JP5954507B1 - Polylactic acid-based thermoplastic resin composition and molded article thereof - Google Patents

Polylactic acid-based thermoplastic resin composition and molded article thereof Download PDF

Info

Publication number
JP5954507B1
JP5954507B1 JP2016026016A JP2016026016A JP5954507B1 JP 5954507 B1 JP5954507 B1 JP 5954507B1 JP 2016026016 A JP2016026016 A JP 2016026016A JP 2016026016 A JP2016026016 A JP 2016026016A JP 5954507 B1 JP5954507 B1 JP 5954507B1
Authority
JP
Japan
Prior art keywords
weight
polylactic acid
parts
resin
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016026016A
Other languages
Japanese (ja)
Other versions
JP2017145280A (en
Inventor
佑生 柿本
佑生 柿本
川口 英一郎
英一郎 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
UMG ABS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMG ABS Ltd filed Critical UMG ABS Ltd
Priority to JP2016026016A priority Critical patent/JP5954507B1/en
Application granted granted Critical
Publication of JP5954507B1 publication Critical patent/JP5954507B1/en
Publication of JP2017145280A publication Critical patent/JP2017145280A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

【課題】石油系プラスチックと同等の実用上十分な成形サイクルで成形することができ、曲げ強度、弾性率等の機械的特性、耐熱性、分散性などにも優れる成形品を得ることができるポリ乳酸系熱可塑性樹脂組成物を提供する。【解決手段】ポリ乳酸樹脂(A)65〜90重量部と、ゴム質重合体に1種または2種以上のビニル系単量体をグラフト重合してなるゴム強化樹脂(B)35〜10重量部との合計100重量部に対して、核剤(C)0.1〜3重量部と、セルロースを含む充填材(D)0.1〜40重量部と、分散剤(E)0.1〜4.3重量部とを含有するポリ乳酸系熱可塑性樹脂組成物。【選択図】なし[PROBLEMS] To obtain a molded product that can be molded with a practically sufficient molding cycle equivalent to that of petroleum-based plastic, and that is excellent in mechanical properties such as bending strength and elastic modulus, heat resistance, and dispersibility. A lactic acid-based thermoplastic resin composition is provided. SOLUTION: 65 to 90 parts by weight of a polylactic acid resin (A) and 35 to 10 parts by weight of a rubber reinforced resin (B) obtained by graft polymerization of one or more vinyl monomers to a rubbery polymer. 0.1 to 3 parts by weight of the nucleating agent (C), 0.1 to 40 parts by weight of the filler (D) containing cellulose, and 0.1 of the dispersing agent (E) with respect to 100 parts by weight in total. A polylactic acid-based thermoplastic resin composition containing ˜4.3 parts by weight. [Selection figure] None

Description

本発明は、成形サイクルを短縮することができ、生産性に優れると共に、耐熱性、曲げ強度、弾性率等の機械的特性等の物性がバランスよく改善されたポリ乳酸系熱可塑性樹脂組成物に関するものである。本発明はまた、このポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品に関するものである。   The present invention relates to a polylactic acid-based thermoplastic resin composition that can shorten a molding cycle, has excellent productivity, and has improved physical properties such as mechanical properties such as heat resistance, bending strength, and elastic modulus in a well-balanced manner. Is. The present invention also relates to a molded article formed by molding this polylactic acid-based thermoplastic resin composition.

従来より地球温暖化の要因として、大気中における炭酸ガス濃度の上昇が指摘され、地球規模での炭酸ガス排出規制の必要性が唱えられている。炭酸ガス排出源としては、生物の呼吸、バクテリアによる腐敗・発酵等も有るが、人間による産業革命以後の石油資源を浪費した経済活動によってもたらされたものと言って過言ではない。   Conventionally, as the cause of global warming, an increase in the concentration of carbon dioxide in the atmosphere has been pointed out, and the necessity of carbon dioxide emission regulations on a global scale has been advocated. Sources of carbon dioxide emissions include respiration of organisms, spoilage and fermentation by bacteria, but it is no exaggeration to say that they were brought about by economic activity that wasted oil resources after the industrial revolution by humans.

一方で、以前よりカーボンニュートラルとして、炭酸ガスを吸収、固定する植物資源の有効活用が注目されている。即ち、植生によって、炭酸ガスの吸収を図り、将来枯渇が予想される石油資源の代替を図るという動きがある。   On the other hand, effective use of plant resources that absorb and fix carbon dioxide has attracted attention as carbon neutral. In other words, there is a movement to absorb carbon dioxide by vegetation and to replace petroleum resources that are expected to be depleted in the future.

