WO2015068193A1 - 自律移動システム - Google Patents

自律移動システム Download PDF

Info

Publication number
WO2015068193A1
WO2015068193A1 PCT/JP2013/079808 JP2013079808W WO2015068193A1 WO 2015068193 A1 WO2015068193 A1 WO 2015068193A1 JP 2013079808 W JP2013079808 W JP 2013079808W WO 2015068193 A1 WO2015068193 A1 WO 2015068193A1
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous mobile
information
mobile system
moving
approach
Prior art date
Application number
PCT/JP2013/079808
Other languages
English (en)
French (fr)
Inventor
山本 健次郎
一野瀬 亮子
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/029,375 priority Critical patent/US10620633B2/en
Priority to PCT/JP2013/079808 priority patent/WO2015068193A1/ja
Priority to JP2015546163A priority patent/JP6294342B2/ja
Publication of WO2015068193A1 publication Critical patent/WO2015068193A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours

Definitions

  • the present invention relates to an autonomous mobile system that autonomously travels on a specified reference route in an environment where there are moving obstacles such as pedestrians and bicycles in a facility or in a city.
  • Patent Document 1 There is [Patent Document 1] as background art in this technical field.
  • the purpose of this publication is to create a movement path for an autonomous mobile body to move autonomously while avoiding a collision with a moving obstacle. Therefore, based on the current position information and the moving direction information of the moving obstacle, the movement prediction path of the moving obstacle is calculated, and the autonomous moving body reaches the intersection of this path and the moving path of the autonomous moving body.
  • the autonomous area is set around the future position of the moving obstacle at the time point, and the autonomous area is set to avoid the prohibited area that is set smaller as the distance between the current position of the autonomous moving body and the future position of the moving obstacle is larger.
  • a method and system for creating a moving path of a moving body is disclosed.
  • Patent Document 2 the size of the prohibited area of the moving obstacle described in Patent Document 1 is smaller as the relative distance between the moving obstacle and the autonomous moving body is larger, and is larger as the speed of the autonomous moving body is faster.
  • a moving path creation method and system characterized by setting is disclosed.
  • the future position of the moving obstacle is predicted by the current position information and the moving direction information of the moving obstacle, and the route of the autonomous moving body is changed.
  • the autonomous moving body changes the course when one of them changes the speed and the moving direction at a certain moment.
  • the autonomous moving body changes suddenly or frequently, and pedestrians and bicycles cannot predict the behavior of autonomous moving bodies. And there was a problem that overtaking traffic could not be realized.
  • the size of the prohibited area of the moving obstacle is set to be smaller as the relative distance between the moving obstacle and the autonomous moving body is larger and larger as the speed of the autonomous moving body is faster. Therefore, the influence of a distant moving obstacle becomes small, but the closer to the moving obstacle and the higher the speed of the autonomous moving body, the larger the avoidance width becomes, and a large direction change is required. For this reason, there is a case where a large course change occurs when the user is nearby, and there is a problem that safe face-to-face traffic and overtaking traffic cannot be realized.
  • the present invention solves the above-described conventional problems, and realizes safe face-to-face traffic and overtaking traffic with moving obstacles such as pedestrians and bicycles moving in a free direction.
  • the purpose is to provide a possible autonomous mobile system.
  • the present invention is an autonomous mobile system that moves autonomously based on a designated reference route in an environment where an obstacle exists, and acquires the autonomous mobile system and surrounding environment information
  • Environmental information acquisition means storage information processing means for holding the reference route information or map information in which the reference route is registered, and the self-location of the autonomous mobile system based on the environment information and the reference route information or map information
  • Self-position estimating means for estimating, obstacle information generating means for generating obstacle information that hinders movement based on the environment information, movement direction based on the self-position, the obstacle information, and the reference route information
  • the route determination means for determining the moving speed, and when the moving object approaches based on the obstacle information, the mutual action is determined in advance.
  • An approaching action generating means for determining a moving route or a moving direction or a moving speed for guiding a stable situation, and a vehicle control means for controlling the movement of the autonomous mobile system based on the moving direction and the moving speed
  • the approaching action generating means is based on the obstacle information of the moving body, the current position of the autonomous mobile system and the reference route, and detects the approach of the mobile body and the autonomous mobile system; Identifying the type of approach situation, and determining an easy-predictable action from which the action of the autonomous mobile system can be easily predicted from the moving body according to the type of the approach situation,
  • the course decision of the moving body is determined, and based on the decided course of the moving body, the course of the moving body is not hindered It is characterized by correcting the course of the autonomous mobile system.
  • the present invention provides the autonomous mobile system, wherein the easy-to-predict action generates a rectangular section and a moving speed based on an environmental situation, an approach position, and a type of the approach situation, and travels at a constant speed in the generated rectangle. It is characterized by doing.
  • the present invention is the autonomous mobile system, wherein the approach situation includes any one of face-to-face driving, crossing, overtaking, and catch-up, and the easy-to-predict action weights the selection of speed and route according to the type. It is characterized by performing.
  • the present invention is characterized in that in the autonomous mobile system, the mobile body is a pedestrian or a bicycle, and information that can be discriminated by the obstacle information generating means is generated.
  • the autonomous mobile system which can carry out safe face-to-face traffic and overtaking traffic with respect to moving obstacles, such as a moving pedestrian and a bicycle, can be provided.
  • FIG. 1 is an example of a configuration diagram of the autonomous mobile system of the present embodiment, and details will be described below using reference numerals.
  • the autonomous mobile system 100 includes a storage information processing unit 110, an environment information acquisition unit 112, a self-position estimation unit 114, an obstacle detection unit 116, a route determination unit 118, an approaching action generation unit 120, and a vehicle control unit 122.
  • each means can be implemented on a computer mounted on the autonomous mobile system 100, and some or all of the means can be processed on an external computer using wireless communication. It is also possible to adopt the configuration implemented in Hereinafter, the autonomous mobile system of the present embodiment will be described as a configuration that moves by wheels.
  • the stored information processing unit 110 holds at least a reference route on which the autonomous mobile system 100 travels and map information around the route, transmits map information around the route to the self-position estimation unit 114, and route determination unit A reference route is transmitted to 118.
  • the environment information acquisition unit 112 is configured by a sensor mounted on the autonomous mobile system 100, and acquires information from the sensor. Although details of the sensor are not shown, a laser distance sensor, a camera (such as a stereo camera system configured to measure distance by arranging two), an angular velocity sensor, an acceleration sensor, a magnetic sensor, a GPS receiver, a wheel rotation amount sensor, etc. Consists of.
  • the sensor information acquired from these sensors is transmitted to the self-position estimation unit 114 and the obstacle detection unit 116 described later.
  • the self-position estimation means 114 specifies the current position of the autonomous mobile system 100 based on information acquired from each sensor. For example, self-position information (what is called odometry) created by accumulating the values of wheel rotation amount sensors, correction of odometry by angular velocity sensors, acceleration sensors, and magnetic sensors, and information by laser distance sensors and cameras Stochastic fusion (for example, employing a method called an extended Kalman filter) of self-location information obtained by association with map information obtained from the stored information processing means 110 and location information obtained from a GPS receiver Thus, an accurate position and orientation of the self is estimated in the area where the autonomous mobile system 100 moves.
  • the self-position data finally obtained is transmitted to the obstacle detection means 116 and the route determination means 118 described later.
  • the obstacle detection means 116 detects an area that can be an obstacle to the movement of the autonomous mobile system 100 based on the sensor information, and calculates obstacle information.
  • the surrounding shape information obtained from a laser type distance sensor or a camera (such as a stereo camera system configured to measure distance by arranging two)
  • a step of a height that the autonomous mobile system 100 cannot get over Large grooves and protrusions in the air are obstacles.
  • moving obstacles such as pedestrians and bicycles (automobiles in some cases) existing in environments such as facilities and towns targeted by the present invention are also detected.
  • pedestrians and bicycles or automobiles in some cases
  • the obstacle information of the moving obstacle includes a size (width), a moving speed, a moving direction, and the like.
  • the route determining means 118 includes the self-location information, the reference route to travel, the type of detected obstacle (moving obstacle: animal, ball, fallen leaf, stationary obstacle: step, pole, hedge, etc.), position, Based on obstacle information such as shape and speed, the target route or target direction and speed of the autonomous mobile system 100 are determined and transmitted to the approaching action generating means 120.
  • moving obstacle animal, ball, fallen leaf, stationary obstacle: step, pole, hedge, etc.
  • position Based on obstacle information such as shape and speed, the target route or target direction and speed of the autonomous mobile system 100 are determined and transmitted to the approaching action generating means 120.
  • the approaching action generating unit 120 When the approaching action generating unit 120 detects a pedestrian or a bicycle (or a car in some cases) as a moving obstacle based on the obstacle information, the approaching action generation unit 120 moves along with a pedestrian, a bicycle, or the like in accordance with a procedure described later. In order to guide the situation where the other party's action has been confirmed in order to perform safe and secure face-to-face traffic or overtaking traffic in the event of crossing or approaching, the other party takes action that is easy to predict and confirms the other party's behavior After obtaining the information, the target speed and target direction of the autonomous mobile system 100 are determined so as to maintain a stable and constant situation without performing a large course change when passing nearby.
  • the vehicle control unit 122 performs vehicle motion control based on the target direction and target speed of the autonomous mobile system 100 acquired from the approaching action generation unit 120. Specifically, for example, control is performed so that the difference between the moving direction / moving speed of the current autonomous moving system 100 and the target direction / target speed becomes small. Further, the vehicle control means 122 has a drive source such as a motor and an engine for controlling the wheels and an electronic circuit, and allows the position and orientation of the autonomous mobile system 100 to be changed.
  • a drive source such as a motor and an engine for controlling the wheels and an electronic circuit
  • FIG. 2 is a process flowchart of the approaching action generation unit 120 in FIG. 1 and will be described below using reference numerals. Details of the processing of each block in the flowchart will be described with reference to FIGS. 3, 4, 5, and 6.
  • the approaching action generating unit 120 first detects approaching with a pedestrian or a bicycle (hereinafter referred to as a moving body) as step 101 (hereinafter referred to as S101) in FIG.
  • a moving body a pedestrian or a bicycle
  • the route 202 of the moving body 201 is assumed based on the obstacle information from the obstacle detection unit 116, and the distance 206 (approach to the route 202 of the autonomous mobile system 100 obtained by the route determination unit 118 is assumed.
  • the case where the distance is less than or equal to a predetermined value is detected. Since this approach distance may be approximate, the route is given as a position at every predetermined time interval, and the interval 206 at the position (position 204, position 205) at a certain time is calculated.
  • the closest point may be obtained by interpolating between the positions for each time interval, or the interval between the positions (position 204, position 205) may be used as the approach distance.
  • the path 202 of the moving body 201 is represented by a curve as a target path. However, a straight line using the current position, moving speed, and moving direction may be used.
  • the approaching action generating unit 120 performs an approach situation analysis with the moving object in S102 of FIG. As shown in FIG. 4, there are two types of approach situations: facing 210, front crossing 211 a, rear crossing 211 b, overtaking 212, and catch-up 213, depending on the moving direction and speed of the moving body.
  • the approaching action generating unit 120 determines an easily predictable action for easily predicting the action of the autonomous mobile system 100 from the moving body as S103 in FIG.
  • sections (221 to 223) in which easy-predict behavior is performed are set for the current target route 202.
  • this section is represented by a rectangle, but it may be a path with a gentle constant curvature or a section with a gentle change along the boundary of the sidewalk.
  • the length of this section is determined by the presence of an obstacle or the closest approach predicted position.
  • the autonomous mobile system 100 determines the speed according to the size of the rectangle, the speed of the moving body, and the approach situation.
  • the section 221 is selected, and the autonomous mobile system 100 decelerates or stops according to the length of the section. If a slight course change is possible, a section 222 parallel to the current traveling direction is selected. When a large direction change is required for the course change, a section 223 with a slight angle change from the current direction may be selected. However, in order to make it easier to predict the action from the other party, the angle change is performed in a short time.
  • the selection of the predictable behavior is weighted according to the above-described approach situation.
  • the opposite 210 in order to determine whether the mobile body wants to go to the left or right of the autonomous mobile system 100, the current traveling direction that decelerates the course of movement of the mobile body and shifts the path axis with the opposing mobile body The section 222 in parallel with is selected.
  • the vehicle is decelerated to promote the determination of the situation.
  • the vehicle travels straight without deceleration to promote the determination of the situation.
  • the weight of the section parallel to the movement direction of the opponent is increased so as not to affect the action of the opponent after the withdrawal.
  • the determination of the easy-to-predict behavior is an example for solving the problem of the present invention, and the above-described road traveling or speed change is possible as long as it facilitates the movement prediction of the autonomous mobile system 100 from the other party. Also, a method combining a slight course change may be used.
  • the approaching action generating unit 120 determines the opponent course as S104 of FIG.
  • the route is determined to be the opponent's route.
  • the course decision may not be a complete straight line, but is detected when the opponent's movement locus enters a rectangular area having a certain width and length.
  • the speed is determined to be fixed if the variation is not more than a predetermined value in the latest fixed period. If it is not possible to make a definite determination even after a predetermined period of time has passed, the approach situation may change. Therefore, the judgment is made in S105 in FIG. 2, and the process proceeds to the approach detection S101 to perform a new process in the latest situation.
  • the approaching action generating unit 120 determines that the opponent's course has been confirmed in S105, the approaching action generating unit 120 finally performs the correction of the self course and the approaching run so as not to obstruct the course of the moving body as S106 in FIG. .
  • the autonomous mobile system 100 travels in the predictable behavior section 230 described above, guides the course determination of the opposite 210 of the moving body, and takes the path 231 in the latest traveling state of the moving path 233 of the moving body. If it is determined to be determined, the driver quickly corrects his / her route and travels along the route 232 for safe and safe face-to-face traffic.
  • FIG. 6 shows face-to-face traffic, but the same applies to other situations such as overtaking and crossing. Thereby, when approaching a mobile body, since each other's action is decided, safe and safe traffic is attained.
  • the approaching action generating means 120 generates a target route or target direction and speed generated by the route determining means 118. Is transmitted to the vehicle control means 122.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mathematical Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

 本発明では、施設内や街中において、自由な方向に移動する歩行者や自転車などの移動障害物が存在する環境において、指定された基準の経路を自律走行する際に、歩行者や自転車等の相手と移動経路の交錯もしくは接近が生じた場合、安全な対面通行もしくは追い越し通行を行うための手段を備えた自律移動システムの実現を課題とする。 本発明の課題を解決するために、本発明では、接近する前に、お互いの行動が確定された状況を誘導し、相手行動の確定情報を得ることで、近くを通行するときには大きな針路変更を行わないで一定の状況を保つ必要がある。 したがって、歩行者や自転車等の相手と移動経路の交錯もしくは接近が生じた場合、自律移動システムは、相手の行動が確定された状況を誘導するために、相手から予測が容易な行動をとり、相手行動の確定情報を得た後、近くを通行するときには大きな針路変更を行わないで一定の状況を保つことで、安心・安全な対面通行および追い越し通行を行う自律移動システムの提供を実現できる。

Description

自律移動システム
 本発明は、施設内や街中において、移動する歩行者や自転車などの移動障害物が存在する環境において、指定された基準の経路を自律走行する、自律移動システムに関する。
 本技術分野の背景技術として、〔特許文献1〕がある。この公報では、自律移動体が、移動障害物との衝突を回避しながら、自律的に移動するための移動経路を作成することを目的としている。このために、移動障害物の現在位置情報と移動方向情報とに基づいて、移動障害物の移動予測経路を算出し、この経路と自律移動体の移動経路との交点に自律移動体が到達する時点の移動障害物の将来位置の周囲に禁止領域を設定し、自律移動体の現在位置と移動障害物の将来位置との間の距離が大きい程小さく設定した禁止領域を回避するように前記自律移動体の移動経路を作成する方法およびシステムが開示されている。
 また、〔特許文献2〕では、特許文献1記載の移動障害物の禁止領域の大きさを、移動障害物と自律移動体間の相対距離が大きい程小さく、自律移動体の速度が速い程大きく設定することを特徴とする移動経路作成方法およびシステムが開示されている。
特開2008-152600号公報 特開2008-152599号公報
 本発明では、施設内や街中において、移動する歩行者や自転車などの移動障害物が存在する環境において、指定された基準の経路を自律走行する際に、歩行者や自転車等の相手と移動経路の交錯もしくは接近が生じた場合、安全な対面通行もしくは追い越し通行を行うための手段を備えた自律移動システムを提供することを目的とする。
 〔特許文献1〕のシステムでは、移動障害物の現在位置情報と移動方向情報で移動障害物の将来位置を予測し、自律移動体の経路を変更するため、特に移動障害物が複数の歩行者や自転車であった場合、そのうちの1つが、ある瞬間に速度や移動方向を変更したときに自律移動体は針路変更を行う。そのため、自律移動体は突然の針路変更もしくは頻繁な針路変更が生じ、歩行者や自転車は自律移動体の行動が予測できないため、歩行者や自転車もまた針路変更を行い、安心・安全な対面通行および追い越し通行を実現できないとの問題があった。
 また、〔特許文献2〕のシステムでは、移動障害物の禁止領域の大きさを、移動障害物と自律移動体間の相対距離が大きい程小さく、自律移動体の速度が速い程大きく設定しているため、遠くの移動障害物の影響は小さくなるが、移動障害物が近い程および自律移動体の速度が大きい程、避け幅が大きくなり、大きな方向変更が必要になる。そのため、近くに居るときに大きな針路変更が生じる場合があり、安全な対面通行および追い越し通行を実現できないとの問題があった。
 これに対して、本発明は、前記した従来の課題を解決するものであり、自由な方向に移動する歩行者や自転車などの移動障害物と、安全な対面通行および追い越し通行を実現することが可能な自律移動システムを提供することを目的とする。
 上記課題を解決するために、本発明は障害物が存在する環境において、指定された基準経路に基づき自律して移動する自律移動システムであって、 前記自律移動システムおよび周囲の環境情報を取得する環境情報取得手段と、前記基準経路情報もしくは前記基準経路が登録された地図情報を保持する記憶情報処理手段と、前記環境情報および前記基準経路情報もしくは地図情報に基づき前記自律移動システムの自己位置を推定する自己位置推定手段と、前記環境情報に基づき、移動の妨げとなる障害物の情報を生成する障害物情報生成手段と、前記自己位置と前記障害物情報と前記基準経路情報に基づき移動方向および移動速度を決定する経路決定手段と、前記障害物情報に基づき移動体が接近する場合に、事前にお互いの行動を確定させた安定な状況を誘導するための移動経路もしくは移動方向もしくは移動速度を決定する接近行動生成手段と、前記移動方向および前記移動速度に基づき自律移動システムの移動を制御する車両制御手段とを備え、 前記接近行動生成手段は、前記移動体の障害物情報と自律移動システムの現在位置および前記基準経路に基づき、前記移動体と前記自律移動システムの接近の検出と、
 接近状況の種類を特定し、前記接近状況の種類に応じて、前記移動体から前記自律移動システムの行動が予測し易い予測容易行動を決定し、
 前記予測容易行動中、前記移動体の一定期間の一定の行動を基に、前記移動体の進路確定を判断し、前記移動体の確定した進路に基づき、前記移動体の進路の妨げにならない前記自律移動システムの進路の修正を行うことを特徴とする。
 更に本発明は、自律移動システムにおいて、前記予測容易行動は、環境の状況、接近の位置および前記接近状況の種類に基づき矩形区間および移動速度を生成し、生成した矩形内を一定の速度で走行することを特徴とする。
 更に本発明は、自律移動システムにおいて、前記接近状況は、対面走行、横切り、追い越し、追い付きの内、いずれかを含み、前記予測容易行動は前記種類に応じて、速度および経路の選択に重み付けを行うことを特徴とする。
 更に本発明は、自律移動システムにおいて、前記移動体は、歩行者もしくは自転車であり、前記障害物情報生成手段において判別可能な情報が生成されることを特徴とする。
 本発明によれば、移動する歩行者や自転車などの移動障害物に対して、安全な対面通行および追い越し通行することが可能な自律移動システムを提供することができる。
本発明の一実施形態の自律移動システムにおけるシステム構成図 本発明の一実施形態の接近行動生成手段の処理フローチャート 本発明の一実施形態の接近検出の概念図 本発明の一実施形態の接近状況の種類の概念図 本発明の一実施形態の予測容易行動の概念図 本発明の一実施形態の自己進路の修正と、接近走行の概念図
 以下、本発明の好ましい実施形態の一例としての自律移動システムを図面に基づいて説明する。
 本実施例では、施設内や街中において、自由な方向に移動する歩行者や自転車などの移動障害物が存在する環境において、指定された基準の経路を自律走行する際に、歩行者や自転車等の相手と移動経路の交錯もしくは接近が生じた場合、安心・安全な対面通行もしくは追い越し通行を行うため、相手の行動が確定された状況を誘導するために、相手から予測が容易な行動をとり、相手行動の確定情報を得た後、近くを通行するときには大きな針路変更を行わないで一定の状況を保つための接近行動生成手段を備えた自律移動システムの例を説明する。なお本発明は、歩行者や自転車などの移動障害物が存在する環境に好適であるが、自動車、搬送車両等の人が操縦する移動体や自律移動システムが存在する環境においても適用可能である。
 図1は、本実施例の自律移動システムの構成図の例であり、以下で符号を用いて詳細を説明する。
 自律移動システム100は、記憶情報処理手段110、環境情報取得手段112、自己位置推定手段114、障害物検出手段116、経路決定手段118、接近行動生成手段120、車両制御手段122から構成される。なお、図示されないが、前記各手段は自律移動システム100に搭載したコンピュータ上で実施する構成としても可能である、また、一部あるいは全部の手段の処理について、無線通信を用いて外部のコンピュータ上で実施する構成でも良い。以下本実施例の自律移動システムは車輪によって移動する構成として説明する。
 記憶情報処理手段110は、少なくとも自律移動システム100が走行する基準となる経路と、経路周辺の地図情報を保持し、自己位置推定手段114に対して経路周辺の地図情報を送信し、経路決定手段118に対して基準となる経路を送信する。
 環境情報取得手段112は、自律移動システム100が搭載するセンサによって構成され、センサから情報を取得する。センサの詳細は図示しないがレーザ式距離センサや、カメラ(2つ並べて距離計測を可能な構成としたステレオカメラシステムなど)、角速度センサ、加速度センサ、磁気センサ、GPS受信機、車輪回転量センサなどからなる。後述する自己位置推定手段114と障害物検出手段116に対してこれらセンサから取得したセンサ情報を送信する。
 自己位置推定手段114は、各センサから取得した情報に基づき自律移動システム100の現在位置を特定する。詳細として例えば、車輪回転量センサの値を累積して作られる自己位置情報(オドメトリと呼ばれるもの)と、角速度センサや加速度センサや磁気センサによるオドメトリの補正と、レーザ式距離センサやカメラによる情報と前記記憶情報処理手段110から得られる地図情報との対応付けによって得られる自己位置情報と、GPS受信機から得られる位置情報を確率的に(例えば、拡張カルマンフィルタと呼ばれる手法を採用して)融合することで自律移動システム100が移動する領域内において正確な自己の位置と向きを推定する。最終的に得られた自己位置データを、後記する障害物検出手段116と経路決定手段118に送信する。
 障害物検出手段116は、前記センサ情報に基づき、自律移動システム100の移動に障害となりうる領域を検出し、障害物情報を算出する。詳細として例えば、レーザ式距離センサやカメラ(2つ並べて距離計測を可能な構成としたステレオカメラシステムなど)から得られる周囲の形状情報のうち、自律移動システム100が乗り越え不能な高さの段差や、大きな溝や、空中の突出物などが障害物に該当する。また、本発明が対象とする施設内や街中などの環境に存在する歩行者や自転車(場合によっては自動車)などの動く障害物も併せて検出する。特に、歩行者や自転車(場合によっては自動車)は、例えば画像処理を用いることにより特定する。動く障害物の障害物情報には、大きさ(幅)、移動速度、移動方向などが含まれる。
 経路決定手段118は、前記の自己位置情報と、走行する基準経路と、検出した障害物の種類(移動障害物:動物、ボール、落ち葉、静止障害物:段差、ポール、生垣など)、位置、形状、速度などの障害物情報に基づいて、自律移動システム100の目標経路もしくは目標方向および速度を決定し、接近行動生成手段120へ送信する。
 接近行動生成手段120は、前記障害物情報に基づいて、移動障害物として、歩行者もしくは自転車(場合によっては自動車)を検出した場合、後記する手順により、歩行者や自転車等の相手と移動経路の交錯もしくは接近が生じた場合、安心・安全な対面通行もしくは追い越し通行を行うため、相手の行動が確定された状況を誘導するために、相手から予測が容易な行動をとり、相手行動の確定情報を得た後、近くを通行するときには大きな針路変更を行わないで安定かつ一定の状況を保つための、自律移動システム100の目標速度および目標方向を決定する。
 車両制御手段122は、接近行動生成手段120から取得した、自律移動システム100の目標方向と目標速度により車両の運動制御を実施する。具体的には例えば、現在の自律移動システム100の移動方向・移動速度と、目標方向・目標速度との差が小さくなるように制御を行う。また、車両制御手段122は車輪を制御するためのモータやエンジン等の駆動源や電子回路を持ち、自律移動システム100の位置や向きの変更を可能とする。
 図2は、図1における接近行動生成手段120の処理フローチャートであり、以下で符号を用いて説明する。また、フローチャートの各ブロックの処理について図3、図4、図5、図6を用いて詳細を説明する。
 接近行動生成手段120は、まず図2のステップ101(以下、S101と称する)として歩行者や自転車(以下、移動体)との接近検出を行う。図3に示すように、障害物検出手段116からの障害物情報に基づき移動体201の経路202を仮定し、経路決定手段118より得られた自律移動システム100の経路202との間隔206(接近距離)が、所定の値以下となる場合を検出する。この接近距離は概算で良いので、経路は、所定の時間間隔ごとの位置として与え、ある時刻での位置(位置204,位置205)における間隔206を算出する。このとき、時間間隔ごとの位置間を補間して最接近点を求めても良いし、接近距離として位置(位置204,位置205)の間隔を用いても良い。また、図3には移動体201の経路202を目標経路として曲線で表したが、現在の位置と移動速度、移動方向を用いた直線を用いてもよい。
 接近行動生成手段120は、次に図2のS102として移動体との接近状況分析を行う。図4に示すように、接近状況の種類には、移動体の移動方向および速度より、対向210、前方の横切り211a、後方の横切り211b、追い越し212、追い付き213がある。
 接近行動生成手段120は、次に図2のS103として移動体から自律移動システム100の行動を予測し易くするための予測容易行動を決定する。図5に示すように、現在の目標経路202に対し、予測容易行動をとる区間(221~223)を設定する。相手から自律移動システム100の行動を予測し易くするため、この区間では直線的に走行することが望ましい。図5では、この区間は矩形で表したが、緩やかな一定曲率の経路や、歩道の境界に沿った緩やかな変化の道なりの区間でも良い。この区間の長さは、障害物の存在もしくは最接近予測位置等で決定する。自律移動システム100は、この矩形の大きさ、移動体の速度、前記接近状況に応じて速度を決定する。
 区間の決定は、現在の状況に応じて選択する。例えば、前方に移動体がいて、針路変更に危険が伴う場合は、区間221を選択し、自律移動システム100は、区間の長さに応じ、減速もしくは停止する。また、少しの針路変更が可能な場合は、現在の進行方向と並行な区間222を選択する。針路変更に大きな方向変換が必要な場合は、現在の方向から少しの角度変更を伴った区間223を選択しても良い。ただし、相手から行動を予測し易くするためには、角度変更は小さく短い時間で行う。
 予測容易行動の選択は、前述の接近状況に応じ、重み付けを付ける。対向210のケースでは、移動体が自律移動システム100の左右どちらに行きたいのかを確定するため、移動体の進路変更を促す減速行動や、対向する移動体との進路軸をずらす現在の進行方向と並行な区間222の選択を行う。
 前述の前方の横切り211aのケースでは、状況の確定を促進するための減速、後方の横切り211bのケースでは、状況の確定を促進するための減速を伴わない直進、追い越し212のケースでは、進路を譲るための減速~停止および並行な区間222の選択、追い付き213のケースでは、抜いた後に相手の行動に影響を与えないための相手の移動方向と並行な区間の重みを高くする。また、既に予測容易行動中および後述する接近行動中である場合、複数の移動体が存在する場合は、その中で厳しい条件を選択する。
 なお、上記の予測容易行動の決定は、本発明の課題を解決する一実施例であり、相手から自律移動システム100の移動予測を容易にするものであれば前述の道なり走行や、速度変更および微少な針路変更を組み合わせた方法でもよい。
 接近行動生成手段120は、次に図2のS104として、相手進路の確定判断を行う。ここでは相手の最新の走行状況で、一定の直線的な移動区間を有した場合に、その進路を相手進路と確定判断する。進路確定は、完全な直線ではなくてもよく、相手の移動軌跡が一定幅と長さを持った矩形領域に入ることをもって検出する。進路と同様に、速度も、最新の一定期間にばらつきが所定の値以下であれば、確定したと判断する。所定の期間を経過しても確定判断できない場合は、接近状況が変化する場合があるため、図2のS105で判断して、接近検出S101に移り、最新の状況での新たな処理を行う。
 接近行動生成手段120は、S105にて相手の進路が確定したと判断した場合、最後に図2のS106として、移動体の進路の妨げにならないように自己進路の修正と、接近走行を実施する。
 図6に示すように、自律移動システム100は、前述の予測容易行動区間230を走行し、移動体の対向210の進路確定を誘導し、移動体の移動軌跡233の最新の走行状況で進路231を確定判断した場合、速やかに自己の進路を微修正し、安心・安全な対面通行を行うための進路232を走行する。ここで図6は、対面通行について示したが、追い越しや横切り等、他の状況においても同様である。これにより、移動体と接近する場合において、お互いの行動が確定しているため、安心・安全な通行が可能となる。
 最後に、接近行動生成手段120は、図2に示す接近行動のシーケンスが終了し、障害物検出手段116において移動体が検出されない場合は、経路決定手段118が生成する目標経路もしくは目標方向および速度を車両制御手段122に送信する。
100 自律移動システム
110 記憶情報処理手段
112 環境情報取得手段
114 自己位置推定手段
116 障害物検出手段
118 経路決定手段
120 接近行動生成手段
122 車両制御手段

Claims (4)

  1.  障害物が存在する環境において、指定された基準経路に基づき自律して移動する自律移動システムであって、
     周囲の環境情報を取得する環境情報取得手段と、
    前記基準経路情報もしくは前記基準経路が登録された地図情報を保持する記憶情報処理手段と、
    前記環境情報および前記基準経路情報もしくは地図情報に基づき前記自律移動システムの自己位置を推定する自己位置推定手段と、
    前記環境情報に基づき、移動の妨げとなる障害物の情報を生成する障害物情報生成手段と、
    前記自己位置と前記障害物情報と前記基準経路情報に基づき移動方向および移動速度を決定する経路決定手段と、
    前記障害物情報に基づき移動体が接近する場合に、事前にお互いの行動を確定させた安定な状況を誘導するための移動経路もしくは移動方向もしくは移動速度を決定する接近行動生成手段と、
    前記移動方向および前記移動速度に基づき自律移動システムの移動を制御する車両制御手段とを備え、
     前記接近行動生成手段は、前記移動体の障害物情報と自律移動システムの現在位置および前記基準経路に基づき、前記移動体と前記自律移動システムの接近の検出と、接近状況の種類を判定し、前記接近状況の種類に応じて、前記移動体から前記自律移動システムの行動が予測し易い予測容易行動を決定し、前記予測容易行動中、前記移動体の一定期間の一定の行動を基に、前記移動体の進路確定を判断し、前記移動体の確定した進路に基づき、前記移動体の進路の妨げにならない前記自律移動システムの進路の修正を行う
     ことを特徴とする自律移動システム。
  2. 請求項1に記載の自律移動システムにおいて、
     前記予測容易行動は、環境の状況、接近の位置および前記接近状況の種類に基づき矩形区間および移動速度を生成し、生成した矩形内を一定の速度で走行することを特徴とする自律移動システム。
  3.  請求項1に記載の自律移動システムにおいて、
     前記接近状況の種類は、対面走行、横切り、追い越し、追い付きの内、いずれかを含み、前記予測容易行動は前記種類に応じて、速度および経路の選択に重み付けを行う
    ことを特徴とする自律移動システム。
  4.  前記請求項1に記載の自律移動システムにおいて、
     前記移動体は、歩行者もしくは自転車であり、前記障害物情報生成手段において判別可能な情報が生成されることを特徴とする自律移動システム。
PCT/JP2013/079808 2013-11-05 2013-11-05 自律移動システム WO2015068193A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/029,375 US10620633B2 (en) 2013-11-05 2013-11-05 Autonomous mobile system
PCT/JP2013/079808 WO2015068193A1 (ja) 2013-11-05 2013-11-05 自律移動システム
JP2015546163A JP6294342B2 (ja) 2013-11-05 2013-11-05 自律移動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079808 WO2015068193A1 (ja) 2013-11-05 2013-11-05 自律移動システム

Publications (1)

Publication Number Publication Date
WO2015068193A1 true WO2015068193A1 (ja) 2015-05-14

Family

ID=53041001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079808 WO2015068193A1 (ja) 2013-11-05 2013-11-05 自律移動システム

Country Status (3)

Country Link
US (1) US10620633B2 (ja)
JP (1) JP6294342B2 (ja)
WO (1) WO2015068193A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052414A (ja) * 2015-09-09 2017-03-16 株式会社デンソー 車両制御装置
WO2019203022A1 (ja) * 2018-04-20 2019-10-24 ソニー株式会社 移動体、情報処理装置、情報処理方法、及びプログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620633B2 (en) * 2013-11-05 2020-04-14 Hitachi, Ltd. Autonomous mobile system
JP6303564B2 (ja) * 2014-02-11 2018-04-04 株式会社デンソー 位置情報校正装置、位置情報校正アプリケーションプログラム
DE102016208000A1 (de) * 2016-05-10 2017-11-16 Volkswagen Aktiengesellschaft Kraftfahrzeug-Steuervorrichtung und Verfahren zum Betreiben der Steuervorrichtung zum autonomen Führen eines Kraftfahrzeugs
JP6673293B2 (ja) * 2017-05-24 2020-03-25 トヨタ自動車株式会社 車両システム
DE102017122543A1 (de) 2017-09-28 2019-03-28 Connaught Electronics Ltd. Verfahren zum Unterstützen eines Fahrers eines Kraftfahrzeugs beim Überholen eines Objektes sowie Fahrerassistenzsystem
JP7043279B2 (ja) * 2018-02-08 2022-03-29 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP2019137189A (ja) * 2018-02-08 2019-08-22 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
US10712744B2 (en) * 2018-03-09 2020-07-14 Pony Ai Inc. Active off-vehicle notification to autonomous-driving vehicle
US10800408B2 (en) * 2018-05-24 2020-10-13 Baidu Usa Llc Determining driving paths for autonomous driving that avoid moving obstacles
US11667301B2 (en) * 2018-12-10 2023-06-06 Perceptive Automata, Inc. Symbolic modeling and simulation of non-stationary traffic objects for testing and development of autonomous vehicle systems
CN111319627B (zh) * 2018-12-14 2023-07-21 奥迪股份公司 辅助驾驶方法、装置、计算机设备和存储介质
JP2021009653A (ja) * 2019-07-03 2021-01-28 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN115202331A (zh) * 2021-04-09 2022-10-18 灵动科技(北京)有限公司 自主移动设备、自主移动设备的控制方法及货运系统
US11491987B1 (en) * 2022-06-22 2022-11-08 Embark Trucks Inc. Merge handling based on merge intentions over time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152600A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 移動経路作成方法、自律移動体および自律移動体制御システム
JP2008152599A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 移動経路作成方法、自律移動体および自律移動体制御システム
JP2010055496A (ja) * 2008-08-29 2010-03-11 Hitachi Ltd 自律移動装置及び自律移動装置の回避方向表示方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339029A (ja) * 1999-05-31 2000-12-08 Komatsu Ltd 車両の干渉防止装置
WO2005125219A2 (en) * 2004-06-10 2005-12-29 Sarnoff Corporation Method and apparatus for testing stereo vision methods using stereo imagery data
DE102005002504A1 (de) * 2005-01-19 2006-07-27 Robert Bosch Gmbh Fahrerassistenzsystem mit Fahrschlauchprädiktion
DE102006047131A1 (de) * 2006-10-05 2008-04-10 Robert Bosch Gmbh Verfahren zum automatischen Steuern eines Fahrzeugs
US8810431B2 (en) * 2011-10-20 2014-08-19 GM Global Technology Operations LLC Highway merge assistant and control
DE112012007183B4 (de) * 2012-11-29 2024-03-14 Toyota Jidosha Kabushiki Kaisha Fahrunterstützungsvorrichtung und Fahrunterstützungsverfahren
US9709990B2 (en) * 2012-12-21 2017-07-18 Toyota Jidosha Kabushiki Kaisha Autonomous navigation through obstacles
US9099006B2 (en) * 2013-08-22 2015-08-04 GM Global Technology Operations LLC Context-aware threat response arbitration
US10620633B2 (en) * 2013-11-05 2020-04-14 Hitachi, Ltd. Autonomous mobile system
JP6657618B2 (ja) * 2015-06-30 2020-03-04 株式会社デンソー 逸脱回避装置
SE539097C2 (en) * 2015-08-20 2017-04-11 Scania Cv Ab Method, control unit and system for avoiding collision with vulnerable road users
US10239529B2 (en) * 2016-03-01 2019-03-26 Ford Global Technologies, Llc Autonomous vehicle operation based on interactive model predictive control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152600A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 移動経路作成方法、自律移動体および自律移動体制御システム
JP2008152599A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 移動経路作成方法、自律移動体および自律移動体制御システム
JP2010055496A (ja) * 2008-08-29 2010-03-11 Hitachi Ltd 自律移動装置及び自律移動装置の回避方向表示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHITAKA HARA ET AL.: "Development of Autonomous Navigation Technology Adapted to Crowded Pedestrian Streets and Evaluations in Real World using Experimental Robot Sofara-T", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 30, no. 3, 15 April 2012 (2012-04-15), pages 55 - 63 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052414A (ja) * 2015-09-09 2017-03-16 株式会社デンソー 車両制御装置
US10688994B2 (en) 2015-09-09 2020-06-23 Denso Corporation Vehicle control apparatus
WO2019203022A1 (ja) * 2018-04-20 2019-10-24 ソニー株式会社 移動体、情報処理装置、情報処理方法、及びプログラム

Also Published As

Publication number Publication date
US10620633B2 (en) 2020-04-14
US20160224027A1 (en) 2016-08-04
JPWO2015068193A1 (ja) 2017-03-09
JP6294342B2 (ja) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6294342B2 (ja) 自律移動システム
EP3822142A1 (en) Confidence levels along the same predicted trajectory of an obstacle
EP3819182B1 (en) Delay decision making for autonomous driving vehicles in response to obstacles based on confidence level and distance
US11442450B2 (en) Method for determining passable area in planning a path of autonomous driving vehicles
US20210027629A1 (en) Blind area processing for autonomous driving vehicles
CN111775933B (zh) 用于基于车辆周围障碍物的移动轨迹自主驾驶车辆的方法
US11880201B2 (en) Fastest lane determination algorithm under traffic jam
US20210200231A1 (en) Speed planning guidance line for mild slow down
CN112985435B (zh) 用于操作自主驾驶车辆的方法及系统
CN112180912A (zh) 用于为自动驾驶车辆规划路径的分级路径决策系统
US11661085B2 (en) Locked pedestrian detection and prediction for autonomous vehicles
WO2020148561A1 (ja) 運転支援方法及び運転支援装置
JP2021041754A (ja) 運転制御方法及び運転制御装置
US11787440B2 (en) Lane boundary and vehicle speed based nudge decision
EP3842315B1 (en) Autonomous driving vehicle three-point turn
EP3838696A1 (en) A post collision, damage reduction brake system
EP4140848A2 (en) Planning under prediction with confidence region for an autonomous driving vehicle
CN113060140A (zh) 基于中心线移位的变道前路径规划
US11527076B2 (en) Point cloud-based low-height obstacle detection system
US11242057B2 (en) Method for optimizing three-point turn of autonomous driving vehicles
US20230065284A1 (en) Control and planning with localization uncertainty
US20210394672A1 (en) L3-level auto-emergency light system for ego vehicle harsh brake
US20210396540A1 (en) Routing based lane guidance system under traffic cone situation
JP2022090341A (ja) 車両の走行制御方法及び走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546163

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15029375

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897169

Country of ref document: EP

Kind code of ref document: A1