WO2015060029A1 - Polylactic acid-containing thermoplastic resin composition and molded product thereof - Google Patents

Polylactic acid-containing thermoplastic resin composition and molded product thereof Download PDF

Info

Publication number
WO2015060029A1
WO2015060029A1 PCT/JP2014/073735 JP2014073735W WO2015060029A1 WO 2015060029 A1 WO2015060029 A1 WO 2015060029A1 JP 2014073735 W JP2014073735 W JP 2014073735W WO 2015060029 A1 WO2015060029 A1 WO 2015060029A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polylactic acid
rubber
parts
thermoplastic resin
Prior art date
Application number
PCT/JP2014/073735
Other languages
French (fr)
Japanese (ja)
Inventor
川口 英一郎
恭之 広本
Original Assignee
ユーエムジー・エービーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーエムジー・エービーエス株式会社 filed Critical ユーエムジー・エービーエス株式会社
Priority to CN201480043004.6A priority Critical patent/CN105452377B/en
Publication of WO2015060029A1 publication Critical patent/WO2015060029A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a polylactic acid-based thermoplastic resin composition capable of providing a molded article having a short molding cycle and excellent mechanical properties such as impact resistance, heat resistance, and appearance, and the polylactic acid-based thermoplastic resin composition It is related with the molded article formed by shape
  • plastics using biomass were developed from those based on conventional petroleum. Initially, these attracted attention as biodegradable resins, but recently their significance has been reviewed as plant-based plastics.
  • PLA polylactic acid resin
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-37987 describes a method using a thermoplastic elastomer.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-226054 describes a method of blending a modified conjugated diene polymer.
  • Patent Document 3 Japanese Patent Laid-Open No. 2009-256403 describes a method of blending a block copolymer of styrene and a methacrylic acid ester. These have the effect of improving impact strength.
  • the modification is performed in a state where the mold temperature is low and polylactic acid is in an amorphous state, and none of them is sufficiently improved in heat resistance as compared with existing general-purpose plastics.
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-162867
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-272679
  • polylactic acid is crystallized and heat resistance is improved by adding a crystal nucleating agent. Is described. However, although the crystallization is promoted by the addition of the crystal nucleating agent, the crystallization time may be prolonged, and the impact strength and the like are not improved.
  • Patent Document 6 Japanese Patent Laid-Open No. 2008-246554 discloses molding by a heat and cool method in which the mold temperature is raised and lowered rapidly after molding. However, this is a special molding method, which requires a long molding time and is not a general production method.
  • the present invention provides a polylactic acid-based thermoplastic resin composition that can be molded with a practically sufficient molding cycle, and that can provide a molded product having excellent mechanical properties such as impact resistance, heat resistance, and weld appearance. And it aims at providing the molded article formed by shape
  • the present inventors crystallized polylactic acid resin in a short time to impart heat resistance, and even when polylactic acid is crystallized, it has high impact resistance and the like.
  • the present inventors have found a resin composition that is kept in a state and excellent in appearance of a molded product, and has reached the present invention.
  • the gist of the present invention is that 100 parts by weight of a polylactic acid-based thermoplastic resin component containing 50 to 95 parts by weight of a polylactic acid resin (A) and 5 to 50 parts by weight of a rubber-reinforced resin (B) (however, polylactic acid resin ( A) and rubber-reinforced resin (B) in total 100 parts by weight)) 0.1 to 3 parts by weight of nucleating agent (C), 1 to 15 parts by weight of filler (D), and dispersant (E) A polylactic acid-based thermoplastic resin composition containing 0.03 to 3 parts by weight, wherein the rubber-reinforced resin (B) is a rubber-containing graft copolymer (b-1) 30 to 100 A polylactic acid-based thermoplastic resin composition characterized by comprising 0 to 70% by weight of a rigid (co) polymer (b-2) by weight.
  • the filler (D) is more preferably not in the shape of needles, and the shape of the fillers in the shape of needles is preferably 7 parts by weight or less with respect to 100 parts by weight of the polylactic acid-based thermoplastic resin component.
  • Another gist of the present invention resides in a molded article formed by molding the polylactic acid-based thermoplastic resin composition of the present invention.
  • the polylactic acid-based thermoplastic resin composition of the present invention is excellent in the surface appearance of a molded product obtained by molding it.
  • This molded article has a good balance of mechanical strength such as impact strength, rigidity, and heat resistance, and has a short molding cycle. Therefore, this composition is suitable for use as various cases and structural members.
  • the polylactic acid-based thermoplastic resin composition of the present invention can contribute to the reduction of environmental burden by expanding the use of polylactic acid resin, which is a plant-based resin, and promoting the practice of the philosophy of carbon neutral.
  • (co) polymerization means both “polymerization” and “copolymerization”.
  • (Meth) acryl means both “acryl” and “methacryl”.
  • the weight average molecular weight (Mw) of each is measured by dissolving in tetrahydrofuran (THF) with gel permeation chromatography (GPC) and converted to polystyrene (PS).
  • the polylactic acid-based thermoplastic resin component is composed of a polylactic acid resin (A) and a rubber-reinforced resin (B).
  • the rubber-reinforced resin (B) may be composed only of the rubber-containing graft copolymer (b-1).
  • the polylactic acid resin (A) can be obtained by known means such as a method of directly dehydrating condensation polymerization of lactic acid or a method of ring-opening polymerization of lactide.
  • polylactic acid resin There are three types of optical isomers in polylactic acid resin: L-form, D-form, and DL-form. Some of the commercially available polylactic acid resins have a purity of L form close to 100%. However, the polylactic acid resin (A) used in the present invention has an optical purity of L form or D form from the viewpoint of crystallization. Is preferably 98% or more.
  • the polylactic acid resin (A) may be a copolymer containing other copolymer components.
  • copolymer components contained in the polylactic acid resin (A) include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethano Glycol compounds such as benzene, neopentyl glycol, glycerin, pentaerythritol, bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid , Malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, bis (p
  • the molecular weight and molecular weight distribution of the polylactic acid resin (A) are not particularly limited as long as it can be practically processed.
  • the weight average molecular weight of the polylactic acid resin (A) is usually 10,000 or more, preferably 50,000 or more, and more preferably 100,000 or more.
  • the upper limit of the weight average molecular weight of the polylactic acid resin (A) is not particularly limited, but is usually 400,000 or less.
  • the molecular weight of the polylactic acid resin (A) can be measured by GPC (solvent THF) as described above.
  • GPC solvent THF
  • the polylactic acid resin (A) is in the form of pellets, it may be difficult to dissolve in THF.
  • the polymer component is precipitated using methanol and the polymer component is dried.
  • the blending amount of the polylactic acid resin (A) in the polylactic acid-based thermoplastic resin component is such that the polylactic acid resin (A) and rubber-reinforced resin (B ) And 50 to 95 parts by weight, preferably 60 to 95 parts by weight, more preferably 70 to 85 parts by weight. If the blending amount of the polylactic acid resin (A) is less than this range, the object of the present invention for effectively using the polylactic acid resin cannot be achieved, and if more, the polylactic acid-based thermoplastic resin having excellent impact resistance. A molded product cannot be obtained.
  • Polylactic acid resin (A) may be used alone or in combination of two or more.
  • polylactic acid resin (A) examples include “NATUREWORKS” manufactured by Nature Works and “Levoda” manufactured by China Marine Biomaterials Company.
  • the rubber-reinforced resin (B) is composed of 30 to 100% by weight of a rubber-containing graft copolymer (b-1) obtained by graft polymerization of a hard (co) polymer to a rubbery polymer, and a hard (co) polymer (b-2). ) 0 to 70% by weight (total of 100% by weight of (b-1) and (b-2)).
  • the rubber-containing graft copolymer (b-1) is a rubber-based polymer such as vinyl cyanide monomer, aromatic vinyl monomer, (meth) acrylic acid ester monomer, etc. It is obtained by graft polymerization of at least one kind of body, and generally has a structure in which a hard (co) polymer is graft-polymerized on a rubbery polymer expressed by ABS, ASA, AES, MBS or the like.
  • the rubbery polymer forming the rubber-containing graft copolymer (b-1) is preferably a butadiene rubber such as polybutadiene, styrene / butadiene copolymer, acrylate ester / butadiene copolymer, or styrene / isoprene.
  • Conjugated diene rubbers such as copolymers; Acrylic rubbers such as polybutyl acrylate; Olefin rubbers such as ethylene / propylene copolymers; Silicone rubbers such as polyorganosiloxane; Polybutadiene is particularly preferable from the viewpoint.
  • These rubbery polymers can be used singly or in combination of two or more.
  • This rubbery polymer can be polymerized from a monomer.
  • the rubbery polymer may have a core / shell structure, for example, a structure in which polybutadiene is used as a core and acrylic acid ester is used as a shell.
  • the gel content of the rubbery polymer is preferably 50 to 99% by weight, more preferably 60 to 95% by weight, and particularly preferably 70 to 85% by weight. When the gel content is within this range, the properties of the resulting polylactic acid-based thermoplastic resin composition, particularly the impact strength, can be improved.
  • the weighed rubbery polymer was dissolved in a suitable solvent at room temperature (23 ° C.) over 20 hours, and then fractionated with a 100 mesh wire mesh, The insoluble matter remaining on the wire mesh is dried at 60 ° C. for 24 hours and then weighed. The ratio (% by weight) of the insoluble matter with respect to the rubber polymer before fractionation is determined and used as the gel content of the rubber polymer.
  • the solvent used for dissolving the rubber polymer is preferably toluene for polybutadiene and acetone for polybutyl acrylate.
  • the particle size of the rubbery polymer is preferably 0.1 to 1 ⁇ m, more preferably 0.2 to 0.5 ⁇ m, but is not limited thereto.
  • the average particle diameter of the rubbery polymer can be measured by an optical method before graft polymerization. After the graft polymerization, the average particle diameter can be calculated using a transmission electron microscope (TEM) after dyeing the rubber polymer with a dyeing agent.
  • TEM transmission electron microscope
  • the rubber-containing graft copolymer (b-1) is preferably obtained by graft polymerization of 60 to 20% by weight of the graft-polymerizable monomer component in the presence of 40 to 80% by weight of the above rubbery polymer. (However, the total of the rubbery polymer and the monomer mixture is 100% by weight).
  • the rubber polymer is at least the above lower limit, the resulting polylactic acid-based thermoplastic resin molded article has good impact resistance.
  • the rubbery polymer is not more than the above upper limit value, it is possible to prevent the impact resistance and fluidity from being lowered.
  • the monomer component that can be graft-polymerized to the rubbery polymer is preferably a vinyl cyanide monomer, an aromatic vinyl monomer, a methacrylic acid ester monomer, an acrylic acid ester monomer, One or more maleimide compounds.
  • the vinyl cyanide monomer is preferably acrylonitrile, methacrylonitrile or the like, and acrylonitrile is particularly preferable.
  • the aromatic vinyl monomer is preferably styrene, ⁇ -methylstyrene, p-methylstyrene, bromostyrene, etc., and particularly preferably styrene or ⁇ -methylstyrene.
  • the methacrylic acid ester monomer is preferably methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and derivatives thereof, and methyl methacrylate is particularly preferable.
  • the acrylic acid ester monomer is preferably methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and derivatives thereof, and methyl acrylate is particularly preferable.
  • the maleimide compound is preferably N-phenylmaleimide, N-cyclohexylmaleimide or the like.
  • These monomer components may include a monomer modified with a functional group.
  • a monomer modified with a functional group examples include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid. These may be used alone or in combination of two or more.
  • the proportion of the monomer modified with a functional group is preferably 30% by weight or less, particularly preferably 10% by weight or less, based on 100% by weight of the total monomer components.
  • the monomer component to be grafted to the rubbery polymer of the rubber-containing graft copolymer (b-1) is, in particular, a combination of a vinyl cyanide monomer and an aromatic vinyl monomer among the above monomers.
  • a combination of a methacrylic acid ester monomer and an acrylic acid ester monomer is preferable.
  • the vinyl cyanide monomer is preferably It is acrylonitrile and the aromatic vinyl monomer is preferably styrene.
  • the weight composition ratio of the vinyl cyanide monomer and the aromatic vinyl monomer is preferably in the range of 20/80 to 35/65, more preferably 25/75 to 30/70. By being in this range, dispersibility and thermal stability are improved.
  • the methacrylic ester monomer is preferably methyl methacrylate
  • the acrylate monomer is preferably methyl acrylate.
  • the weight composition ratio of the methacrylic ester monomer to the acrylate ester monomer is preferably 100/0 to 50/50, more preferably in the range of 99/1 to 80/20. By being in this range, the cooling time can be shortened while maintaining the weld appearance, and the moldability becomes good.
  • the rubber-reinforced resin (B) comprises only the rubber-containing graft copolymer (b-1) and the rubber-containing graft copolymer (b-1) contains a (meth) acrylic resin component
  • the rubber-containing graft The monomer component grafted to the rubbery polymer of the copolymer (b-1) preferably contains a (meth) acrylate monomer.
  • the weight average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) is preferably 50,000 to 600,000, more preferably 50,000 to 550,000, still more preferably 100,000 to 450,000.
  • the weight-average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) is at least the above lower limit, the resulting polylactic acid-based thermoplastic resin molded article has sufficient impact resistance. .
  • the weight average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) is not more than the above upper limit, the processability of the polylactic acid-based thermoplastic resin composition becomes good.
  • the acetone-soluble component corresponds to a polymer product of a monomer that is not graft-polymerized to the rubbery polymer that is generated when the monomer is graft-polymerized to the rubbery polymer.
  • the graft ratio of the rubber-containing graft copolymer (b-1) ((acetone insoluble matter weight / rubber polymer weight-1) ⁇ 100) is preferably 15 to 120% by weight, and preferably 20 to 85% by weight. It is more preferable that When the graft ratio of the rubber-containing graft copolymer (b-1) is at least the above lower limit, the dispersibility and impact strength of the rubber-like polymer are improved. When the graft ratio of the rubber-containing graft copolymer (b-1) is not more than the above upper limit value, the impact resistance strength and moldability are improved.
  • the grafted copolymer may have a structure occluded not only inside but also inside the rubbery polymer.
  • Graft polymerization can be performed by emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization, and may be a method combining these polymerization methods.
  • rubber-containing graft copolymer (b-1) two or more kinds of rubber-containing graft copolymers having different polymerization methods and component compositions may be mixed and used.
  • the monomer component used in the hard (co) polymer (b-2) is preferably one or more of the monomers introduced in the rubber-containing graft copolymer (b-1). is there.
  • aromatic vinyl monomers, vinyl cyanide monomers and (meth) acrylic acid ester monomers, and other monomers copolymerizable with these monomers used as necessary The body can be used.
  • the ratio of the monomer component forming the hard (co) polymer (b-2), other monomers that can be copolymerized, etc. are described in the rubber-containing graft copolymer (b-1). Can be used within the range described in.
  • the weight average molecular weight (Mw) of the hard (co) polymer (b-2) is preferably 30,000 to 300,000, more preferably 50,000 to 250,000.
  • Mw weight average molecular weight of the hard copolymer
  • the rubber-reinforced resin (B) may be only the rubber-containing graft copolymer (b-1), and contains the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2). It may be. By blending the hard (co) polymer (b-2), characteristics such as heat resistance and fluidity can be improved.
  • the amount of the hard (co) polymer (b-2) is the sum of the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2), which are the rubber-reinforced resin (B). When it exceeds 70% by weight with respect to 100% by weight, the rubber content in the rubber-reinforced resin (B) is reduced, so that the impact strength is lowered.
  • the blending amount of the hard (co) polymer (b-2) is such that the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2) of the rubber-reinforced resin (B) 0 to 70% by weight, preferably 0 to 50% by weight, and more preferably 0 to 30% by weight in a total of 100% by weight.
  • the weight average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2) Is 50,000 to 600,000, particularly 50,000 to 550,000, especially 100,000 to 450,000 as shown in the explanation of the rubber-containing graft copolymer (b-1). Is preferred.
  • the weight average molecular weight of the acetone-soluble component is not less than the above lower limit, the resulting polylactic acid-based thermoplastic resin molded article has good impact resistance, and if it is not more than the above-described upper limit, the polylactic acid-based thermoplastic resin composition Good formability of the product.
  • hard (co) polymer (b-2) one kind may be used alone, or two or more kinds having different compositions and molecular weights may be mixed and used.
  • the content of the rubbery polymer in the mixture is preferably 5 to 80% by weight, particularly preferably 10 to 70% by weight.
  • the content of the rubbery polymer in the rubber reinforced resin (B) is not less than the above lower limit value, sufficient impact resistance can be obtained. If the rubber-reinforced polymer (B) has an excessive amount of the rubbery polymer, the impact strength may be lowered.
  • the content of the rubbery polymer in the rubber reinforced resin (B) can be measured by using an infrared spectrometer.
  • a (meth) acrylic resin component As a monomer component used in the rubber-containing graft copolymer (b-1) and / or the hard (co) polymer (b-2) of the rubber-reinforced resin (B), a (meth) acrylic resin component is included. You may go out. By including the (meth) acrylic resin component in the rubber reinforced resin (B), effects such as improvement in impact resistance and reduction in cooling time are further improved.
  • (Meth) acrylic resin component refers to (meth) acrylonitrile, among the above-mentioned monomer components exemplified as the monomer component grafted to the rubbery polymer of the rubber-containing graft copolymer (b-1). And (meth) acrylic acid ester monomers.
  • the (meth) acrylic resin component is preferably a (meth) acrylic acid ester monomer.
  • the content of the (meth) acrylic resin component in the rubber-reinforced resin (B) is preferably 5 to 70% by weight, more preferably 10 to 50% by weight, and particularly preferably 15 to 40% by weight.
  • the (meth) acrylic resin component content in the rubber reinforced resin (B) is not less than the above lower limit, the impact resistance, moldability, and cooling time shortening effect by blending the rubber reinforced resin (B) is improved. Can be fully exhibited.
  • the content of the (meth) acrylic resin component in the rubber reinforced resin (B) is not more than the above upper limit value, it is possible to prevent a decrease in impact resistance and moldability.
  • the (meth) acrylic resin component contains at least a methacrylic acid ester as a monomer component constituting the (meth) acrylic resin component.
  • a polymerization component of a methacrylic acid ester monomer such as methyl methacrylate, or a methacrylic acid ester monomer and an acrylic acid ester monomer such as methyl acrylate and / or other copolymerizable monomers. It is a copolymerization component with a monomer.
  • the weight ratio of each monomer of methacrylic acid ester and acrylic acid ester is preferably 100 / 0 to 50/50, more preferably 99/1 to 80/20.
  • the methacrylic acid ester is not less than the above lower limit, the resulting polylactic acid-based thermoplastic resin composition has good thermal stability and heat resistance.
  • the copolymer of methyl methacrylate and methyl acrylate include commercially available “Parapet G” manufactured by Kuraray Co., Ltd., “Acrypet VH”, “Acrypet MD” manufactured by Mitsubishi Rayon Co., Ltd., etc. It is.
  • the rubber-reinforced resin (B) contains a (meth) acrylic resin component. Can do.
  • the blending amount of the nucleating agent (C) in the polylactic acid-based thermoplastic resin composition is 100 parts by weight in total of the polylactic acid resin (A) and the rubber-reinforced resin (B) in terms of improving impact resistance and heat resistance.
  • the amount is 0.1 to 3 parts by weight, preferably 0.5 to 2.5 parts by weight, more preferably 0.5 to 2 parts by weight. If the blending amount of the nucleating agent (C) is less than this range, the polylactic acid resin cannot be rapidly crystallized. If the blending amount of the nucleating agent (C) is larger than this range, a polylactic acid-based thermoplastic resin molded article having excellent impact resistance cannot be obtained.
  • the nucleating agent (C) is preferably a metal salt of a sulfonated compound such as an organic carboxylic acid metal salt such as sodium benzoate, a phenylphosphonic acid metal salt, a rosin acid metal salt, a phosphoric acid ester metal salt, or a phenylsulfonic acid metal salt.
  • Organic nucleating agents such as carboxylic acid amides, but not limited thereto.
  • a nucleating agent (C) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the blending amount of the filler (D) in the polylactic acid-based thermoplastic resin composition is 100 in total from the polylactic acid resin (A) and the rubber-reinforced resin (B) in terms of impact resistance, heat resistance improvement and moldability.
  • the amount is 1 to 15 parts by weight, preferably 3 to 15 parts by weight, and more preferably 5 to 10 parts by weight with respect to parts by weight. If the blending amount of the filler (D) is less than this range, the cooling time during molding may be longer. If the blending amount of the filler (D) is larger than this range, a polylactic acid-based thermoplastic resin molded article excellent in impact resistance and appearance cannot be obtained.
  • Particularly preferred filler (D) is granular.
  • the content thereof is preferably 7 parts by weight or less with respect to 100 parts by weight of the total of the polylactic acid resin (A) and the rubber-reinforced resin (B). .
  • the needle-like filler (D) is preferably a polylactic acid resin (A). And 7 parts by weight or less based on 100 parts by weight in total of the rubber-reinforced resin (B). “Needle” refers to a so-called long shape including “fiber” and “bar”.
  • the filler (D) is preferably one or more of inorganic fillers such as carbon fiber, glass fiber, talc, wollastonite, calcium carbonate, and silica.
  • Organic fillers such as plant-derived fibers such as kenaf and bamboo fibers may be used.
  • One or more inorganic fillers and one or more organic fillers may be mixed and used.
  • the size of the filler (D) is preferably in the following range depending on its shape.
  • Granular filler The average particle diameter is 0.8 to 1.8 ⁇ m.
  • the average particle diameter is a value of the median diameter of D50.
  • Needle-like filler fiber length of 30 to 200 ⁇ m, fiber diameter of 3 to 10 ⁇ m.
  • the fiber length is a value of the length of the long side portion observed by SEM, and the fiber diameter is an average value of the long diameter of the cross section.
  • Plate-like filler average particle diameter of 3 to 10 ⁇ m, aspect ratio of 0.5 to 4. The average particle diameter and the median diameter of D50.
  • the blending amount of the dispersant (E) in the polylactic acid-based thermoplastic resin composition is such that the polylactic acid resin (A) and the rubber-reinforced resin (B) are in terms of impact resistance, heat resistance improvement, moldability, and appearance.
  • the total amount is 0.03 to 3 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 0.1 to 2 parts by weight. If the blending amount of the dispersant (E) is less than this range, the cooling time during molding may become longer. When the blending amount of the dispersant (E) is larger than this range, a polylactic acid-based thermoplastic resin molded article having excellent heat resistance cannot be obtained.
  • the dispersant (E) that can be used is preferably glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, ethylene glycol fatty acid ester, polyethylene glycol dibenzoate, caprylic acid monoglyceride diacetate, Esters such as montanic acid ester, amide compounds such as ethylene bis fatty acid amide, ethylene bis stearic acid amide, higher fatty acid polyamide, zinc stearate, magnesium stearate, lithium stearate, calcium stearate, zinc phosphate, magnesium phosphate, Examples thereof include, but are not limited to, metal salts such as lithium phosphate and calcium phosphate, and plant-derived oils such as hydrogenated castor oil.
  • the dispersant (E) is particularly preferably glycerin fatty acid ester or calcium phosphate.
  • the dispersant (E) one type may be used alone, or two or more types may be mixed and used. From the viewpoint of shortening the cooling time, two or more dispersants (E) are preferably used. More preferably, the dispersant (E) is at least one metal salt and at least one other dispersant. Since the cooling time is shortened and the weld appearance is excellent, the dispersant (E) is a combination of glycerin fatty acid ester and calcium phosphate.
  • the proportion of the metal salt in the total amount of the dispersant (E) is 5 to 50% by weight, particularly from the viewpoint of hydrolysis resistance. 7 to 35% by weight.
  • the polylactic acid-based thermoplastic resin composition includes the above-mentioned polylactic acid resin (A), rubber-reinforced resin (B), that is, a rubber-containing graft copolymer (b-1) and a hard (co) compounded as necessary.
  • A polylactic acid resin
  • B rubber-reinforced resin
  • b-1 rubber-containing graft copolymer
  • b-2 a rubber-containing graft copolymer
  • b-1 a hard (co) compounded as necessary.
  • the nucleating agent (C), the filler (D), and the dispersing agent (E) various additives and other resins may be contained.
  • additives include antioxidants, UV absorbers, lubricants, plasticizers, stabilizers, mold release agents, antistatic agents, colorants (pigments, dyes, etc.), flame retardants (halogen flame retardants, phosphorus flame retardants) 1 type or 2 or more types, such as a flame retardant, an antimony compound, etc.), an anti-drip agent, an antibacterial agent, an antifungal agent, a silicone oil, a coupling agent, an anti-hydrolysis agent.
  • resins include rubber-reinforced styrene resins such as HIPS resin, ASA resin, AES resin, AS resin, polystyrene resin, polycarbonate resin, nylon resin, methacrylic resin, polyvinyl chloride resin, polybutylene terephthalate resin, polyethylene terephthalate resin , Polyphenylene ether resin, polyethylene resin, polyethylene naphthalate resin, polypropylene resin, polypropylene terephthalate resin, polyphenylene sulfide resin, polyacetal resin, polyimide resin, phenol resin, melamine resin, silicone resin, unsaturated polyester resin, epoxy resin, etc. . A blend of two or more of these may be used. The resin modified with a compatibilizer or a functional group may be used.
  • the content of the above-mentioned other resins in the polylactic acid-based thermoplastic resin composition of the present invention is preferably from 100 parts by weight of the polylactic acid-based thermoplastic resin component in terms of effective use of the polylactic acid resin (A). 50 parts by weight or less, particularly preferably 30 parts by weight or less.
  • a twin screw extruder for pelletizing the polylactic acid-based thermoplastic resin composition of the present invention, a twin screw extruder, a Banbury mixer, a heating roll, or the like can be used, but is not limited thereto. Of these, melt kneading with a twin screw extruder is preferred. Resins and other additives can be blended by side feed or the like.
  • the polylactic acid-based thermoplastic resin composition of the present invention is molded into various molded products by a normal molding method such as injection molding, blow molding, sheet molding, or vacuum molding.
  • the molding method of the polylactic acid-based thermoplastic resin composition is particularly preferably an injection molding method.
  • the molded product of the polylactic acid-based thermoplastic resin composition of the present invention includes housing components for white goods such as refrigerators and washing machines, housings for mobile phones, home appliances such as charging stands, floor boards in the trunk, tire covers, floors Although it can use suitably for motor vehicles relations, such as a box, it is not limited to these.
  • each component of the polylactic acid-based thermoplastic resin composition of the present invention is crushed as it is or in some cases. It can be subjected to a melt regeneration process. In this case, it can be recovered during molding, but it can also be recovered separately and used as a raw material in the above-described pellet manufacturing process.
  • the weight average molecular weight was measured by a standard PS (polystyrene) conversion method using Tosoh Co., Ltd. product: GPC (gel permeation chromatography, solvent; THF).
  • the average particle diameter of the rubber polymer was determined by a dynamic light scattering method using Nikkiso Co., Ltd .: Microtrac Model: 9230UPA.
  • the weight composition ratio of the monomer was determined using FT-IR manufactured by Horiba, Ltd.
  • An autoclave is charged with distilled water, disproportionated potassium rosinate, potassium hydroxide and polybutadiene latex (gel content 80% by weight, average particle size 0.3 ⁇ m), heated to 60 ° C., ferrous sulfate, sodium pyrophosphate Crystalline glucose was added. While maintaining at 60 ° C., ST, AN, t-DM and cumene hydroperoxide were continuously added over 2 hours. Thereafter, the temperature was raised to 70 ° C. and maintained for 1 hour to complete the reaction. An antioxidant was added to the ABS latex obtained by such a reaction, then coagulated with sulfuric acid, sufficiently washed with water, and dried to obtain an ABS graft copolymer (b-1-1).
  • ⁇ Synthesis Example 2 Production of rubber-containing graft copolymer (b-1-2)>
  • Graft polymerization was carried out in the same manner as in Synthesis Example 1 except that acrylonitrile (AN) and 13 parts of acrylonitrile (AN) were reacted to obtain an ABS graft copolymer (b-1-2).
  • nucleating agent (C) filler (D), and dispersing agent (E).
  • Nucleating agent (c-1) “Eco Promote PPA-ZN” (Zinc Phenylsulfonate (II)) manufactured by Nissan Chemical Co., Ltd.
  • Dispersant (e-1) “VR-02” (glycerin fatty acid ester surfactant) manufactured by Taiyo Kagaku Co., Ltd.
  • Dispersant (e-2) “Rikaflow LA-100” (polyethylene glycol dibenzoate) manufactured by Shin Nippon Rika Co., Ltd.
  • Dispersant (e-3) “HAP-08NP” (calcium phosphate) manufactured by Maruo Calcium Co., Ltd.
  • polylactic acid-based thermoplastic resin composition pellets [Production and evaluation of polylactic acid-based thermoplastic resin composition pellets] The above components were mixed in the mixing ratios shown in Tables 1 and 2, and further mixed with 0.3 parts of “Carbodilite HMV-8CA” manufactured by Nisshinbo Co., Ltd. as a stabilizer, and then mixed at 200 to 240 ° C. with 2 parts. Pellets of a polylactic acid-based thermoplastic resin composition were prepared by melt mixing with a shaft extruder (“TEX-30 ⁇ ” manufactured by Nippon Steel Works) and pelletizing.
  • TEX-30 ⁇ manufactured by Nippon Steel Works
  • the obtained resin pellets were molded at 200 to 220 ° C. with a 2 ounce injection molding machine (manufactured by Toshiba Corporation).
  • the molded article thus obtained was measured for impact resistance (Charpy impact strength), bending strength, bending elastic modulus, and heat resistance (load deflection temperature) by the following methods.
  • the time until the ISO tensile test piece was taken out was defined as the cooling time.
  • Two types of tensile test pieces were formed: a one-point gate test piece and a two-point gate test piece. The weld appearance was visually confirmed with a two-point gate test piece and evaluated according to the following criteria.
  • Tables 1 and 2 show the following.
  • the polylactic acid-based thermoplastic resin compositions of Examples 1 to 10 that satisfy the requirements of the claims of the present invention have a short molding cycle and are excellent in mechanical properties such as impact resistance, heat resistance, and weld strength. Can be obtained.
  • a system to which two or more kinds of dispersants are added has a short molding cycle and is excellent in weld strength and weld appearance.
  • the polylactic acid resin alone of Comparative Example 1 has a long cooling time and low impact strength and heat resistance.
  • Comparative Example 2 since the nucleating agent and the dispersing agent are not included, the cooling time is long and other physical properties are inferior, which is not practical.
  • Comparative Examples 3 and 4 containing no dispersant although the cooling time is shortened, the weld strength is lowered and the weld appearance is also poor. In Comparative Example 5 containing no filler, the cooling time is long, and actual molding is not sufficient. Even in the case where the dispersant is added, the weld strength and the weld appearance are inferior in Comparative Example 6 in which the number of added parts is larger than the range of the present invention. In Comparative Example 7 in which the blending amount of the polylactic acid resin is small, the crystallinity is low due to the small amount of polylactic acid, the cooling time is long, and the weld appearance and weld strength retention are also poor.
  • the molded product formed by molding the polylactic acid-based thermoplastic resin composition of the present invention has a short molding cycle, good color development, good weld appearance, and excellent balance of mechanical strength such as impact resistance and heat resistance. .
  • a molded product formed by molding the polylactic acid-based thermoplastic resin composition of the present invention is a material suitable for use as various cases and structural members.
  • the molded product formed by molding the polylactic acid-based thermoplastic resin composition of the present invention can be used for various applications according to market needs, and has an extremely high industrial utility and environmental load. It is also effective in reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A polylactic acid-containing thermoplastic resin composition which enables the production of a molded article that can be molded in a practically satisfactory molding cycle and has excellent mechanical properties including impact resistance, excellent heat resistance, excellent weld appearance and the like. The polylactic acid-containing thermoplastic resin composition comprises: 100 parts by weight of a polylactic acid-containing thermoplastic resin component which comprises 50 to 95 parts by weight of a polylactic acid resin (A) and 5 to 50 parts by weight of a rubber-reinforced resin (B); 0.1 to 3 parts by weight of a nucleating agent (C); 1 to 15 parts by weight of a filler (D); and 0.03 to 3 parts by weight of a dispersant (E). The rubber-reinforced resin (B) comprises 30 to 100% by weight of a rubber-containing graft copolymer (b-1) and 0 to 70% by weight of a hard (co)polymer (b-2).

Description

ポリ乳酸系熱可塑性樹脂組成物およびその成形品Polylactic acid-based thermoplastic resin composition and molded article thereof
 本発明は、成形サイクルが短く、かつ耐衝撃性等の機械的特性、耐熱性、外観に優れる成形品を提供し得るポリ乳酸系熱可塑性樹脂組成物と、このポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品に関するものである。 The present invention relates to a polylactic acid-based thermoplastic resin composition capable of providing a molded article having a short molding cycle and excellent mechanical properties such as impact resistance, heat resistance, and appearance, and the polylactic acid-based thermoplastic resin composition It is related with the molded article formed by shape | molding.
 地球温暖化の要因として、大気中における炭酸ガス濃度の上昇が指摘され、地球規模での炭酸ガス排出規制の必要性が唱えられている。カーボンニュートラルとして、炭酸ガスを吸収、固定する植物資源の有効活用が注目されている。 上昇 Increase in the concentration of carbon dioxide in the atmosphere has been pointed out as a cause of global warming, and the need to regulate carbon dioxide emissions on a global scale has been advocated. As carbon neutral, the effective use of plant resources that absorb and fix carbon dioxide is attracting attention.
 プラスチックにおいても、従来の石油を基礎原料とするものから、バイオマスを利用したプラスチックが開発された。当初、これらは生分解性樹脂として注目を集めたが、最近では植物系プラスチックとしてその意義が見直されている。 Also in plastics, plastics using biomass were developed from those based on conventional petroleum. Initially, these attracted attention as biodegradable resins, but recently their significance has been reviewed as plant-based plastics.
 植物系プラスチックとして、ポリ乳酸樹脂(PLA)の実用化が期待されている。ポリ乳酸樹脂のみからなるプラスチックは、既存の石油系プラスチックに比べて耐衝撃強度に劣り、また、成形サイクルが長い。 Practical use of polylactic acid resin (PLA) is expected as plant-based plastic. Plastics consisting only of polylactic acid resin are inferior in impact strength compared to existing petroleum plastics and have a long molding cycle.
 ポリ乳酸樹脂系プラスチックの耐衝撃強度を改良する為に、ゴム質重合体をブレンドすることが知られている。 It is known to blend a rubbery polymer in order to improve the impact strength of polylactic acid resin plastics.
 特許文献1(特開2002-37987号公報)には、熱可塑性エラストマーを使用する方法が記載されている。特許文献2(特開2005-226054号公報)には、変性共役ジエン系重合体を配合する方法が記載されている。特許文献3(特開2009-256403号公報)には、スチレンとメタアクリル酸エステルのブロック共重合体を配合する方法が記載されている。これらは耐衝撃強度の向上効果はある。しかし、金型温度が低く、ポリ乳酸が非結晶な状態での改質であり、いずれも既存の汎用プラスチックと比較して、耐熱性が十分には改善されていない。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-37987) describes a method using a thermoplastic elastomer. Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-226054) describes a method of blending a modified conjugated diene polymer. Patent Document 3 (Japanese Patent Laid-Open No. 2009-256403) describes a method of blending a block copolymer of styrene and a methacrylic acid ester. These have the effect of improving impact strength. However, the modification is performed in a state where the mold temperature is low and polylactic acid is in an amorphous state, and none of them is sufficiently improved in heat resistance as compared with existing general-purpose plastics.
 特許文献4(特開2005-162867号公報)及び特許文献5(特開2005-272679号公報)には、結晶核剤を添加することにより、ポリ乳酸を結晶化させ、耐熱性を改善することが記載されている。しかし、結晶核剤の添加で結晶化は促進されるが、結晶化時間が長くなる場合があり、耐衝撃強度なども改善されない。 In Patent Document 4 (Japanese Patent Laid-Open No. 2005-162867) and Patent Document 5 (Japanese Patent Laid-Open No. 2005-272679), polylactic acid is crystallized and heat resistance is improved by adding a crystal nucleating agent. Is described. However, although the crystallization is promoted by the addition of the crystal nucleating agent, the crystallization time may be prolonged, and the impact strength and the like are not improved.
 特許文献6(特開2008-246954号公報)には、金型温度を高くし、成形後急激に低くするヒート&クール法での成形が示されている。しかし、これは特殊な成形方法であり、成形時間は長くなり、汎用的な生産手法ではない。 Patent Document 6 (Japanese Patent Laid-Open No. 2008-246554) discloses molding by a heat and cool method in which the mold temperature is raised and lowered rapidly after molding. However, this is a special molding method, which requires a long molding time and is not a general production method.
特開2002-37987号公報JP 2002-37987 A 特開2005-226054号公報JP 2005-226054 A 特開2009-256403号公報JP 2009-256403 A 特開2005-162867号公報JP 2005-162867 A 特開2005-272679号公報JP 2005-272679 A 特開2008-246954号公報JP 2008-246554 A
 本発明は、実用上十分な成形サイクルで成形することができ、耐衝撃性等の機械的特性、耐熱性、ウエルド外観などにも優れる成形品を得ることができるポリ乳酸系熱可塑性樹脂組成物と、このポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品を提供することを目的とする。 The present invention provides a polylactic acid-based thermoplastic resin composition that can be molded with a practically sufficient molding cycle, and that can provide a molded product having excellent mechanical properties such as impact resistance, heat resistance, and weld appearance. And it aims at providing the molded article formed by shape | molding this polylactic acid-type thermoplastic resin composition.
 本発明者らは、従来技術の検証・改良に鋭意努力した結果、ポリ乳酸樹脂を短時間で結晶化させて耐熱性を付与し、更にポリ乳酸が結晶化した状態でも耐衝撃性などが高い状態で保たれ、尚且つ成形品外観にも優れる樹脂組成を発見し、本発明に至った。 As a result of diligent efforts to verify and improve the prior art, the present inventors crystallized polylactic acid resin in a short time to impart heat resistance, and even when polylactic acid is crystallized, it has high impact resistance and the like. The present inventors have found a resin composition that is kept in a state and excellent in appearance of a molded product, and has reached the present invention.
 本発明の要旨は、ポリ乳酸樹脂(A)50~95重量部と、ゴム強化樹脂(B)5~50重量部とを含むポリ乳酸系熱可塑性樹脂成分100重量部(ただし、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計で100重量部とする。)に対して、核剤(C)0.1~3重量部、フィラー(D)1~15重量部、及び分散剤(E)0.03~3重量部を配合してなるポリ乳酸系熱可塑性樹脂組成物であって、該ゴム強化樹脂(B)は、ゴム含有グラフト共重合体(b-1)30~100重量%と硬質(共)重合体(b-2)0~70重量%とからなることを特徴とするポリ乳酸系熱可塑性樹脂組成物、に存する。 The gist of the present invention is that 100 parts by weight of a polylactic acid-based thermoplastic resin component containing 50 to 95 parts by weight of a polylactic acid resin (A) and 5 to 50 parts by weight of a rubber-reinforced resin (B) (however, polylactic acid resin ( A) and rubber-reinforced resin (B) in total 100 parts by weight)) 0.1 to 3 parts by weight of nucleating agent (C), 1 to 15 parts by weight of filler (D), and dispersant (E) A polylactic acid-based thermoplastic resin composition containing 0.03 to 3 parts by weight, wherein the rubber-reinforced resin (B) is a rubber-containing graft copolymer (b-1) 30 to 100 A polylactic acid-based thermoplastic resin composition characterized by comprising 0 to 70% by weight of a rigid (co) polymer (b-2) by weight.
 分散剤(E)は2種類以上を併用して使用することが好ましい。 It is preferable to use two or more types of dispersant (E) in combination.
 フィラー(D)は、形状が針状でないものがより好ましく、形状が針状のものは、ポリ乳酸系熱可塑性樹脂成分100重量部に対して7重量部以下であることが好ましい。 The filler (D) is more preferably not in the shape of needles, and the shape of the fillers in the shape of needles is preferably 7 parts by weight or less with respect to 100 parts by weight of the polylactic acid-based thermoplastic resin component.
 本発明の別の要旨は、このような本発明のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品、に存する。 Another gist of the present invention resides in a molded article formed by molding the polylactic acid-based thermoplastic resin composition of the present invention.
 本発明のポリ乳酸系熱可塑性樹脂組成物は、これを成形して得られる成形品の表面外観に優れる。この成形品は、耐衝撃強度等の機械的強度、剛性、耐熱性のバランスが良く、成形サイクルも短い。従って、この組成物は、各種筐体や構造部材としての用途に適する。 The polylactic acid-based thermoplastic resin composition of the present invention is excellent in the surface appearance of a molded product obtained by molding it. This molded article has a good balance of mechanical strength such as impact strength, rigidity, and heat resistance, and has a short molding cycle. Therefore, this composition is suitable for use as various cases and structural members.
 本発明のポリ乳酸系熱可塑性樹脂組成物は、植物系樹脂であるポリ乳酸樹脂の用途を広げ、カーボンニュートラルの理念の実践を促進して、環境負荷の低減に貢献することができる。 The polylactic acid-based thermoplastic resin composition of the present invention can contribute to the reduction of environmental burden by expanding the use of polylactic acid resin, which is a plant-based resin, and promoting the practice of the philosophy of carbon neutral.
 以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本明細書において「(共)重合」は「重合」と「共重合」の双方を意味する。「(メタ)アクリル」は「アクリル」と「メタクリル」の双方を意味する。 In this specification, “(co) polymerization” means both “polymerization” and “copolymerization”. “(Meth) acryl” means both “acryl” and “methacryl”.
 ポリ乳酸樹脂(A)の重量平均分子量(Mw)、硬質(共)重合体(b-2)の重量平均分子量(Mw)や、ゴム含有グラフト共重合体(b-1)のアセトン可溶分の重量平均分子量(Mw)は、いずれも、ゲルパーミエーションクロマトグラフィー(GPC)にてテトラヒドロフラン(THF)に溶解して測定したものをポリスチレン(PS)換算で示したものである。 Weight average molecular weight (Mw) of polylactic acid resin (A), weight average molecular weight (Mw) of hard (co) polymer (b-2), and acetone-soluble content of rubber-containing graft copolymer (b-1) The weight average molecular weight (Mw) of each is measured by dissolving in tetrahydrofuran (THF) with gel permeation chromatography (GPC) and converted to polystyrene (PS).
[ポリ乳酸系熱可塑性樹脂成分]
 ポリ乳酸系熱可塑性樹脂成分は、ポリ乳酸樹脂(A)とゴム強化樹脂(B)とからなる。ゴム強化樹脂(B)は、ゴム含有グラフト共重合体(b-1)のみからなるものであってもよく、ゴム含有グラフト共重合体(b-1)と硬質(共)重合体(b-2)とからなるものであってもよい。
[Polylactic acid thermoplastic resin component]
The polylactic acid-based thermoplastic resin component is composed of a polylactic acid resin (A) and a rubber-reinforced resin (B). The rubber-reinforced resin (B) may be composed only of the rubber-containing graft copolymer (b-1). The rubber-containing graft copolymer (b-1) and the hard (co) polymer (b- 2).
{ポリ乳酸樹脂(A)}
 ポリ乳酸樹脂(A)は、乳酸を直接脱水縮重合する方法、或いはラクチドを開環重合する方法等といった、公知の手段で得る事ができる。
{Polylactic acid resin (A)}
The polylactic acid resin (A) can be obtained by known means such as a method of directly dehydrating condensation polymerization of lactic acid or a method of ring-opening polymerization of lactide.
 ポリ乳酸樹脂にはL体、D体、DL体の3種の光学異性体が存在する。市販されているポリ乳酸樹脂には、L体の純度が100%に近いものがあるが、本発明で用いるポリ乳酸樹脂(A)は、結晶化という観点から、L体もしくはD体の光学純度が98%以上のものが好ましい。ポリ乳酸樹脂(A)は、他の共重合成分を含んだ共重合体でも構わない。 There are three types of optical isomers in polylactic acid resin: L-form, D-form, and DL-form. Some of the commercially available polylactic acid resins have a purity of L form close to 100%. However, the polylactic acid resin (A) used in the present invention has an optical purity of L form or D form from the viewpoint of crystallization. Is preferably 98% or more. The polylactic acid resin (A) may be a copolymer containing other copolymer components.
 ポリ乳酸樹脂(A)に含まれる他の共重合成分としては、エチレングリコール、ブロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ-ル、デカンジオール、1,4-シクロヘキサンジメタノ-ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ-ルA、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのグリコール化合物;シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸などのジカルボン酸;グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オンなどのラクトン類などが挙げられる。共重合成分の含有量は、ポリ乳酸樹脂(A)中の全単量体成分中通常30モル%以下が好ましく、10モル%以下がより好ましい。 Other copolymer components contained in the polylactic acid resin (A) include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethano Glycol compounds such as benzene, neopentyl glycol, glycerin, pentaerythritol, bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid , Malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4 Dicarboxylic acids such as 4'-diphenyl ether dicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium isophthalic acid; hydroxy such as glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid Carboxylic acid; lactones such as caprolactone, valerolactone, propiolactone, undecalactone, 1,5-oxepan-2-one and the like. The content of the copolymer component is usually preferably 30 mol% or less, more preferably 10 mol% or less, based on all monomer components in the polylactic acid resin (A).
 ポリ乳酸樹脂(A)の分子量や分子量分布については、実質的に成形加工が可能であれば特に制限されるものではない。ポリ乳酸樹脂(A)の重量平均分子量は、通常1万以上、好ましくは5万以上、さらに10万以上であることが望ましい。ポリ乳酸樹脂(A)の重量平均分子量の上限は、特に制限はないが、通常40万以下である。 The molecular weight and molecular weight distribution of the polylactic acid resin (A) are not particularly limited as long as it can be practically processed. The weight average molecular weight of the polylactic acid resin (A) is usually 10,000 or more, preferably 50,000 or more, and more preferably 100,000 or more. The upper limit of the weight average molecular weight of the polylactic acid resin (A) is not particularly limited, but is usually 400,000 or less.
 ポリ乳酸樹脂(A)の分子量は、前述の如く、GPC(溶媒THF)にて測定することができる。ポリ乳酸樹脂(A)がペレット状の場合、THFに溶解し難い場合があり、その場合は、クロロホルムに溶解させた後、メタノールを用いてポリマー成分を析出させ、そのポリマー成分を乾燥させたものをTHFに溶解させて可溶分の分子量を測定することができる。必要に応じて加温するなどして溶解させることもできる。 The molecular weight of the polylactic acid resin (A) can be measured by GPC (solvent THF) as described above. When the polylactic acid resin (A) is in the form of pellets, it may be difficult to dissolve in THF. In that case, after dissolving in chloroform, the polymer component is precipitated using methanol and the polymer component is dried. Can be dissolved in THF and the molecular weight of the soluble component can be measured. It can also be dissolved by heating, if necessary.
 ポリ乳酸系熱可塑性樹脂成分中のポリ乳酸樹脂(A)の配合量は、カーボンニュートラルの観点や、耐衝撃性、耐熱性の改善の点から、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して50~95重量部、好ましくは60~95重量部、より好ましくは70~85重量部である。この範囲よりも、ポリ乳酸樹脂(A)の配合量が少ないと、ポリ乳酸樹脂を有効利用する本発明の目的を達成し得ず、多いと、耐衝撃性に優れたポリ乳酸系熱可塑性樹脂成形品が得られなくなる。 The blending amount of the polylactic acid resin (A) in the polylactic acid-based thermoplastic resin component is such that the polylactic acid resin (A) and rubber-reinforced resin (B ) And 50 to 95 parts by weight, preferably 60 to 95 parts by weight, more preferably 70 to 85 parts by weight. If the blending amount of the polylactic acid resin (A) is less than this range, the object of the present invention for effectively using the polylactic acid resin cannot be achieved, and if more, the polylactic acid-based thermoplastic resin having excellent impact resistance. A molded product cannot be obtained.
 ポリ乳酸樹脂(A)は1種を単独で用いても良く、2種以上を混合して用いても良い。 Polylactic acid resin (A) may be used alone or in combination of two or more.
 ポリ乳酸樹脂(A)の具体例としては、Nature Works社製「NATUREWORKS」、中国海生生物材料公司社製「レヴォダ」などが挙げられる。 Specific examples of the polylactic acid resin (A) include “NATUREWORKS” manufactured by Nature Works and “Levoda” manufactured by China Marine Biomaterials Company.
{ゴム強化樹脂(B)}
 ゴム強化樹脂(B)は、ゴム質重合体に硬質(共)重合体がグラフト重合したゴム含有グラフト共重合体(b-1)30~100重量%と硬質(共)重合体(b-2)0~70重量%((b-1)と(b-2)の合計100重量%)とからなる。
{Rubber reinforced resin (B)}
The rubber-reinforced resin (B) is composed of 30 to 100% by weight of a rubber-containing graft copolymer (b-1) obtained by graft polymerization of a hard (co) polymer to a rubbery polymer, and a hard (co) polymer (b-2). ) 0 to 70% by weight (total of 100% by weight of (b-1) and (b-2)).
<ゴム含有グラフト共重合体(b-1)>
 ゴム含有グラフト共重合体(b-1)は、ゴム質重合体にシアン化ビニル系単量体、芳香族ビニル系単量体、(メタ)アクリル酸エステル系単量体等のビニル系単量体の少なくとも1種をグラフト重合してなるものであり、一般にABS、ASA、AES、MBS等で表現される、ゴム質重合体に硬質(共)重合体がグラフト重合した構造を有する。
<Rubber-containing graft copolymer (b-1)>
The rubber-containing graft copolymer (b-1) is a rubber-based polymer such as vinyl cyanide monomer, aromatic vinyl monomer, (meth) acrylic acid ester monomer, etc. It is obtained by graft polymerization of at least one kind of body, and generally has a structure in which a hard (co) polymer is graft-polymerized on a rubbery polymer expressed by ABS, ASA, AES, MBS or the like.
 ゴム含有グラフト共重合体(b-1)を形成するゴム質重合体は、好ましくは、ポリブタジエン、スチレン/ブタジエン共重合体、アクリル酸エステル/ブタジエン共重合体等のブタジエン系ゴムや、スチレン/イソプレン共重合体等の共役ジエン系ゴム;ポリアクリル酸ブチル等のアクリル系ゴム、エチレン/プロピレン共重合体等のオレフィン系ゴム;ポリオルガノシロキサン等のシリコン系ゴム等であり、中でも、耐衝撃性の観点でポリブタジエンが特に好ましい。これらのゴム質重合体は1種を単独で、或いは2種以上を混合して使用することができる。 The rubbery polymer forming the rubber-containing graft copolymer (b-1) is preferably a butadiene rubber such as polybutadiene, styrene / butadiene copolymer, acrylate ester / butadiene copolymer, or styrene / isoprene. Conjugated diene rubbers such as copolymers; Acrylic rubbers such as polybutyl acrylate; Olefin rubbers such as ethylene / propylene copolymers; Silicone rubbers such as polyorganosiloxane; Polybutadiene is particularly preferable from the viewpoint. These rubbery polymers can be used singly or in combination of two or more.
 このゴム質重合体は、モノマーから重合することができる。ゴム質重合体は、コア/シェル構造、例えば、ポリブタジエンをコアにして、アクリル酸エステルをシェルにした構造を有してもよい。 This rubbery polymer can be polymerized from a monomer. The rubbery polymer may have a core / shell structure, for example, a structure in which polybutadiene is used as a core and acrylic acid ester is used as a shell.
 ゴム質重合体のゲル含有量は、好ましくは50~99重量%、より好ましくは60~95重量%、特に好ましくは70~85重量%である。ゲル含有量がこの範囲内であれば、得られるポリ乳酸系熱可塑性樹脂組成物の特性、特に、耐衝撃強度を向上させることができる。 The gel content of the rubbery polymer is preferably 50 to 99% by weight, more preferably 60 to 95% by weight, and particularly preferably 70 to 85% by weight. When the gel content is within this range, the properties of the resulting polylactic acid-based thermoplastic resin composition, particularly the impact strength, can be improved.
 ゴム質重合体のゲル含有量を測定するには、秤量したゴム質重合体を、適当な溶剤に室温(23℃)で20時間かけて溶解させ、次いで、100メッシュ金網で分取して、金網上に残った不溶分を60℃で24時間乾燥した後、秤量する。分取前のゴム質重合体に対する不溶分の割合(重量%)を求め、ゴム質重合体のゲル含有量とする。ゴム質重合体の溶解に用いる溶剤は、ポリブタジエンではトルエンが好ましく、ポリブチルアクリレートではアセトンが好ましい。 In order to measure the gel content of the rubbery polymer, the weighed rubbery polymer was dissolved in a suitable solvent at room temperature (23 ° C.) over 20 hours, and then fractionated with a 100 mesh wire mesh, The insoluble matter remaining on the wire mesh is dried at 60 ° C. for 24 hours and then weighed. The ratio (% by weight) of the insoluble matter with respect to the rubber polymer before fractionation is determined and used as the gel content of the rubber polymer. The solvent used for dissolving the rubber polymer is preferably toluene for polybutadiene and acetone for polybutyl acrylate.
 ゴム質重合体の粒子径は、0.1~1μmが好ましく、0.2~0.5μmがより好ましいが、これに限定されない。ゴム質重合体の平均粒子径は、グラフト重合前であれば、光学的な方法で測定することができる。グラフト重合した後は、染色剤によりゴム質重合体を染色した後に透過型電子顕微鏡(TEM)を用いて平均粒子径を算出することができる。 The particle size of the rubbery polymer is preferably 0.1 to 1 μm, more preferably 0.2 to 0.5 μm, but is not limited thereto. The average particle diameter of the rubbery polymer can be measured by an optical method before graft polymerization. After the graft polymerization, the average particle diameter can be calculated using a transmission electron microscope (TEM) after dyeing the rubber polymer with a dyeing agent.
 ゴム含有グラフト共重合体(b-1)は、好ましくは上記のゴム質重合体40~80重量%の存在下、グラフト重合可能な単量体成分60~20重量%をグラフト重合させて得ることができる(ただし、ゴム質重合体と単量体混合物との合計で100重量%とする。)。ゴム質重合体が上記下限値以上であると、得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性が良好となる。ゴム質重合体が上記上限値以下であると、耐衝撃性や流動性などの低下を防止することができる。 The rubber-containing graft copolymer (b-1) is preferably obtained by graft polymerization of 60 to 20% by weight of the graft-polymerizable monomer component in the presence of 40 to 80% by weight of the above rubbery polymer. (However, the total of the rubbery polymer and the monomer mixture is 100% by weight). When the rubber polymer is at least the above lower limit, the resulting polylactic acid-based thermoplastic resin molded article has good impact resistance. When the rubbery polymer is not more than the above upper limit value, it is possible to prevent the impact resistance and fluidity from being lowered.
 ゴム質重合体にグラフト重合可能な単量体成分は、好ましくは、シアン化ビニル系単量体、芳香族ビニル系単量体、メタクリル酸エステル系単量体、アクリル酸エステル系単量体、マレイミド化合物の1種または2種以上である。 The monomer component that can be graft-polymerized to the rubbery polymer is preferably a vinyl cyanide monomer, an aromatic vinyl monomer, a methacrylic acid ester monomer, an acrylic acid ester monomer, One or more maleimide compounds.
 シアン化ビニル系単量体は、好ましくは、アクリロニトリル、メタクリルニトリル等であり、特にアクリロニトリルが好ましい。 The vinyl cyanide monomer is preferably acrylonitrile, methacrylonitrile or the like, and acrylonitrile is particularly preferable.
 芳香族ビニル系単量体は、好ましくは、スチレン、α-メチルスチレン、p-メチルスチレン、ブロムスチレン等であり、特にスチレン、α-メチルスチレンが好ましい。 The aromatic vinyl monomer is preferably styrene, α-methylstyrene, p-methylstyrene, bromostyrene, etc., and particularly preferably styrene or α-methylstyrene.
 メタクリル酸エステル系単量体は、好ましくは、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチルおよびこれらの誘導体等であり、特にメタクリル酸メチルが好ましい。 The methacrylic acid ester monomer is preferably methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and derivatives thereof, and methyl methacrylate is particularly preferable.
 アクリル酸エステル系単量体は、好ましくは、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルおよびこれらの誘導体等であり、特にアクリル酸メチルが好ましい。 The acrylic acid ester monomer is preferably methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and derivatives thereof, and methyl acrylate is particularly preferable.
 マレイミド化合物は、好ましくは、N-フェニルマレイミド、N-シクロヘキシルマレイミド等である。 The maleimide compound is preferably N-phenylmaleimide, N-cyclohexylmaleimide or the like.
 これらの単量体成分は、官能基により変性された単量体を含んでもよい。このような単量体としては例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸等の不飽和カルボン酸が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。官能基により変性された単量体の使用割合は単量体成分の合計100重量%に対して30重量%以下、特に10重量%以下であることが好ましい。 These monomer components may include a monomer modified with a functional group. Examples of such a monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid. These may be used alone or in combination of two or more. The proportion of the monomer modified with a functional group is preferably 30% by weight or less, particularly preferably 10% by weight or less, based on 100% by weight of the total monomer components.
 ゴム含有グラフト共重合体(b-1)のゴム質重合体にグラフトする単量体成分は、上記単量体のうち、特にシアン化ビニル系単量体および芳香族ビニル系単量体の組み合わせ、メタクリル酸エステル系単量体およびアクリル酸エステル系単量体の組み合わせが好ましい。 The monomer component to be grafted to the rubbery polymer of the rubber-containing graft copolymer (b-1) is, in particular, a combination of a vinyl cyanide monomer and an aromatic vinyl monomer among the above monomers. A combination of a methacrylic acid ester monomer and an acrylic acid ester monomer is preferable.
 得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性をさらに向上させる点から、シアン化ビニル系単量体および芳香族ビニル系単量体の組み合わせにおいて、シアン化ビニル系単量体は好ましくはアクリロニトリルであり、芳香族ビニル系単量体は好ましくはスチレンである。シアン化ビニル系単量体と芳香族ビニル系単量体の重量組成比は、20/80~35/65の範囲が好ましく、より好ましくは25/75~30/70である。この範囲内であることにより、分散性や熱安定性が良好なものとなる。 From the viewpoint of further improving the impact resistance of the resulting polylactic acid-based thermoplastic resin molded article, in the combination of vinyl cyanide monomer and aromatic vinyl monomer, the vinyl cyanide monomer is preferably It is acrylonitrile and the aromatic vinyl monomer is preferably styrene. The weight composition ratio of the vinyl cyanide monomer and the aromatic vinyl monomer is preferably in the range of 20/80 to 35/65, more preferably 25/75 to 30/70. By being in this range, dispersibility and thermal stability are improved.
 得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性をさらに向上させると共に、ウエルド外観を向上させ、さらに冷却時間を短縮できる点から、メタクリル酸エステル系単量体およびアクリル酸エステル系単量体の組み合わせにおいて、メタクリル酸エステル系単量体は好ましくはメタクリル酸メチルであり、アクリル酸エステル系単量体は好ましくはアクリル酸メチルである。メタクリル酸エステル系単量体とアクリル酸エステル系単量体の重量組成比は100/0~50/50が好ましく、さらには99/1~80/20の範囲である。この範囲内であることにより、ウエルド外観を保持したまま、冷却時間を短縮でき、成形性が良好なものとなる。 From the point that the impact resistance of the resulting polylactic acid-based thermoplastic resin molded article can be further improved, the weld appearance can be improved, and the cooling time can be shortened. In this combination, the methacrylic ester monomer is preferably methyl methacrylate, and the acrylate monomer is preferably methyl acrylate. The weight composition ratio of the methacrylic ester monomer to the acrylate ester monomer is preferably 100/0 to 50/50, more preferably in the range of 99/1 to 80/20. By being in this range, the cooling time can be shortened while maintaining the weld appearance, and the moldability becomes good.
 ゴム強化樹脂(B)がゴム含有グラフト共重合体(b-1)のみよりなり、このゴム含有グラフト共重合体(b-1)に(メタ)アクリル系樹脂成分を含有する場合、ゴム含有グラフト共重合体(b-1)のゴム質重合体にグラフトする単量体成分には(メタ)アクリル酸エステル系単量体が含まれていることが好ましい。 When the rubber-reinforced resin (B) comprises only the rubber-containing graft copolymer (b-1) and the rubber-containing graft copolymer (b-1) contains a (meth) acrylic resin component, the rubber-containing graft The monomer component grafted to the rubbery polymer of the copolymer (b-1) preferably contains a (meth) acrylate monomer.
 ゴム含有グラフト共重合体(b-1)のアセトン可溶分の重量平均分子量は、50,000~600,000が好ましく、より好ましくは50,000~550,000、さらに好ましくは100,000~450,000である。ゴム含有グラフト共重合体(b-1)のアセトン可溶分の重量平均分子量が上記下限値以上であることにより、得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性が十分なものとなる。ゴム含有グラフト共重合体(b-1)のアセトン可溶分の重量平均分子量が上記上限値以下であることにより、ポリ乳酸系熱可塑性樹脂組成物の成形加工性が良好となる。アセトン可溶分とは、ゴム質重合体に単量体をグラフト重合した際に生じるゴム質重合体にグラフト重合していない単量体の重合体生成物に相当するものである。 The weight average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) is preferably 50,000 to 600,000, more preferably 50,000 to 550,000, still more preferably 100,000 to 450,000. When the weight-average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) is at least the above lower limit, the resulting polylactic acid-based thermoplastic resin molded article has sufficient impact resistance. . When the weight average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) is not more than the above upper limit, the processability of the polylactic acid-based thermoplastic resin composition becomes good. The acetone-soluble component corresponds to a polymer product of a monomer that is not graft-polymerized to the rubbery polymer that is generated when the monomer is graft-polymerized to the rubbery polymer.
 ゴム含有グラフト共重合体(b-1)のグラフト率((アセトン不溶分重量/ゴム質重合体重量-1)×100)は、15~120重量%であることが好ましく、20~85重量%であることがより好ましい。ゴム含有グラフト共重合体(b-1)のグラフト率が上記下限値以上であることにより、ゴム質重合体の分散性、耐衝撃強度が良好となる。ゴム含有グラフト共重合体(b-1)のグラフト率が上記上限値以下であることにより、耐衝撃強度や成形性が良好となる。グラフトしている共重合体は、ゴム質重合体の外部のみならず内部にオクルードした構造であっても良い。 The graft ratio of the rubber-containing graft copolymer (b-1) ((acetone insoluble matter weight / rubber polymer weight-1) × 100) is preferably 15 to 120% by weight, and preferably 20 to 85% by weight. It is more preferable that When the graft ratio of the rubber-containing graft copolymer (b-1) is at least the above lower limit, the dispersibility and impact strength of the rubber-like polymer are improved. When the graft ratio of the rubber-containing graft copolymer (b-1) is not more than the above upper limit value, the impact resistance strength and moldability are improved. The grafted copolymer may have a structure occluded not only inside but also inside the rubbery polymer.
 グラフト重合は、乳化重合、懸濁重合、溶液重合、又は塊状重合により行うことができ、これらの重合方法を組み合わせた方法でもよい。 Graft polymerization can be performed by emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization, and may be a method combining these polymerization methods.
 ゴム含有グラフト共重合体(b-1)として、重合方法や成分組成の異なるゴム含有グラフト共重合体の2種以上を混合して用いても良い。 As the rubber-containing graft copolymer (b-1), two or more kinds of rubber-containing graft copolymers having different polymerization methods and component compositions may be mixed and used.
<硬質(共)重合体(b-2)>
 硬質(共)重合体(b-2)に用いられる単量体成分は、好ましくは、先のゴム含有グラフト共重合体(b-1)で紹介した単量体の1種または2種以上である。例えば、芳香族ビニル系単量体、シアン化ビニル系単量体および(メタ)アクリル酸エステル系単量体、更に必要に応じて用いられるこれらの単量体と共重合可能な他の単量体を用いることができる。硬質(共)重合体(b-2)を形成する単量体成分の比率や、共重合可能な他の単量体等については、上記のゴム含有グラフト共重合体(b-1)の中で記載した範囲内で使用することができる。
<Hard (co) polymer (b-2)>
The monomer component used in the hard (co) polymer (b-2) is preferably one or more of the monomers introduced in the rubber-containing graft copolymer (b-1). is there. For example, aromatic vinyl monomers, vinyl cyanide monomers and (meth) acrylic acid ester monomers, and other monomers copolymerizable with these monomers used as necessary The body can be used. The ratio of the monomer component forming the hard (co) polymer (b-2), other monomers that can be copolymerized, etc. are described in the rubber-containing graft copolymer (b-1). Can be used within the range described in.
 硬質(共)重合体(b-2)の重量平均分子量(Mw)は、好ましくは30,000~300,000であり、さらに好ましくは50,000~250,000である。硬質共重合体(b-2)の重量平均分子量が上記下限値以上であることにより、得られる成形品の耐衝撃性が良好となり、上記上限値以下であることにより、成形加工性が良好となる。 The weight average molecular weight (Mw) of the hard (co) polymer (b-2) is preferably 30,000 to 300,000, more preferably 50,000 to 250,000. When the weight average molecular weight of the hard copolymer (b-2) is at least the above lower limit, the resulting molded article has good impact resistance, and when it is below the above upper limit, the moldability is good. Become.
 ゴム強化樹脂(B)は、ゴム含有グラフト共重合体(b-1)のみでもよく、ゴム含有グラフト共重合体(b-1)と硬質(共)重合体(b-2)とを含むものであってもよい。硬質(共)重合体(b-2)を配合することにより、耐熱性や流動性等の特性を改善することができる。硬質(共)重合体(b-2)の配合量が、ゴム強化樹脂(B)であるゴム含有グラフト共重合体(b-1)と硬質(共)重合体(b-2)との合計100重量%に対して70重量%を超えるとゴム強化樹脂(B)中のゴム含有量が低減することにより、耐衝撃強度が低下する。このため、硬質(共)重合体(b-2)の配合量は、ゴム強化樹脂(B)のゴム含有グラフト共重合体(b-1)と硬質(共)重合体(b-2)との合計100重量%中に0~70重量%、好ましくは0~50重量%、より好ましくは0~30重量%とする。 The rubber-reinforced resin (B) may be only the rubber-containing graft copolymer (b-1), and contains the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2). It may be. By blending the hard (co) polymer (b-2), characteristics such as heat resistance and fluidity can be improved. The amount of the hard (co) polymer (b-2) is the sum of the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2), which are the rubber-reinforced resin (B). When it exceeds 70% by weight with respect to 100% by weight, the rubber content in the rubber-reinforced resin (B) is reduced, so that the impact strength is lowered. Therefore, the blending amount of the hard (co) polymer (b-2) is such that the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2) of the rubber-reinforced resin (B) 0 to 70% by weight, preferably 0 to 50% by weight, and more preferably 0 to 30% by weight in a total of 100% by weight.
 硬質(共)重合体(b-2)を配合する場合、ゴム含有グラフト共重合体(b-1)と硬質(共)重合体(b-2)を合わせたアセトン可溶分の重量平均分子量が、先のゴム含有グラフト共重合体(b-1)の説明で示したように50,000~600,000、特に50,000~550,000、とりわけ100,000~450,000であることが好ましい。アセトン可溶分の重量平均分子量が上記下限値以上であると、得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性が良好となり、上記上限値以下であると、ポリ乳酸系熱可塑性樹脂組成物の成形加工性が良好となる。 When the hard (co) polymer (b-2) is blended, the weight average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2) Is 50,000 to 600,000, particularly 50,000 to 550,000, especially 100,000 to 450,000 as shown in the explanation of the rubber-containing graft copolymer (b-1). Is preferred. When the weight average molecular weight of the acetone-soluble component is not less than the above lower limit, the resulting polylactic acid-based thermoplastic resin molded article has good impact resistance, and if it is not more than the above-described upper limit, the polylactic acid-based thermoplastic resin composition Good formability of the product.
 硬質(共)重合体(b-2)は、1種を単独で用いても良く、異なる組成、分子量のものを2種以上混合して用いても良い。 As the hard (co) polymer (b-2), one kind may be used alone, or two or more kinds having different compositions and molecular weights may be mixed and used.
<ゴム含有量>
 ゴム強化樹脂(B)中のゴム含有量、即ち、ゴム含有グラフト共重合体(b-1)或いはゴム含有グラフト共重合体(b-1)と硬質(共)重合体(b-2)との混合物中のゴム質重合体の含有量は、好ましくは5~80重量%、特に好ましくは10~70重量%である。ゴム強化樹脂(B)中のゴム質重合体の含有量が上記下限値以上であることにより、十分な耐衝撃性が得られるようになる。ゴム強化樹脂(B)中のゴム質重合体が過度に多いと衝撃強度が低下するおそれがあることから、上記上限値以下であることが好ましい。ゴム強化樹脂(B)中のゴム質重合体の含有量は、赤外分光測定装置を使用することにより測定することができる。
<Rubber content>
The rubber content in the rubber-reinforced resin (B), that is, the rubber-containing graft copolymer (b-1) or the rubber-containing graft copolymer (b-1) and the hard (co) polymer (b-2) The content of the rubbery polymer in the mixture is preferably 5 to 80% by weight, particularly preferably 10 to 70% by weight. When the content of the rubbery polymer in the rubber reinforced resin (B) is not less than the above lower limit value, sufficient impact resistance can be obtained. If the rubber-reinforced polymer (B) has an excessive amount of the rubbery polymer, the impact strength may be lowered. The content of the rubbery polymer in the rubber reinforced resin (B) can be measured by using an infrared spectrometer.
<(メタ)アクリル系樹脂成分>
 ゴム強化樹脂(B)の、ゴム含有グラフト共重合体(b-1)および/または硬質(共)重合体(b-2)で使用する単量体成分として(メタ)アクリル系樹脂成分を含んでいてもよい。ゴム強化樹脂(B)中に(メタ)アクリル系樹脂成分を含むことにより耐衝撃性の向上や冷却時間の短縮等の効果がより一層向上する。
<(Meth) acrylic resin component>
As a monomer component used in the rubber-containing graft copolymer (b-1) and / or the hard (co) polymer (b-2) of the rubber-reinforced resin (B), a (meth) acrylic resin component is included. You may go out. By including the (meth) acrylic resin component in the rubber reinforced resin (B), effects such as improvement in impact resistance and reduction in cooling time are further improved.
 (メタ)アクリル系樹脂成分とは、ゴム含有グラフト共重合体(b-1)のゴム質重合体にグラフトする単量体成分として例示した前述の単量体成分のうち、(メタ)アクリロニトリルや、(メタ)アクリル酸エステル系単量体などが挙げられる。(メタ)アクリル系樹脂成分は、(メタ)アクリル酸エステル系単量体が好ましい。 (Meth) acrylic resin component refers to (meth) acrylonitrile, among the above-mentioned monomer components exemplified as the monomer component grafted to the rubbery polymer of the rubber-containing graft copolymer (b-1). And (meth) acrylic acid ester monomers. The (meth) acrylic resin component is preferably a (meth) acrylic acid ester monomer.
 ゴム強化樹脂(B)中の(メタ)アクリル系樹脂成分の含有量は好ましくは5~70重量%、より好ましくは10~50重量%、特に好ましくは15~40重量%である。ゴム強化樹脂(B)中の(メタ)アクリル系樹脂成分含有量が上記下限値以上であると、ゴム強化樹脂(B)を配合することによる耐衝撃性や成形性、冷却時間短縮の改善効果を十分に発揮させることができる。ゴム強化樹脂(B)中の(メタ)アクリル系樹脂成分含有量が上記上限値以下であると、耐衝撃性や成形性の低下を防止することができる。 The content of the (meth) acrylic resin component in the rubber-reinforced resin (B) is preferably 5 to 70% by weight, more preferably 10 to 50% by weight, and particularly preferably 15 to 40% by weight. When the (meth) acrylic resin component content in the rubber reinforced resin (B) is not less than the above lower limit, the impact resistance, moldability, and cooling time shortening effect by blending the rubber reinforced resin (B) is improved. Can be fully exhibited. When the content of the (meth) acrylic resin component in the rubber reinforced resin (B) is not more than the above upper limit value, it is possible to prevent a decrease in impact resistance and moldability.
 (メタ)アクリル系樹脂成分は、少なくとも(メタ)アクリル系樹脂成分を構成する単量体成分としてメタクリル酸エステルを含むものである。好ましくは、メタクリル酸メチル等のメタクリル酸エステル系単量体の重合成分、或いはメタクリル酸エステル系単量体とアクリル酸メチル等のアクリル酸エステル系単量体および/または共重合可能なその他の単量体との共重合成分である。(共)重合成分としてメタクリル酸エステル、或いはメタクリル酸エステルとアクリル酸エステルを含む(メタ)アクリル系樹脂成分の場合、メタクリル酸エステルとアクリル酸エステルの各単量体の重量比率は好ましくは100/0~50/50、さらに好ましくは99/1~80/20である。メタクリル酸エステルが上記下限値以上であると、得られるポリ乳酸系熱可塑性樹脂組成物の熱安定性および耐熱性が良好となる。 The (meth) acrylic resin component contains at least a methacrylic acid ester as a monomer component constituting the (meth) acrylic resin component. Preferably, a polymerization component of a methacrylic acid ester monomer such as methyl methacrylate, or a methacrylic acid ester monomer and an acrylic acid ester monomer such as methyl acrylate and / or other copolymerizable monomers. It is a copolymerization component with a monomer. In the case of a (meth) acrylic resin component containing methacrylic acid ester or methacrylic acid ester and acrylic acid ester as a (co) polymerization component, the weight ratio of each monomer of methacrylic acid ester and acrylic acid ester is preferably 100 / 0 to 50/50, more preferably 99/1 to 80/20. When the methacrylic acid ester is not less than the above lower limit, the resulting polylactic acid-based thermoplastic resin composition has good thermal stability and heat resistance.
 メタクリル酸メチルとアクリル酸メチルの共重合体の具体例は、市販品の(株)クラレ社製「パラペットG」や、三菱レイヨン(株)社製「アクリペットVH」、「アクリペットMD」などである。これらを硬質(共)重合体(b-2)として本発明のポリ乳酸系熱可塑性樹脂組成物に配合することにより、ゴム強化樹脂(B)中に(メタ)アクリル系樹脂成分を含有させることができる。 Specific examples of the copolymer of methyl methacrylate and methyl acrylate include commercially available “Parapet G” manufactured by Kuraray Co., Ltd., “Acrypet VH”, “Acrypet MD” manufactured by Mitsubishi Rayon Co., Ltd., etc. It is. By incorporating these into the polylactic acid-based thermoplastic resin composition of the present invention as a hard (co) polymer (b-2), the rubber-reinforced resin (B) contains a (meth) acrylic resin component. Can do.
[核剤(C)]
 ポリ乳酸系熱可塑性樹脂組成物中の核剤(C)の配合量は、耐衝撃性、耐熱性改善の点において、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して0.1~3重量部、好ましくは0.5~2.5重量部、より好ましくは0.5~2重量部である。この範囲よりも、核剤(C)の配合量が少ないとポリ乳酸樹脂を速やかに結晶化させることができない。この範囲よりも核剤(C)の配合量が多いと耐衝撃性に優れたポリ乳酸系熱可塑性樹脂成形品が得られない。
[Nucleating agent (C)]
The blending amount of the nucleating agent (C) in the polylactic acid-based thermoplastic resin composition is 100 parts by weight in total of the polylactic acid resin (A) and the rubber-reinforced resin (B) in terms of improving impact resistance and heat resistance. The amount is 0.1 to 3 parts by weight, preferably 0.5 to 2.5 parts by weight, more preferably 0.5 to 2 parts by weight. If the blending amount of the nucleating agent (C) is less than this range, the polylactic acid resin cannot be rapidly crystallized. If the blending amount of the nucleating agent (C) is larger than this range, a polylactic acid-based thermoplastic resin molded article having excellent impact resistance cannot be obtained.
 核剤(C)は、好ましくは、安息香酸ナトリウムなどの有機カルボン酸金属塩、フェニルホスホン酸金属塩、ロジン酸金属塩、燐酸エステル金属塩、フェニルスルホン酸金属塩などのスルホン化化合物の金属塩、カルボン酸アミドなどの有機核剤であるが、これらに限定されない。
 核剤(C)は1種を単独で用いても良く、2種以上を混合して用いても良い。
The nucleating agent (C) is preferably a metal salt of a sulfonated compound such as an organic carboxylic acid metal salt such as sodium benzoate, a phenylphosphonic acid metal salt, a rosin acid metal salt, a phosphoric acid ester metal salt, or a phenylsulfonic acid metal salt. , Organic nucleating agents such as carboxylic acid amides, but not limited thereto.
A nucleating agent (C) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
[フィラー(D)]
 ポリ乳酸系熱可塑性樹脂組成物中のフィラー(D)の配合量は、耐衝撃性、耐熱性改善、成形性の点において、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して1~15重量部、好ましくは3~15重量部、より好ましくは5~10重量部である。この範囲よりも、フィラー(D)の配合量が少ないと成形時の冷却時間が長くなる可能性がある。この範囲よりもフィラー(D)の配合量が多いと耐衝撃性および外観に優れたポリ乳酸系熱可塑性樹脂成形品が得られなくなる。特に好ましいフィラー(D)は、粒状のものである。
[Filler (D)]
The blending amount of the filler (D) in the polylactic acid-based thermoplastic resin composition is 100 in total from the polylactic acid resin (A) and the rubber-reinforced resin (B) in terms of impact resistance, heat resistance improvement and moldability. The amount is 1 to 15 parts by weight, preferably 3 to 15 parts by weight, and more preferably 5 to 10 parts by weight with respect to parts by weight. If the blending amount of the filler (D) is less than this range, the cooling time during molding may be longer. If the blending amount of the filler (D) is larger than this range, a polylactic acid-based thermoplastic resin molded article excellent in impact resistance and appearance cannot be obtained. Particularly preferred filler (D) is granular.
 針状もしくは板状のフィラー(D)を含む場合、その含有量は、好ましくは、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して7重量部以下である。針状のフィラー(D)の配合量が多いと、ウエルドでの強度が低下したり、外観が悪くなる可能性があるため、針状のフィラー(D)は、好ましくはポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して7重量部以下である。
 「針状」とは「繊維状」、「棒状」を含む、いわゆる長尺状のものをさす。
When the needle-like or plate-like filler (D) is contained, the content thereof is preferably 7 parts by weight or less with respect to 100 parts by weight of the total of the polylactic acid resin (A) and the rubber-reinforced resin (B). . When the blending amount of the needle-like filler (D) is large, the strength at the weld may be lowered or the appearance may be deteriorated. Therefore, the needle-like filler (D) is preferably a polylactic acid resin (A). And 7 parts by weight or less based on 100 parts by weight in total of the rubber-reinforced resin (B).
“Needle” refers to a so-called long shape including “fiber” and “bar”.
 フィラー(D)は、好ましくは炭素繊維、ガラス繊維、タルク、ウォラストナイト、炭酸カルシウム、シリカなどの無機フィラーの1種または2種以上である。ケナフや竹繊維などの植物由来繊維などの有機フィラーを用いてもよい。無機フィラーの1種または2種以上と有機フィラーの1種または2種以上を混合して用いても良い。 The filler (D) is preferably one or more of inorganic fillers such as carbon fiber, glass fiber, talc, wollastonite, calcium carbonate, and silica. Organic fillers such as plant-derived fibers such as kenaf and bamboo fibers may be used. One or more inorganic fillers and one or more organic fillers may be mixed and used.
 フィラー(D)の大きさが過度に大きいと、成形性や流動性、外観を損なう恐れがあり、過度に小さいと、フィラー(D)を配合することによる耐衝撃性、耐熱性、成形サイクルの改善効果を得ることができないおそれがある。フィラー(D)の大きさは、その形状に応じて、次のような範囲であることが好ましい。 If the size of the filler (D) is excessively large, the moldability, fluidity and appearance may be impaired. If excessively small, the impact resistance, heat resistance and molding cycle of the filler (D) are reduced. There is a possibility that the improvement effect cannot be obtained. The size of the filler (D) is preferably in the following range depending on its shape.
 粒状のフィラー:平均粒子径として0.8~1.8μm。平均粒子径はD50のメディアン径の値である。
 針状のフィラー:繊維長が30~200μmで、繊維径が3~10μm。繊維長はSEMで観察した長辺部分の長さの値であり、繊維径は断面の長径の平均の値である。
 板状のフィラー:平均粒子径が3~10μmで、縦横比0.5~4。平均粒子径とD50のメディアン径の値である。
Granular filler: The average particle diameter is 0.8 to 1.8 μm. The average particle diameter is a value of the median diameter of D50.
Needle-like filler: fiber length of 30 to 200 μm, fiber diameter of 3 to 10 μm. The fiber length is a value of the length of the long side portion observed by SEM, and the fiber diameter is an average value of the long diameter of the cross section.
Plate-like filler: average particle diameter of 3 to 10 μm, aspect ratio of 0.5 to 4. The average particle diameter and the median diameter of D50.
[分散剤(E)]
 ポリ乳酸系熱可塑性樹脂組成物中の分散剤(E)の配合量は、耐衝撃性、耐熱性改善、成形性、外観の点において、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して0.03~3重量部、好ましくは0.1~3重量部、より好ましくは0.1~2重量部である。この範囲よりも、分散剤(E)の配合量が少ないと、成形時の冷却時間が長くなる可能性がある。この範囲よりも分散剤(E)の配合量が多いと、耐熱性に優れたポリ乳酸系熱可塑性樹脂成形品が得られなくなる。
[Dispersant (E)]
The blending amount of the dispersant (E) in the polylactic acid-based thermoplastic resin composition is such that the polylactic acid resin (A) and the rubber-reinforced resin (B) are in terms of impact resistance, heat resistance improvement, moldability, and appearance. The total amount is 0.03 to 3 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 0.1 to 2 parts by weight. If the blending amount of the dispersant (E) is less than this range, the cooling time during molding may become longer. When the blending amount of the dispersant (E) is larger than this range, a polylactic acid-based thermoplastic resin molded article having excellent heat resistance cannot be obtained.
 使用可能な分散剤(E)は、好ましくは、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレン・ソルビタン脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリエチレングリコールジベンゾエート、カプリル酸モノグリセライドジアセテート、モンタン酸エステルなどのエステル類、エチレン・ビス脂肪酸アミド、エチレン・ビスステアリン酸アミド、高級脂肪酸ポリアミドなどのアミド化合物、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸リチウム、ステアリン酸カルシウム、燐酸亜鉛、燐酸マグネシウム、燐酸リチウム、燐酸カルシウムなどの金属塩、硬化ヒマシ油などの植物由来油であるが、これらに限定されない。分散剤(E)は、特に好ましくはグリセリン脂肪酸エステル、燐酸カルシウムである。 The dispersant (E) that can be used is preferably glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, ethylene glycol fatty acid ester, polyethylene glycol dibenzoate, caprylic acid monoglyceride diacetate, Esters such as montanic acid ester, amide compounds such as ethylene bis fatty acid amide, ethylene bis stearic acid amide, higher fatty acid polyamide, zinc stearate, magnesium stearate, lithium stearate, calcium stearate, zinc phosphate, magnesium phosphate, Examples thereof include, but are not limited to, metal salts such as lithium phosphate and calcium phosphate, and plant-derived oils such as hydrogenated castor oil. The dispersant (E) is particularly preferably glycerin fatty acid ester or calcium phosphate.
 分散剤(E)は1種を単独で用いても良く、2種以上を混合して用いても良い。分散剤(E)は、冷却時間の短縮の観点から、好ましくは2種以上を用いる。分散剤(E)は、より好ましくは金属塩の1種以上とそれ以外の分散剤の1種以上である。冷却時間の短縮やウエルド外観が優れることから、分散剤(E)は、グリセリン脂肪酸エステルと燐酸カルシウムとの併用である。 As the dispersant (E), one type may be used alone, or two or more types may be mixed and used. From the viewpoint of shortening the cooling time, two or more dispersants (E) are preferably used. More preferably, the dispersant (E) is at least one metal salt and at least one other dispersant. Since the cooling time is shortened and the weld appearance is excellent, the dispersant (E) is a combination of glycerin fatty acid ester and calcium phosphate.
 金属塩の1種以上とそれ以外の分散剤の1種以上を併用する場合、耐加水分解性の点から、分散剤(E)の合計に占める金属塩の割合は5~50重量%、特に7~35重量%である。 When one or more metal salts and one or more other dispersants are used in combination, the proportion of the metal salt in the total amount of the dispersant (E) is 5 to 50% by weight, particularly from the viewpoint of hydrolysis resistance. 7 to 35% by weight.
[その他の成分]
 ポリ乳酸系熱可塑性樹脂組成物は、上記ポリ乳酸樹脂(A)、ゴム強化樹脂(B)、即ち、ゴム含有グラフト共重合体(b-1)および必要に応じて配合される硬質(共)重合体(b-2)、核剤(C)、フィラー(D)、分散剤(E)の他、更に各種の添加剤やその他の樹脂を含有してもよい。各種添加剤としては、酸化防止剤、紫外線吸収剤、滑剤、可塑剤、安定剤、離型剤、帯電防止剤、着色剤(顔料、染料など)、難燃剤(ハロゲン系難燃剤、リン系難燃剤、アンチモン化合物など)、ドリップ防止剤、抗菌剤、防カビ剤、シリコ-ンオイル、カップリング剤、耐加水分解防止剤などの1種または2種以上が挙げられる。
[Other ingredients]
The polylactic acid-based thermoplastic resin composition includes the above-mentioned polylactic acid resin (A), rubber-reinforced resin (B), that is, a rubber-containing graft copolymer (b-1) and a hard (co) compounded as necessary. In addition to the polymer (b-2), the nucleating agent (C), the filler (D), and the dispersing agent (E), various additives and other resins may be contained. Various additives include antioxidants, UV absorbers, lubricants, plasticizers, stabilizers, mold release agents, antistatic agents, colorants (pigments, dyes, etc.), flame retardants (halogen flame retardants, phosphorus flame retardants) 1 type or 2 or more types, such as a flame retardant, an antimony compound, etc.), an anti-drip agent, an antibacterial agent, an antifungal agent, a silicone oil, a coupling agent, an anti-hydrolysis agent.
 その他の樹脂としては、HIPS樹脂、ASA樹脂、AES樹脂などのゴム強化スチレン系樹脂、AS樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ナイロン樹脂、メタクリル樹脂、ポリ塩化ビニル樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、ポリプロピレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂、ポリアセタール樹脂、ポリイミド樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂などが挙げられる。これらを2種類以上ブレンドしたものでも良い。相溶化剤や官能基などにより変性された上記樹脂でもよい。 Other resins include rubber-reinforced styrene resins such as HIPS resin, ASA resin, AES resin, AS resin, polystyrene resin, polycarbonate resin, nylon resin, methacrylic resin, polyvinyl chloride resin, polybutylene terephthalate resin, polyethylene terephthalate resin , Polyphenylene ether resin, polyethylene resin, polyethylene naphthalate resin, polypropylene resin, polypropylene terephthalate resin, polyphenylene sulfide resin, polyacetal resin, polyimide resin, phenol resin, melamine resin, silicone resin, unsaturated polyester resin, epoxy resin, etc. . A blend of two or more of these may be used. The resin modified with a compatibilizer or a functional group may be used.
 本発明のポリ乳酸系熱可塑性樹脂組成物の上述のその他の樹脂の含有量は、ポリ乳酸樹脂(A)の有効利用の面で、ポリ乳酸系熱可塑性樹脂成分100重量部に対して好ましくは50重量部以下、特に好ましくは30重量部以下である。 The content of the above-mentioned other resins in the polylactic acid-based thermoplastic resin composition of the present invention is preferably from 100 parts by weight of the polylactic acid-based thermoplastic resin component in terms of effective use of the polylactic acid resin (A). 50 parts by weight or less, particularly preferably 30 parts by weight or less.
[ポリ乳酸系熱可塑性樹脂組成物の製造および成形]
 本発明のポリ乳酸系熱可塑性樹脂組成物のペレット化には、二軸押出機、バンバリーミキサー、加熱ロール等を用いることができるが、これらに限定されない。中でも二軸押出機による溶融混練が好ましい。サイドフィードなどにより樹脂やその他の添加剤を配合することもできる。
[Production and molding of polylactic acid-based thermoplastic resin composition]
For pelletizing the polylactic acid-based thermoplastic resin composition of the present invention, a twin screw extruder, a Banbury mixer, a heating roll, or the like can be used, but is not limited thereto. Of these, melt kneading with a twin screw extruder is preferred. Resins and other additives can be blended by side feed or the like.
 本発明のポリ乳酸系熱可塑性樹脂組成物は、射出成形、ブロー成形、シート成形、真空成形などの通常の成形方法によって、各種成形品に成形される。ポリ乳酸系熱可塑性樹脂組成物の成形法は、特に好ましくは射出成形法である。 The polylactic acid-based thermoplastic resin composition of the present invention is molded into various molded products by a normal molding method such as injection molding, blow molding, sheet molding, or vacuum molding. The molding method of the polylactic acid-based thermoplastic resin composition is particularly preferably an injection molding method.
 本発明のポリ乳酸系熱可塑性樹脂組成物の成形品は、冷蔵庫や洗濯機といった白物家電のハウジング部材や携帯電話の筐体、充電台などの家電関連、トランク内の敷板、タイヤカバー、フロアボックスなどの自動車関連に好適に用いることができるが、これらに限定されない。 The molded product of the polylactic acid-based thermoplastic resin composition of the present invention includes housing components for white goods such as refrigerators and washing machines, housings for mobile phones, home appliances such as charging stands, floor boards in the trunk, tire covers, floors Although it can use suitably for motor vehicles relations, such as a box, it is not limited to these.
 本発明のポリ乳酸系熱可塑性樹脂組成物の各成分を調製する際、或いはこれらの成分を混合、混練、成形する際などに発生する樹脂屑等は、そのままの状態もしくは、場合によって破砕して溶融再生処理に供することができる。この場合、成形中に回収することも可能であるが、別途回収しておいて、上述のペレットの製造工程において、原料として混合使用することも可能である。 When preparing each component of the polylactic acid-based thermoplastic resin composition of the present invention, or when mixing, kneading, or molding these components, the resin waste, etc., is crushed as it is or in some cases. It can be subjected to a melt regeneration process. In this case, it can be recovered during molding, but it can also be recovered separately and used as a raw material in the above-described pellet manufacturing process.
 以下に、合成例、実施例、および比較例を挙げて本発明をより具体的に説明する。本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
 以下において、「部」は「重量部」を意味する。
Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples, and comparative examples. The present invention is not limited to the following examples unless it exceeds the gist.
Hereinafter, “part” means “part by weight”.
 重量平均分子量は、東ソー(株)製:GPC(ゲル・パーミエーション・クロマトグラフィー、溶媒;THF)を用いた標準PS(ポリスチレン)換算法にて測定した。
 ゴム質重合体の平均粒子径は、日機装(株)製:Microtrac Model:9230UPAを用いて動的光散乱法により求めた。
 単量体の重量組成比率は、(株)堀場製作所製:FT-IRを使用して求めた。
The weight average molecular weight was measured by a standard PS (polystyrene) conversion method using Tosoh Co., Ltd. product: GPC (gel permeation chromatography, solvent; THF).
The average particle diameter of the rubber polymer was determined by a dynamic light scattering method using Nikkiso Co., Ltd .: Microtrac Model: 9230UPA.
The weight composition ratio of the monomer was determined using FT-IR manufactured by Horiba, Ltd.
[ポリ乳酸樹脂(A)]
 ポリ乳酸樹脂(a-1):ポリ乳酸樹脂(L体/D体=98/2(重量比)、重量平均分子量=140,000、融点=171℃)
[Polylactic acid resin (A)]
Polylactic acid resin (a-1): Polylactic acid resin (L-form / D-form = 98/2 (weight ratio), weight average molecular weight = 140,000, melting point = 171 ° C.)
[ゴム強化樹脂(B)]
{ゴム含有グラフト共重合体(b-1)}
<合成例1:ゴム含有グラフト共重合体(b-1-1)の製造>
 以下の配合にて、乳化重合法によりゴム含有グラフト共重合体を合成した。
[Rubber reinforced resin (B)]
{Rubber-containing graft copolymer (b-1)}
<Synthesis Example 1: Production of rubber-containing graft copolymer (b-1-1)>
A rubber-containing graft copolymer was synthesized by the emulsion polymerization method with the following composition.
〔配合〕
  スチレン(ST):25部
  アクリロニトリル(AN):10部
  ポリブタジエンラテックス:65部(固形分として)
  不均化ロジン酸カリウム:1部
  水酸化カリウム:0.03部
  ターシャリードデシルメルカプタン(t-DM):0.04部
  クメンハイドロパーオキサイド:0.3部
  硫酸第一鉄:0.007部
  ピロリン酸ナトリウム:0.1部
  結晶ブドウ糖:0.3部
  蒸留水:190部
[Combination]
Styrene (ST): 25 parts Acrylonitrile (AN): 10 parts Polybutadiene latex: 65 parts (as solids)
Disproportionated potassium rosinate: 1 part Potassium hydroxide: 0.03 part Tertiary decyl mercaptan (t-DM): 0.04 part Cumene hydroperoxide: 0.3 part Ferrous sulfate: 0.007 part Pyrroline Sodium acid: 0.1 part Crystal glucose: 0.3 part Distilled water: 190 parts
 オートクレーブに蒸留水、不均化ロジン酸カリウム、水酸化カリウムおよびポリブタジエンラテックス(ゲル含有量80重量%、平均粒子径0.3μm)を仕込み、60℃に加熱後、硫酸第一鉄、ピロリン酸ナトリウム、結晶ブドウ糖を添加した。60℃に保持したままST、AN、t-DMおよびクメンハイドロパーオキサイドを2時間かけて連続添加した。その後70℃に昇温して1時間保って反応を完結した。かかる反応によって得たABSラテックスに酸化防止剤を添加し、その後硫酸により凝固させ、十分水洗後、乾燥してABSグラフト共重合体(b-1-1)を得た。 An autoclave is charged with distilled water, disproportionated potassium rosinate, potassium hydroxide and polybutadiene latex (gel content 80% by weight, average particle size 0.3 μm), heated to 60 ° C., ferrous sulfate, sodium pyrophosphate Crystalline glucose was added. While maintaining at 60 ° C., ST, AN, t-DM and cumene hydroperoxide were continuously added over 2 hours. Thereafter, the temperature was raised to 70 ° C. and maintained for 1 hour to complete the reaction. An antioxidant was added to the ABS latex obtained by such a reaction, then coagulated with sulfuric acid, sufficiently washed with water, and dried to obtain an ABS graft copolymer (b-1-1).
<合成例2:ゴム含有グラフト共重合体(b-1-2)の製造>
 合成例1の原料配合において、ゴム質重合体としてゲル含有量97重量%であるポリブタジエン(平均粒子径0.3μm)50部(固形分として)を用い、単量体としてスチレン(ST)37部とアクリロニトリル(AN)13部を反応させたこと以外は、合成例1と同様にしてグラフト重合を行い、ABSグラフト共重合体(b-1-2)を得た。
<Synthesis Example 2: Production of rubber-containing graft copolymer (b-1-2)>
In the raw material blend of Synthesis Example 1, 50 parts (as a solid content) of polybutadiene (average particle size 0.3 μm) having a gel content of 97% by weight as a rubbery polymer and 37 parts of styrene (ST) as a monomer Graft polymerization was carried out in the same manner as in Synthesis Example 1 except that acrylonitrile (AN) and 13 parts of acrylonitrile (AN) were reacted to obtain an ABS graft copolymer (b-1-2).
<合成例3:ゴム含有グラフト共重合体(b-1-3)の製造>
 合成例1の原料配合において、ゴム質重合体としてポリアクリル酸ブチル(ゲル含有量65重量%、平均粒子径0.34μm)60部(固形分として)を用い、単量体としてメタクリル酸メチル(MMA)36部、アクリル酸メチル(MA)4部を反応させたこと以外は、合成例1と同様にグラフト重合を行いグラフト共重合体(b-1-3)を得た。
<Synthesis Example 3: Production of rubber-containing graft copolymer (b-1-3)>
In the raw material formulation of Synthesis Example 1, 60 parts (as solid content) of polybutyl acrylate (gel content 65% by weight, average particle size 0.34 μm) was used as the rubbery polymer, and methyl methacrylate ( Graft copolymerization was carried out in the same manner as in Synthesis Example 1 except that 36 parts of MMA and 4 parts of methyl acrylate (MA) were reacted to obtain a graft copolymer (b-1-3).
 合成例1,2,3で製造したゴム含有グラフト共重合体のゴム含有量、単量体の重量組成比率、グラフト率、およびアセトン可溶分の重量平均分子量の測定結果は、以下の通りであった。 
 ゴム含有グラフト共重合体(b-1-1):
    ゴム含有量=66.2重量%
    AN/ST=28/72
    グラフト率=40重量%
    重量平均分子量(Mw)=154,000
 ゴム含有グラフト共重合体(b-1-2):
    ゴム含有量=52.4重量%
    AN/ST=26/74
    グラフト率=57重量%
    重量平均分子量(Mw)=145,000
 ゴム含有グラフト共重合体(b-1-3):
    ゴム含有量=62.3重量%
    MMA/MA=90/10
    グラフト率=35重量%
    重量平均分子量(Mw)=70,000
The measurement results of the rubber content, the weight composition ratio of the monomer, the graft ratio, and the weight average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer produced in Synthesis Examples 1, 2, and 3 are as follows. there were.
Rubber-containing graft copolymer (b-1-1):
Rubber content = 66.2 wt%
AN / ST = 28/72
Graft ratio = 40% by weight
Weight average molecular weight (Mw) = 154,000
Rubber-containing graft copolymer (b-1-2):
Rubber content = 52.4% by weight
AN / ST = 26/74
Graft ratio = 57% by weight
Weight average molecular weight (Mw) = 145,000
Rubber-containing graft copolymer (b-1-3):
Rubber content = 62.3 wt%
MMA / MA = 90/10
Graft ratio = 35% by weight
Weight average molecular weight (Mw) = 70,000
{硬質(共)重合体(b-2)}
<合成例4:硬質共重合体(b-2-1)の製造>
 以下のように、懸濁重合法により硬質共重合体を合成した。
 窒素置換した反応器に水120部、アルキルベンゼンスルホン酸ソーダ0.002部、ポリビニルアルコール0.5部、アゾイソブチルニトリル0.3部、t-DM0.5部と、アクリロニトリル(AN)25部、スチレン(ST)25部、メタクリル酸メチル(MMA)50部からなる単量体混合物を仕込んだ。スチレンの一部を逐次添加しながら加熱し、開始温度60℃から5時間で120℃に昇温した。更に、120℃で4時間反応した後、重合物を取り出し、硬質共重合体(b-2-1)を得た。
{Hard (co) polymer (b-2)}
<Synthesis Example 4: Production of Rigid Copolymer (b-2-1)>
A hard copolymer was synthesized by a suspension polymerization method as follows.
120 parts water, 0.002 parts sodium alkylbenzenesulfonate, 0.5 parts polyvinyl alcohol, 0.3 parts azoisobutylnitrile, 0.5 parts t-DM, 25 parts acrylonitrile (AN), styrene A monomer mixture consisting of 25 parts (ST) and 50 parts methyl methacrylate (MMA) was charged. The mixture was heated while sequentially adding a part of styrene, and the temperature was raised from 60 ° C. to 120 ° C. in 5 hours. Furthermore, after reacting at 120 ° C. for 4 hours, the polymer was taken out to obtain a hard copolymer (b-2-1).
<合成例5:硬質(共)重合体(b-2-2)の製造>
 アクリロニトリル(AN)25部、スチレン(ST)75部からなる単量体混合物を使用し、スチレンの一部を逐次添加したこと以外は合成例4と同様にして重合を行って、硬質共重合体(b-2-2)を得た。
<Synthesis Example 5: Production of hard (co) polymer (b-2-2)>
Using a monomer mixture consisting of 25 parts of acrylonitrile (AN) and 75 parts of styrene (ST), polymerization was carried out in the same manner as in Synthesis Example 4 except that a part of styrene was sequentially added to obtain a hard copolymer. (B-2-2) was obtained.
 合成例4,5で製造した硬質共重合体の単量体の重量組成比率、および重量平均分子量(Mw)の測定結果は、以下の通りであった。 
  硬質共重合体(b-2-1):
    AN/ST/MMA=23/28/49
    重量平均分子量(Mw)=113,000
  硬質共重合体(b-2-2):
    AN/ST=25/75
    重量平均分子量(Mw)=150,000
The measurement results of the weight composition ratio and weight average molecular weight (Mw) of the monomers of the hard copolymer produced in Synthesis Examples 4 and 5 were as follows.
Rigid copolymer (b-2-1):
AN / ST / MMA = 23/28/49
Weight average molecular weight (Mw) = 113,000
Rigid copolymer (b-2-2):
AN / ST = 25/75
Weight average molecular weight (Mw) = 150,000
 [その他の添加剤]
  核剤(C)、フィラー(D)、分散剤(E)は、下記のものを使用した。
[Other additives]
The following were used for the nucleating agent (C), filler (D), and dispersing agent (E).
{核剤(C)}
 核剤(c-1):日産化学(株)社製「エコプロモートPPA-ZN」(フェニルスルホン酸亜鉛(II))
{Nuclear agent (C)}
Nucleating agent (c-1): “Eco Promote PPA-ZN” (Zinc Phenylsulfonate (II)) manufactured by Nissan Chemical Co., Ltd.
{フィラー(D)}
 フィラー(d-1):富士タルク工業(株)社製「TP-A25」(タルク(板状)、平均粒子径5μm,板の縦横比2.0)
 フィラー(d-2):巴工業(株)社製「NYGLOS8」(ウォラストナイト(針状)、繊維長136μm,繊維径8μm)
 フィラー(d-3):日東粉化工業(株)社製「NS-1000」(炭酸カルシウム(粒状)、平均粒子径1.2μm)
{Filler (D)}
Filler (d-1): “TP-A25” manufactured by Fuji Talc Kogyo Co., Ltd. (talc (plate), average particle diameter 5 μm, plate aspect ratio 2.0)
Filler (d-2): “NYGLOS8” manufactured by Sakai Kogyo Co., Ltd. (wollastonite (needle shape), fiber length 136 μm, fiber diameter 8 μm)
Filler (d-3): “NS-1000” manufactured by Nitto Flour Chemical Co., Ltd. (calcium carbonate (granular), average particle size 1.2 μm)
{分散剤(E)}
 分散剤(e-1):太陽化学(株)社製「VR-02」(グリセリン脂肪酸エステル系界面活性剤)
 分散剤(e-2):新日本理化(株)社製「リカフロー LA-100」(ポリエチレングリコールジベンゾエート)
 分散剤(e-3):丸尾カルシウム(株)社製「HAP-08NP」(燐酸カルシウム)
{Dispersant (E)}
Dispersant (e-1): “VR-02” (glycerin fatty acid ester surfactant) manufactured by Taiyo Kagaku Co., Ltd.
Dispersant (e-2): “Rikaflow LA-100” (polyethylene glycol dibenzoate) manufactured by Shin Nippon Rika Co., Ltd.
Dispersant (e-3): “HAP-08NP” (calcium phosphate) manufactured by Maruo Calcium Co., Ltd.
[ポリ乳酸系熱可塑性樹脂組成物ペレットの製造および評価]
 上記の各成分を表1,2に示す配合割合で混合し、更に、安定剤として、日清紡(株)社製「カルボジライトHMV-8CA」0.3部と共に混合した後、200~240℃で2軸押出機(日本製鋼所製「TEX-30α」)にて溶融混合し、ペレット化することにより、ポリ乳酸系熱可塑性樹脂組成物のペレットを作製した。
[Production and evaluation of polylactic acid-based thermoplastic resin composition pellets]
The above components were mixed in the mixing ratios shown in Tables 1 and 2, and further mixed with 0.3 parts of “Carbodilite HMV-8CA” manufactured by Nisshinbo Co., Ltd. as a stabilizer, and then mixed at 200 to 240 ° C. with 2 parts. Pellets of a polylactic acid-based thermoplastic resin composition were prepared by melt mixing with a shaft extruder (“TEX-30α” manufactured by Nippon Steel Works) and pelletizing.
 得られた樹脂ペレットを2オンス射出成形機(東芝(株)製)で200~220℃にて成形した。得られた成形品の耐衝撃性(シャルピー衝撃強さ)、曲げ強度、曲げ弾性率、耐熱性(荷重たわみ温度)を下記方法で測定した。 
  シャルピー衝撃強さ(KJ/m):ISO 179(常温)
  曲げ強度(MPa):ISO 178(常温)
  曲げ弾性率(MPa):ISO 178(常温)
  荷重たわみ温度(℃):ISO 75(測定荷重0.45MPa)
The obtained resin pellets were molded at 200 to 220 ° C. with a 2 ounce injection molding machine (manufactured by Toshiba Corporation). The molded article thus obtained was measured for impact resistance (Charpy impact strength), bending strength, bending elastic modulus, and heat resistance (load deflection temperature) by the following methods.
Charpy impact strength (KJ / m): ISO 179 (normal temperature)
Bending strength (MPa): ISO 178 (normal temperature)
Flexural modulus (MPa): ISO 178 (normal temperature)
Deflection temperature under load (° C): ISO 75 (measurement load 0.45 MPa)
 得られた樹脂ペレットを2オンス射出成形機(東芝(株)製)で200~220℃にて成形した際に、ISOの引っ張りテストピースが取り出されるまでの時間を冷却時間とした。
 引っ張りテストピースは、1点ゲートのテストピースと、2点ゲートのテストピースの2種類を成形した。2点ゲートのテストピースでウエルド外観を目視にて確認し、下記基準で評価した。
 ◎:ウエルドがなく外観非常に良好
 ○:ウエルドが殆どなく、外観良好
 ×:ウエルドがあり、外観不良
 引っ張り測定は、ISO 527(常温)にて1点ゲートのテストピースと、2点ゲートのテストピースについて行い、2点ゲートのテストピースの引っ張り強度/1点ゲートのテストピースの引っ張り強度×100=ウエルド強度保持率として算出した。
When the obtained resin pellet was molded at 200 to 220 ° C. with a 2 ounce injection molding machine (manufactured by Toshiba Corporation), the time until the ISO tensile test piece was taken out was defined as the cooling time.
Two types of tensile test pieces were formed: a one-point gate test piece and a two-point gate test piece. The weld appearance was visually confirmed with a two-point gate test piece and evaluated according to the following criteria.
◎: Very good appearance without welds ○: Very little weld and good appearance ×: Welded, poor appearance Tensile measurement is a test piece of one-point gate and two-point gate test at ISO 527 (room temperature) The test was performed on the piece, and the tensile strength of the test piece of the two-point gate / the tensile strength of the test piece of the one-point gate × 100 = weld strength retention was calculated.
[実施例および比較例]
 実施例1~10、比較例1~7の結果を表1,2に示した。
[Examples and Comparative Examples]
The results of Examples 1 to 10 and Comparative Examples 1 to 7 are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[考察]
 表1,2から次のことが分かる。
 本発明の請求項の要件を満たす実施例1~10のポリ乳酸系熱可塑性樹脂組成物は、成形サイクルが短く、耐衝撃性等の機械的特性、耐熱性、ウエルド強度などにも優れる成形品を得ることができる。特に、分散剤を2種類以上添加した系では、成形サイクルが短く、ウエルド強度、ウエルド外観に優れる。
 これに対して、比較例1のポリ乳酸樹脂単独のものは、冷却時間も長く耐衝撃強度、耐熱性が低い。比較例2では、核剤、分散剤が含まれないため、冷却時間も長く、他の物性も劣り、実用的ではない。分散剤を含まない比較例3,4では、冷却時間は短くなるものの、ウエルド強度が低くなり、ウエルド外観も悪い。フィラーを含まない比較例5では、冷却時間が長く、実成形では十分とはいえない。分散剤を添加したものであっても添加部数が本発明の範囲よりも多い比較例6ではウエルド強度、ウエルド外観は劣る。ポリ乳酸樹脂の配合量が少ない比較例7では、ポリ乳酸が少ないことにより結晶化度が低くなり冷却時間が長く、ウエルド外観、ウエルド強度保持率にも劣る。
[Discussion]
Tables 1 and 2 show the following.
The polylactic acid-based thermoplastic resin compositions of Examples 1 to 10 that satisfy the requirements of the claims of the present invention have a short molding cycle and are excellent in mechanical properties such as impact resistance, heat resistance, and weld strength. Can be obtained. In particular, a system to which two or more kinds of dispersants are added has a short molding cycle and is excellent in weld strength and weld appearance.
In contrast, the polylactic acid resin alone of Comparative Example 1 has a long cooling time and low impact strength and heat resistance. In Comparative Example 2, since the nucleating agent and the dispersing agent are not included, the cooling time is long and other physical properties are inferior, which is not practical. In Comparative Examples 3 and 4 containing no dispersant, although the cooling time is shortened, the weld strength is lowered and the weld appearance is also poor. In Comparative Example 5 containing no filler, the cooling time is long, and actual molding is not sufficient. Even in the case where the dispersant is added, the weld strength and the weld appearance are inferior in Comparative Example 6 in which the number of added parts is larger than the range of the present invention. In Comparative Example 7 in which the blending amount of the polylactic acid resin is small, the crystallinity is low due to the small amount of polylactic acid, the cooling time is long, and the weld appearance and weld strength retention are also poor.
 本発明のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品は、成形サイクルが短く発色性、ウエルド外観が良好で、耐衝撃性等の機械強度や耐熱性のバランスにも優れている。本発明のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品は、各種筐体や構造部材としての用途に適した素材である。本発明のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品は、市場のニーズに合わせて多彩な用途に使用することができ、その工業的有用性は非常に高く、かつ、環境負荷の低減にも有効である。 The molded product formed by molding the polylactic acid-based thermoplastic resin composition of the present invention has a short molding cycle, good color development, good weld appearance, and excellent balance of mechanical strength such as impact resistance and heat resistance. . A molded product formed by molding the polylactic acid-based thermoplastic resin composition of the present invention is a material suitable for use as various cases and structural members. The molded product formed by molding the polylactic acid-based thermoplastic resin composition of the present invention can be used for various applications according to market needs, and has an extremely high industrial utility and environmental load. It is also effective in reducing
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年10月22日付で出願された日本特許出願2013-219345に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-219345 filed on October 22, 2013, which is incorporated by reference in its entirety.

Claims (8)

  1.  ポリ乳酸系熱可塑性樹脂成分100重量部、
     核剤(C)0.1~3重量部、
     フィラー(D)1~15重量部、及び
     分散剤(E)0.03~3重量部、
    を含むポリ乳酸系熱可塑性樹脂組成物であって、
     該ポリ乳酸系熱可塑性樹脂成分100重量部は、ポリ乳酸樹脂(A)50~95重量部と、ゴム強化樹脂(B)5~50重量部とからなり(ただし、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計で100重量部)、
     該ゴム強化樹脂(B)は、ゴム含有グラフト共重合体(b-1)30~100重量%と硬質(共)重合体(b-2)0~70重量%とからなる(ただし、ゴム含有グラフト共重合体(b-1)と硬質(共)重合体(b-2)の合計で100重量%)ポリ乳酸系熱可塑性樹脂組成物。
    100 parts by weight of a polylactic acid-based thermoplastic resin component,
    Nucleating agent (C) 0.1-3 parts by weight,
    1 to 15 parts by weight of filler (D) and 0.03 to 3 parts by weight of dispersant (E),
    A polylactic acid-based thermoplastic resin composition comprising
    100 parts by weight of the polylactic acid-based thermoplastic resin component comprises 50 to 95 parts by weight of the polylactic acid resin (A) and 5 to 50 parts by weight of the rubber-reinforced resin (B) (provided that the polylactic acid resin (A) and 100 parts by weight in total with the rubber reinforced resin (B)),
    The rubber-reinforced resin (B) is composed of 30 to 100% by weight of a rubber-containing graft copolymer (b-1) and 0 to 70% by weight of a hard (co) polymer (b-2) (provided that the rubber contains A total of 100% by weight of the graft copolymer (b-1) and the hard (co) polymer (b-2)) a polylactic acid-based thermoplastic resin composition.
  2.  請求項1において、2種以上の前記分散剤(E)を配合してなるポリ乳酸系熱可塑性樹脂組成物。 In Claim 1, the polylactic acid-type thermoplastic resin composition formed by mix | blending 2 or more types of said dispersing agents (E).
  3.  請求項1において、前記フィラー(D)1~15重量部中、針状のフィラーが7重量部以下であるポリ乳酸系熱可塑性樹脂組成物。 2. The polylactic acid-based thermoplastic resin composition according to claim 1, wherein the amount of acicular filler is 7 parts by weight or less in 1 to 15 parts by weight of the filler (D).
  4.  請求項1において、前記ゴム含有グラフト共重合体(b-1)は、ゴム質重合体40~80重量%の存在下、グラフト重合可能な単量体成分60~20重量%をグラフト重合させてなる(ただし、ゴム質重合体と単量体混合物との合計で100重量%)ポリ乳酸系熱可塑性樹脂組成物。 2. The rubber-containing graft copolymer (b-1) according to claim 1, wherein 60 to 20% by weight of a graft-polymerizable monomer component is graft-polymerized in the presence of 40 to 80% by weight of a rubbery polymer. A polylactic acid-based thermoplastic resin composition (however, the total of the rubbery polymer and the monomer mixture is 100% by weight).
  5.  請求項4において、前記ゴム質重合体がポリブタジエン系ゴム及び/又はアクリル系ゴムであり、前記単量体成分が、シアン化ビニル系単量体と芳香族ビニル系単量体であるか、或いは、メタクリル酸エステル系単量体とアクリル酸エステル系単量体であるポリ乳酸系熱可塑性樹脂組成物。 5. The rubbery polymer according to claim 4, wherein the rubbery polymer is a polybutadiene rubber and / or an acrylic rubber, and the monomer component is a vinyl cyanide monomer and an aromatic vinyl monomer, or A polylactic acid thermoplastic resin composition which is a methacrylic acid ester monomer and an acrylic acid ester monomer.
  6.  請求項1において、前記ゴム強化樹脂(B)がゴム含有グラフト共重合体(b-1)及び/又は硬質(共)重合体(b-2)の単量体成分として(メタ)アクリル系樹脂成分を5~70重量%含むポリ乳酸系熱可塑性樹脂組成物。 The (meth) acrylic resin according to claim 1, wherein the rubber-reinforced resin (B) is a monomer component of the rubber-containing graft copolymer (b-1) and / or the hard (co) polymer (b-2). A polylactic acid-based thermoplastic resin composition containing 5 to 70% by weight of components.
  7.  請求項2において、前記分散剤(E)が金属塩と金属塩以外の分散剤を含み、該分散剤(E)中の金属塩の割合が5~50重量%であるポリ乳酸系熱可塑性樹脂組成物。 The polylactic acid-based thermoplastic resin according to claim 2, wherein the dispersant (E) includes a metal salt and a dispersant other than the metal salt, and the proportion of the metal salt in the dispersant (E) is 5 to 50% by weight. Composition.
  8.  請求項1ないし7のいずれか1項に記載のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品。 A molded product formed by molding the polylactic acid-based thermoplastic resin composition according to any one of claims 1 to 7.
PCT/JP2014/073735 2013-10-22 2014-09-09 Polylactic acid-containing thermoplastic resin composition and molded product thereof WO2015060029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480043004.6A CN105452377B (en) 2013-10-22 2014-09-09 Poly lactic acid series thermoplastic resin composition and formed products thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013219345A JP5737359B2 (en) 2013-10-22 2013-10-22 Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2013-219345 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015060029A1 true WO2015060029A1 (en) 2015-04-30

Family

ID=52992634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073735 WO2015060029A1 (en) 2013-10-22 2014-09-09 Polylactic acid-containing thermoplastic resin composition and molded product thereof

Country Status (3)

Country Link
JP (1) JP5737359B2 (en)
CN (1) CN105452377B (en)
WO (1) WO2015060029A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567196A (en) * 2015-12-15 2016-05-11 天津大学 Toughness enhancing latex additive with weak slow setting and water loss controlling effects and preparation method of latex additive
JP5954507B1 (en) * 2016-02-15 2016-07-20 ユーエムジー・エービーエス株式会社 Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2018024809A (en) * 2016-08-12 2018-02-15 株式会社Tbm Resin composition
CN107921819A (en) * 2015-08-31 2018-04-17 株式会社普利司通 For producing the Rubber compound of tyre surface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6692236B2 (en) * 2016-07-14 2020-05-13 株式会社カネカ Method for producing aliphatic polyester resin composition
JP7146120B2 (en) * 2019-12-26 2022-10-03 Psジャパン株式会社 Styrene-based resin composition and molding, sheet and injection molding using the same
EP4234598A4 (en) * 2020-10-23 2024-04-17 Mitsubishi Chemical Corporation Resin composition and molded article thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286396A (en) * 2002-01-24 2003-10-10 Toray Ind Inc Aliphatic polyester resin composition and molded article made therefrom
JP2007119730A (en) * 2005-09-30 2007-05-17 Toray Ind Inc Resin composition and molded article composed of the same
JP2008156616A (en) * 2006-11-28 2008-07-10 Toray Ind Inc Resin composition and molded product made therefrom
JP2009079124A (en) * 2007-09-26 2009-04-16 Unitika Ltd Biodegradable polyester resin composition and molded body formed of it
JP2009242520A (en) * 2008-03-31 2009-10-22 Riken Vitamin Co Ltd Polylactic acid resin composition and molded article obtained by molding the same
JP2010126580A (en) * 2008-11-26 2010-06-10 Kao Corp Polylactic acid resin composition
JP2012177011A (en) * 2011-02-25 2012-09-13 Toray Ind Inc Polylactic acid composition
JP2013032488A (en) * 2011-06-27 2013-02-14 Unitika Ltd Thermoplastic resin composition
JP2013103946A (en) * 2011-11-10 2013-05-30 Mitsubishi Plastics Inc Aliphatic polyesteric resin sheet and plastic case for packaging container using the same
JP5288059B2 (en) * 2011-06-29 2013-09-11 東レ株式会社 Thermoplastic resin composition and molded article comprising them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020780B (en) * 2007-03-15 2010-05-19 上海交通大学 Preparation process of polylactic acid-base thermoplastic wood-plastic composite material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286396A (en) * 2002-01-24 2003-10-10 Toray Ind Inc Aliphatic polyester resin composition and molded article made therefrom
JP2007119730A (en) * 2005-09-30 2007-05-17 Toray Ind Inc Resin composition and molded article composed of the same
JP2008156616A (en) * 2006-11-28 2008-07-10 Toray Ind Inc Resin composition and molded product made therefrom
JP2009079124A (en) * 2007-09-26 2009-04-16 Unitika Ltd Biodegradable polyester resin composition and molded body formed of it
JP2009242520A (en) * 2008-03-31 2009-10-22 Riken Vitamin Co Ltd Polylactic acid resin composition and molded article obtained by molding the same
JP2010126580A (en) * 2008-11-26 2010-06-10 Kao Corp Polylactic acid resin composition
JP2012177011A (en) * 2011-02-25 2012-09-13 Toray Ind Inc Polylactic acid composition
JP2013032488A (en) * 2011-06-27 2013-02-14 Unitika Ltd Thermoplastic resin composition
JP5288059B2 (en) * 2011-06-29 2013-09-11 東レ株式会社 Thermoplastic resin composition and molded article comprising them
JP2013103946A (en) * 2011-11-10 2013-05-30 Mitsubishi Plastics Inc Aliphatic polyesteric resin sheet and plastic case for packaging container using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921819A (en) * 2015-08-31 2018-04-17 株式会社普利司通 For producing the Rubber compound of tyre surface
CN105567196A (en) * 2015-12-15 2016-05-11 天津大学 Toughness enhancing latex additive with weak slow setting and water loss controlling effects and preparation method of latex additive
CN105567196B (en) * 2015-12-15 2018-03-09 天津大学 Toughness reinforcing has weak slow setting concurrently and controls the latex additive and preparation method of dehydration effect
JP5954507B1 (en) * 2016-02-15 2016-07-20 ユーエムジー・エービーエス株式会社 Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2018024809A (en) * 2016-08-12 2018-02-15 株式会社Tbm Resin composition
WO2018030455A1 (en) * 2016-08-12 2018-02-15 株式会社Tbm Resin composition

Also Published As

Publication number Publication date
JP5737359B2 (en) 2015-06-17
CN105452377A (en) 2016-03-30
CN105452377B (en) 2016-12-07
JP2015081282A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5352937B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5737359B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
KR101922246B1 (en) Polymer resin composition having excellent impact resistance or heat resistance
JP2006137908A (en) Polylactic acid-based thermoplastic resin composition and molded article of the same
JP5494757B2 (en) Resin composition and molded article comprising the same
JP2007191695A (en) Resin composition and molded article comprising the same
JP5396681B2 (en) Flame retardant polylactic acid-based thermoplastic resin composition and molded article thereof
WO2012111587A1 (en) Thermoplastic resin composition and molded articles thereof
KR20100067223A (en) Environmentally friendly thermoplastic resin composition using recycled polyester resin
JP5092228B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5017818B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2008214469A (en) Thermoplastic resin composition and molding thereof
JP2007063540A (en) Styrene-based resin composition and molded product made of the same
JP5954507B1 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5625720B2 (en) Composite polylactic acid-based thermoplastic resin composition and molded article thereof
JP5718756B2 (en) Thermoplastic resin composition and molded article
JP5353986B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP6249129B1 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP6790883B2 (en) Polylactic acid-based thermoplastic resin composition and its molded product
JP5348161B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5569118B2 (en) Method for producing polylactic acid-based thermoplastic resin pellets
JP5590182B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2007321096A (en) Polylactic acid-based thermoplastic resin composition and its molded article
JP5759153B2 (en) Thermoplastic resin composition and molded article
JP2012087296A (en) Thermoplastic resin composition and molding thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043004.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855457

Country of ref document: EP

Kind code of ref document: A1