プラスチックにおいても、植物を由来原料とするバイオマスプラスチックが開発された。
当初、これらは生分解性樹脂として親環境的な特性を有することで大いに注目され、石油系プラスチックと同等の物性と量産性の可能性を見出すべく、ポリ乳酸樹脂(PLA)の実用化が期待されてきたが、ポリ乳酸樹脂は、既存の石油系プラスチックに比べると成形サイクルが非常に長く、その改良が望まれてきた。
As for plastics, biomass plastics using plants as raw materials have been developed.
Initially, they are attracting a great deal of attention as environmentally friendly biodegradable resins, and polylactic acid resin (PLA) is expected to be put to practical use in order to find the same physical properties and mass productivity as petroleum-based plastics. However, polylactic acid resin has a very long molding cycle compared to existing petroleum plastics, and its improvement has been desired.

そこで、ポリ乳酸樹脂の成形サイクルの短縮という課題に関して、さまざまな検討が行われている。   Accordingly, various studies have been conducted on the problem of shortening the molding cycle of polylactic acid resin.

例えば、特許文献1には、充填材としてタルクや炭酸カルシウムを配合して、樹脂の結晶化を促す方法が示されている。結晶化した樹脂は耐熱性が上昇する結果として剛性が向上することから、樹脂温度が従来に比べて高温でも金型から離型しやすい。結果として冷却時間の短縮による成形サイクルの改善が見られるが、石油系プラスチックの量産性と比較すると、未だ十分とは言えない。   For example, Patent Literature 1 discloses a method of promoting crystallization of a resin by blending talc or calcium carbonate as a filler. Since the crystallized resin has improved rigidity as a result of increased heat resistance, it is easy to release from the mold even when the resin temperature is higher than that of the conventional resin. As a result, the molding cycle is improved by shortening the cooling time, but it is still not sufficient compared with the mass productivity of petroleum-based plastics.

特許文献2には、結晶核剤の添加が示されている。しかし、これらの結晶核剤の添加においても結晶化時間が長いという問題があり、実用的とは言えない。   Patent Document 2 shows the addition of a crystal nucleating agent. However, even when these crystal nucleating agents are added, there is a problem that the crystallization time is long, which is not practical.

特許文献3には、金型温度を高くし、成形後急激に低くするヒート&クール法での成形が示されているが、特殊な温調装置が必要であることと成形時間の短縮に関しても近年の要求を満足し得ず、汎用的な生産手法としては不十分である。   Patent Document 3 shows molding by the heat and cool method in which the mold temperature is raised and lowered sharply after molding, but there is a need for a special temperature control device and shortening the molding time. It cannot satisfy the recent demands and is insufficient as a general-purpose production method.

特開2015−81282号公報Japanese Patent Laying-Open No. 2015-81282 特開2005−162867号公報JP 2005-162867 A 特開2008−246954号公報JP 2008-246594 A

本発明は、上述した従来技術における課題を解決し、石油系プラスチックと同等の実用上十分な成形サイクルで成形することができ、曲げ強度、弾性率等の機械的特性、耐熱性、充填材の分散性などにも優れる成形品を得ることができるポリ乳酸系熱可塑性樹脂組成物と、このポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品を提供することを目的とする。   The present invention solves the above-mentioned problems in the prior art and can be molded with a practically sufficient molding cycle equivalent to that of petroleum-based plastic. Mechanical properties such as bending strength and elastic modulus, heat resistance, It is an object of the present invention to provide a polylactic acid-based thermoplastic resin composition capable of obtaining a molded product excellent in dispersibility and the like, and a molded product formed by molding this polylactic acid-based thermoplastic resin composition.

本発明者らは、従来技術の検証・改良に鋭意努力した結果、ポリ乳酸樹脂を短時間で結晶化させて耐熱性を付与し、成形サイクルを短縮することができると共に、曲げ強度、弾性率等の機械的特性などにも優れる樹脂組成を発見し、本発明に至った。   As a result of diligent efforts to verify and improve the prior art, the present inventors can crystallize polylactic acid resin in a short time to impart heat resistance, shorten the molding cycle, flexural strength, elastic modulus The present inventors have found a resin composition that is excellent in mechanical properties such as the above, and has reached the present invention.

即ち、本発明の要旨は、ポリ乳酸樹脂(A)65〜90重量部と、ゴム質重合体に1種または2種以上のビニル系単量体をグラフト重合してなるゴム強化樹脂(B)35〜10重量部との合計100重量部(ただし、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計で100重量部)に対して、核剤(C)0.1〜3重量部と、セルロース(D)0.1〜40重量部と、分散剤(E)0.1〜4.3重量部とを含有するポリ乳酸系熱可塑性樹脂組成物、に存する。 That is, the gist of the present invention is that a rubber-reinforced resin (B) obtained by graft polymerization of 65 to 90 parts by weight of a polylactic acid resin (A) and one or more vinyl monomers on a rubber polymer. 0.1 to 3 weights of nucleating agent (C) with respect to 100 weight parts in total of 35 to 10 weight parts (however, 100 weight parts in total of polylactic acid resin (A) and rubber-reinforced resin (B)) and parts, and cellulose scan (D) 0.1 to 40 parts by weight, dispersing agent (E) .1-4.3 polylactic acid thermoplastic resin composition containing the parts consists in.

本発明の別の要旨は、このような本発明のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品、に存する。   Another gist of the present invention resides in a molded article formed by molding the polylactic acid-based thermoplastic resin composition of the present invention.

本発明のポリ乳酸系熱可塑性樹脂組成物は、曲げ強度、弾性率等の機械的特性、耐熱性、充填材の分散性などにバランス良く優れ、しかも、結晶化速度を向上させて成形サイクルを短縮することができ、高生産性が要求される各種筐体や構造部材としての用途に適した素材である。   The polylactic acid-based thermoplastic resin composition of the present invention is excellent in balance in mechanical properties such as bending strength and elastic modulus, heat resistance, dispersibility of fillers, etc., and further improves the crystallization speed and increases the molding cycle. It is a material that can be shortened and is suitable for use as various housings and structural members that require high productivity.

本発明によれば、このように実用的なポリ乳酸系熱可塑性樹脂組成物を提供することにより、植物系樹脂であるポリ乳酸樹脂の用途を広げ、カーボンニュートラルの理念の実践を促進して、環境負荷の低減に貢献することができる。   According to the present invention, by providing a practical polylactic acid-based thermoplastic resin composition as described above, the use of a polylactic acid resin that is a plant-based resin is expanded, and the practice of the philosophy of carbon neutral is promoted. It can contribute to reduction of environmental load.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

なお、本明細書において、「(メタ)アクリル」は「アクリル」Aと「メタクリル」Bもしくは「アクリル、メタクリル双方を含む共重合体」A+Bを意味する。   In the present specification, “(meth) acryl” means “acryl” A and “methacryl” B or “a copolymer containing both acrylic and methacryl” A + B.

また、ポリ乳酸樹脂(A)の重量平均分子量(Mw)や、ゴム強化樹脂(B)のアセトン可溶分の重量平均分子量(Mw)は、いずれも、ゲルパーミエーションクロマトグラフィー(GPC)にてテトラヒドロフラン(THF)に溶解して測定したものをポリスチレン(PS)換算で示したものである。   Further, the weight average molecular weight (Mw) of the polylactic acid resin (A) and the weight average molecular weight (Mw) of the acetone-soluble component of the rubber-reinforced resin (B) are both measured by gel permeation chromatography (GPC). What was measured by dissolving in tetrahydrofuran (THF) is shown in terms of polystyrene (PS).

[ポリ乳酸樹脂(A)]
本発明の樹脂組成物に適用されるポリ乳酸樹脂(A)は、乳酸を直接脱水縮重合する方法、或いはラクチドを開環重合する方法等といった、公知の手段で得る事ができる。
[Polylactic acid resin (A)]
The polylactic acid resin (A) applied to the resin composition of the present invention can be obtained by known means such as a method of directly dehydrating condensation polymerization of lactic acid or a method of ring-opening polymerization of lactide.

ポリ乳酸樹脂にはL体、D体、DL体の3種の光学異性体が存在し、市販されているポリ乳酸樹脂としては、L体の純度が100%に近いものがあるが、本発明で用いるポリ乳酸樹脂(A)は、結晶化という観点から、L体もしくはD体の光学純度が98%以上のものである。また、本発明の効果を損なわない範囲で、他の共重合成分を含んだ共重合体でも構わない。   There are three types of optical isomers, L-form, D-form, and DL-form, in the polylactic acid resin, and commercially available polylactic acid resins have L-form purity close to 100%. The polylactic acid resin (A) used in 1) has an optical purity of 98% or more in the L form or D form from the viewpoint of crystallization. Moreover, the copolymer containing the other copolymerization component may be sufficient as long as the effect of this invention is not impaired.

ポリ乳酸樹脂(A)に含まれる他の共重合成分としては、エチレングリコール、ブロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ−ル、デカンジオール、1,4−シクロヘキサンジメタノ−ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ−ルA、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのグリコール化合物;シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p−カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムイソフタル酸などのジカルボン酸;グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキ
シカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5−オキセパン−2−オンなどのラクトン類などを挙げることができる。このような共重合成分の含有量は、ポリ乳酸樹脂(A)中の全単量体成分中通常30モル%以下の含有量とするのが好ましく、10モル%以下であることがより好ましい。
Other copolymerization components contained in the polylactic acid resin (A) include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethano -Glycol compounds such as diol, neopentyl glycol, glycerin, pentaerythritol, bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid , Malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4, Dicarboxylic acids such as' -diphenyl ether dicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium isophthalic acid; hydroxycarboxylic acids such as glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid Examples include acids; lactones such as caprolactone, valerolactone, propiolactone, undecalactone, and 1,5-oxepan-2-one. The content of such a copolymer component is usually preferably 30 mol% or less and more preferably 10 mol% or less in all monomer components in the polylactic acid resin (A).

ポリ乳酸樹脂(A)の分子量や分子量分布については、実質的に成形加工が可能であれば特に制限されるものではないが、重量平均分子量としては、通常1万以上、好ましくは5万以上、さらに10万以上であることが望ましい。ポリ乳酸樹脂(A)の重量平均分子量の上限については特に制限はないが、通常40万以下である。   The molecular weight and molecular weight distribution of the polylactic acid resin (A) is not particularly limited as long as it can be practically processed, but the weight average molecular weight is usually 10,000 or more, preferably 50,000 or more, Furthermore, it is desirable that it is 100,000 or more. Although there is no restriction | limiting in particular about the upper limit of the weight average molecular weight of a polylactic acid resin (A), Usually, it is 400,000 or less.

なお、ポリ乳酸樹脂(A)の分子量は、前述の如く、GPC(溶媒THF)にて測定することができるが、ポリ乳酸がペレット状の場合、THFに溶解し難い場合があり、その場合は、クロロホルムに溶解させた後、メタノールを用いてポリマー成分を析出させ、そのポリマー成分を乾燥させたものをTHFに溶解させて可溶分の分子量を測定することができる。また、必要に応じて加温するなどして溶解させることもできる。   The molecular weight of the polylactic acid resin (A) can be measured by GPC (solvent THF) as described above, but when the polylactic acid is in a pellet form, it may be difficult to dissolve in THF. After dissolving in chloroform, the polymer component is precipitated using methanol, and the dried polymer component is dissolved in THF, and the molecular weight of the soluble component can be measured. Further, it can be dissolved by heating as necessary.

上記のポリ乳酸樹脂(A)は1種を単独で用いても良く、2種以上を混合して用いても良い。   Said polylactic acid resin (A) may be used individually by 1 type, and 2 or more types may be mixed and used for it.

このようなポリ乳酸樹脂の具体例としては、例えば、Nature Works社製「NATUREWORKS」、中国海生生物材料公司社製「レヴォダ」などが挙げられ、いずれも本発明に使用することができる。   Specific examples of such a polylactic acid resin include “NATUREWORKS” manufactured by Nature Works, “Levoda” manufactured by China Marine Biomaterials Co., Ltd., and any of them can be used in the present invention.

本発明において、ポリ乳酸系熱可塑性樹脂組成物中のポリ乳酸樹脂(A)の配合量は、ポリ乳酸樹脂(A)と後述のゴム強化樹脂(B)との合計100重量部に対して65〜90重量部(ゴム強化樹脂(B)は10〜35重量部)の範囲であり、好ましくは70〜90重量部(ゴム強化樹脂(B)は10〜30重量部)、より好ましくは75〜85重量部(ゴム強化樹脂(B)は15〜25重量部)であることが、カーボンニュートラルの観点や、コンパウンド性や耐熱性改善の点において好ましい。この範囲よりも、ポリ乳酸樹脂(A)の配合量が少ないとポリ乳酸樹脂(A)を有効利用する本発明の目的を達成し得ず、多いと成形中にバリ等が発生し易くなり、良好な成形性のもとにポリ乳酸系熱可塑性樹脂成形品を得ることができなくなる。   In this invention, the compounding quantity of the polylactic acid resin (A) in a polylactic acid-type thermoplastic resin composition is 65 with respect to a total of 100 weight part of a polylactic acid resin (A) and the below-mentioned rubber-reinforced resin (B). It is the range of -90 weight part (rubber reinforcement | strengthening resin (B) is 10-35 weight part), Preferably it is 70-90 weight part (rubber reinforcement | strengthening resin (B) is 10-30 weight part), More preferably, it is 75- 85 parts by weight (the rubber-reinforced resin (B) is 15 to 25 parts by weight) is preferable from the viewpoint of carbon neutral, compound properties and heat resistance. If the blending amount of the polylactic acid resin (A) is less than this range, the object of the present invention for effectively using the polylactic acid resin (A) cannot be achieved, and if it is large, burrs and the like are likely to occur during molding, It becomes impossible to obtain a polylactic acid-based thermoplastic resin molded article under good moldability.

[ゴム強化樹脂(B)]
本発明で使用するゴム強化樹脂(B)は、ゴム質重合体にシアン化ビニル系単量体、芳香族ビニル系単量体、(メタ)アクリル酸エステル系単量体等のビニル系単量体の少なくとも1種をグラフト重合してなるものであり、一般にABS、ASA、AES、MBS等で表現される。
[Rubber reinforced resin (B)]
The rubber reinforced resin (B) used in the present invention is a vinyl monomer such as a vinyl cyanide monomer, an aromatic vinyl monomer, a (meth) acrylic acid ester monomer, etc. in a rubbery polymer. It is formed by graft polymerization of at least one kind of body, and is generally expressed by ABS, ASA, AES, MBS or the like.

ゴム強化樹脂(B)を形成するゴム質重合体としては、例えば、ポリブタジエン、スチレン/ブタジエン共重合体、アクリル酸エステル/ブタジエン共重合体等のブタジエン系ゴムや、スチレン/イソプレン共重合体等の共役ジエン系ゴム;ポリアクリル酸ブチル等のアクリル系ゴム、エチレン/プロピレン共重合体等のオレフィン系ゴム等が挙げられ、これらのうち、耐衝撃性の観点でポリブタジエン系ゴム、アクリル系ゴム、オレフィン系ゴムが好ましく、中でもポリブタジエン系ゴムが好ましい。これらのゴム質重合体は1種を単独で、或いは2種以上を混合して使用することができる。   Examples of the rubbery polymer forming the rubber reinforced resin (B) include butadiene rubbers such as polybutadiene, styrene / butadiene copolymer, acrylate ester / butadiene copolymer, and styrene / isoprene copolymer. Conjugated diene rubbers: acrylic rubbers such as polybutyl acrylate, olefin rubbers such as ethylene / propylene copolymers, etc. Among these, polybutadiene rubbers, acrylic rubbers, olefins from the viewpoint of impact resistance Rubbers are preferable, and polybutadiene rubber is particularly preferable. These rubbery polymers can be used singly or in combination of two or more.

なお、これらゴム質重合体は、モノマーから使用することができ、ゴム質重合体の構造がコア/シェル構造をとっても良い。例えば、ポリブタジエンをコアにして、アクリル酸エステルをシェルにしたゴム質重合体とすることもできる。   These rubbery polymers can be used from monomers, and the structure of the rubbery polymer may take a core / shell structure. For example, a rubbery polymer having polybutadiene as the core and acrylic acid ester as the shell can be used.

上記のゴム質重合体のゲル含有量は、好ましくは50〜99重量%、より好ましくは60〜95重量%で、特に好ましくは70〜85重量%である。ゲル含有量がこの範囲内であれば、得られるポリ乳酸系熱可塑性樹脂組成物の特性、特に、耐衝撃強度を向上させることができる。   The gel content of the rubbery polymer is preferably 50 to 99% by weight, more preferably 60 to 95% by weight, and particularly preferably 70 to 85% by weight. When the gel content is within this range, the properties of the resulting polylactic acid-based thermoplastic resin composition, particularly the impact strength, can be improved.

なお、ゴム質重合体のゲル含有量を測定するには、具体的には、秤量したゴム質重合体を、適当な溶剤に室温(23℃)で20時間かけて溶解させ、次いで、100メッシュ金網で分取して、金網上に残った不溶分を60℃で24時間乾燥した後秤量する。分取前のゴム質重合体に対する不溶分の割合(重量%)を求め、ゴム質重合体のゲル含有量とする。ゴム質重合体の溶解に用いる溶剤としては、例えば、ポリブタジエンではトルエンを、ポリブチルアクリレートではアセトンを用いると測定が行いやすい。   In order to measure the gel content of the rubber polymer, specifically, the weighed rubber polymer was dissolved in an appropriate solvent at room temperature (23 ° C.) over 20 hours, and then 100 mesh. After separating with a wire mesh, the insoluble matter remaining on the wire mesh is dried at 60 ° C. for 24 hours and then weighed. The ratio (% by weight) of the insoluble matter with respect to the rubber polymer before fractionation is determined and used as the gel content of the rubber polymer. As the solvent used for dissolving the rubbery polymer, for example, toluene is used for polybutadiene and acetone is used for polybutyl acrylate.

また、ゴム質重合体の粒子径は、特に限定されるものではないが、0.1〜1μmが好ましく、0.2〜0.5μmであることがより好ましい。なお、ゴム質重合体の平均粒子径は、グラフト重合前であれば、光学的な方法で測定することができる。また、グラフト重合した後は、染色剤によりゴム質重合体を染色した後に透過型電子顕微鏡(TEM)を用いて平均粒子径を算出することができる。   The particle size of the rubbery polymer is not particularly limited, but is preferably 0.1 to 1 μm, and more preferably 0.2 to 0.5 μm. The average particle size of the rubbery polymer can be measured by an optical method before graft polymerization. Further, after graft polymerization, the average particle diameter can be calculated using a transmission electron microscope (TEM) after dyeing the rubber polymer with a dyeing agent.

ゴム強化樹脂(B)は、好ましくは上記のゴム質重合体40〜80重量%の存在下、グラフト重合可能なビニル系単量体成分60〜20重量%をグラフト重合させて得ることができる(ただし、ゴム質重合体と単量体混合物との合計で100重量%とする。)。ここで、ゴム質重合体が上記下限値以上であると、得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性が良好となり、また、上記上限値以下であると耐衝撃性や流動性などの低下を防止することができる。   The rubber-reinforced resin (B) can be obtained by graft polymerization of 60 to 20% by weight of the vinyl monomer component capable of graft polymerization, preferably in the presence of 40 to 80% by weight of the above rubbery polymer ( However, the total of the rubber polymer and the monomer mixture is 100% by weight.) Here, if the rubbery polymer is not less than the above lower limit value, the resulting polylactic acid-based thermoplastic resin molded article has good impact resistance, and if it is not more than the above upper limit value, impact resistance, fluidity, etc. Can be prevented.

ゴム質重合体にグラフト重合可能なビニル系単量体成分としては、シアン化ビニル系単量体、芳香族ビニル系単量体、メタクリル酸エステル系単量体、アクリル酸エステル系単量体、マレイミド化合物が挙げられ、上記単量体はそれぞれ、1種または2種以上を選択して使用することができる。   Examples of vinyl monomer components that can be graft-polymerized to rubbery polymers include vinyl cyanide monomers, aromatic vinyl monomers, methacrylic acid ester monomers, acrylic acid ester monomers, A maleimide compound is mentioned, The said monomer can select and use 1 type (s) or 2 or more types, respectively.

シアン化ビニル系単量体としては、アクリロニトリル、メタクリルニトリル等が挙げられ、特にアクリロニトリルが好ましい。また、芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、ブロムスチレン等が挙げられ、特にスチレン、α−メチルスチレンが好ましい。メタクリル酸エステル系単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチルおよびこれらの誘導体等が挙げられ、この中でも特にメタクリル酸メチルが好ましい。アクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルおよびこれらの誘導体等が挙げられ、この中でも特にアクリル酸メチルが好ましい。マレイミド化合物としては、N−フェニルマレイミド、N−シクロヘキシルマレイミド等が挙げられる。   Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile, and acrylonitrile is particularly preferable. Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, p-methylstyrene, bromostyrene, and the like, and styrene and α-methylstyrene are particularly preferable. Examples of the methacrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, and derivatives thereof. Among these, methyl methacrylate is particularly preferable. Examples of the acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and derivatives thereof. Among these, methyl acrylate is particularly preferable. Examples of the maleimide compound include N-phenylmaleimide, N-cyclohexylmaleimide and the like.

また、これらの単量体成分には、場合により官能基により変性された単量体を含んでもよく、このような単量体としては例えば、不飽和カルボン酸として、アクリル酸、メタクリル酸、イタコン酸、フマル酸等が挙げられる。これらは、それぞれ1種を単独で、或いは2種以上を混合して用いることができる。その使用割合は単量体成分の合計100重量%に対して30重量%以下、特に10重量%以下であることが好ましい。   These monomer components may optionally contain monomers modified with functional groups. Examples of such monomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itacone. An acid, fumaric acid, etc. are mentioned. These can be used individually by 1 type or in mixture of 2 or more types. The proportion of use is preferably 30% by weight or less, particularly preferably 10% by weight or less, based on 100% by weight of the total monomer components.

ゴム強化樹脂(B)のゴム質重合体にグラフトするビニル系単量体成分としては、上記例示単量体のうち、特にシアン化ビニル系単量体および芳香族ビニル系単量体の組み合わせ、メタクリル酸エステル系単量体およびアクリル酸エステル系単量体の組み合わせが好ましい。シアン化ビニル系単量体および芳香族ビニル系単量体の組み合わせとして、シアン化ビニル系単量体としてはアクリロニトリルが、芳香族ビニル系単量体としてはスチレンが、特に得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性をさらに向上させる点から好ましい。この場合、シアン化ビニル系単量体と芳香族ビニル系単量体の重量組成比は、20/80〜35/65の範囲が好ましく、より好ましくは25/75〜30/70である。この範囲内であることにより、分散性や熱安定性が良好なものとなる。また、メタクリル酸エステル系単量体およびアクリル酸エステル系単量体の組み合わせとして、メタクリル酸エステル系単量体としてはメタクリル酸メチルが、アクリル酸エステル系単量体としてはアクリル酸メチルが、特に得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性をさらに向上させると共に、ウエルド外観を向上させ、さらに冷却時間を短縮できる点から好ましい。この場合、メタクリル酸エステル系単量体とアクリル酸エステル系単量体の重量組成比は100/0〜50/50が好ましく、さらには99/1〜80/20の範囲である。この範囲内であることにより、ウエルド外観を保持したまま、冷却時間を短縮でき、成形性が良好なものとなる。   As the vinyl monomer component grafted on the rubber polymer of the rubber reinforced resin (B), among the above exemplified monomers, in particular, a combination of a vinyl cyanide monomer and an aromatic vinyl monomer, A combination of a methacrylic acid ester monomer and an acrylic acid ester monomer is preferred. As a combination of a vinyl cyanide monomer and an aromatic vinyl monomer, acrylonitrile is used as the vinyl cyanide monomer, styrene is used as the aromatic vinyl monomer, and polylactic acid-based heat is obtained. This is preferable from the viewpoint of further improving the impact resistance of the plastic resin molded product. In this case, the weight composition ratio of the vinyl cyanide monomer and the aromatic vinyl monomer is preferably in the range of 20/80 to 35/65, more preferably 25/75 to 30/70. By being in this range, dispersibility and thermal stability are improved. Further, as a combination of a methacrylic ester monomer and an acrylate ester monomer, methyl methacrylate as a methacrylic ester monomer, methyl acrylate as an acrylate ester monomer, The resulting polylactic acid-based thermoplastic resin molded article is preferable in that it can further improve the impact resistance, improve the weld appearance, and further reduce the cooling time. In this case, the weight composition ratio of the methacrylic ester monomer and the acrylate ester monomer is preferably 100/0 to 50/50, and more preferably 99/1 to 80/20. By being in this range, the cooling time can be shortened while maintaining the weld appearance, and the moldability becomes good.

なお、ゴム強化樹脂(B)のアセトン可溶分の重量平均分子量は、50,000〜600,000の範囲が好ましく、より好ましくは50,000〜550,000、さらに好ましくは100,000〜450,000の範囲である。ゴム強化樹脂(B)のアセトン可溶分の重量平均分子量が上記下限値以上であることにより、得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃性が十分なものとなり、また、上記上限値以下であることにより、ポリ乳酸系熱可塑性樹脂組成物の成形加工性が良好となる。なお、アセトン可溶分とは、ゴム質重合体にビニル系単量体をグラフト重合した際に生じるゴム質重合体にグラフト重合していないビニル系単量体の重合体生成物に相当するものである。   The weight average molecular weight of the acetone-soluble component of the rubber reinforced resin (B) is preferably in the range of 50,000 to 600,000, more preferably 50,000 to 550,000, and still more preferably 100,000 to 450. , 000. When the weight average molecular weight of the acetone-soluble component of the rubber-reinforced resin (B) is not less than the above lower limit, the resulting polylactic acid-based thermoplastic resin molded article has sufficient impact resistance, and the above upper limit. By being below, the moldability of a polylactic acid-type thermoplastic resin composition becomes favorable. The acetone-soluble component corresponds to a polymer product of a vinyl monomer that is not graft-polymerized to a rubber polymer that is produced when a vinyl monomer is graft-polymerized to a rubber polymer. It is.

また、ゴム強化樹脂(B)のグラフト率((アセトン不溶分重量/ゴム質重合体重量−1)×100)は、15〜120重量%であることが好ましく、さらに20〜85重量%であることがより好ましい。ゴム強化樹脂(B)のグラフト率が上記下限値以上であることにより、ゴム強化樹脂(B)の分散性、得られるポリ乳酸系熱可塑性樹脂成形品の耐衝撃強度が良好となる。また、グラフト率が上記上限値以下であることにより、耐衝撃強度や成形性が良好となる。なお、ゴム質重合体にグラフトしている共重合体は、ゴム質重合体の外部のみならず内部にオクルードした構造であっても良い。   The graft ratio of rubber-reinforced resin (B) ((acetone insoluble matter weight / rubber polymer weight-1) × 100) is preferably 15 to 120% by weight, more preferably 20 to 85% by weight. It is more preferable. When the graft ratio of the rubber reinforced resin (B) is not less than the above lower limit, the dispersibility of the rubber reinforced resin (B) and the impact strength of the resulting polylactic acid-based thermoplastic resin molded article are improved. Further, when the graft ratio is not more than the above upper limit value, the impact strength and the moldability are improved. The copolymer grafted on the rubber polymer may have a structure occluded not only inside but also inside the rubber polymer.

グラフト重合は、公知の乳化重合、懸濁重合、溶液重合、塊状重合により行うことができ、これらの重合方法を組み合わせた方法でもよい。
この際、ゴム強化樹脂(B)中のゴム含有量は、5〜80重量%、特に10〜70重量%の範囲となるように調整することが好ましい。ゴム強化樹脂(B)中のゴム質重合体の含有量が上記下限値以上であることにより、十分な耐衝撃性が得られるようになる。ただし、ゴム含有グラフト共重合体(B)中のゴム質重合体は多くても衝撃強度は低下する傾向にあることから、上記上限値以下であることが好ましい。なお、ゴム強化樹脂(B)中のゴム質重合体の含有量は、赤外分光測定装置を使用することにより測定することができる。
Graft polymerization can be performed by known emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization, and may be a method combining these polymerization methods.
At this time, the rubber content in the rubber reinforced resin (B) is preferably adjusted to be in the range of 5 to 80% by weight, particularly 10 to 70% by weight. When the content of the rubbery polymer in the rubber reinforced resin (B) is not less than the above lower limit value, sufficient impact resistance can be obtained. However, since the impact strength tends to decrease at most if the rubber-like polymer in the rubber-containing graft copolymer (B) is at most, it is preferably not more than the above upper limit value. The content of the rubbery polymer in the rubber reinforced resin (B) can be measured by using an infrared spectrometer.

ゴム強化樹脂(B)としては、重合方法や成分組成の異なるゴム強化樹脂(B)の2種以上を混合して用いても良い。   As the rubber reinforced resin (B), two or more kinds of rubber reinforced resins (B) having different polymerization methods and component compositions may be mixed and used.

[核剤(C)]
本発明において、ポリ乳酸系熱可塑性樹脂組成物中の核剤(C)の配合量は、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して0.1〜3重量部の範囲であるが、好ましくは0.5〜2.5重量部、より好ましくは0.5〜2重量部であることが、耐熱性改善の点において好ましい。この範囲よりも、核剤(C)の配合量が少ないとポリ乳酸樹脂(A)を速やかに結晶化させることができず、本発明の目的を達成しない。また、この範囲よりも核剤(C)の配合量が多いとポリ乳酸樹脂(A)を速やかに結晶化させる弊害となり成形サイクルに優れたポリ乳酸系熱可塑性樹脂成形品が得られなくなる。
[Nucleating agent (C)]
In this invention, the compounding quantity of the nucleating agent (C) in a polylactic acid-type thermoplastic resin composition is 0.1-0.1 with respect to a total of 100 weight part of a polylactic acid resin (A) and a rubber reinforced resin (B). