( For example, it may be about 500 to 3000), particularly about 1000 to 2000.
 また、ポリアミドエラストマーにおいて、ポリアミドブロック(ポリアミドセグメント)と、ソフトセグメント(又はブロック)との割合(重量比)は、例えば、前者/後者=75/25~10/90、好ましくは70/30~15/85、さらに好ましくは60/40~20/80(例えば、50/50~25/75)程度であってもよい。 In the polyamide elastomer, the ratio (weight ratio) between the polyamide block (polyamide segment) and the soft segment (or block) is, for example, the former / the latter = 75/25 to 10/90, preferably 70/30 to 15 / 85, more preferably 60/40 to 20/80 (for example, 50/50 to 25/75).
 これらの共重合ポリアミド系樹脂は、単独で又は二種以上組み合わせてもよい。これらの共重合ポリアミド系樹脂のうち、電子デバイスの封止性の点から、共重合ポリアミド(非ポリアミドエラストマー又はポリアミドランダム共重合体)が好ましく、特に、ポリアミド12に由来するアミド形成成分を構成単位として含む共重合ポリアミドが好ましい。 These copolyamide resins may be used alone or in combination of two or more. Of these copolymer polyamide resins, copolymer polyamides (non-polyamide elastomers or polyamide random copolymers) are preferable from the viewpoint of sealing properties of electronic devices. In particular, amide-forming components derived from polyamide 12 are constituent units. Copolyamides included as are preferred.
 共重合ポリアミド系樹脂のアミノ基濃度は、特に制限されず、例えば、10~300mmol/kg、好ましくは15~280mmol/kg、さらに好ましくは20~250mmol/kg程度であってもよい。共重合ポリアミド系樹脂のアミノ基濃度が高いと、封止部材に他の層(後述の保護層など)を積層するとき、接着性を向上でき、有利である。 The amino group concentration of the copolymerized polyamide resin is not particularly limited, and may be, for example, about 10 to 300 mmol / kg, preferably about 15 to 280 mmol / kg, and more preferably about 20 to 250 mmol / kg. When the amino group concentration of the copolymerized polyamide-based resin is high, the adhesiveness can be improved when another layer (such as a protective layer described later) is laminated on the sealing member, which is advantageous.
 共重合ポリアミド系樹脂のカルボキシル基濃度は、特に制限されず、例えば、10~300mmol/kg、好ましくは15~280mmol/kg、さらに好ましくは20~250mmol/kg程度であってもよい。共重合ポリアミド系樹脂の末端カルボキシル基濃度が高いと、熱安定性が高く、長期安定性(連続加工性)の点で有利である。 The carboxyl group concentration of the copolymerized polyamide resin is not particularly limited, and may be, for example, about 10 to 300 mmol / kg, preferably about 15 to 280 mmol / kg, and more preferably about 20 to 250 mmol / kg. When the terminal carboxyl group concentration of the copolymerized polyamide resin is high, the thermal stability is high, which is advantageous in terms of long-term stability (continuous processability).
 共重合ポリアミド系樹脂の数平均分子量は、例えば、5000~200000程度の範囲から選択でき、例えば、6000~100000、好ましくは7000~70000(例えば、7000~15000)、さらに好ましくは8000~40000(例えば、8000~12000)程度であってもよく、通常、8000~30000程度である。共重合ポリアミド系樹脂の分子量は、HFIP(ヘキサフルオロイソプロパノール)を溶媒とし、ゲルパーミエーションクロマトグラフィにより、ポリメタクリル酸メチル換算で測定できる。 The number average molecular weight of the copolymerized polyamide resin can be selected from the range of, for example, about 5,000 to 200,000, for example, 6000 to 100,000, preferably 7000 to 70000 (for example, 7000 to 15000), and more preferably 8000 to 40,000 (for example, 8000 to 12000), and usually about 8000 to 30000. The molecular weight of the copolymerized polyamide resin can be measured in terms of polymethyl methacrylate by gel permeation chromatography using HFIP (hexafluoroisopropanol) as a solvent.
 共重合ポリアミド系樹脂のアミド結合含有量は、共重合ポリアミド系樹脂当たり、例えば、100ユニット以下の範囲から選択でき、デバイスの封止性の点から、30~90ユニット、好ましくは40~80ユニット、さらに好ましくは50~70ユニット(例えば、55~60ユニット)程度であってもよい。なお、アミド結合含有量は、例えば、数平均分子量を繰り返し単位(1ユニット)の分子量で除することにより、算出できる。 The amide bond content of the copolymerized polyamide-based resin can be selected, for example, from a range of 100 units or less per copolymerized polyamide-based resin, and is 30 to 90 units, preferably 40 to 80 units, from the viewpoint of device sealing performance. More preferably, it may be about 50 to 70 units (for example, 55 to 60 units). The amide bond content can be calculated, for example, by dividing the number average molecular weight by the molecular weight of the repeating unit (1 unit).
 共重合ポリアミド系樹脂は、非晶性であってもよく、結晶性を有していてもよい。共重合ポリアミド系樹脂の結晶化度は、例えば、20%以下(例えば、1~18%)、好ましくは15%以下(例えば、2~13%)、さらに好ましくは10%以下(例えば、2~8%)であってもよい。なお、結晶化度は、慣用の方法、例えば、密度や融解熱に基づく測定法、X線回折法、赤外吸収法などにより、測定できる。 The copolymerized polyamide resin may be amorphous or may have crystallinity. The degree of crystallinity of the copolymerized polyamide resin is, for example, 20% or less (eg, 1 to 18%), preferably 15% or less (eg, 2 to 13%), more preferably 10% or less (eg, 2 to 2%). 8%). The crystallinity can be measured by a conventional method, for example, a measurement method based on density or heat of fusion, an X-ray diffraction method, an infrared absorption method, or the like.
 なお、非晶性共重合ポリアミド系樹脂の熱溶融性は、示差走査熱量計により軟化温度として測定でき、結晶性の共重合ポリアミド系樹脂の融点は、示差走査熱量計(DSC)により測定できる。 The heat melting property of the amorphous copolymerized polyamide resin can be measured as a softening temperature with a differential scanning calorimeter, and the melting point of the crystalline copolymerized polyamide resin can be measured with a differential scanning calorimeter (DSC).
 共重合ポリアミド系樹脂(又は共重合ポリアミド又はポリアミドエラストマー)の融点又は軟化点は、75~160℃(例えば、80~150℃)、好ましくは90~140℃(例えば、95~135℃)、さらに好ましくは100~130℃程度であってもよく、通常、90~160℃(例えば、100~150℃)程度である。共重合ポリアミド系樹脂が低い融点又は軟化点を有し、かつ高い接着性を有するため、比較的低温で溶融してデバイス表面(基板)と強固に接着できる。なお、共重合ポリアミド系樹脂の融点は、各成分が相溶し、DSCで単一のピークが生じる場合、単一のピークに対応する温度を意味し、各成分が非相溶であり、DSCで複数のピークが生じる場合、複数のピークのうち高温側のピークに対応する温度を意味する。 The melting point or softening point of the copolyamide resin (or copolyamide or polyamide elastomer) is 75 to 160 ° C. (eg 80 to 150 ° C.), preferably 90 to 140 ° C. (eg 95 to 135 ° C.), Preferably, it may be about 100 to 130 ° C, and is usually about 90 to 160 ° C (eg, 100 to 150 ° C). Since the copolymerized polyamide-based resin has a low melting point or softening point and high adhesiveness, it can be melted at a relatively low temperature and firmly bonded to the device surface (substrate). The melting point of the copolymerized polyamide resin means a temperature corresponding to a single peak when each component is compatible and a single peak is generated in DSC, each component is incompatible, and DSC When a plurality of peaks occur, the temperature corresponding to the peak on the high temperature side among the plurality of peaks is meant.
 なお、前記のように、共重合ポリアミド系樹脂は、以下の少なくとも1つの特性を有していてもよい。 As described above, the copolymerized polyamide-based resin may have at least one of the following characteristics.
 (1)融点又は軟化点が75~160℃である
 (2)結晶性を有する
 (3)結晶性を有するとともに、融点90~160℃を有する
 本発明では封止部材の周縁部をデバイスに接着させるため、従来の封止方法と異なり、熱可塑性樹脂は必ずしも高い溶融流動特性を有している必要はない。熱可塑性樹脂(例えば、共重合ポリアミド系樹脂)のメルトフローレート(MFR)は、温度160℃及び荷重2.16kgにおいて、1~350g/10分、好ましくは3~300g/10分、さらに好ましくは5~250g/10分程度であってもよい。
(1) Melting point or softening point is 75 to 160 ° C. (2) Crystallinity (3) Crystallinity and melting point 90 to 160 ° C. In the present invention, the peripheral portion of the sealing member is bonded to the device Therefore, unlike the conventional sealing method, the thermoplastic resin does not necessarily have high melt flow characteristics. The melt flow rate (MFR) of a thermoplastic resin (for example, a copolymerized polyamide resin) is 1 to 350 g / 10 minutes, preferably 3 to 300 g / 10 minutes, more preferably at a temperature of 160 ° C. and a load of 2.16 kg. It may be about 5 to 250 g / 10 minutes.
 熱可塑性樹脂(例えば、共重合ポリアミド系樹脂)には、密着性などの特性を損なわない範囲で、他の樹脂、例えば、ホモポリアミド(例えば、前記共重合ポリアミドを形成する成分によるホモポリアミドなど)を添加してもよい。ホモポリアミドの割合は、共重合ポリアミド系樹脂100重量部に対して、30重量部以下(例えば、1~25重量部)、好ましくは2~20重量部、さらに好ましくは3~15重量部程度であってもよい。なお、混合物の形態の共重合ポリアミド系樹脂において、各ポリアミドは互いに相溶性を有していてもよい。 The thermoplastic resin (for example, copolymerized polyamide-based resin) may be other resin, for example, homopolyamide (for example, homopolyamide by a component forming the copolymerized polyamide) as long as the properties such as adhesion are not impaired. May be added. The proportion of the homopolyamide is 30 parts by weight or less (for example, 1 to 25 parts by weight), preferably 2 to 20 parts by weight, and more preferably about 3 to 15 parts by weight with respect to 100 parts by weight of the copolymer polyamide resin. There may be. In the copolyamide-based resin in the form of a mixture, the polyamides may be compatible with each other.
 封止部材は、必要であれば、前記他の熱可塑性樹脂、例えば、エチレン-酢酸ビニル共重合体などを含んでいてもよい。他の樹脂の割合は、例えば、共重合ポリアミド系樹脂100重量部に対して、100重量部以下(例えば、1~80重量部程度)、好ましくは2~70重量部、さらに好ましくは2~50重量部、特に30重量部以下(例えば、3~20重量部程度)であってもよい。 The sealing member may contain the other thermoplastic resin, for example, ethylene-vinyl acetate copolymer, if necessary. The ratio of the other resin is, for example, 100 parts by weight or less (eg, about 1 to 80 parts by weight), preferably 2 to 70 parts by weight, more preferably 2 to 50 parts per 100 parts by weight of the copolymer polyamide resin. It may be 30 parts by weight or less (for example, about 3 to 20 parts by weight).
 熱可塑性樹脂(例えば、共重合ポリアミド系樹脂)は、必要により、種々の添加剤、例えば、フィラー、安定剤(耐熱安定剤、耐候安定剤など)、着色剤、可塑剤、滑剤、難燃剤、帯電防止剤、熱伝導剤などを含んでいてもよい。添加剤は、単独で又は2種以上組み合わせてもよい。これらの添加剤のうち、安定剤、熱伝導剤などが汎用される。 Thermoplastic resins (for example, copolymerized polyamide-based resins) are optionally added with various additives such as fillers, stabilizers (heat stabilizers, weathering stabilizers, etc.), colorants, plasticizers, lubricants, flame retardants, An antistatic agent, a heat conductive agent, and the like may be included. The additives may be used alone or in combination of two or more. Of these additives, stabilizers, heat conducting agents and the like are widely used.
 上記のように、本発明の封止部材は、共重合ポリアミド系樹脂、複数の共重合ポリアミド系樹脂の混合物、又は共重合ポリアミド系樹脂と他の成分(ホモポリアミド、添加剤など)とを含む混合物(共重合ポリアミド系樹脂組成物)で形成してもよい。 As described above, the sealing member of the present invention includes a copolymerized polyamide resin, a mixture of a plurality of copolymerized polyamide resins, or a copolymerized polyamide resin and other components (such as a homopolyamide and an additive). You may form with a mixture (copolymerization polyamide-type resin composition).
 本発明の封止部材は、フィルム状(又はシート状)又はトレイ状(又はケース状)に成形されている。フィルム状又はトレイ状の封止部材は、基板との接着加工性を高めるため、前記熱可塑性樹脂(共重合ポリアミド系樹脂などの熱接着性樹脂など)を含む周縁部を有していればよく、この周縁部はデバイスの基板と線又は面接触可能であってもよい。なお、封止部材の少なくとも周縁部(特に、基板との接触部)が前記熱可塑性樹脂で形成されていればよく、封止部材の周縁部(基板との接触部)に前記熱可塑性樹脂の被膜を形成してもよいが、通常、周縁部を含めて封止部材全体が前記熱可塑性樹脂を含む場合が多い。 The sealing member of the present invention is formed into a film shape (or a sheet shape) or a tray shape (or a case shape). The film-like or tray-like sealing member only needs to have a peripheral portion containing the thermoplastic resin (such as a heat-adhesive resin such as a copolyamide-based resin) in order to improve the bondability with the substrate. The periphery may be in line or surface contact with the substrate of the device. Note that at least the peripheral portion of the sealing member (particularly, the contact portion with the substrate) may be formed of the thermoplastic resin, and the peripheral portion of the sealing member (contact portion with the substrate) may be formed of the thermoplastic resin. A film may be formed, but usually the entire sealing member including the peripheral portion often contains the thermoplastic resin.
 このような形態の封止部材は、デバイス(基板の回路や実装部品など)と接着することなく遊離した遊離空間を形成するための内方域と;デバイスの基板と接着可能な周縁部(前記内方域に隣接する周縁部)とを備えている。遊離空間では、封止部材がデバイスと接着することがなく、封止部材による応力がデバイス(遊離空間内の実装部品など)に作用するのを防止できる。また、封止部材の周縁部だけをデバイスの基板と接着可能であるため、ボイドの発生を大きく低下でき、回路の腐食及び短絡を有効に防止できる。しかも、デバイスの封止域を選択的に封止できる。すなわち、デバイスの所望の封止域(デバイスの特定の部位又は全部)の周縁部を、封止部材の熱可塑性樹脂により高い密着力で封止できる。 The sealing member in such a form includes an inner region for forming a free space without adhering to a device (circuit or mounting component of the substrate); Peripheral edge adjacent to the inner area). In the free space, the sealing member does not adhere to the device, and stress due to the sealing member can be prevented from acting on the device (such as a mounted component in the free space). Moreover, since only the peripheral part of the sealing member can be bonded to the substrate of the device, generation of voids can be greatly reduced, and circuit corrosion and short-circuiting can be effectively prevented. In addition, the sealing region of the device can be selectively sealed. That is, the peripheral part of the desired sealing region (a specific part or all of the device) of the device can be sealed with high adhesion by the thermoplastic resin of the sealing member.
 フィルム状(又はシート状)封止部材は、未延伸フィルム又は延伸フィルム(一軸又は二軸延伸フィルム)であってもよい。フィルムの延伸倍率は、例えば、1つの方向について、1.2~10倍(好ましくは1.5~7倍、さらに好ましくは2~5倍)程度であってもよい。フィルム状封止部材は、慣用のフィルム成膜法、例えば、流延法、押出成形法、ブロー成形法などを利用して製造できる。また、必要であれば、一軸又は二軸延伸機を用いて所定の倍率で延伸してもよい。 The film-like (or sheet-like) sealing member may be an unstretched film or a stretched film (uniaxial or biaxially stretched film). The stretch ratio of the film may be, for example, about 1.2 to 10 times (preferably 1.5 to 7 times, more preferably 2 to 5 times) in one direction. The film-like sealing member can be produced by using a conventional film forming method, for example, a casting method, an extrusion molding method, a blow molding method, or the like. If necessary, the film may be stretched at a predetermined magnification using a uniaxial or biaxial stretching machine.
 単層のフィルム状封止部材の厚みは、例えば、1~1000μm程度の範囲から選択でき、通常、5~500μm(例えば、5~300μm)、好ましくは10~250μm(例えば、25~200μm)、さらに好ましくは50~200μm(例えば、75~150μm)程度であってもよい。厚みが小さすぎると、被封止域で実装部品を有効に保護できなくなる場合があり、厚みが大きすぎると、基板に対する封止部材の密着性が低下する場合がある。 The thickness of the single-layer film-shaped sealing member can be selected from the range of, for example, about 1 to 1000 μm, and is usually 5 to 500 μm (for example, 5 to 300 μm), preferably 10 to 250 μm (for example, 25 to 200 μm), More preferably, it may be about 50 to 200 μm (for example, 75 to 150 μm). If the thickness is too small, the mounted component may not be effectively protected in the sealed region, and if the thickness is too large, the adhesion of the sealing member to the substrate may be reduced.
 単層のフィルム状封止部材の水蒸気透過度(40℃、90%RH)は、厚み1mm換算で、例えば、100g/m/day以下、好ましくは50g/m/day以下(例えば、0.01~30g/m/day程度)であってもよい。特に、共重合ポリアミドを含む封止部材は水蒸気バリア性に優れ、上記水蒸気透過度は、厚み1mm換算で、例えば、0.01~2g/m/day、好ましくは0.05~1.5g/m/day、さらに好ましくは0.1~1g/m/day程度である。なお、水蒸気透過度は、慣用の方法、例えば、JIS Z0208のカップ法により、測定できる。 The water vapor permeability (40 ° C., 90% RH) of the single-layer film-shaped sealing member is, for example, 100 g / m 2 / day or less, preferably 50 g / m 2 / day or less (for example, 0) in terms of 1 mm thickness. .About 0.01-30 g / m 2 / day). In particular, a sealing member containing a copolymerized polyamide has excellent water vapor barrier properties, and the water vapor permeability is, for example, 0.01 to 2 g / m 2 / day, preferably 0.05 to 1.5 g in terms of a thickness of 1 mm. / M 2 / day, more preferably about 0.1 to 1 g / m 2 / day. The water vapor permeability can be measured by a conventional method, for example, the cup method of JIS Z0208.
 また、フィルム状封止部材は、単層フィルムであってもよく、積層フィルム(又は積層シート)であってもよい。積層フィルムは、少なくとも前記熱可塑性樹脂で形成された封止層(例えば、共重合ポリアミド系樹脂で形成された封止層など)を備えている限り、特に制限されず、例えば、前記熱可塑性樹脂(共重合ポリアミド系樹脂などの熱接着性熱可塑性樹脂など)を含む封止層と、この封止層の一方の面に積層され、かつ耐熱性樹脂(又は疎水性樹脂)で形成された保護層(耐熱性樹脂層又は疎水性樹脂層)とを備えていてもよい。なお、保護層は封止層の全面に亘り積層してもよく、封止層の周縁部(封止部材の周縁部に対応する部位)を除いて(すなわち、封止層の内方域に)保護層を積層してもよい。前者の積層形態では、デバイスとは反対側に保護層を向けて封止部材の周縁部をデバイスに接着でき、後者の積層形態では、保護層をデバイス側に向けて封止部材の周縁部をデバイスに接着してもよい。 Further, the film-like sealing member may be a single layer film or a laminated film (or laminated sheet). The laminated film is not particularly limited as long as it includes at least a sealing layer formed of the thermoplastic resin (for example, a sealing layer formed of a copolymerized polyamide-based resin). For example, the thermoplastic resin A sealing layer including (a thermoadhesive thermoplastic resin such as a copolymerized polyamide-based resin) and a protection layered on one surface of the sealing layer and formed of a heat-resistant resin (or hydrophobic resin) Layer (heat-resistant resin layer or hydrophobic resin layer). The protective layer may be laminated over the entire surface of the sealing layer, except for the peripheral portion of the sealing layer (the portion corresponding to the peripheral portion of the sealing member) (that is, in the inner region of the sealing layer). ) A protective layer may be laminated. In the former laminated form, the peripheral portion of the sealing member can be bonded to the device with the protective layer facing away from the device, and in the latter laminated form, the peripheral portion of the sealing member is directed toward the device side. It may be glued to the device.
 なお、封止層の一方の面には、複数の保護層が積層されていてもよい。保護層は、熱、湿気などの外的悪因子からデバイスを保護するために利用され、例えば、耐熱性樹脂層は周縁部の接着に伴うフィルムの破れを防止でき、疎水性樹脂層は湿気によるデバイスの腐食を防止でき、デバイスの耐久性を向上できる。 A plurality of protective layers may be laminated on one surface of the sealing layer. The protective layer is used to protect the device from external adverse factors such as heat and moisture. For example, the heat-resistant resin layer can prevent the film from being broken due to the adhesion of the peripheral portion, and the hydrophobic resin layer is caused by moisture. Device corrosion can be prevented and device durability can be improved.
 耐熱性樹脂としては、封止部材の接着温度(又は熱接着温度)に耐えうる程度の耐熱性を有している限り、特に制限されず、例えば、フッ素樹脂、オレフィン系樹脂(環状オレフィン系樹脂を含む)、スチレン系樹脂、芳香族ポリエステル系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂(ポリアミドイミド、ポリエーテルイミドなど)、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリエーテルケトン系樹脂(例えば、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)など)、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、セルロース誘導体、芳香族エポキシ樹脂などが例示できる。 The heat-resistant resin is not particularly limited as long as it has heat resistance enough to withstand the bonding member's bonding temperature (or heat bonding temperature). For example, fluororesin, olefin resin (cyclic olefin resin) ), Styrene resins, aromatic polyester resins, polycarbonate resins, polyurethane resins, polyamide resins, polyimide resins (polyamideimide, polyetherimide, etc.), polyacetal resins, polyphenylene ether resins, polyethers Examples include ketone resins (for example, polyether ketone (PEK), polyether ether ketone (PEEK), etc.), polyphenylene sulfide resins, polyether sulfone resins, cellulose derivatives, aromatic epoxy resins, and the like.
 これらの耐熱性樹脂は、単独で又は二種以上組み合わせてもよい。これらの耐熱性樹脂のうち、芳香族ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂(芳香族ポリアミドなど)、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、ポリイミド系樹脂、フッ素樹脂などが好ましい。特に、代表的な耐熱性樹脂としては、ポリエステル系樹脂(芳香族ポリエステルなど)、ポリアミド系樹脂、フッ素樹脂などが挙げられる。ポリエステル系樹脂としては、例えば、ポリアルキレンアリレート系樹脂[ホモポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリC2-4アルキレンアリレート)、コポリエステル(例えば、C2-4アルキレンアリレート単位を主成分として含むコポリエステルなど)など]、ポリアリレート系樹脂、液晶ポリエステルなどが例示できる。ポリエステル系樹脂は、ポリエステルエラストマーも包含する。 These heat resistant resins may be used alone or in combination of two or more. Of these heat-resistant resins, aromatic polyester resins, polycarbonate resins, polyamide resins (such as aromatic polyamides), polyphenylene ether resins, polyphenylene sulfide resins, polyimide resins, and fluorine resins are preferable. In particular, typical heat resistant resins include polyester resins (such as aromatic polyesters), polyamide resins, and fluororesins. Examples of polyester resins include polyalkylene arylate resins [homopolyesters (eg, poly C 2-4 alkylene arylates such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate), copolyesters (eg, C 2-4 alkylene). And the like)], polyarylate resins, liquid crystal polyesters, and the like. The polyester resin also includes a polyester elastomer.
