WO2015063352A1 - Procedimiento para la determinación de la longitud final de stents antes de su colocación - Google Patents

Procedimiento para la determinación de la longitud final de stents antes de su colocación Download PDF

Info

Publication number
WO2015063352A1
WO2015063352A1 PCT/ES2014/070758 ES2014070758W WO2015063352A1 WO 2015063352 A1 WO2015063352 A1 WO 2015063352A1 ES 2014070758 W ES2014070758 W ES 2014070758W WO 2015063352 A1 WO2015063352 A1 WO 2015063352A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
length
vascular structure
change
radius
Prior art date
Application number
PCT/ES2014/070758
Other languages
English (en)
French (fr)
Inventor
Ignacio Larrabide
Original Assignee
Galgo Medical, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galgo Medical, S.L. filed Critical Galgo Medical, S.L.
Priority to EP14859121.7A priority Critical patent/EP3025638B1/en
Priority to US14/911,938 priority patent/US10176566B2/en
Priority to ES14859121T priority patent/ES2961921T3/es
Publication of WO2015063352A1 publication Critical patent/WO2015063352A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6862Stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data

Definitions

  • the present invention relates to a new method for determining the change in length of a stent that it will have after it has been implanted inside a vascular structure. Said determination is carried out on the basis of the relationship of said change in length with the morphological characteristics of the vascular structure of interest.
  • stent is a medical anglicism commonly used to designate a cannula or a cylindrical or tubular device for endoluminal use, usually endovascular, which is placed inside an anatomical structure or body duct to keep it permeable or prevent its collapse after dilatation, unobstruction or surgical release.
  • a stent is typically implanted in a blood vessel at the site of an endoluminal stenosis or aneurysm, that is, by so-called “minimally invasive techniques", in which the stent is contained in a radially compressed configuration by a sheath or catheter and is supplied by a stent application device or "introducer" to the required site.
  • the introducer can enter the body from an access site outside the body, such as through the patient's skin, or by a cutting technique in which the input blood vessel is exposed to minor surgical means.
  • the term "stent” also refers to grafts, stent grafts, vena cava filters, expandable structures and similar implantable medical devices, which are radially expandable stents. They are usually intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. Stents can be implanted in various lumens or vessels in the body, such as in the vascular system, urinary tract, bile ducts, among others.
  • Stents can be used to strengthen blood vessels and to avoid restenosis followed by angioplasty in the vascular system.
  • Stents can be self-expanding, such as nitinol-shaped memory stents; furthermore, they can be mechanically expandable, such as an expandable balloon stent; or they can be expandable hybrids.
  • endoluminal stents are very frequent in different areas of medicine and veterinary medicine. There are different stent designs for endoluminal insertion in blood vessels and other lumens to prevent or reverse their occlusion. It is generally considered that there are 3 basic categories of stent-type devices, namely: heat expandable devices,
  • the present invention relates to self-expanding stent-type devices that, optionally, have the ability to expand by heat, which are inserted into a vessel within the body in radially compressed form and that mechanically move into a radially expanded position. Once the stent is placed in the desired position in the blood vessel, it expands radially by exerting outward pressure on the inner surface of the wall of the body vessel in which it has been placed.
  • Braided stents are made by braiding (interlacing) threads of a thin metallic material according to different braiding patterns.
  • a methodology for stent braiding is described in US Patent US6083257A.
  • the braiding angulation, the nominal radius, the nominal length and the braiding pattern used the mechanical properties and the density of the resulting stent mesh can vary considerably.
  • the present invention encompasses both braided and unbraided stents.
  • nominal radius refers to the radius adopted by the stent when it is freely left out of a vessel or the placement device and coincides with the maximum radius when released outside the vessel.
  • the term "nominal length” refers to the length adopted by the stent when it is freely left out of a vessel or the placement device. Therefore, the stent adopts the "nominal length” when it has its "nominal radius”.
  • Stents are frequently used for the treatment of intracranial aneurysms (AI), a sector in which there are different types of braided stents.
  • AI intracranial aneurysms
  • FD Flow Deviator
  • braided thick braided stents are also used as scaffolding for the protection of the AI neck after the placement of an endovascular spiral (“coil”), as disclosed in US Patent US6010468A.
  • the stents are placed in the desired place using a catheter, in image-guided operations, typically with interventional X-ray imaging, with the help of a contrast marker that highlights the location of the lumen of the vessel and, where appropriate, of the aneurysm to treat.
  • the catheter is normally inserted into the body by arteries, for example the iliac artery, and is led to the aneurysm location by a neurointerventional radiologist. Said radiologist will select the position in which the distal side of the stent is placed and will progressively unsheathe the stent until it is completely released in the treated vessel.
  • stents have the difficulty that a priori the exact length of the stent is not known exactly when it is placed inside the body and that it is difficult to predict for the human eye.
  • a stent When a stent is released outside the human body, as mentioned above, it adopts its nominal radius. However, if said stent is placed inside a vessel with a radius smaller than its nominal radius, the walls of the vessel prevent the stent from fully expanding, forcing the device to have a configuration with a longer length.
  • the fact that the change in the total length of the stent depends on the morphology of the vessel makes prediction of the final length of said device, before its placement, very difficult. Since the doctor is not able to accurately predict the final length of the stent placed inside the patient, it may happen that collateral branches of the treated vessel are obstructed or occluded, and may cause damage to the patient.
  • US patent application US2007 / 0135707 discloses obtaining three-dimensional images with which to build a model of the vessel to be treated to detect the lesion and its characteristics and Simulate the stent to be used and the position in which it will be placed.
  • the present inventors have developed a procedure to determine before placement the final length that a stent will have after being placed in a vascular structure. Said procedure allows the final length of a stent to be determined prior to implantation and with high accuracy based on the initial position of the stent in said vascular structure.
  • the process of the present invention is based on the analysis of the local morphology of the vascular structure in which said stent will be placed and in the analysis of the change in length thereof, and requires the definition and use of an indicator relationship of the change of Stent length depending on the local morphology of the vessel and the place where the device is intended to be placed.
  • the procedure for determining the final length of a stent prior to being placed in a vascular structure of the present invention comprises the following steps: a) determining the indicator relationship of the stent length change based on the local morphology of vascular structure;
  • step b) dividing said central line of the vascular structure obtained in step b) into small segments.
  • step f) subtracting said segment length calculated in step f) from the nominal stent length to obtain a new nominal length; if said new nominal length is different from 0 then steps e) to g) are repeated for the segment adjacent to the previous one; if the new nominal length is approximately 0; all distances of each segment are added, this sum being the final length of said stent after placement.
  • the process of the present invention can be applied to any type of braided and non-braided stent, provided that said stent changes its length when its diameter varies.
  • the determination of the indicator ratio of the change in stent length based on the local morphology of the vascular structure of step a) of the process of the present invention is specific for each type of stent to be used.
  • morphological descriptors of vascular structures such as the average radius (average distance from the central line to the points in the cross section of the vascular structure at that point of the central line), Maximum Radius of the Inscribed Sphere (MISR) , minimum distance from the central line to the surface of the vascular structure), cross-sectional area (cross-sectional area at a point on the central line), the perimeter of the cross-section (length of the curve obtained by cutting a cross section of the vascular structure), the minimum radius of the cross section, the maximum radius of the cross section, the curvature / torsion, among others.
  • MISR Maximum Radius of the Inscribed Sphere
  • the vascular structure in which the stent will be placed must be provided in the form of a three-dimensional surface.
  • Said three-dimensional surface of the vascular structure can be obtained by any method known in the art, for example, by image segmentation of an angiographic image (Hernández, M. and Frang ⁇ AF "Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA "Medical image analysis, 2007, 11 (3), 224-241; and Antiga, L.
  • the three-dimensional surface of the vascular structure can be represented by a polygonal mesh, in which the resolution can be adjusted to obtain the relevant morphology information of the vascular structure.
  • any other known technique can be employed provided that it allows obtaining a three-dimensional surface of the vascular structure in which the stent will be placed.
  • the method of the present invention it is not only possible to predict the final length of a stent prior to its placement when placed inside a vessel, but it is also possible to detect regions where there could be poor stenting in the stent. the walls of the vascular structure, occlusion or total or partial coverage of branched vessels and the porosity or density resulting from the stent.
  • the neurointerventional radiologist can, for example, plan the treatment and know the final disposition of the stent before performing said treatment and, therefore, allows him to select the optimal stent and the exact place where said stent will be placed.
  • the process of the present invention can be implemented by a computer program that would allow such determination of the final stent length more quickly and accurately.
  • step d) can be carried out continuously instead of discretizing the central line of the vascular structure.
  • the ratio indicating the change in stent length of step a) of the process of the present invention is given by the manufacturer of said stent. Therefore, it is not necessary to perform said step a).
  • the method for determining the final length of a stent of the present invention comprises the following steps: a) obtaining the three-dimensional center line of the vascular structure in which the stent will be placed; b) define the exact location of the initial point at which said stent will be placed in said vascular structure;
  • step b) dividing said central line of the vascular structure obtained in step b) into small segments.
  • step f) subtracting said segment length calculated in step e) from the nominal stent length to obtain a new nominal length; if said new nominal length is different from 0 then steps d) to f) are repeated for the segment adjacent to the previous one; if the new nominal length is about 0; all distances of each segment are added, this sum being the final length of said stent after placement.
  • Figure 1 shows a detail of a side view of a possible twisted type stent crosslinking pattern.
  • Figure 2 shows a detail of a cross-section following the direction of a strand of the braided stent of Figure 1.
  • Figure 3 shows an example of the linear relationship between the change in stent length (y axis) and the radius of the cross section of the vascular structure (x axis).
  • Figure 4 shows the helical path that the wires follow in a braided type stent.
  • Figure 5 shows a stent released, expanded and unconstrained.
  • Figure 6 shows a stent in an unexpanded and constricted state.
  • Figure 7 a) shows the cross section of a vessel and Figures 7 b) and e) shows two different stents placed in the same lesion.
  • Figure 8 shows the superposition of a stent braided to the vessel and its adaptation to its contour.
  • Figure 9 shows the change in length of a real stent calculated by the method of the present invention, compared to the nominal length of said stent.
  • Figure 1 shows a cross-linking pattern of a braided stent known in the art, in which a thread -1- is highlighted and shown as said thread -1- crosses ahead -2- and behind -3- of others threads.
  • Figure 1 also shows the braiding angle -5- and the braiding direction -4-.
  • FIG 2 a frontal view of the cross-linking pattern shown in figure 1 is observed. It is also observed how the thread marked -1- crosses above -2- and below -3- of other threads that form said stent.
  • Figure 3 shows a graph depicting an example of a linear relationship between the change in stent length and the radius of the tube or vessel.
  • the graph indicates: the nominal length -6- of the stent, the nominal radius -7- of the stent, the constricted radius -8- of the stent, the constricted length -9- of the stent and the interpolation of an intermediate radius - and- to obtain the change in length -x).
  • Figure 4 shows the helical distribution of the strands of a braided stent, including the path of a marked wire -10-, the length of the device -11-, the twisted angle -12-, the number of threads -13- and the radius -14-.
  • Figure 5 shows a braided stent in an expanded and unconstrained state and indicates both the nominal length -6- and the nominal radius -7-.
  • Figure 6 shows a braided stent in a constricted state and the constricted radius -8- and the constricted length -9- can be observed.
  • Figure 7 a) shows the cross section of a vessel in which we can distinguish: the center line of the vessel -26-, the minimum radius of the cross section of the vessel -29-, the maximum radius of the cross section of the vessel -30-, the cross-sectional area of the vessel -31-, the perimeter of the vessel's cross-section -32- and the Maximum Radius of the Inscribed Sphere of the vessel -33- (minimum distance from the centerline to the surface of the vascular structure).
  • Figures 7 b) and e) show different stents placed in the same initial position of the same vessel and detail the fact of using a short -15- or long -16- device in a vessel-type structure -24-, the presence of branched vessels -17-, the nominal length -18 and 20-, the final length -19 and 21-, the centerline of the vessel -26- and the initial stenting position -27-.
  • Figure 8 shows the overlapping of the braided stent on the vessel and, after interpolation the adaptation of the stent to the morphology of the vessel -24-.
  • This figure shows a braided stent in an unconstrained state -22- and a braided stent in a constricted state -23-.
  • the stent is divided according to the procedure of the present invention, of which its nominal length -37- and its nominal radius -38- and the length they have in its constrained form -39-.
  • vascular structure refers to arteries, arterioles, veins, intestine, rectum and any other tubular type structure present in the human or animal body, which is susceptible to Be treated with stents.
  • stent refers to braided, unbraided and equivalent stents.
  • process of the present invention encompasses both constant radius (cylindrical) and non-constant radius stents (conical, conical / cylindrical combinations, among others).
  • the determination of the indicator relationship of the stent length change based on the local morphology of the vascular structure of step a) of the process of the present invention can be obtained experimentally or by a mathematical model.
  • phantoms of different diameters are used (with radius constant in the longitudinal direction) that mimic the vessels in which the stent of interest will be placed and length changes per unit length of the stent are measured to create a table of values.
  • mathematical modeling as seen in Figure 4, known the length of the threads -10-, the number of threads -13- and the different radii of interest, the stent length change is simulated resulting by modeling the length of the thread as a spiral.
  • This ratio indicating the change in stent length is designed to provide the change in the length of the stent-type device given the local morphology of the vessel.
  • the length can be obtained in a constricted state -8- with respect to the nominal length -6- of the stent when placed in tubes of different morphologies ( Figure 3).
  • This change in length can be expressed per unit length, that is, the new length of a portion of the unit length instrument once placed -9-.
  • a model can also be obtained that takes into account the change in length with respect to the nominal radius of the stent when placed in tubes with different morphology in its cross sections.
  • the relationship between vessel morphology and stent length change ( Figure 3) must be known and, therefore, a function that expresses the length for different degrees of expansion must be provided.
  • the change in length can be expressed per unit length, that is, the new length of a unit length stent portion once placed -9-.
  • the ratio indicating the change in stent length may take into account geometric considerations related to different curvatures and torsions. For this, one option is to test whether the stent length changes when implanted in a curved tube in relation to a tube of the same radius but without curvature, that is, straight.
  • the associated cross-linking angle can also be measured for an experimentally determined angle or from a suitable model. Said angle can be obtained for each radius by interpolation from the experimentally obtained data and the information can be used to model the local cross-linking angle.
  • the cross-linking angle of the threads can be measured for each expansion and said information can be used in said ratio indicating the change in stent length.
  • an image is obtained three-dimensional vascular structure in which the stent will be placed.
  • Said image is nothing more than a three-dimensional representation of said vascular structure and can be obtained by any of the methods known in the state of the art, such as those mentioned above.
  • This central line can be obtained from the structure of the vessel and consists of a single line corresponding to the central line of a tree branch or graph of more complex vessels.
  • said descriptors of the local morphology of the vascular structure may be the Maximum Radius of the Inscribed Sphere (MISR) of the vessel (33), cross section of the vessel (28), cross sectional area of the vessel (31), perimeter of the cross section of the vessel (32), minimum radius of the cross section of the vessel (29), maximum radius of the cross section of the vessel (30) or any combination thereof.
  • MISR Maximum Radius of the Inscribed Sphere
  • the process of the present invention can be carried out with the help of one or more computer programs, that is, as a computer implemented procedure.
  • the process of the present invention is used in the medical or veterinary field for the prediction of the length of stents when said stents are placed inside living bodies.
  • the following table 1 shows the behavior of the change in length of said stent with respect to the radius of the vascular structure. To do this, they set different radius values of the vessel and said change in length was determined.
  • the stent has a nominal length of 24.00 mm when it has its nominal radius (2.25 mm). As the radius of the vascular structure decreases, the stent increases its length in a linear fashion, expressed as a percentage of the change in relation to its nominal length. Therefore, the behavior of the final stent length can be adjusted to a linear equation by any statistical program known in the art.
  • Table 2 shows the behavior of the change in length of said stent with respect to the perimeter of the cross section of the vessel. For this, different perimeter values of the vessel were fixed and said change in length was determined. Table 2.
  • the stent has a nominal length of 24.00 mm when it has its nominal perimeter (2.25 mm). As the perimeter of the vascular structure decreases, the stent increases its length in a linear fashion, expressed as a percentage of the change in relation to its nominal length. Therefore, the behavior of the final stent length can be adjusted to a linear equation by any statistical program known in the art.
  • the following table 4 shows the behavior of the length change of the Enterprise stent laser cut (Cordis, United States) with respect to the radius of the vascular structure. To do this, different values of the vessel's radius were set and said change in length was determined.
  • Obtaining morphological descriptors from a three-dimensional image of a vascular structure From a three-dimensional image made with Integris Allura System equipment (Philips Healthcare, Best, The Netherlands) to a vascular structure of the intracranial sector of the right internal carotid; A central line was obtained using the Vascular Modeling Toolkit (VMTK) program and the morphological parameters shown in Table 6 were obtained, such as maximum radius of the inscribed sphere, curvature, torsion, cross-sectional area, average radius, maximum radius, minimum radius, perimeter of the cross section, among others, for each longitudinal position value on said center line.
  • VMTK Vascular Modeling Toolkit
  • Example 1 The final length of the stent used in Example 1 was calculated, in a real geometry of a vascular structure in which said stent will be implanted. Throughout the length of the vascular structure the ratio of the change in length of said stent was up to 1.2 times its nominal length. The results are shown in Figure 9.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Quality & Reliability (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Geometry (AREA)
  • Prostheses (AREA)