 ポリエステルエラストマー(ポリエステルブロック共重合体)としては、ハードセグメント(又はハードブロック)としての芳香族ポリエステルとソフトセグメント(又はソフトブロック)とで構成されたポリエステルブロック共重合体、例えば、芳香族ポリエステル-ポリエーテルブロック共重合体、芳香族ポリエステル-脂肪族ポリエステルブロック共重合体などが挙げられる。芳香族ポリエステルセグメント(又はブロック)は、前記ポリアルキレンアリレート系樹脂(例えば、ポリブチレンテレフタレートなどのポリC2-4アルキレンテレフタレート)で構成でき、ソフトセグメントは、前記ポリアミドエラストマーで例示したポリエーテル(例えば、ポリテトラメチレングリコールなどのポリC2-6アルキレングリコール)などのポリエーテルで構成できる。ポリエステルエラストマーにおいて、芳香族ポリエステルブロック(ハードセグメント)の割合は、全セグメントに対して、例えば、25~95重量%、好ましくは30~90重量%(例えば、50~85重量%)程度であってもよい。 As the polyester elastomer (polyester block copolymer), a polyester block copolymer composed of an aromatic polyester as a hard segment (or hard block) and a soft segment (or soft block), for example, aromatic polyester-poly Examples include ether block copolymers, aromatic polyester-aliphatic polyester block copolymers, and the like. The aromatic polyester segment (or block) can be composed of the polyalkylene arylate resin (for example, poly C 2-4 alkylene terephthalate such as polybutylene terephthalate), and the soft segment is a polyether exemplified by the polyamide elastomer (for example, , Poly C 2-6 alkylene glycol such as polytetramethylene glycol) and the like. In the polyester elastomer, the ratio of the aromatic polyester block (hard segment) is, for example, about 25 to 95% by weight, preferably about 30 to 90% by weight (for example, 50 to 85% by weight) with respect to all segments. Also good.
 ポリアミド系樹脂としては、前記ホモポリアミド(例えば、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド1010、ポリアミド1012など)、封止部材に含有される共重合ポリアミド系樹脂とは異種の共重合ポリアミド系樹脂(及びポリアミドエラストマーなど)などが例示できる。ポリアミド系樹脂は、通常、共重合ポリアミド以外のポリアミド系樹脂である。 As the polyamide resin, the homopolyamide (for example, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 1010, polyamide 1012, etc.), a copolymer different from the copolymer polyamide resin contained in the sealing member is used. Examples thereof include polyamide resins (and polyamide elastomers). The polyamide-based resin is usually a polyamide-based resin other than the copolymerized polyamide.
 フッ素樹脂としては、例えば、ポリビニルフルオライド(PVF)、ポリビニリデンフルオライド(PVDF)、ポリトリフルオロエチレン(PTrFE)、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン(PTFE)などの単独重合体、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-クロロトリフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パ-フルオロプロピルビニルエーテル共重合体などが例示できる。 Examples of the fluororesin include homopolymers such as polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polytrifluoroethylene (PTrFE), polychlorotrifluoroethylene, polytetrafluoroethylene (PTFE), and ethylene. -Tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoropropyl vinyl ether copolymer and the like.
 なお、耐熱性樹脂は、疎水性の高い樹脂、例えば、オレフィン系樹脂、スチレン系樹脂、フッ素樹脂などであってもよい。 The heat-resistant resin may be a highly hydrophobic resin such as an olefin resin, a styrene resin, or a fluororesin.
 耐熱性樹脂の融点又は軟化点は、例えば、160℃以上(例えば、165~250℃程度)、好ましくは170℃以上(例えば、175~220℃程度)であってもよい。なお、融点又は軟化点は、慣用の方法、例えば、示差走査熱量計(DSC)により測定できる。 The melting point or softening point of the heat resistant resin may be, for example, 160 ° C. or higher (for example, about 165 to 250 ° C.), preferably 170 ° C. or higher (for example, about 175 to 220 ° C.). In addition, melting | fusing point or a softening point can be measured by a conventional method, for example, a differential scanning calorimeter (DSC).
 耐熱性樹脂の熱変形温度は、ISO75-1に準拠して、高荷重(1.82MPa)の条件で、例えば、160℃以下の範囲から選択でき、40~155℃、好ましくは50~150℃程度であってもよい。 The heat distortion temperature of the heat-resistant resin can be selected from the range of 160 ° C. or less, for example, under the condition of high load (1.82 MPa) in accordance with ISO 75-1, and is 40 to 155 ° C., preferably 50 to 150 ° C. It may be a degree.
 保護層の厚み(複数の保護層が形成されている場合、各保護層の厚みの合計)は、積層フィルムの周縁部がデバイス表面に接触可能である限り、特に限定されず、例えば、1~800μm(例えば、5~700μm)、好ましくは10~600μm(例えば、20~500μm)、さらに好ましくは30~400μm(例えば、50~300μm)程度であってもよい。保護層の厚みが小さすぎると、破断し易く保護層としての機能が低下する。なお、複数の保護層が形成されているとき、各保護層の厚みは、例えば、1~100μm、好ましくは5~50μm程度であってもよい。 The thickness of the protective layer (when a plurality of protective layers are formed, the total thickness of each protective layer) is not particularly limited as long as the peripheral portion of the laminated film can contact the device surface. It may be about 800 μm (for example, 5 to 700 μm), preferably about 10 to 600 μm (for example, 20 to 500 μm), more preferably about 30 to 400 μm (for example, 50 to 300 μm). When the thickness of the protective layer is too small, the protective layer is easily broken and the function as the protective layer is lowered. When a plurality of protective layers are formed, the thickness of each protective layer may be, for example, about 1 to 100 μm, preferably about 5 to 50 μm.
 積層フィルムは、例えば、封止層の一方の面に直接保護層が形成された積層フィルムであってもよく、封止層の一方の面に接着層(中間層)を介して保護層が形成された積層フィルムであってもよい。また、必要により複数の保護層の間には、それぞれ、中間層(接着層)を介在させてもよい。接着層は、慣用の接着剤又は粘着剤、例えば、塩化ビニル系接着剤、酢酸ビニル系接着剤、オレフィン系接着剤、アクリル系接着剤、ポリエステル系接着剤、ウレタン系接着剤、エポキシ系接着剤、ゴム系接着剤などで形成してもよい。接着層の厚みは、特に制限されず、例えば、1~50μm(例えば、3~30μm)、好ましくは2~10μm程度であってもよい。 The laminated film may be, for example, a laminated film in which a protective layer is directly formed on one surface of the sealing layer, and the protective layer is formed on one surface of the sealing layer via an adhesive layer (intermediate layer). It may be a laminated film. Further, if necessary, an intermediate layer (adhesive layer) may be interposed between the plurality of protective layers. The adhesive layer is a conventional adhesive or pressure-sensitive adhesive such as vinyl chloride adhesive, vinyl acetate adhesive, olefin adhesive, acrylic adhesive, polyester adhesive, urethane adhesive, epoxy adhesive. Alternatively, a rubber adhesive may be used. The thickness of the adhesive layer is not particularly limited, and may be, for example, 1 to 50 μm (for example, 3 to 30 μm), preferably about 2 to 10 μm.
 積層フィルムも含め、封止部材の厚み(全体の厚み)は、例えば、10~1000μm、好ましくは30~800μm、さらに好ましくは50~500μm程度であってもよい。 The thickness (total thickness) of the sealing member including the laminated film may be, for example, about 10 to 1000 μm, preferably 30 to 800 μm, and more preferably about 50 to 500 μm.
 封止層と保護層(複数の保護層及び/又は接着層を有する場合、各層の厚みの合計)との厚み比は、前者/後者=5/95~95/5(例えば、10/90~90/10)程度の範囲から選択でき、例えば、10/90~90/10(例えば、10/90~80/20)、好ましくは15/85~70/30(例えば、15/85~60/40)、さらに好ましくは20/80~50/50(例えば、20/80~40/60)程度であってもよい。 The thickness ratio between the sealing layer and the protective layer (when there are a plurality of protective layers and / or adhesive layers, the total thickness of each layer) is the former / the latter = 5/95 to 95/5 (for example, 10/90 to 90/90), for example, 10/90 to 90/10 (for example, 10/90 to 80/20), preferably 15/85 to 70/30 (for example, 15/85 to 60 / 40), more preferably about 20/80 to 50/50 (for example, 20/80 to 40/60).
 積層フィルムは、単層フィルムに比べて、耐熱性、耐薬品性、耐水性などの特性を向上できる。例えば、積層フィルムの熱変形温度(最高使用温度)は、例えば、160~300℃、好ましくは170~280℃、さらに好ましくは180~250℃程度である。また、単層フィルムの熱変形温度を100とするとき、積層フィルムの熱変形温度は、例えば、120~200、好ましくは125~180、さらに好ましくは130~160程度である。なお、熱変形温度とは、15秒間の熱処理でフィルムが変形する最小の温度を意味する。 The laminated film can improve properties such as heat resistance, chemical resistance and water resistance as compared with a single layer film. For example, the heat distortion temperature (maximum use temperature) of the laminated film is, for example, about 160 to 300 ° C., preferably 170 to 280 ° C., and more preferably about 180 to 250 ° C. When the heat distortion temperature of the single layer film is 100, the heat distortion temperature of the laminated film is, for example, about 120 to 200, preferably about 125 to 180, and more preferably about 130 to 160. The heat deformation temperature means the minimum temperature at which the film is deformed by heat treatment for 15 seconds.
 また、積層フィルムは、有機成分(例えば、脂肪族炭化水素、芳香族炭化水素、アルコール類、ケトン類など)及び無機成分(例えば、塩酸などの無機酸)のいずれに対しても、耐薬品性を向上でき、特に、メタノールなどのアルコール類に対する耐薬品性を向上できる。 In addition, the laminated film is chemically resistant to both organic components (for example, aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ketones, etc.) and inorganic components (for example, inorganic acids such as hydrochloric acid). In particular, chemical resistance against alcohols such as methanol can be improved.
 積層フィルムは、慣用の方法、例えば、ラミネーション(ヒートラミネーション、ドライラミネーションなど)、汎用のフィードブロック付きダイやマルチマニホールドダイなどを使用して共押出する方法、コーティング(スクリーン印刷などの印刷を含む)などにより、封止層と保護層とを積層することにより調製できる。 Laminated films can be obtained by conventional methods such as lamination (heat lamination, dry lamination, etc.), co-extrusion using a general-purpose feedblock die or multi-manifold die, coating (including printing such as screen printing). For example, it can be prepared by laminating a sealing layer and a protective layer.
 表面の凹凸又は起伏が大きなデバイスの封止において、封止部材の好ましい形態は、トレイ状である。このトレイ状の封止部材は、通常、デバイスの実装部品の高さに応じて実装部品を覆って収容可能な収容部(収容凹部)と、この収容部から延出する外周縁部(鍔部)とを有している。前記収容部(収容凹部)は、部品の実装形態に応じて、例えば、湾曲して膨出した形態(断面逆U字状や山形状などの形態)、壁面と天井壁とを有する断面コ字状や台形状の形態などの種々の形態を有していてもよく、封止部材は、単一の収容部(収容凹部)を有していてもよく、隣接して又は所定間隔をおいて複数の収容部(収容凹部)を有していてもよい。また、封止部材の周縁部(鍔部)は、デバイスの基板と面接触可能であるのが好ましい。フィルム状又はトレイ状の封止部材の周縁部は、必要により接着剤で基板に接着してもよいが、好ましくは熱接着により接着される。特に、トレイ状封止部材の周縁部(鍔部)は、デバイスの基板と熱接着又は熱融着可能であってよい。なお、封止部材の少なくとも周縁部がデバイスの基板と接着していればよく、複数の収容凹部を有する封止部材では、必要により、複数の収容凹部の間の部位もデバイスの基板と接着していてもよい。 In the sealing of devices with large irregularities or undulations on the surface, the preferred form of the sealing member is a tray. This tray-shaped sealing member usually includes an accommodating portion (accommodating concave portion) that can be accommodated by covering the mounted component in accordance with the height of the mounted component of the device, and an outer peripheral edge portion (a collar portion) extending from the accommodating portion. ). The accommodating portion (accommodating concave portion) has, for example, a curved and swollen shape (a shape such as an inverted U-shaped cross section or a mountain shape), a wall surface and a ceiling wall depending on the component mounting form. The sealing member may have a single storage part (accommodation concave part), adjacent to each other or at a predetermined interval. You may have a some accommodating part (accommodating recessed part). Moreover, it is preferable that the peripheral part (ridge part) of a sealing member is surface contactable with the board | substrate of a device. The peripheral part of the film-like or tray-like sealing member may be adhered to the substrate with an adhesive if necessary, but is preferably adhered by thermal bonding. In particular, the peripheral edge portion (ridge portion) of the tray-shaped sealing member may be capable of being thermally bonded or thermally fused to the substrate of the device. It should be noted that at least the peripheral edge of the sealing member only needs to be bonded to the substrate of the device. In a sealing member having a plurality of receiving recesses, the portion between the receiving recesses is also bonded to the device substrate as necessary. It may be.
 封止部材をトレイ状に成形する方法は特に制限されず、トレイ状封止部材は、前記単層又は積層フィルム状(又はシート状)封止部材を、慣用の容器成形法、例えば、圧空成形、真空成形などの成形法により所定形状に成形することにより調製できる。なお、トレイ状の封止部材は、必ずしも電子デバイスに実装された電子部品に沿った形状である必要はない。 The method for molding the sealing member into a tray shape is not particularly limited, and the tray-shaped sealing member is formed of the single-layer or laminated film-shaped (or sheet-shaped) sealing member by a conventional container molding method such as pressure forming. It can be prepared by molding into a predetermined shape by a molding method such as vacuum molding. Note that the tray-shaped sealing member does not necessarily have a shape along the electronic component mounted on the electronic device.
 封止部材は、必要によりデバイスの両面に適用してもよいが、通常、デバイスの一方の面に適用される。 The sealing member may be applied to both sides of the device if necessary, but is usually applied to one side of the device.
 [封止デバイス]
 本発明の封止デバイスは、デバイスの被封止域が前記封止部材で封止されているものの、前記封止部材がデバイスの実装部品と遊離した形態で、前記封止部材の周縁部がデバイスと接着している。すなわち、デバイスの被封止域の内側(内方域)では、前記封止部材がデバイス(基板の回路や実装部品など)と遊離して遊離空間が形成され;デバイスの被封止域の周縁部では、前記封止部材の周縁部がデバイスの基板と接着して封止部を形成している。このような封止形態では、遊離空間において、封止部材が実装部品などと物理的に接触していたとして、封止部材と実装部品との接着強度は実質的に「0」であり、遊離空間内のデバイスには、封止部材による応力が実質的に作用しない。さらに、封止部材の周縁部が基板に密着しているため、遊離空間が空気などの気体で満たされた緩衝空間を形成しており、遊離空間内の実装部品を気体の緩衝性により有効に保護できる。特に、柔軟性を有する熱可塑性樹脂(特に、共重合ポリアミド系樹脂などの熱接着性熱可塑性樹脂)で封止部材を形成すると、基板の被封止域をバルーン状の形態の封止部材で封止でき、外力が作用してもバルーン状の封止部材と緩衝空間とで遊離空間内の実装部品を保護できる。また、封止部材の周縁部がデバイスの基板と接着しているため、ボイドの発生を大きく低下できる。そのため、回路の腐食及び短絡を有効に防止できる。特に、封止部材の熱可塑性樹脂として熱接着性熱可塑性樹脂(前記共重合ポリアミド系樹脂など)を用いると、デバイスの所望の封止域の周縁部を、封止部材により高い密着力で接着させて封止できる。しかも、実装部品と部品の実装形態に応じて、デバイスの所定の部位(封止域)を選択的に封止できる。
[Sealing device]
In the sealing device of the present invention, the sealed region of the device is sealed with the sealing member, but the sealing member is separated from the mounting component of the device, and the peripheral portion of the sealing member is Adhered to the device. That is, on the inner side (inner region) of the sealed region of the device, the sealing member is separated from the device (substrate circuit, mounted component, etc.) to form a free space; the periphery of the sealed region of the device In the portion, the peripheral portion of the sealing member is bonded to the substrate of the device to form a sealing portion. In such a sealing form, even if the sealing member is in physical contact with the mounting component or the like in the free space, the adhesive strength between the sealing member and the mounting component is substantially “0”. The stress by the sealing member does not substantially act on the device in the space. Furthermore, since the peripheral edge of the sealing member is in close contact with the substrate, the free space forms a buffer space filled with a gas such as air, and the mounted parts in the free space are made more effective by the buffering property of the gas. Can protect. In particular, when the sealing member is formed of a thermoplastic resin having flexibility (particularly, a thermoadhesive thermoplastic resin such as a copolymerized polyamide-based resin), the sealed area of the substrate is formed by a balloon-shaped sealing member. Even if an external force is applied, the balloon-like sealing member and the buffer space can protect the mounted components in the free space. Moreover, since the peripheral part of the sealing member is bonded to the device substrate, the generation of voids can be greatly reduced. Therefore, circuit corrosion and short circuit can be effectively prevented. In particular, when a thermoadhesive thermoplastic resin (such as the above-mentioned copolymerized polyamide resin) is used as the thermoplastic resin of the sealing member, the peripheral portion of the desired sealing region of the device is bonded to the sealing member with high adhesion. Can be sealed. In addition, a predetermined part (sealing region) of the device can be selectively sealed according to the mounting component and the mounting form of the component.
 図1は本発明の封止デバイスの一例を示す概略側面図である。 FIG. 1 is a schematic side view showing an example of the sealing device of the present invention.
 この例において、基板2上には、複数の電子部品3a~3cが実装又は搭載され、電子デバイス1を形成している。一方、トレイ状封止部材11は、電子デバイス1の所定の封止域を覆って収容可能な収容凹部12と、この収容凹部の開口周縁から外方向(側部方向)に延出し、電子デバイス1の基板2と接着可能な周縁部13とを備えている。 In this example, a plurality of electronic components 3 a to 3 c are mounted or mounted on the substrate 2 to form the electronic device 1. On the other hand, the tray-shaped sealing member 11 covers the predetermined sealing area of the electronic device 1 and can be accommodated, and extends outward (sideward direction) from the opening periphery of the accommodating recess, and the electronic device 1 substrate 2 and a peripheral edge portion 13 that can be bonded.
 そして、電子デバイス1の所定の封止領域は、開口部を基板方向に向けて配設されたトレイ状の封止部材11で覆われ、封止部材11の周縁部13は全周に亘り電子デバイス1の基板2に熱接着され、封止領域を封止している。このような封止形態では、電子デバイス1の実装部品3a~3cが封止部材11の収容凹部12に収容された形態で、封止領域内の基板部2も含め実装部品3a~3cと封止部材11との間には遊離空間15が形成されている。 And the predetermined sealing area | region of the electronic device 1 is covered with the tray-shaped sealing member 11 arrange | positioned with the opening part facing the board | substrate direction, and the peripheral part 13 of the sealing member 11 is electronic over a perimeter. It is thermally bonded to the substrate 2 of the device 1 to seal the sealing region. In such a sealing form, the mounting components 3a to 3c of the electronic device 1 are accommodated in the accommodating recess 12 of the sealing member 11, and the mounting components 3a to 3c including the substrate part 2 in the sealing region are sealed. A free space 15 is formed between the stopper member 11 and the stopper member 11.
 図2は本発明の封止デバイスの他の例を示す概略側面図である。なお、図1と同じ部材又は要素には同一の符号を付して説明する。 FIG. 2 is a schematic side view showing another example of the sealing device of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated to the same member or element as FIG.
 この例では、封止部材21は、デバイス1での複数の電子部品3a~3cの実装及び配置形態に応じて、深さ及び容積の異なる複数の収容凹部22a,22bと、複数の収容凹部の間で基板方向に湾曲又は屈曲して延出し、かつデバイス1の基板2と接触可能な接触部24と、外周部に形成され、かつデバイス1と接触可能な周縁部23とを備えている。このような封止部材21では、複数の収容凹部22a,22bで複数の被封止領域を覆い、封止部材21の周縁部23と複数の収容凹部22a,22bの間の部位(接触部)24とをデバイス1の基板2に接着でき、各収容凹部22a,22bで遊離空間(又は緩衝空間)25a,25bを形成できる。 In this example, the sealing member 21 includes a plurality of receiving recesses 22a and 22b having different depths and volumes, and a plurality of receiving recesses depending on the mounting and arrangement form of the plurality of electronic components 3a to 3c in the device 1. A contact portion 24 that extends in a curved or bent direction toward the substrate and that can contact the substrate 2 of the device 1, and a peripheral portion 23 that is formed on the outer peripheral portion and can contact the device 1. In such a sealing member 21, a plurality of regions to be sealed are covered with a plurality of receiving recesses 22 a and 22 b, and a portion (contact portion) between the peripheral edge 23 of the sealing member 21 and the plurality of receiving recesses 22 a and 22 b. 24 can be bonded to the substrate 2 of the device 1, and free spaces (or buffer spaces) 25 a and 25 b can be formed by the receiving recesses 22 a and 22 b.
 このように、封止部材の少なくとも周縁部がデバイスの基板と接着していればよく、1又は複数の収容凹部を有する封止部材に限らず、フィルム状封止部材でも、必要により、デバイスの部品や回路などに悪影響を与えない範囲で、封止部材の内方域でもスポット状又は線状(又は帯状)に基板に接着(又は熱接着)してもよい。 In this way, it is sufficient that at least the peripheral edge of the sealing member is bonded to the substrate of the device, and not only the sealing member having one or a plurality of housing recesses, but also a film-like sealing member, if necessary, It may be bonded (or thermally bonded) to the substrate in a spot shape or a linear shape (or a strip shape) even in the inner region of the sealing member as long as it does not adversely affect components and circuits.
 なお、封止デバイスでは、封止部材の少なくとも周縁部をデバイスの基板に対して接着することにより、枠状(四角枠、多角枠、ループ状などの枠状)の形態で閉じた封止部(閉鎖封止部)が形成されている。特に、本発明の封止デバイスでは、封止部材の周縁部だけがデバイスの基板と接着(又は熱接着)している場合が多い。また、封止部材の周縁部は、基板に対して、所定の幅で封止(又は接着)でき、線状又は帯状の形態で封止(又は接着)してもよい。 In the sealing device, at least the peripheral part of the sealing member is bonded to the substrate of the device, thereby closing the sealing part in a frame shape (frame shape such as a square frame, a polygonal frame, a loop shape). (Closed sealing part) is formed. In particular, in the sealing device of the present invention, only the peripheral portion of the sealing member is often bonded (or thermally bonded) to the substrate of the device. Moreover, the peripheral part of the sealing member can be sealed (or bonded) to the substrate with a predetermined width, and may be sealed (or bonded) in a linear or belt-like form.
 [封止デバイスの製造方法]
 本発明の方法では、デバイスの所定の被封止領域を、封止部材がデバイスの被封止領域の実装部品と遊離した形態で覆い、封止部材の周縁部をデバイスの基板と接着させることにより、封止部材でデバイスの被封止領域がカバー及びシールされたデバイスを製造できる。すなわち、本発明の方法は、デバイスの所定の被封止領域を、フィルム状(又はシート状)又はトレイ状の形態の封止部材で覆うカバー工程と、封止部材の周縁部を接着させる工程とを含んでおり、封止部材の周縁部を加熱溶融して熱接着させる場合には、さらに冷却する工程を含んでおり、このような工程を経ることにより、被封止領域では封止部材が実装部品と遊離した形態で、被封止領域の周縁部が封止部材で封止された封止デバイスを製造できる。
[Method of manufacturing sealing device]
In the method of the present invention, the predetermined sealing region of the device is covered with the sealing member separated from the mounting component in the sealing region of the device, and the peripheral portion of the sealing member is bonded to the substrate of the device. Thus, a device in which the sealed region of the device is covered and sealed with the sealing member can be manufactured. That is, in the method of the present invention, the predetermined sealing region of the device is covered with a sealing member in the form of a film (or sheet) or a tray, and the step of adhering the peripheral portion of the sealing member In the case where the peripheral portion of the sealing member is heated and melted and thermally bonded, a step of further cooling is included, and through such a step, the sealing member is formed in the region to be sealed. Can be manufactured in a form free from the mounted component, and a sealing device in which the peripheral portion of the sealed region is sealed with a sealing member can be manufactured.
 前記デバイスとしては、種々の有機又は無機デバイス、例えば、半導体素子、エレクトロルミネッセンス(EL)素子、発光ダイオード、太陽電池セルなどの精密部品、回路(フィルター回路などを含む)が形成された回路基板、各種電子部品又は電子素子(コンデンサ、フィルタなど)などの部品を搭載した配線回路基板(プリント基板)などの電子部品(特に、精密電子部品又は電子デバイスなど)が例示できる。 Examples of the device include various organic or inorganic devices such as semiconductor elements, electroluminescence (EL) elements, light emitting diodes, precision components such as solar cells, circuit boards on which circuits (including filter circuits) are formed, Examples include electronic components (particularly precision electronic components or electronic devices) such as printed circuit boards (printed substrates) on which various electronic components or components such as electronic elements (capacitors, filters, etc.) are mounted.
 カバー工程では、デバイスの被封止域を封止部材で覆えばよく、デバイスの一方の面の全領域、デバイスの特定の領域(電子部品の搭載領域、配線領域など)を覆ってもよい。このカバー工程では、封止部材の周縁部は基板と線又は面接触するのが好ましい。 In the covering step, the area to be sealed of the device may be covered with a sealing member, and the entire area of one surface of the device or a specific area of the device (electronic component mounting area, wiring area, etc.) may be covered. In this covering step, the peripheral edge of the sealing member is preferably in line or surface contact with the substrate.
 なお、基板上の電子部品による凹凸(又は起伏)があまり大きくない場合は、予めトレイ状又はケース状に成形することなく、例えば、フィルム状封止部材を基板上に重ね、封止部材の周縁部(外縁部)を融着させるだけで、被封止領域内の電子部品やハンダ部と封止部材とが接着することがなく、本発明の効果を達成できる。一方、基板上の電子部品による凹凸(又は起伏)が大きい場合は、予めトレイ又はケース状に成形した封止部材をデバイスの被封止領域に被せ、封止部材の外縁部のみを融着させるのが好ましい。 In addition, when the unevenness (or undulation) due to the electronic components on the substrate is not so large, for example, a film-shaped sealing member is stacked on the substrate without being previously formed into a tray shape or a case shape, and the periphery of the sealing member By merely fusing the part (outer edge part), the electronic component or solder part in the sealed region does not adhere to the sealing member, and the effect of the present invention can be achieved. On the other hand, when the unevenness (or undulation) due to the electronic components on the substrate is large, the sealing member molded in a tray or case shape is put on the sealing region of the device, and only the outer edge portion of the sealing member is fused. Is preferred.
 なお、デバイスの被封止領域は、通常、損傷しやすい部位、例えば、電子素子の搭載部位、配線部位などである場合が多い。 It should be noted that the area to be sealed of the device is usually a part that is easily damaged, for example, an electronic element mounting part or a wiring part.
 接着工程で最も重要な点は、基板と封止部材との接着面積(接着部位)が小さく、封止部材の周縁部(外縁部)を基板と接着させる点にある。接着させる方法は特に限定されず、例えば、レーザー光による加熱、ヒートシーラーなどの熱シール装置による加熱などが例示でき、接着部位のみを加熱して融着させる方法が好ましい。本発明では、主に被封止領域(被保護領域)の周縁部(外縁部)の接着部位だけを熱で融着ができればよいため、電子デバイスに与える熱のダメージは小さい。そのため、従来の技術のように低融点の封止部材でなくても使用できる。 The most important point in the bonding step is that the bonding area (bonding site) between the substrate and the sealing member is small, and the peripheral edge (outer edge) of the sealing member is bonded to the substrate. The method of bonding is not particularly limited, and examples thereof include heating with a laser beam and heating with a heat sealing device such as a heat sealer, and a method of heating and bonding only the bonding site is preferable. In the present invention, it is sufficient that only the adhesion portion of the peripheral edge portion (outer edge portion) of the sealed region (protected region) can be fused with heat, so that the heat damage to the electronic device is small. Therefore, it can be used even if it is not a low melting-point sealing member like the prior art.
 なお、必要に応じて封止部材全体を加熱してもよいが、封止部材全体が溶融するような条件では、電子デバイス上の電子部品に、封止部材が不均一に融着したり、溶融して電子部品のハンダ部や回路部に接触したり、溶融により封止部の厚みに厚薄ができたり、場合によっては孔が開く場合があり、好ましくない。ただし、このような問題が生じない範囲であれば、封止部材を予熱して接着させてもよい。 The entire sealing member may be heated as necessary, but under the condition that the entire sealing member is melted, the sealing member is non-uniformly fused to the electronic component on the electronic device, It is not preferable because it melts and contacts a solder part or a circuit part of an electronic component, or the thickness of the sealing part can be reduced by melting, or a hole may be opened depending on circumstances. However, as long as such a problem does not occur, the sealing member may be preheated and bonded.
 レーザーを融着に利用する場合、通常のレーザーウェルディングのように、封止部材の周縁部(又は外縁部)でレーザーを透過させて基板を加熱し、その熱で封止部材の周縁部を溶融して融着させる方法を採用してもよいが、デバイスの種類(例えば、基板の色、基板内部の回路の有無など)によりレーザー強度を調整してもよい。例えば、基板上にレーザー光を吸収可能な表示部(レーザー光を吸収可能な濃色の表示文字など)があると、この表示部でのレーザーの吸収が強くなり、必要以上に発熱するケースがあり、極端な場合には火災が発生する可能性もある。 When laser is used for fusion, the laser is transmitted through the peripheral edge (or outer edge) of the sealing member as in normal laser welding, and the substrate is heated, and the peripheral edge of the sealing member is heated by the heat. A method of melting and fusing may be employed, but the laser intensity may be adjusted according to the type of device (for example, the color of the substrate, the presence or absence of a circuit inside the substrate, etc.). For example, if there is a display part that can absorb laser light (such as dark colored characters that can absorb laser light) on the substrate, the laser will be strongly absorbed by the display part, generating more heat than necessary. Yes, there is a possibility of fire in extreme cases.
 本発明では、通常の熱可塑性樹脂同士のレーザーウェルディングとは異なり、基板側の温度を大きくする必要がなく、封止部材の周縁部が加熱溶融すればよい。そのため、封止部材の少なくとも周縁部を、レーザー光を吸収可能な着色剤(カーボンブラックなどの顔料、染料)と熱可塑性樹脂とを含む熱可塑性樹脂組成物(レーザー吸収性熱可塑性樹脂組成物)で形成し、前記周縁部(又は外縁部)の熱可塑性樹脂を直接的にレーザーで加熱して溶着させる方法が好ましいケースがある。なお、レーザー吸収性熱可塑性樹脂組成物では、封止部材全体を成形してもよく、封止部材の周縁部(外縁部)だけを成形してもよい。また、積層フィルム又はそのトレイ状成形体では、基板と接触する樹脂層(封止層)を、前記レーザー吸収性熱可塑性樹脂組成物で形成してもよい。 In the present invention, unlike ordinary laser welding between thermoplastic resins, it is not necessary to increase the temperature on the substrate side, and the peripheral portion of the sealing member only needs to be heated and melted. Therefore, a thermoplastic resin composition (laser-absorbing thermoplastic resin composition) containing a colorant (pigment or dye such as carbon black) capable of absorbing laser light and a thermoplastic resin at least at the peripheral portion of the sealing member There is a preferable case in which the thermoplastic resin at the peripheral edge (or outer edge) is directly heated and welded with a laser. In addition, in the laser absorptive thermoplastic resin composition, the whole sealing member may be shape | molded and only the peripheral part (outer edge part) of a sealing member may be shape | molded. Moreover, in a laminated film or its tray-shaped molded object, you may form the resin layer (sealing layer) which contacts a board | substrate with the said laser absorptive thermoplastic resin composition.
 封止部材の周縁部(外縁部)の加熱温度は、封止部材の熱可塑性樹脂の融点や軟化点に応じて、例えば、75~200℃、好ましくは80~180℃、さらに好ましくは100~175℃(例えば、110~150℃)程度であってもよい。なお、積層フィルムでは、加熱温度は、熱可塑性樹脂の融点以上(例えば、融点+5℃以上、好ましくは融点+10℃以上)であり、かつ保護層を形成する耐熱性樹脂の融点+10℃以下(例えば、融点+5℃以下、好ましくは融点未満)であるのが好ましい。また、加熱温度は、通常、保護層を形成する耐熱性樹脂のガラス転移温度以上(好ましくは熱変形温度以上)であってもよい。加熱は、空気中、不活性ガス雰囲気中で行うことができる。必要であれば、常圧、加圧下又は減圧条件下で接着させてもよい。さらに、必要であれば、熱接着は繰り返してもよい。 The heating temperature of the peripheral edge (outer edge) of the sealing member is, for example, 75 to 200 ° C., preferably 80 to 180 ° C., more preferably 100 to 100 ° C., depending on the melting point and softening point of the thermoplastic resin of the sealing member. It may be about 175 ° C. (for example, 110 to 150 ° C.). In the laminated film, the heating temperature is equal to or higher than the melting point of the thermoplastic resin (for example, the melting point + 5 ° C. or higher, preferably the melting point + 10 ° C. or higher) and the melting point of the heat resistant resin forming the protective layer + 10 ° C. or lower (for example, , Melting point + 5 ° C. or lower, preferably less than the melting point). Further, the heating temperature may be usually not less than the glass transition temperature of the heat-resistant resin forming the protective layer (preferably not less than the heat distortion temperature). Heating can be performed in air or in an inert gas atmosphere. If necessary, adhesion may be performed under normal pressure, increased pressure, or reduced pressure. Furthermore, if necessary, thermal bonding may be repeated.
 冷却工程では、熱接着した封止部材の周縁部(外縁部)を自然冷却してもよく、段階的又は連続的に冷却したり、急冷してもよい。 In the cooling step, the peripheral edge (outer edge) of the thermally bonded sealing member may be naturally cooled, cooled stepwise or continuously, or rapidly cooled.
 このような工程を経ることにより、封止部材の周縁部(外縁部)がデバイスの基板に熱融着した封止デバイスを得ることができる。 Through such a process, it is possible to obtain a sealed device in which the peripheral edge (outer edge) of the sealing member is thermally fused to the substrate of the device.
 このような方法では、射出成形などと異なり、高温高圧がデバイスに作用せず、封止部材の周縁部が加熱されるに過ぎないため、デバイスが損傷することがない。また、部品やハンダ部を樹脂で充填する必要がなく、封止部材の周縁部だけを接着すればよいため、ボイドの発生を大きく低減できる。さらに、デバイスの特定の被封止領域だけであっても、高い密着性及び封止性で封止できる。なお、熱接着性熱可塑性樹脂を用いると、比較的低温で封止部材の周縁部を融着できるため、デバイスに熱的損傷を与えることが少なく、デバイスの信頼性を向上できる。しかも、短時間内に高い信頼性でデバイスを封止でき、封止デバイスの生産性を大きく向上できる。 In such a method, unlike injection molding or the like, high temperature and high pressure do not act on the device, and the peripheral portion of the sealing member is only heated, so that the device is not damaged. Moreover, since it is not necessary to fill parts and solder parts with resin and only the peripheral part of a sealing member should be adhere | attached, generation | occurrence | production of a void can be reduced significantly. Furthermore, even a specific sealed region of the device can be sealed with high adhesion and sealing properties. Note that when a thermoadhesive thermoplastic resin is used, the peripheral portion of the sealing member can be fused at a relatively low temperature, so that the device is less likely to be thermally damaged and the reliability of the device can be improved. Moreover, the device can be sealed with high reliability within a short time, and the productivity of the sealed device can be greatly improved.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、以下の実施例及び比較例では同じ熱可塑性樹脂を用い、封止及び保護方法だけを変えて評価した。実施例及び比較例で用いた樹脂および各評価項目の評価方法は以下の通りである。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, the same thermoplastic resin was used, and only the sealing and protection methods were changed for evaluation. The resins used in the examples and comparative examples and the evaluation methods of the respective evaluation items are as follows.
 [樹脂]
 樹脂A:共重合ポリアミド(エボニック社製「Vestamelt X1038P1」、C10-14アルキレン基を含有、融点125℃)
 樹脂B:共重合ポリアミド(エボニック社製「Vestamelt X1051」、C10-14アルキレン基を含有、融点130℃)
 樹脂C:共重合ポリアミド(エボニック社製「Vestamelt X1333P1」、C10-14アルキレン基を含有、融点105℃)
 樹脂D:共重合ポリアミド(エボニック社製「Vestamelt 4680」、C10-14アルキレン基を含有、融点105℃)
 樹脂E:共重合ポリアミド(エボニック社製「Vestamelt X7079」、C10-14アルキレン基を含有、融点130℃)
 樹脂F:2種の共重合ポリアミド(エボニック社製「Vestamelt X1038」および「Vestamelt Z2131」を重量比1/1の割合で含む組成物)を2軸押出機で溶融混練してコンパウンドされた溶融ブレンド物(エボニック社製「ダイアミドZ1117」、C10-14アルキレン基を含有、融点130℃)
 [ハンダ部のクラック]
 ポリエーテルエーテルケトン樹脂(エボニック社製「VESTAKEEP-J ZV7403」)で形成した平板(縦100mm、横100mm、厚み3mm)に、所定の4箇所(縦方向及び横方向の両端から、それぞれ内側に30mmの距離だけ離れ、縦横方向に延びる直線が交差する4箇所)に孔(直径2mm)を開け、この孔に銅線(径1mm、長さ10mm)を挿入し、ハンダで固定することにより、試験用基板を調製した。なお、ハンダは、錫-銅-ニッケル合金の鉛フリーハンダを用いた。
[resin]
Resin A: Copolymer polyamide (“Vestamelt X1038P1” manufactured by Evonik, containing C 10-14 alkylene group, melting point 125 ° C.)
Resin B: Copolyamide (“Vestamelt X1051” manufactured by Evonik, containing C 10-14 alkylene group, melting point 130 ° C.)
Resin C: Copolyamide (“Vestamelt X1333P1” manufactured by Evonik, containing C 10-14 alkylene group, melting point 105 ° C.)
Resin D: Copolyamide (“Vestamelt 4680” manufactured by Evonik, containing C 10-14 alkylene group, melting point 105 ° C.)
Resin E: Copolyamide (“Vestamelt X7079” manufactured by Evonik, containing C 10-14 alkylene group, melting point 130 ° C.)
Resin F: a melt blend obtained by compounding two types of copolymerized polyamides (a composition containing “Vestamelt X1038” and “Vestamelt Z2131” manufactured by Evonik in a ratio of 1/1) by a twin screw extruder things (Evonik Ltd. "Daiamide Z1117", containing C 10-14 alkylene group, melting point 130 ° C.)
[Solder crack]
A flat plate (vertical 100 mm, horizontal 100 mm, thickness 3 mm) formed of polyetheretherketone resin (Evonik's “VESTAKEEP-J ZV7403”) has a predetermined four locations (vertical and horizontal ends, 30 mm inward, respectively) The test was conducted by drilling holes (diameter: 2 mm) in four places where straight lines extending in the vertical and horizontal directions intersect, and inserting a copper wire (diameter: 1 mm, length: 10 mm) and fixing with solder. A substrate was prepared. The solder used was a tin-copper-nickel alloy lead-free solder.
 得られた試験用基板を、実施例及び比較例の方法で封止し、ハンダ部のクラックの有無をファイバースコープで観察した。 The obtained test substrate was sealed by the methods of Examples and Comparative Examples, and the presence or absence of cracks in the solder portion was observed with a fiberscope.
 [電気特性試験]
 プリント配線板(ガラスエポキシ樹脂製基板上に銅箔で配線を張り付けたもの)の配線間にくし型電極部を形成し、試験用基板を調製した。なお、図3に示すように、試験用基板(厚み1.5mm)には、20.1mmの間隔をおいて直線状に形成された一対の対向電極部(幅4.4mm、長さ29mm)31a,31bと、この一対の対向電極部の端部から互いに近づく方向に直線的に延びる延出電極部(幅3.5mm、長さ10.5mm)32a,32bと、この延出電極部の端部から7.8mmの間隔をおいて、一対の対向電極部31a,31bとは反対方向に延びる接続電極部(幅4.4mm、長さ8.8mm)33a,33bとが形成され、前記一対の対向電極部31a,31bからは、それぞれ対向する方向に交互に櫛歯状に延出するくし型電極部34a,34bが形成されており、所定の回路を形成している。なお、くし型電極部34a,34bでは、互いに対向する方向に延出する櫛歯において、隣接して重複する櫛歯の長さ(重複幅)Wは16.5mmである。なお、図3には、試験用基板を封止するフィルム状封止部材の外周が点線で示されている。
[Electrical characteristics test]
A comb-shaped electrode portion was formed between the wirings of a printed wiring board (wires attached to a glass epoxy resin substrate with copper foil) to prepare a test substrate. As shown in FIG. 3, the test substrate (thickness: 1.5 mm) has a pair of counter electrode portions (width: 4.4 mm, length: 29 mm) formed in a straight line with an interval of 20.1 mm. 31a, 31b, extended electrode portions (width 3.5 mm, length 10.5 mm) 32a, 32b extending linearly in the direction approaching each other from the ends of the pair of counter electrode portions, Connection electrode portions (width 4.4 mm, length 8.8 mm) 33a, 33b extending in the opposite direction to the pair of counter electrode portions 31a, 31b are formed at intervals of 7.8 mm from the end portions, Comb- like electrode portions 34a and 34b extending in a comb shape alternately in the opposing direction are formed from the pair of counter electrode portions 31a and 31b, thereby forming a predetermined circuit. In the comb-shaped electrode portions 34a and 34b, the length (overlap width) W of the adjacent comb teeth that overlap in the direction facing each other is 16.5 mm. In FIG. 3, the outer periphery of the film-shaped sealing member that seals the test substrate is indicated by a dotted line.
 得られた試験片を、実施例及び比較例の方法で封止し、以下の試験に供した。 The obtained test pieces were sealed by the methods of Examples and Comparative Examples and subjected to the following tests.
 なお、試験用基板として、ピッチ(間隔)が0.4mmのくし型電極が形成された試験用基板(実施例1、2、5および比較例1~6、13~15)と、ピッチが0.25mmのくし型電極が形成された試験用基板(その他の実施例および比較例)とを使用した。 In addition, as a test substrate, a test substrate (Examples 1, 2, 5 and Comparative Examples 1-6, 13-15) on which comb-shaped electrodes having a pitch (interval) of 0.4 mm were formed and a pitch of 0 were used. A test substrate on which a 25 mm comb-shaped electrode was formed (other examples and comparative examples) was used.
 (1)耐湿性試験
 85℃、85%RHの条件下、樹脂で封止した試験用基板の接続電極部に12Vの直流電圧を印加し、抵抗値の変化を測定し、抵抗値が1×10Ω以下になったときの時間を確認した。抵抗値の変化は、最大500時間まで確認した。なお、樹脂で封止しない試験用基板の抵抗値は、5×10Ωであった。
(1) Moisture resistance test Under conditions of 85 ° C. and 85% RH, a DC voltage of 12 V is applied to the connection electrode portion of the test substrate sealed with resin, the change in resistance value is measured, and the resistance value is 1 × The time when it became 10 6 Ω or less was confirmed. The change in resistance value was confirmed up to 500 hours. The resistance value of the test substrate not sealed with resin was 5 × 10 8 Ω.
 (2)ヒートショック試験
 樹脂で封止した試験用基板の接続電極部に12Vの直流電圧を印加し、-30℃で1時間保持後、40℃に速やかに昇温し、90%RHの湿度下で1時間保持し、再び-30℃まで冷却するサイクルを1サイクルとし、このサイクルを繰り返し、その間の抵抗値の変化を測定し、抵抗値が1×10Ω以下になったときの回数(サイクル数)を確認した。抵抗値の変化は、最大500サイクルまで確認した。なお、樹脂で封止しない試験用基板の抵抗値は、1.0×10Ωであった。
(2) Heat shock test A 12V DC voltage was applied to the connection electrode part of the test substrate sealed with resin, held at -30 ° C for 1 hour, quickly heated to 40 ° C, and a humidity of 90% RH The number of times when the resistance value is 1 × 10 6 Ω or less is measured by measuring the change in resistance value during this cycle, which is held for 1 hour and then cooled to −30 ° C. again. (Cycle number) was confirmed. The change in resistance value was confirmed up to 500 cycles. The resistance value of the test substrate not sealed with resin was 1.0 × 10 9 Ω.
 (実施例1)
 樹脂Aを熱プレスして厚さ100μmのフィルムを調製した。そして、得られたフィルムを、各試験用基板の被封止領域に対応する大きさに切り取り、所定サイズのフィルムの周縁部のみをヒートシーラーで試験用基板の基板に融着し、樹脂で封止した試験片を調製した。
Example 1
Resin A was hot-pressed to prepare a film having a thickness of 100 μm. Then, the obtained film is cut to a size corresponding to the sealed region of each test substrate, and only the peripheral portion of the film of a predetermined size is fused to the substrate of the test substrate with a heat sealer and sealed with resin. A stopped specimen was prepared.
 なお、ハンダ部のクラックの評価では、縦100mm、横100mmのサイズに切り取り、切り取ったフィルム状封止部材で試験用基板を覆い、封止部材の周縁部(幅約3mmの外縁部)のみを全周に亘り試験用基板にヒートシールし、封止部材で封止した試験片を調製した。ヒートシール後のフィルム状封止部材は銅線とは接触せず、ヒートシール部を除き、接着することなく試験用基板、ハンダ部および銅線から遊離していた。 In the evaluation of the crack in the solder part, the test substrate is covered with a film-like sealing member cut to a size of 100 mm in length and 100 mm in width, and only the peripheral part (outer edge part having a width of about 3 mm) of the sealing member is covered. A test piece was prepared by heat-sealing the test substrate over the entire circumference and sealing with a sealing member. The film-like sealing member after heat sealing was not in contact with the copper wire, and was separated from the test substrate, the solder portion, and the copper wire without bonding except for the heat sealing portion.
 また、電気特性試験では、縦38mm、横38mmのサイズに切り取り、切り取ったフィルム状封止部材で試験用基板の一対の対向電極部及びくし型電極部(少なくともくし型電極部を含み、図3の点線で示す領域)を覆い、封止部材の周縁部(幅約3mmの外縁部)のみを試験用基板の基板部及び電極部にヒートシールして融着封止し、試験片を調製した。試験片において、フィルム状封止部材は、ヒートシール部を除き、くし型電極部及び基板から遊離していた。 Further, in the electrical characteristic test, the film-shaped sealing member cut into a size of 38 mm in length and 38 mm in width was cut and a pair of counter electrode portions and comb-shaped electrode portions (including at least comb-shaped electrode portions) of the test substrate were used. The region indicated by the dotted line of Fig. 2 is covered, and only the peripheral edge portion (outer edge portion having a width of about 3 mm) of the sealing member is heat-sealed to the substrate portion and the electrode portion of the test substrate, and fusion-sealed to prepare a test piece. . In the test piece, the film-shaped sealing member was separated from the comb-shaped electrode portion and the substrate except for the heat seal portion.
 (比較例1)
 各試験用基板を縦型射出成形機にインサートし、シリンダー温度200℃、射出圧力10MPa、金型温度30℃の条件で、樹脂Aで試験片全体をオーバーモールドし、樹脂Aで封止した試験片を調製した。なお、封止した樹脂の厚みは約5mmであった。
(Comparative Example 1)
A test in which each test substrate was inserted into a vertical injection molding machine, the entire test piece was overmolded with resin A and sealed with resin A under the conditions of a cylinder temperature of 200 ° C., an injection pressure of 10 MPa, and a mold temperature of 30 ° C. Pieces were prepared. The thickness of the sealed resin was about 5 mm.
 (比較例2)
 樹脂Aを冷凍粉砕したパウダーを、各試験用基板上に散布し、180℃のオーブン内で5分加熱し、樹脂Aで封止した試験片を調製した。なお、封止した樹脂の厚みは約5mmであった。
(Comparative Example 2)
A powder obtained by freezing and pulverizing the resin A was spread on each test substrate and heated in an oven at 180 ° C. for 5 minutes to prepare a test piece sealed with the resin A. The thickness of the sealed resin was about 5 mm.
 (比較例3)
 樹脂Aを熱プレスして得られた厚さ100μmのフィルムを調製した。そして、得られたフィルムを、各試験用基板の被覆領域に対応する大きさに切り取り、フィルム状封止剤を試験用基板上に載せ、180℃のオーブン内で5分間加熱して溶融させることにより封止し、試験片を調製した。
(Comparative Example 3)
A film having a thickness of 100 μm obtained by hot pressing the resin A was prepared. Then, the obtained film is cut into a size corresponding to the covering area of each test substrate, and a film-like sealant is placed on the test substrate and melted by heating in a 180 ° C. oven for 5 minutes. And a test piece was prepared.
 (実施例2~6)
 実施例1において、樹脂Aに代えて、樹脂B(実施例2)、樹脂C(実施例3)、樹脂D(実施例4)、樹脂E(実施例5)、樹脂F(実施例6)を用いる以外、実施例1と同様にして、試験片を調製した。
(Examples 2 to 6)
In Example 1, instead of Resin A, Resin B (Example 2), Resin C (Example 3), Resin D (Example 4), Resin E (Example 5), Resin F (Example 6) A test piece was prepared in the same manner as in Example 1 except that.
 (比較例4)
 比較例1において、樹脂Aに代えて樹脂Bを用いる以外は、比較例1と同様にして、試験片を調製した。
(Comparative Example 4)
In Comparative Example 1, a test piece was prepared in the same manner as Comparative Example 1 except that Resin B was used instead of Resin A.
 (比較例5)
 比較例2において、樹脂Aに代えて樹脂Bを用いる以外は、比較例2と同様にして、試験片を調製した。
(Comparative Example 5)
In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin B was used instead of Resin A.
 (比較例6)
 比較例3において、樹脂Aに代えて樹脂Bを用いる以外は、比較例3と同様にして、試験片を調製した。
(Comparative Example 6)
In Comparative Example 3, a test piece was prepared in the same manner as Comparative Example 3 except that Resin B was used instead of Resin A.
 (比較例7)
 比較例1において、樹脂Aに代えて樹脂Cを用い、シリンダー温度を170℃にする以外は、比較例1と同様にして、試験片を調製した。
(Comparative Example 7)
In Comparative Example 1, a test piece was prepared in the same manner as in Comparative Example 1 except that Resin C was used instead of Resin A and the cylinder temperature was changed to 170 ° C.
 (比較例8)
 比較例2において、樹脂Aに代えて樹脂Cを用いる以外は、比較例2と同様にして、試験片を調製した。
(Comparative Example 8)
In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin C was used instead of Resin A.
 (比較例9)
 比較例3において、樹脂Aに代えて樹脂Cを用いる以外は、比較例3と同様にして、試験片を調製した。
(Comparative Example 9)
In Comparative Example 3, a test piece was prepared in the same manner as in Comparative Example 3 except that Resin C was used instead of Resin A.
 (比較例10)
 比較例1において、樹脂Aに代えて樹脂Dを用い、シリンダー温度を170℃にする以外は、比較例1と同様にして、試験片を調製した。
(Comparative Example 10)
In Comparative Example 1, a test piece was prepared in the same manner as in Comparative Example 1 except that Resin D was used instead of Resin A and the cylinder temperature was changed to 170 ° C.
 (比較例11)
 比較例2において、樹脂Aに代えて樹脂Dを用いる以外は、比較例2と同様にして、試験片を調製した。
(Comparative Example 11)
In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin D was used instead of Resin A.
 (比較例12)
 比較例3において、樹脂Aに代えて樹脂Dを用いる以外は、比較例3と同様にして、試験片を調製した。
(Comparative Example 12)
In Comparative Example 3, a test piece was prepared in the same manner as Comparative Example 3 except that Resin D was used instead of Resin A.
 (比較例13)
 比較例1において、樹脂Aに代えて樹脂Eを用いる以外は、比較例1と同様にして、試験片を調製した。
(Comparative Example 13)
In Comparative Example 1, a test piece was prepared in the same manner as Comparative Example 1 except that Resin E was used instead of Resin A.
 (比較例14)
 比較例2において、樹脂Aに代えて樹脂Eを用いる以外は、比較例2と同様にして、試験片を調製した。
(Comparative Example 14)
In Comparative Example 2, a test piece was prepared in the same manner as Comparative Example 2 except that Resin E was used instead of Resin A.
 (比較例15)
 比較例3において、樹脂Aに代えて樹脂Eを用いる以外は、比較例3と同様にして、試験片を調製した。
(Comparative Example 15)
In Comparative Example 3, a test piece was prepared in the same manner as Comparative Example 3 except that Resin E was used instead of Resin A.
 結果を表に示す。 The results are shown in the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 電圧印加試験では、くし型電極のピッチが0.4mmの試験用基板を使用した。 In the voltage application test, a test substrate having a comb electrode pitch of 0.4 mm was used.
 耐湿性試験において、実施例1及び実施例2では、500時間の時点で5x10Ωであった。 In the moisture resistance test, in Example 1 and Example 2, it was 5 × 10 8 Ω at 500 hours.
 ヒートショック試験において、実施例1、実施例2及び比較例1では、500サイクル(500回数)の時点で1.0x10Ωであった。 In the heat shock test, in Example 1, Example 2, and Comparative Example 1, it was 1.0 × 10 9 Ω at the time of 500 cycles (500 times).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 電圧印加試験では、くし型電極のピッチが0.25mmの試験用基板を使用した。 In the voltage application test, a test substrate having a comb electrode pitch of 0.25 mm was used.
 耐湿性試験において、実施例3及び実施例4では、500時間の時点で5x10Ωであった。 In the moisture resistance test, in Example 3 and Example 4, it was 5 × 10 8 Ω at 500 hours.
 ヒートショック試験において、実施例3、実施例4及び比較例7では、500サイクル(500回数)の時点で1.0x10Ωであった。 In the heat shock test, in Example 3, Example 4, and Comparative Example 7, it was 1.0 × 10 9 Ω at the time of 500 cycles (500 times).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 電圧印加試験において、実施例5及び比較例13~15では、くし型電極のピッチが0.4mmの試験用基板、実施例6では、くし型電極のピッチが0.25mmの試験用基板を使用した。 In the voltage application test, in Example 5 and Comparative Examples 13 to 15, a test substrate having a comb electrode pitch of 0.4 mm was used, and in Example 6, a test substrate having a comb electrode pitch of 0.25 mm was used. did.
 耐湿性試験において、実施例5及び実施例6では、500時間の時点で5x10Ωであった。 In the moisture resistance test, in Example 5 and Example 6, it was 5 × 10 8 Ω at 500 hours.
 ヒートショック試験において、実施例5、実施例6、比較例13では、500サイクル(500回数)の時点で1.0x10Ωであった。 In the heat shock test, in Example 5, Example 6, and Comparative Example 13, it was 1.0 × 10 9 Ω at the time of 500 cycles (500 times).
 上記のように、実施例ではいずれも高い密着力で封止できるとともに、封止部材の周縁部だけを基板に接着しても、基板の被封止域を有効に保護できる。 As described above, all of the embodiments can be sealed with high adhesion, and the sealed area of the substrate can be effectively protected even if only the peripheral edge of the sealing member is bonded to the substrate.
 本発明は、半導体素子、EL素子、太陽電池セルなどの電子素子又は電子部品、各種電子部品又は電子素子を搭載したプリント基板などを封止するのに有用である。 The present invention is useful for sealing electronic elements or electronic components such as semiconductor elements, EL elements, solar cells, printed circuit boards mounted with various electronic components or electronic elements, and the like.
 1…デバイス
 2…基板
 3a~3c…電子部品
 11,21…封止部材
 12,22a,22b…収容凹部
 13,23…周縁部
 15,25a,25b…遊離空間
DESCRIPTION OF SYMBOLS 1 ... Device 2 ... Board | substrate 3a-3c ... Electronic component 11, 21 ... Sealing member 12, 22a, 22b ... Accommodating recessed part 13, 23 ... Peripheral part 15, 25a, 25b ... Free space

Claims (12)

  1.  デバイスの被封止域が封止部材で封止された封止デバイスであって、前記封止部材が、フィルム状又はトレイ状の形態を有し、かつ封止部材の少なくとも周縁部が熱可塑性樹脂を含み;前記封止部材がデバイスの実装部品と遊離した形態で、前記封止部材の周縁部がデバイスと接着している封止デバイス。 A sealing device in which a sealed area of a device is sealed with a sealing member, wherein the sealing member has a film-like or tray-like form, and at least a peripheral portion of the sealing member is thermoplastic A sealing device in which the sealing member is separated from a mounting component of the device, and a peripheral portion of the sealing member is bonded to the device;
  2.  封止部材の少なくとも周縁部が熱接着性熱可塑性樹脂を含み、封止部材の周縁部だけがデバイスの基板と熱接着している請求項1記載の封止デバイス。 The sealing device according to claim 1, wherein at least a peripheral portion of the sealing member includes a thermoadhesive thermoplastic resin, and only the peripheral portion of the sealing member is thermally bonded to the substrate of the device.
  3.  封止部材の少なくとも周縁部が共重合ポリアミド系樹脂を含む請求項1又は2記載の封止デバイス。 The sealing device according to claim 1 or 2, wherein at least a peripheral portion of the sealing member contains a copolymerized polyamide-based resin.
  4.  フィルム状又はトレイ状の封止部材が、デバイスの基板と線又は面接触可能な周縁部を有しており、かつ以下の少なくとも1つの特性を有する共重合ポリアミド系樹脂を含む請求項1~3のいずれかに記載の封止デバイス。
     (1)融点又は軟化点が75~160℃である
     (2)結晶性を有する
     (3)結晶性を有するとともに、融点90~160℃を有する
    The film-shaped or tray-shaped sealing member includes a copolyamide-based resin having a peripheral portion capable of making line contact or surface contact with the substrate of the device and having at least one of the following characteristics: The sealing device according to any one of the above.
    (1) Melting point or softening point is 75 to 160 ° C. (2) Crystallinity (3) Crystallinity and melting point 90 to 160 ° C.
  5.  封止部材が、二元共重合体~四元共重合体の共重合ポリアミド系樹脂であり、かつ以下の少なくとも1つの単位を有する請求項1~4のいずれかに記載の封止デバイス。
     (a)C8-16アルキレン基を有する長鎖成分に由来する単位
     (b)C9-17ラクタム及びアミノC9-17アルカンカルボン酸から選択された少なくとも一種の成分に由来する単位
     (c)ラウロラクタム、アミノウンデカン酸及びアミノドデカン酸から選択された少なくとも一種の成分に由来する単位
    The sealing device according to any one of claims 1 to 4, wherein the sealing member is a copolymerized polyamide resin of a binary copolymer to a quaternary copolymer and has at least one unit below.
    (A) a unit derived from a long chain component having a C 8-16 alkylene group (b) a unit derived from at least one component selected from C 9-17 lactam and amino C 9-17 alkanecarboxylic acid (c) Units derived from at least one component selected from laurolactam, aminoundecanoic acid and aminododecanoic acid
  6.  封止部材が、共重合ポリアミド系樹脂を含む封止層と、この封止層の一方の面に積層され、かつ耐熱性樹脂で形成された保護層とを含む請求項1~5のいずれかに記載の封止デバイス。 6. The sealing member according to claim 1, wherein the sealing member includes a sealing layer containing a copolymerized polyamide resin and a protective layer laminated on one surface of the sealing layer and formed of a heat resistant resin. The sealing device according to 1.
  7.  耐熱性樹脂が、170℃以上の融点又は軟化点を有し、かつポリエステル系樹脂、ポリアミド系樹脂、及びフッ素樹脂から選択された少なくとも一種である請求項6記載の封止デバイス。 The sealing device according to claim 6, wherein the heat resistant resin has at least a melting point or a softening point of 170 ° C. and is at least one selected from a polyester resin, a polyamide resin, and a fluororesin.
  8.  封止部材の厚みが10~1000μmである請求項1~7のいずれかに記載の封止デバイス。 The sealing device according to any one of claims 1 to 7, wherein the sealing member has a thickness of 10 to 1000 µm.
  9.  封止部材でデバイスの被封止域が封止された封止デバイスを製造する方法であって、前記封止部材がフィルム状又はトレイ状の形態を有し、かつ封止部材の少なくとも周縁部が熱可塑性樹脂を含んでおり、被封止域の内側で封止部材がデバイスの実装部品と遊離した形態で、封止部材の周縁部をデバイスの基板と接着させ、封止部材でデバイスの被封止域がカバー及びシールされたデバイスを製造する方法。 A method for manufacturing a sealed device in which a sealed region of a device is sealed with a sealing member, wherein the sealing member has a film shape or a tray shape, and at least a peripheral portion of the sealing member Includes a thermoplastic resin, and the sealing member is separated from the device mounting component inside the sealed region, and the peripheral portion of the sealing member is adhered to the substrate of the device. A method of manufacturing a device having a sealed area covered and sealed.
  10.  封止部材の少なくとも周縁部が共重合ポリアミド系樹脂を含む封止部材でデバイスの被封止域を覆い、前記封止部材の周縁部をデバイスの基板と熱接着させて冷却する請求項9記載の方法。 10. The sealing member covers at least a peripheral area of the device with a sealing member containing a copolymerized polyamide-based resin, and the peripheral edge of the sealing member is thermally bonded to the substrate of the device for cooling. the method of.
  11.  デバイスの被封止域を封止するための封止部材であって、フィルム状又はトレイ状に成形され、かつ周縁部が熱可塑性樹脂を含んでおり;デバイスの実装部品と接着することなく遊離した遊離空間を形成するための内方域と;デバイスの基板と接着可能な周縁部とを備えている封止部材。 A sealing member for sealing an area to be sealed of a device, which is formed into a film shape or a tray shape, and includes a thermoplastic resin at a peripheral edge; is released without adhering to a mounting component of the device A sealing member comprising an inner region for forming a free space, and a peripheral portion that can be bonded to the substrate of the device.
  12.  デバイスの基板と熱接着可能な周縁部とを備えており、少なくとも前記周縁部が共重合ポリアミド系樹脂を含んでいる請求項11記載の封止部材。 The sealing member according to claim 11, further comprising a device substrate and a thermally bondable peripheral portion, wherein at least the peripheral portion includes a copolymerized polyamide resin.
PCT/JP2014/078275 2013-11-07 2014-10-23 Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same WO2015068585A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480061306.6A CN105706229A (en) 2013-11-07 2014-10-23 Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same
JP2015546598A JPWO2015068585A1 (en) 2013-11-07 2014-10-23 Sealing member, sealing substrate sealed with this sealing member, and method for manufacturing the same
KR1020167014619A KR20160083892A (en) 2013-11-07 2014-10-23 Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-231455 2013-11-07
JP2013231455 2013-11-07

Publications (1)

Publication Number Publication Date
WO2015068585A1 true WO2015068585A1 (en) 2015-05-14

Family

ID=53041367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078275 WO2015068585A1 (en) 2013-11-07 2014-10-23 Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same

Country Status (5)

Country Link
JP (1) JPWO2015068585A1 (en)
KR (1) KR20160083892A (en)
CN (1) CN105706229A (en)
TW (1) TWI666741B (en)
WO (1) WO2015068585A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106928697A (en) * 2017-04-14 2017-07-07 广州市聚赛龙工程塑料股份有限公司 Nylon material and its preparation method and application
JP2020026067A (en) * 2018-08-10 2020-02-20 ダイセル・エボニック株式会社 Composite molding and method for producing the same
CN112272890A (en) * 2018-05-28 2021-01-26 大日本印刷株式会社 Battery, heat sealing device and manufacturing method of battery
EP3961697A1 (en) * 2020-08-25 2022-03-02 Siemens Aktiengesellschaft Semiconductor module with a recess

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221181A (en) * 2020-01-20 2020-06-02 深圳市华星光电半导体显示技术有限公司 Backlight source and preparation method thereof
CN114976507A (en) * 2022-06-30 2022-08-30 东莞新能安科技有限公司 Battery pack and electric equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107170A (en) * 1996-09-27 1998-04-24 Tdk Corp Resin-molded electronic apparatus and its manufacture
JP2007019152A (en) * 2005-07-06 2007-01-25 Denso Corp Semiconductor sensor and its manufacturing method
JP2011128140A (en) * 2009-11-19 2011-06-30 Dainippon Printing Co Ltd Sensor device and method of manufacturing the same
JP2012087292A (en) * 2010-09-22 2012-05-10 Daicel-Evonik Ltd Filmy sealing agent, and sealing method
JP2014056986A (en) * 2012-09-13 2014-03-27 Denso Corp Electronic device and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160145A (en) * 1984-01-30 1985-08-21 Mitsubishi Electric Corp Packaging method of hybrid integrated circuit
JPS6127663A (en) * 1984-07-17 1986-02-07 Nec Corp Semiconductor integrated circuit
JPH06217310A (en) * 1993-01-19 1994-08-05 Matsushita Electric Ind Co Ltd Method and device for measuring angle
JPH11259021A (en) 1998-02-17 1999-09-24 Internatl Business Mach Corp <Ibm> Liquid crystal display panel and liquid crystal display device
JP4359793B2 (en) 1998-10-22 2009-11-04 ノードソン株式会社 Method for sealing a printed circuit board on which electronic components are mounted
JP3876109B2 (en) 2000-03-29 2007-01-31 松下電器産業株式会社 Manufacturing method of electronic circuit molded product
CN1449583A (en) * 2000-07-25 2003-10-15 Ssi株式会社 Plastic package base, air cavity type package and their manufacturing methods
JP5209229B2 (en) 2007-05-09 2013-06-12 中島硝子工業株式会社 Manufacturing method of solar cell module
JP5594930B2 (en) 2007-10-17 2014-09-24 小松精練株式会社 Hot-melt type member for organic thin film solar cell and organic thin film solar cell case sealing panel
JP5348869B2 (en) 2007-10-17 2013-11-20 小松精練株式会社 Hot melt type member for organic electronic device, barrier film sealing member, organic electronic device sealing panel using them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107170A (en) * 1996-09-27 1998-04-24 Tdk Corp Resin-molded electronic apparatus and its manufacture
JP2007019152A (en) * 2005-07-06 2007-01-25 Denso Corp Semiconductor sensor and its manufacturing method
JP2011128140A (en) * 2009-11-19 2011-06-30 Dainippon Printing Co Ltd Sensor device and method of manufacturing the same
JP2012087292A (en) * 2010-09-22 2012-05-10 Daicel-Evonik Ltd Filmy sealing agent, and sealing method
JP2014056986A (en) * 2012-09-13 2014-03-27 Denso Corp Electronic device and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106928697A (en) * 2017-04-14 2017-07-07 广州市聚赛龙工程塑料股份有限公司 Nylon material and its preparation method and application
CN112272890A (en) * 2018-05-28 2021-01-26 大日本印刷株式会社 Battery, heat sealing device and manufacturing method of battery
CN112272890B (en) * 2018-05-28 2024-02-20 大日本印刷株式会社 Battery, heat sealing device and manufacturing method of battery
JP2020026067A (en) * 2018-08-10 2020-02-20 ダイセル・エボニック株式会社 Composite molding and method for producing the same
JP7181727B2 (en) 2018-08-10 2022-12-01 ポリプラ・エボニック株式会社 Composite compact and manufacturing method thereof
EP3961697A1 (en) * 2020-08-25 2022-03-02 Siemens Aktiengesellschaft Semiconductor module with a recess
WO2022042896A1 (en) * 2020-08-25 2022-03-03 Siemens Aktiengesellschaft Semiconductor module with a depression
CN115885382A (en) * 2020-08-25 2023-03-31 西门子股份公司 Semiconductor module with recess

Also Published As

Publication number Publication date
TWI666741B (en) 2019-07-21
CN105706229A (en) 2016-06-22
TW201523814A (en) 2015-06-16
KR20160083892A (en) 2016-07-12
JPWO2015068585A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015068585A1 (en) Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same
JP5801149B2 (en) Film sealant and sealing method
US7638186B2 (en) Fluoropolymer containing laminates
RU2444807C2 (en) Using polyamide as sealant for photovoltaic modules
JP6286736B2 (en) Back contact type solar cell module
WO2010116628A1 (en) Protective sheet for solar cell module, solar cell module and method of manufacturing solar cell module
KR20100088130A (en) Rear surface protection sheet for solar cell module and solar cell module protected by such protection sheet
CN103715285A (en) Solar battery module
JPWO2013137130A1 (en) Paste sealant and sealing method
WO2012039437A1 (en) Powdered sealant and sealing method
JP4453789B2 (en) Conductive cover tape
US20120256813A1 (en) Low temperature contact structure for flexible solid state device
JP2017057698A (en) LED information display panel with snow melting function and LED information display device
CN113725381A (en) Display module and preparation method thereof
KR101261963B1 (en) Method for laminating thermo-adhensive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167014619

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14860560

Country of ref document: EP

Kind code of ref document: A1