Abstract

La presente invención se refiere a un nuevo procedimiento para determinar el cambio de longitud de un stent que tendrá después que ha sido implantado en el interior de una estructura vascular. Dicha determinación se lleva a cabo sobre la base de la relación de dicho cambio de longitud con las características morfológicas de la estructura vascular de interés.

Description

PROCEDIMIENTO PARA LA DETERMINACIÓN DE LA
LONGITUD FINAL DE STENTS ANTES DE SU COLOCACIÓN
DESCRIPCIÓN
La presente invención se refiere a un nuevo procedimiento para determinar el cambio de longitud de un stent que tendrá después que ha sido implantado en el interior de una estructura vascular. Dicha determinación se lleva a cabo sobre la base de la relación de dicho cambio de longitud con las características morfológicas de la estructura vascular de interés.
De forma general, el término stent es un anglicismo médico de uso común para denominar una cánula o un dispositivo con forma cilindrica o tubular de uso endoluminal, habitualmente endovascular , que se coloca en el interior de una estructura anatómica o conducto corporal para mantenerlo permeable o evitar su colapso luego de su dilatación, desobstrucción o liberación quirúrgica. Un stent se implanta típicamente en un vaso sanguíneo en el sitio de una estenosis o aneurisma endoluminal, es decir, mediante las denominadas "técnicas mínimamente invasivas", en las que el stent queda contenido en una configuración comprimida radialmente por una funda o catéter y es suministrado mediante un dispositivo de aplicación de stents o "introductor" al sitio requerido. El introductor puede entrar en el cuerpo desde un lugar de acceso fuera del cuerpo, tal como a través de la piel del paciente, o mediante una técnica de corte en la que el vaso sanguíneo de entrada se expone a medios quirúrgicos menores. Tal como se utiliza en el presente documento, el término stent se refiere también a injertos, stent-injertos, filtros de la vena cava, estructuras expandibles y dispositivos médicos implantables similares, que son endoprótesis expandibles radialmente. Habitualmente son implantes intravasculares capaces de ser implantados transluminalmente y se agrandan radialmente después de haber sido introducidos de forma percutánea. Los stents se pueden implantar en diversos lúmenes o vasos en el cuerpo, tales como en el sistema vascular, el tracto urinario, conductos biliares, entre otros. Dichos stents se pueden utilizar para reforzar los vasos sanguíneos y para evitar restenosis seguida de angioplastia en el sistema vascular. Los stents pueden ser autoexpandibles , tales como los stents de memoria de forma de nitinol; además, pueden ser mecánicamente expandibles, tal como un stent de globo expandible; o pueden ser expandibles híbridos .
La utilización de stents endoluminales es muy frecuente en diferentes áreas de la medicina y veterinaria. Existen diferentes diseños de stents para inserción endoluminal en vasos sanguíneos y otros lúmenes para prevenir o revertir la oclusión de los mismos. De forma general se considera que existen 3 categorías básicas de dispositivos de tipo stent, a saber: dispositivos expandibles por calor,
dispositivos de globo expandible, y
- dispositivos autoexpandibles. La presente invención se refiere a dispositivos tipo stent autoexpandibles que, opcionalmente, tienen capacidad para expandirse por calor, que se insertan en un vaso dentro del cuerpo en forma comprimida radialmente y que mecánicamente pasan a una posición expandida radialmente. Una vez se coloca el stent en la posición deseada en el vaso sanguíneo, éste se expande radialmente ejerciendo presión hacia fuera sobre la superficie interior de la pared del vaso corporal en el que se ha colocado.
Los stents trenzados se fabrican trenzando (entrelazando) hilos de un material fino metálico según diferentes patrones de trenzado. En la Patente en Estados Unidos US6083257A se describe una metodología para el trenzado de stents. En función del número de hilos, la angulación del trenzado, el radio nominal, la longitud nominal y el patrón de trenzado utilizado, las propiedades mecánicas y la densidad de la malla del stent resultante pueden variar considerablemente. La presente invención abarca tanto los stents trenzados como los no trenzados.
En el presente documento, el término "radio nominal" se refiere al radio adoptado por el stent cuando se deja libremente fuera de un vaso o del dispositivo de colocación y coincide con el radio máximo cuando se libera fuera del vaso.
En el presente documento, el término "longitud nominal" se refiere a la longitud adoptada por el stent cuando se deja libremente fuera de un vaso o del dispositivo de colocación. Por tanto, el stent adopta la "longitud nominal" cuando posee su "radio nominal". Los stents se utilizan frecuentemente para el tratamiento de aneurismas intracraneales (AI), sector en el que existen diferentes tipos de stents trenzados. Uno de esos tipos es el conocido como "Desviador de Flujo" (FD, por sus siglas en inglés), que está densamente trenzado y se coloca longitudinalmente a lo largo del vaso afectado por el aneurisma y que cubre el cuello del aneurisma. Alternativamente, los stents trenzados de trenzado grueso también se utilizan como andamio para la protección del cuello del AI tras la colocación de una espiral ("coil") endovascular , tal y como se da a conocer en la Patente en Estados Unidos US6010468A.
Los stents se colocan en el lugar deseado mediante un catéter, en operaciones guiadas por imagen, típicamente con imagen por rayos-X intervencionista, con la ayuda de un marcador de contraste que destaca la localización del lumen del vaso y, en su caso, del aneurisma a tratar. En el caso de los aneurismas, el catéter es insertado en el cuerpo normalmente por arterias, por ejemplo la arteria ilíaca, y es conducido a la ubicación del aneurisma por un radiólogo neurointervencionista . Dicho radiólogo seleccionará la posición en que se coloca el lado distal del stent y progresivamente irá desenvainando el stent hasta que esté completamente liberado en el vaso tratado.
Sin embargo, los stents presentan la dificultad de que a priori no se conoce con exactitud la longitud final del stent cuando éste se coloca en el interior del cuerpo y que es difícil de predecir para el ojo humano.
Habitualmente , la forma de estimación de la longitud final de un stent cuando se coloca en el interior de un vaso se lleva a cabo a simple vista y se asume que el stent se libera en un vaso recto y de radio constante. Este procedimiento proporciona referencias muy malas en relación a la longitud final que tendrá el stent en el paciente, dado que la generalidad de los vasos no son rectos ni tienen un radio constante.
Cuando un stent se libera fuera del cuerpo humano, tal y como se ha mencionado anteriormente, adopta su radio nominal. Sin embargo, si dicho stent se coloca en el interior de un vaso de radio menor a su radio nominal, las paredes del vaso evitan que el stent se expanda totalmente, forzando que el dispositivo presente una configuración con una mayor longitud. El hecho de que el cambio en la longitud total del stent dependa de la morfología del vaso hace que la predicción de la longitud final de dicho dispositivo, antes de su colocación, sea muy difícil. Dado que el médico no es capaz de predecir con precisión la longitud final del stent colocado en el interior del paciente, puede suceder que se obstruyan u ocluyan ramas colaterales del vaso tratado, pudiendo llegar a provocar daños en el paciente. Además, en el caso de los aneurismas intracraneales, la variación en la densidad de la maya del stent como resultado de los diferentes grados de expansión hace que el efecto del dispositivo en el flujo sanguíneo en el interior del aneurisma sea difícilmente predecible. Estos efectos potencialmente negativos del tratamiento hace que exista la necesidad de crear una herramienta que permita predecir con exactitud la longitud final y la configuración del stent una vez colocado en una posición determinada en el interior del lumen de una estructura vascular en el cuerpo . Existen antecedentes que describen procedimientos para modelar los stents. Los modelos deformables han sido utilizados para simular el comportamiento de un stent cuando es colocado dentro del lumen de un vaso (Larrabide, I . y otros "Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracraneal aneurysmal stenting.", Medical image analysis, 2012, 16(3), 721-730). Sin embargo, dicho procedimiento no permite predecir el cambio de longitud del stent, dado que no tiene en cuenta su comportamiento mecánico.
También se han propuesto otros procedimientos basados en la deformación mecánica de una estructura similar a un cilindro (Cebral, J.R. y Lohner, R. "Efficient simulation of blood flow past complex endovascular devices using adaptative embedding technique" IEEE Transactions on Medical Imaging, 2005, 24(4), 468-476), pero tampoco son capaces de predecir el cambio en la longitud del stent.
Recientemente, se ha dado a conocer un procedimiento, basado en la utilización de elementos finitos y una descripción detallada del patrón de trenzado, que permite un modelado más preciso del comportamiento mecánico del dispositivo tipo stent (Ma, D. y otros "Computer modelling of deployment and mechanical expansión of neurovascular flow divertir in patient-specific intracraneal aneurysms" Journal of biomechanics , 2012, 1-8) . Este procedimiento resulta considerablemente preciso a la hora de modelar el comportamiento de un stent, pero la obtención de los modelos resulta extremadamente compleja y larga. Otros procedimientos basados en la obtención de imágenes de los lúmenes de los vasos a tratar y el modelado para la determinación del stent más adecuado son los dados a conocer en las solicitudes de Patente Internacional WO2006/093776 y WO2011/038044 y la solicitud de Patente en Estados Unidos US2007/0135707.
La solicitud de Patente Internacional WO2006/093776 da a conocer un procedimiento de modelado de stents basado en la utilización de un sistema de imagen por ultrasonidos para la obtención de imágenes de vasos sanguíneos, la detección de defectos en dichos vasos y la utilización de dichas imágenes para realizar simulaciones gráficas con diferentes stents para comprobar si la longitud y posición son adecuadas.
La solicitud de Patente Internacional WO2011/038044, por su parte, da a conocer un procedimiento automatizado para simular la longitud y la posición de stents basado en la obtención de imágenes del lumen del vaso sanguíneo por medio de tomografía de coherencia óptica. A partir de las imágenes obtenidas, se realiza una reconstrucción tridimensional de los contornos del lumen del vaso, se obtienen datos relativos al diámetro del vaso y a la velocidad, presión y resistencia sanguíneas para finalmente simular y optimizar la longitud y/o posición del stent.
Finalmente, la solicitud de Patente en Estados Unidos US2007/0135707 da a conocer la obtención de imágenes tridimensionales con las que construir un modelo del vaso a tratar para detectar la lesión y sus características y simular el stent a utilizar y la posición en que se colocará .
Los presentes inventores han desarrollado un procedimiento para determinar antes de su colocación la longitud final que tendrá un stent tras ser colocado en una estructura vascular. Dicho procedimiento permite determinar con anterioridad a su implantación y con una elevada exactitud la longitud final de un stent en base a la posición inicial de colocación del mismo en dicha estructura vascular .
El procedimiento de la presente invención se fundamenta en el análisis de la morfología local de la estructura vascular en la que será colocado dicho stent y en el análisis del cambio de longitud del mismo, y requiere la definición y utilización de una relación indicadora del cambio de longitud del stent en función de la morfología local del vaso y el lugar donde se pretende colocar el dispositivo.
Por tanto, el procedimiento para determinar la longitud final de un stent con anterioridad a ser colocado en una estructura vascular de la presente invención comprende las siguientes etapas: a) determinar la relación indicadora del cambio de longitud del stent en función de la morfología local de la estructura vascular;
b) obtener la línea central tridimensional de la estructura vascular en la que será colocado el stent; c) definir la ubicación exacta del punto inicial en el que será colocado dicho stent en dicha estructura vascular ;
d) dividir dicha linea central de la estructura vascular obtenida en la etapa b) en pequeños segmentos.
e) determinar los parámetros descriptores de la morfología de dicha estructura vascular para el primer segmento que parte de dicho punto inicial en el que será colocado dicho stent en dicha estructura vascular;
f) calcular la longitud del stent para dicho primer segmento utilizando la relación indicadora de la etapa a) ;
g) sustraer dicha longitud del segmento calculada en la etapa f) de la longitud nominal del stent para obtener una nueva longitud nominal; si dicha nueva longitud nominal es diferente de 0 entonces se repiten las etapas e) a g) para el segmento contiguo al anterior; si la nueva longitud nominal es aproximadamente 0; se suman todas las distancias de cada segmento, siendo esta suma la longitud final de dicho stent tras su colocación.
El procedimiento de la presente invención se puede aplicar a cualquier tipo de stent trenzado y no trenzado, siempre que dicho stent cambie su longitud cuando varía su diámetro .
La determinación de la relación indicadora del cambio de longitud del stent en función de la morfología local de la estructura vascular de la etapa a) del procedimiento de la presente invención es específica para cada tipo de stent a utilizar. En dicha relación se utilizan diferentes descriptores morfológicos de estructuras vasculares tales como el radio promedio (distancia promedio desde la linea central a los puntos en la sección transversal de la estructura vascular en ese punto de la linea central), Radio Máximo de la Esfera Inscrita (MISR por sus siglas en inglés, distancia mínima desde la línea central hasta la superficie de la estructura vascular), área de la sección transversal (área de la sección transversal en un punto de la línea central), el perímetro de la sección transversal (longitud de la curva obtenida cortando una sección transversal de la estructura vascular), el radio mínimo de la sección transversal, el radio máximo de la sección transversal, la curvatura / torsión, entre otros. Para cada dispositivo a utilizar se ha de proporcionar una función específica que relaciona dichos descriptores morfológicos con el cambio de longitud del stent .
En el procedimiento de la presente invención, la estructura vascular en la que será colocado el stent se debe proporcionar en forma de una superficie tridimensional. Dicha superficie tridimensional de la estructura vascular se puede obtener mediante cualquier procedimiento conocido en la técnica, por ejemplo, mediante segmentación de imagen de una imagen angiográfica (Hernández, M. y Frangí A.F. "Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA" Medical image analysis, 2007, 11(3), 224-241; y Antiga, L. y otros "An image-based modeling Framework for patient-specific computacional hemodynamics" Medical and biological engineering and computing, 2008, 46(11), 1097-1112) y posterior reconstrucción de la superficie (Lorensen, W.E. y Cline, H.E. "Marching Cubes: A high resolution 3D surface construction algorithm" Computer Graphics, 1987, 21, 4) . La superficie tridimensional de la estructura vascular se puede representar mediante una malla poligonal, en la que se puede ajusfar la resolución para obtener la información relevante de la morfología de la estructura vascular. Tal como se ha mencionado anteriormente, dichas técnicas son conocidas en la técnica, y se puede emplear cualquier otra técnica conocida siempre que permita obtener una superficie tridimensional de la estructura vascular en la que será colocado el stent .
Con el procedimiento de la presente invención no solo es posible predecir con anterioridad a su colocación la longitud final de un stent cuando se coloca en el interior de un vaso, sino que también es posible detectar regiones en las que podría haber mala aposición del stent en las paredes de la estructura vascular, oclusión o cobertura total o parcial de vasos ramificados y la porosidad o densidad resultantes del stent.
Con la utilización del procedimiento de la presente invención se hace posible que el radiólogo neurointervencionista pueda, por ejemplo, planificar el tratamiento y conocer la disposición final del stent antes de la realización de dicho tratamiento y, por tanto, le permite seleccionar el stent óptimo y el lugar exacto en que se colocará dicho stent. Además, el procedimiento de la presente invención puede implementarse mediante un programa de ordenador que permitiría dicha determinación de la longitud final del stent con una mayor rapidez y precisión. Por ejemplo, opcionalmente la etapa d) se puede llevar a cabo de forma continua en lugar de hacer la discretización de la línea central de la estructura vascular. En ocasiones la relación indicadora del cambio de longitud del stent de la etapa a) del procedimiento de la presente invención viene dada por el fabricante de dicho stent. Por lo tanto, no es necesario realizar dicha etapa a) . Para esta realización específica, el procedimiento para determinar la longitud final de un stent de la presente invención comprende las siguientes etapas: a) obtener la línea central tridimensional de la estructura vascular en la que será colocado el stent; b) definir la ubicación exacta del punto inicial en el que será colocado dicho stent en dicha estructura vascular ;
c) dividir dicha línea central de la estructura vascular obtenida en la etapa b) en pequeños segmentos.
d) determinar los parámetros descriptores de la morfología de dicha estructura vascular para el primer segmento que parte de dicho punto inicial en el que será colocado dicho stent en dicha estructura vascular ;
e) calcular la longitud del stent para dicho primer segmento utilizando la relación indicadora dada por el fabricante de dicho stent;
f) sustraer dicha longitud del segmento calculada en la etapa e) de la longitud nominal del stent para obtener una nueva longitud nominal; si dicha nueva longitud nominal es diferente de 0 entonces se repiten las etapas d) a f) para el segmento contiguo al anterior; si la nueva longitud nominal es aproximadamente 0; se suman todas las distancias de cada segmento, siendo esta suma la longitud final de dicho stent tras su colocación. Para una mejor comprensión, la presente invención se describe a continuación en referencia a las figuras adjuntas, que se presentan a titulo de ejemplo, y que en ningún caso pretenden ser limitativas de la presente invención .
La figura 1 muestra un detalle de una vista lateral de un posible patrón de entrecruzamiento de stent de tipo trenzado . La figura 2 muestra un detalle de un corte transversal siguiendo la dirección de un hilo del stent trenzado de la figura 1.
La figura 3 muestra un ejemplo de la relación lineal entre el cambio de la longitud del stent (eje y) y el radio de la sección transversal de la estructura vascular (eje x) .
La figura 4 muestra el camino helicoidal que siguen los hilos en un stent de tipo trenzado.
La figura 5 muestra un stent liberado, expandido y no constreñido .
La figura 6 muestra un stent en estado no expandido y constreñido. La figura 7 a) muestra la sección transversal de un vaso y las figuras 7 b) y e) muestra dos stents diferentes colocados en la misma lesión. La figura 8 muestra la superposición de un stent trenzado al vaso y su adaptación al contorno del mismo.
La figura 9 muestra el cambio de longitud de un stent real calculado mediante el procedimiento de la presente invención, en comparación con la longitud nominal de dicho stent .
La figura 1 muestra un patrón de entrecruzamiento de un stent trenzado conocido en la técnica, en el que aparece resaltado un hilo -1- y se muestra como dicho hilo -1- cruza por delante -2- y por detrás -3- de otros hilos. En la figura 1 también se muestra el ángulo de trenzado -5- y la dirección de trenzado -4-. En la figura 2 se observa una vista frontal del patrón de entrecruzamiento mostrado en la figura 1. Se observa también como el hilo marcado -1- cruza por encima -2- y por debajo -3- de otros hilos que forman dicho stent. La figura 3 muestra un gráfico en el que se representa un ejemplo de relación lineal entre el cambio de longitud del stent y el radio del tubo o vaso. Además en el gráfico se indican: la longitud nominal -6- del stent, el radio nominal -7- del stent, el radio constreñido -8- del stent, la longitud constreñida -9- del stent y la interpolación de un radio intermedio -y- para obtener el cambio de longitud -x) . La figura 4 muestra la distribución helicoidal de los hilos de un stent trenzado, incluyendo el camino de un hilo marcado -10-, la longitud del dispositivo -11-, el ángulo de trenzado -12-, el número de hilos -13- y el radio -14-.
En la figura 5 se observa un stent trenzado en estado expandido y no constreñido y se indican tanto la longitud nominal -6- como el radio nominal -7-.
La figura 6 muestra un stent trenzado en estado constreñido y se pueden observar el radio constreñido -8- y la longitud constreñida -9-. En la figura 7 a) se observa la sección transversal de un vaso en la que se pueden distinguir: la linea central del vaso -26-, el radio mínimo de la sección transversal del vaso -29-, el radio máximo de la sección transversal del vaso -30-, el área de la sección transversal del vaso -31-, el perímetro de la sección transversal del vaso -32- y el Radio Máximo de la Esfera Inscrita del vaso -33- (distancia mínima desde la línea central a la superficie de la estructura vascular) . Las figuras 7 b) y e) muestra diferentes stents colocados en la misma posición inicial del mismo vaso y detallan el hecho de utilizar un dispositivo corto -15- o largo -16- en una estructura tipo vaso -24-, la presencia de vasos ramificados -17-, la longitud nominal -18 y 20-, la longitud final -19 y 21-, la línea central del vaso -26- y la posición inicial de colocación del stent -27-.
En la figura 8 se muestra la superposición del stent trenzado sobre el vaso y, tras realizar la interpolación la adaptación del stent a la morfología del vaso -24-. En esta figura aparecen un stent trenzado en estado no constreñido -22- y un stent trenzado en estado constreñido -23-. También se puede observar las diferentes secciones -25- en las que se divide el stent según el procedimiento de la presente invención, de las que se detalla su longitud nominal -37- y su radio nominal -38- y la longitud que presentan en su forma constreñida -39-. En la figura también se pueden distinguir la línea central del vaso -26-, la posición inicial de colocación del stent -27-, la posición final del stent una vez colocado -34- y regiones de unión parcial entre el vaso y el stent -35-.
En el presente documento, los términos "estructura vascular", "vaso", "vasos" se refieren a arterias, arteriolas, venas, intestino, recto y cualquier otra estructura de tipo tubular presente en el cuerpo humano o animal, que sea susceptible de ser tratada con stents. En el presente documento, los términos "stent", "dispositivo de tipo stent" se refieren a stents trenzados, no trenzados y equivalentes. Además, el procedimiento de la presente invención abarca tanto stents de radio constante (cilindricos) como stents de radio no constante (cónicos, combinaciones de cónicos/cilindricos, entre otros ) .
La determinación de la relación indicadora del cambio de longitud del stent en función de la morfología local de la estructura vascular de la etapa a) del procedimiento de la presente invención se puede obtener experimentalmente o mediante un modelo matemático. En la forma experimental se utilizan fantomas de diferentes diámetros (con radio constante en la dirección longitudinal) que mimetizan los vasos en que se colocará el stent de interés y se miden los cambios de longitud por unidad de longitud del stent para crear una tabla de valores. Por otra parte, en el modelado matemático, tal como se observa en la figura 4, conocida la longitud de los hilos -10-, el número de hilos -13- y los diferentes radios de interés, se simula el cambio de longitud del stent resultante mediante modelado de la longitud del hilo como una espiral.
Esta relación indicadora del cambio de longitud del stent está diseñada para proporcionar el cambio en la longitud del dispositivo tipo stent dada la morfología local del vaso. Por ejemplo, se puede obtener la longitud en estado constreñido -8- con respecto a la longitud nominal -6- del stent cuando se coloca en tubos de diferentes morfologías (figura 3) . Este cambio de longitud se puede expresar por unidad de longitud, es decir, la nueva longitud de una porción del instrumento de longitud unitaria una vez colocado -9-.
Por otra parte, también se puede obtener un modelo que tiene en cuenta el cambio de longitud con respecto al radio nominal del stent cuando se coloca en tubos con diferente morfología en sus secciones transversales. Para cada stent a modelar, se tiene que conocer la relación entre la morfología del vaso y el cambio de longitud del stent (figura 3) y, por tanto, se tiene que proporcionar una función que exprese la longitud para diferentes grados de expansión. Como en el caso anterior, el cambio en la longitud se puede expresar por unidad de longitud, es decir, la nueva longitud de una porción de stent de longitud unitaria una vez colocado -9-. Tras obtener un conjunto suficientemente grande de combinaciones de morfología local del vaso frente a cambio en la longitud del stent, se crea una función continua de manera que el cambio de longitud asociado se puede obtener a partir de la morfología local del vaso. Para ser lo suficientemente grande, un conjunto como el mencionado anteriormente debería poder captar cualquier comportamiento lineal o no-lineal del cambio de longitud del stent. En el caso que dicho comportamiento sea lineal en relación a la morfología, deberían ser suficientes dos mediciones (figura 3) . En este último caso, para obtener el cambio de longitud de una porción de stent y una morfología local que no ha sido ensayada -8-, (figura 3), pero que se encuentran dentro del rango de las condiciones ensayadas -26- y -7- en la figura 3, se utiliza la interpolación de datos. Dicha interpolación se puede realizar utilizando cualquier función paramétrica (lineal, polinomial, entre otras) . El ángulo resultante entre los hilos que se cruzan también se debería medir, permitiendo así estimar el ángulo resultante de los hilos en la longitud del stent. La validación se puede realizar utilizando los mismos datos obtenidos experimentalmente para crear la función.
La consideración del sobredimensionamiento del stent en la función mencionada anteriormente puede requerir experimentación adicional, posiblemente considerando diferentes grados de sobredimensionamiento. Como resultado del sobredimensionamiento, el stent presentará un ángulo entre los hilos más obtuso a medida que se incrementa dicho sobredimensionamiento con una menor porosidad efectiva, sin afectar al radio nominal del stent. Este efecto puede ser considerado por el modelo propuesto, indicando en qué punto o zona del stent se obtiene el sobredimensionamiento y el grado del mismo (de 0 a 100%) . El sobredimensionamiento máximo del dispositivo se tiene que ensayar experimentalmente . Toda esta información es almacenada y relaciona el grado de sobredimensionamiento con el cambio de longitud.
Además, la relación indicadora del cambio de longitud del stent puede tener en cuenta consideraciones geométricas relacionadas con diferentes curvaturas y torsiones. Para ello, una opción es ensayar si la longitud del stent cambia cuando se implanta en un tubo curvado en relación a un tubo del mismo radio pero sin curvatura, es decir, recto.
Para cada uno de los radios de expansión considerados por la relación indicadora, también se puede medir el ángulo de entrecruzamiento asociado para un ángulo determinado experimentalmente o a partir de un modelo adecuado. Dicho ángulo se puede obtener para cada radio mediante interpolación a partir de los datos obtenidos experimentalmente y la información se puede utilizar para modelar el ángulo de entrecruzamiento local. En caso de que el cambio de longitud se obtenga por expansión del dispositivo a diferentes radios, el ángulo de entrecruzamiento de los hilos se puede medir para cada expansión y se puede utilizar dicha información en dicha relación indicadora del cambio de longitud del stent.
Una vez obtenida la relación indicadora del cambio de longitud del stent de la etapa a) del procedimiento de la presente invención, se procede a obtener una imagen tridimensional de la estructura vascular en la que será colocado el stent . Dicha imagen no es más que una representación tridimensional de dicha estructura vascular y se puede obtener por cualquiera de los métodos conocidos en el estado de la técnica, tal como los que se han mencionado anteriormente.
A partir de dicha imagen es posible, mediante cualquier procesador de imágenes digitales conocido en la técnica, trazar una linea central en la representación tridimensional de dicha estructura vascular en la que se colocará dicho stent. Además, es posible obtener los descriptores de la morfología local de la estructura vascular para cada punto situado en dicha línea central del vaso. Por ejemplo, la línea central del vaso descrita en la etapa b) se puede obtener por esqueletonización . En el estado de la técnica son conocidos diversos métodos de esqueletonización (Mellado, X. y otros "Flux driven medial curve extraction" The Insight Journal, 2007) .
Para la división de dicha línea central de la estructura vascular en pequeños segmentos, que corresponde con la etapa c) del procedimiento de la presente invención se pueden utilizar diferentes procedimientos para la segmentación, ya sea basados en la umbralización en la intensidad de la imagen, en el crecimiento de regiones o conjuntos de niveles (Hernández, M. y Frangí A.F. "Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA" Medical image analysis, 2007, 11(3), 224-241; y Antiga, L. y otros "An image-based modeling Framework for patient-specific computacional hemodynamics" Medical and biological engineering and computing, 2008, 46(11), 1097-1112) .
Dicha linea central se puede obtener a partir de la estructura del vaso y consiste en una sola linea correspondiente a la linea central de una rama de un árbol o grafo de vasos más complejos.
Por otra parte, dichos descriptores de la morfología local de la estructura vascular pueden ser el Radio Máximo de la Esfera Inscrita (MISR por sus siglas en inglés) del vaso (33), sección transversal del vaso (28), área de la sección transversal del vaso (31), perímetro de la sección transversal del vaso (32), radio mínimo de la sección transversal del vaso (29), radio máximo de la sección transversal del vaso (30) o cualquier combinación de los mismos. Un experto en la materia entenderá que es posible utilizar otros parámetros descriptores de la morfología local de la estructura vascular en la que se colocará el stent, siempre que éstos afecten a la longitud final del mismo tras su colocación.
En el estado de la técnica se conocen diversos procedimientos para obtener los descriptores de la morfología local de los vasos (Piccinelli, M. y otros "A Framework for geometric analysis of vascular structures: application to cerebral aneurysms" IEEE transactions on medical Imaging, 2009, 28(8), 1141-1155). La diferencia entre la longitud nominal del stent (6) y su longitud final (8) corresponde al cambio en la longitud del stent cuando éste se coloca en el vaso específico del paciente y en la localización inicial deseada (27) . Una ventaja adicional del procedimiento de la presente invención es que permite identificar las regiones en las que el stent no está totalmente unido a las paredes del vaso (35) . Esta identificación se puede realizar mediante la verificación de que el radio del stent es pequeño para la morfología local del vaso. Tales regiones pueden presentar un riesgo de provocar la migración del dispositivo .
El procedimiento de la presente invención se puede llevar a cabo con la ayuda de uno o varios programas de ordenador, es decir, como un procedimiento implementado por ordenador .
En una realización preferente el procedimiento de la presente invención se utiliza en el campo médico o veterinario para la predicción de la longitud de stents cuando dichos stents se colocan en el interior de cuerpos vivos .
EJEMPLOS
Ejemplo 1
Determinación experimental de la relación indicadora del cambio de longitud de un stent trenzado (stent desviador de flujo Silk, Balt Extrusión, Francia) de radio constante en función del radio de la estructura vascular.
En la siguiente tabla 1 se muestra el comportamiento del cambio de longitud de dicho stent con respecto al radio de la estructura vascular. Para ello, se fijaron diferentes valores de radio del vaso y se determinó dicho cambio de longitud .
Tabla 1.
Figure imgf000024_0001
Como se observa en la tabla 1, el stent posee una longitud nominal de 24,00 mm cuando tiene su radio nominal (2,25 mm) . A medida que el radio de la estructura vascular disminuye, el stent aumenta su longitud de una forma lineal, expresado como porcentaje del cambio en relación con su longitud nominal. Por tanto, el comportamiento de la longitud final del stent puede ajustarse a una ecuación lineal mediante cualquier programa estadístico conocido en la técnica.
Ejemplo 2
Determinación experimental de la relación indicadora del cambio de longitud de un stent trenzado (stent desviador de flujo Silk, Balt Extrusión, Francia) de radio constante en función del perímetro de la sección transversal del vaso .
En la siguiente tabla 2 se muestra el comportamiento del cambio de longitud de dicho stent con respecto al perímetro de la sección transversal del vaso. Para ello, se fijaron diferentes valores de perímetro del vaso y se determinó dicho cambio de longitud. Tabla 2.
Figure imgf000025_0001
Como se observa en la tabla 2, el stent posee una longitud nominal de 24,00 mm cuando tiene su perímetro nominal (2,25 mm) . A medida que el perímetro de la estructura vascular disminuye, el stent aumenta su longitud de una forma lineal, expresado como porcentaje del cambio en relación con su longitud nominal. Por tanto, el comportamiento de la longitud final del stent puede ajustarse a una ecuación lineal mediante cualquier programa estadístico conocido en la técnica.
Ejemplo 3
Determinación experimental de la relación indicadora del cambio de longitud de un stent trenzado (stent desviador de flujo Silk, Balt Extrusión, Francia) de radio constante en función del perímetro y el área de la sección transversal del vaso .
Tabla 3.
Area sección transversal
[mm2]
14, 00 10,00 6,00 2,00
14, 00 0 5 8 12
Perímetro 11, 00 18 23 45 49
[mm] 8, 00 30 42 59 70
5, 00 34 53 78 100 Como se observa en la tabla 3, en este caso es necesario fijar dos parámetros descriptores de la estructura vascular (área de la sección transversal y perímetro) para obtener el porcentaje del cambio de la longitud del stent en relación con su longitud nominal. Por tanto, el comportamiento de la longitud final del stent puede ajustarse a una ecuación de superficie mediante cualquier programa estadístico conocido en la técnica.
Ejemplo 4
Determinación experimental de la relación indicadora del cambio de longitud de un stent no trenzado (stent Enterprise cortado con láser, Cordis, Estados Unidos) de radio constante en función del radio de la estructura vascular .
En la siguiente tabla 4 se muestra el comportamiento del cambio de longitud del stent Enterprise cortado con láser (Cordis, Estados Unidos) con respecto al radio de la estructura vascular. Para ello, se fijaron diferentes valores de radio del vaso y se determinó dicho cambio de longitud .
Tabla 4.
% de
cambio de
longitud
Radio [mm] del stent
Nominal 2,25 0
2,00 2
1, 75 5
1,50 7 Como se observa en la tabla 4, a medida que el radio de la estructura vascular disminuye, el stent aumenta su longitud de una forma lineal, expresado como porcentaje del cambio en relación con su longitud nominal. Por tanto, el comportamiento de la longitud final del stent puede ajustarse a una ecuación lineal mediante cualquier programa estadístico conocido en la técnica.
Ejemplo 5
Determinación experimental de la relación indicadora del cambio de longitud de un stent no trenzado (stent CoreValve, Medtronic, Estados Unidos) de radio variable en función del radio de la estructura vascular.
Tabla 5.
% de cambio de
longitud del
Radio [mm] stent
Nominal 22,50 0
21,00 3
20,00 5
17,50 8
% de cambio de
longitud del
Radio [mm] stent
Nominal 25, 00 0
23,50 4
22,50 6
20,00 9
% de cambio de
longitud del
Radio [mm] stent
Nominal 27,50 0
26,00 4
25, 00 6
22,50 9 Como se observa en la tabla 5, este experimento se realizó para cada uno de los radios nominales del stent (CoreValve, Medtronic, Estados Unidos), al tratarse de un stent de radio nominal variable. El procedimiento de obtención del comportamiento de la longitud final del stent se realiza de la misma manera que en el Ejemplo 1, utilizando cualquier programa estadístico conocido en la técnica . Ejemplo 6
Obtención de los descriptores morfológicos a partir de una imagen tridimensional de una estructura vascular. A partir de una imagen tridimensional hecha con un equipo Integris Allura System (Philips Healthcare, Best, Países Bajos) a una estructura vascular del sector intracraneal de la carótida interna derecha; se obtuvo una línea central mediante el programa Vascular Modelling Toolkit (VMTK) y se obtuvieron los parámetros morfológicos que se muestran en la tabla 6, tales como radio máximo de la esfera inscrita, curvatura, torsión, área de la sección transversal, radio promedio, radio máximo, radio mínimo, perímetro de la sección transversal, entre otros, para cada valor de posición longitudinal sobre dicha línea central .
A partir de dichos parámetros morfológicos mostrados en la tabla 6, se puede utilizar un programa estadístico conocido en la técnica, que permite obtener una relación entre uno o más parámetros morfológicos de interés y la posición en la estructura vascular. Tabla 6.
Figure imgf000029_0001
Ejemplo 7.
Uso del procedimiento de la presente invención para calcular la longitud final real de un stent trenzado (stent desviador de flujo Silk, Balt Extrusión, Francia) .
Se calculó la longitud final del stent utilizado en el ejemplo 1, en una geometría real de una estructura vascular en la que dicho stent será implantado. En toda la longitud de la estructura vascular la relación del cambio de longitud de dicho stent fue de hasta 1,2 veces su longitud nominal. Los resultados se muestran en la figura 9.

Claims

REIVINDICACIONES
1. Procedimiento para determinar la longitud final de un stent con anterioridad a ser colocado en una estructura vascular que comprende las siguientes etapas: a) obtener una imagen tridimensional de la estructura vascular en la que será colocado el stent por cualquiera de los métodos conocidos en el estado de la técnica, trazar una linea central en la representación tridimensional de dicha estructura vascular, definir la ubicación exacta del punto inicial en el que será colocado dicho stent en dicha estructura vascular y dividir dicha linea central de la estructura vascular en pequeños segmentos;
b) medir en la imagen tridimensional los parámetros descriptores de la morfología de dicha estructura vascular para el primer segmento que parte de dicho punto inicial en el que será colocado dicho stent en dicha estructura vascular;
c) calcular la longitud del stent para dicho primer segmento utilizando una relación indicadora del cambio de longitud del stent en función de la morfología local de la estructura vascular;
d) sustraer dicha longitud del segmento calculada en la etapa c) de la longitud nominal del stent para obtener una nueva longitud nominal; si dicha nueva longitud nominal es diferente de 0 entonces se repiten las etapas b) a d) para el segmento contiguo al anterior; si la nueva longitud nominal es aproximadamente 0; se suman todas las distancias de cada segmento, siendo esta suma la longitud final de dicho stent tras su colocación.
2. Procedimiento, según la reivindicación 1, caracterizado porque dicha relación indicadora del cambio de longitud del stent se obtiene experimentalmente .
3. Procedimiento, según la reivindicación 1, caracterizado porque dicha relación indicadora del cambio de longitud del stent se obtiene por modelado matemático.
4. Procedimiento, según cualquiera de las reivindicaciones 1 a 3, en el que dichos parámetros descriptores de la morfología vascular son el radio promedio, radio máximo de la esfera inscrita, área de la sección transversal, el perímetro de la sección transversal, el radio mínimo de la sección transversal, el radio máximo de la sección transversal, la curvatura / torsión o cualquier combinación de los mismos.
5. Procedimiento, según cualquiera de las reivindicaciones 1 a 4, en el que dicho procedimiento se lleva a cabo con la ayuda de uno o varios programas de ordenador.
6. Procedimiento, según la reivindicación 1, caracterizado porque dicha relación indicadora del cambio de longitud del stent viene dada por el fabricante de dicho stent.
PCT/ES2014/070758 2013-10-31 2014-10-03 Procedimiento para la determinación de la longitud final de stents antes de su colocación WO2015063352A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14859121.7A EP3025638B1 (en) 2013-10-31 2014-10-03 Method for determining the final length of stents before the positioning thereof
US14/911,938 US10176566B2 (en) 2013-10-31 2014-10-03 Method for determining the final length of stents before the positioning thereof
ES14859121T ES2961921T3 (es) 2013-10-31 2014-10-03 Procedimiento para determinar la longitud final de stents antes de su posicionamiento

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201331605 2013-10-31
ES201331605A ES2459244B1 (es) 2013-10-31 2013-10-31 Procedimiento para la determinación de la longitud final de stents antes de su colocación

Publications (1)

Publication Number Publication Date
WO2015063352A1 true WO2015063352A1 (es) 2015-05-07

Family

ID=50626177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070758 WO2015063352A1 (es) 2013-10-31 2014-10-03 Procedimiento para la determinación de la longitud final de stents antes de su colocación

Country Status (4)

Country Link
US (1) US10176566B2 (es)
EP (1) EP3025638B1 (es)
ES (2) ES2459244B1 (es)
WO (1) WO2015063352A1 (es)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150305631A1 (en) * 2014-04-25 2015-10-29 Medtronic, Inc. Real-Time Relationship Between Geometries of an Instrument and a Structure
ES2578523B1 (es) 2015-01-26 2017-12-28 Galgo Medical, Sl Procedimiento, sistema y programa de ordenador para determinar la porosidad de una estructura porosa flexible cuando es sometida a deformación
JP6548199B2 (ja) * 2016-02-16 2019-07-24 株式会社Pentas ステントの長さ予測装置、ステントの長さ予測プログラム、およびステントの長さ予測方法
JP6713092B2 (ja) 2017-09-27 2020-06-24 富士フイルム株式会社 仮想ステント設置装置、方法およびプログラム
FR3075447B1 (fr) * 2017-12-19 2020-06-12 Sim&Cure Procede de determination du positionnement en position deployee d'un dispositif medical implantable apres expansion dans une artere
DE102018102019A1 (de) 2018-01-30 2019-08-01 Otto-Von-Guericke-Universität Magdeburg Verfahren zur Visualisierung einer voraussichtlichen Landungszone eines vaskulären Stents
CN109147031B (zh) * 2018-07-10 2023-05-23 华南理工大学 一种基于s2层螺旋微纤的木材纤维同心椭圆模型建模方法
US11229367B2 (en) 2019-07-18 2022-01-25 Ischemaview, Inc. Systems and methods for analytical comparison and monitoring of aneurysms
US11328413B2 (en) 2019-07-18 2022-05-10 Ischemaview, Inc. Systems and methods for analytical detection of aneurysms
US20210022805A1 (en) * 2019-07-23 2021-01-28 Ischemaview, Inc. Systems and methods for simulating braided stent deployments
EP3791823A1 (en) * 2019-09-13 2021-03-17 Siemens Healthcare GmbH Expansion parameters of a stent with braided struts
WO2021140042A1 (en) * 2020-01-06 2021-07-15 Koninklijke Philips N.V. Intraluminal imaging based detection and visualization of intraluminal treatment anomalies
EP4111461A1 (en) * 2020-02-28 2023-01-04 Galgo Medical, SL Method for calculating the proximal and distal ends of an interlaced device before being positioned in a vascular structure and computer programs thereof
CN111743625B (zh) * 2020-07-01 2021-09-28 杭州脉流科技有限公司 用于颅内动脉瘤的支架型号匹配方法、装置以及支架模拟显示方法
CN111785381B (zh) * 2020-07-27 2024-03-29 北京市神经外科研究所 一种支架模拟方法、装置以及设备
EP4109397A1 (en) * 2021-06-23 2022-12-28 Koninklijke Philips N.V. Identifying stent deformations
AU2022425503A1 (en) 2021-12-31 2024-07-18 Oxford Heartbeat Ltd. Method of simulating the fitting of implantable medical devices inside a patient's anatomy
CN116172645B (zh) * 2023-05-04 2023-07-25 杭州脉流科技有限公司 编织支架的型号推荐方法和计算机设备
CN116172697B (zh) * 2023-05-04 2023-06-27 杭州脉流科技有限公司 对植入血管的支架进行拖拉后长度估计方法、装置及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010468A (en) 1998-03-05 2000-01-04 The Discovery Group, Llc Foot flexion device
US6083257A (en) 1995-11-01 2000-07-04 Biocompatibles Limited Braided stent
JP2001079097A (ja) * 1999-09-10 2001-03-27 Shinichi Urayama ステントグラフト設計装置、ステントグラフト設計方法およびステントグラフト設計支援プログラムを記録したコンピュータ読み取り可能な記録媒体
WO2006093776A1 (en) 2005-02-28 2006-09-08 Boston Scientific Limited Systems and methods for estimating the length and position of a stent to be applied within a patient
US20070135707A1 (en) 2005-12-09 2007-06-14 Thomas Redel Computerized workflow method for stent planning and stenting procedure
WO2008041154A2 (en) * 2006-10-06 2008-04-10 Koninklijke Philips Electronics N. V. Spatial characterization of a structure located within an object by identifying 2d representations of the structure within section planes
US20110071404A1 (en) * 2009-09-23 2011-03-24 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121516A2 (en) 2010-04-01 2011-10-06 Koninklijke Philips Electronics N.V. Virtual stent deployment
WO2012170448A1 (en) 2011-06-05 2012-12-13 The Research Foundation Of State University Of New York System and method for simulating deployment configuration of an expandable device
DE102012217268A1 (de) 2012-09-25 2013-09-19 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Unterstützung einer Planung einer Stentimplantation
US10568586B2 (en) * 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083257A (en) 1995-11-01 2000-07-04 Biocompatibles Limited Braided stent
US6010468A (en) 1998-03-05 2000-01-04 The Discovery Group, Llc Foot flexion device
JP2001079097A (ja) * 1999-09-10 2001-03-27 Shinichi Urayama ステントグラフト設計装置、ステントグラフト設計方法およびステントグラフト設計支援プログラムを記録したコンピュータ読み取り可能な記録媒体
WO2006093776A1 (en) 2005-02-28 2006-09-08 Boston Scientific Limited Systems and methods for estimating the length and position of a stent to be applied within a patient
US20070135707A1 (en) 2005-12-09 2007-06-14 Thomas Redel Computerized workflow method for stent planning and stenting procedure
WO2008041154A2 (en) * 2006-10-06 2008-04-10 Koninklijke Philips Electronics N. V. Spatial characterization of a structure located within an object by identifying 2d representations of the structure within section planes
US20110071404A1 (en) * 2009-09-23 2011-03-24 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods
WO2011038044A2 (en) 2009-09-23 2011-03-31 Lightlab Imaging, Inc. Lumen morphology and vascular resistance measurements data collection systems, apparatus and methods

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ANTIGUA, L. ET AL.: "An image-based modeling framework for patient-specific computational hemodynamics", MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING, vol. 46, no. 11, 2008, pages 1097 - 1112
CEBRAL, J.R.; LOHNER, R: "Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 24, no. 4, 2005, pages 468 - 476, XP001240181, DOI: doi:10.1109/TMI.2005.844172
HERNÁNDEZ, M; FRANGI, A.F.: "Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA", MEDICAL IMAGE ANALYSIS, vol. 11, no. 3, 2007, pages 224 - 241, XP022089779, DOI: doi:10.1016/j.media.2007.01.002
HERNÁNDEZ, M; FRANGI, A.F.: "Non-parametric geodesic active regions; method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA", MEDICAL IMAGE ANALYSIS, vol. 11, no. 3, 2007, pages 224 - 241, XP022089779, DOI: doi:10.1016/j.media.2007.01.002
LARRABIDE, I. ET AL.: "Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting", MEDICAL IMAGE ANALYSIS, vol. 16, no. 3, 2012, pages 721 - 730, XP055275651, DOI: doi:10.1016/j.media.2010.04.009
LARRABIDE, I. ET AL.: "Fast virtual deployment of self-expandable stents: Method and in vitro evaluation for intracranial aneurysmal stenting.", MEDICAL IMAGE ANALYSIS., vol. 16, no. 3, April 2012 (2012-04-01), pages 721 - 730, XP055275651 *
LORENSEN, W.E; CLINE, H.E: "Marching Cubes: A high resolution 3D surface construction algorithm", COMPUTER GRAPHICS, vol. 21, 1987, pages 4
MELLADO, X. ET AL.: "Flux driven medial curve extraction", THE INSIGHT JOURNAL, 2007
MORLACCHI, S ET AL.: "Patient-specific simulations of stenting Procedures in coronary bifurcations: two clinical cases.", MEDICAL ENGINEERING & PHYSICS., vol. 35, no. 9, September 2013 (2013-09-01), pages 1272 - 1281, XP028682314 *
PICCINELLI, M. ET AL.: "A Framework for geometric analysis of vascular structures: application to cerebral aneurysms", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 28, no. 8, 2009, pages 1141 - 1155, XP011257427

Also Published As

Publication number Publication date
US20160232659A1 (en) 2016-08-11
US10176566B2 (en) 2019-01-08
ES2459244B1 (es) 2014-11-14
EP3025638B1 (en) 2023-09-06
EP3025638A1 (en) 2016-06-01
EP3025638A4 (en) 2017-05-17
ES2961921T3 (es) 2024-03-14
ES2459244A1 (es) 2014-05-08

Similar Documents

Publication Publication Date Title
ES2459244B1 (es) Procedimiento para la determinación de la longitud final de stents antes de su colocación
US11615531B2 (en) Devices and methods for anatomic mapping for prosthetic implants
ES2979225T3 (es) Ensamblaje para acoplar un implante protésico a un cuerpo fenestrado
ES2886029T3 (es) Métodos para el mapeo anatómico de implantes protésicos
JP5487122B2 (ja) 生体の管状器官に使用するステント
US20120310611A1 (en) System and method for simulating deployment configuration of an expandable device
ES2944456T3 (es) Procedimiento implementado por ordenador, sistema y programa de ordenador para determinar la porosidad de una estructura porosa flexible cuando es sometida a deformación
ES2971711T3 (es) Procedimiento de determinación del posicionamiento en posición desplegada de un dispositivo médico implantable tras su expansión en una estructura vascular
Mühl-Benninghaus et al. Preclinical evaluation of the Accero stent: flow remodelling effect on aneurysm, vessel reaction and side branch patency
Egger et al. Determination, calculation and representation of the upper and lower sealing zones during virtual stenting of aneurysms
Conti Finite Element Analysis of Carotid Artery Stenting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014859121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14911938

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE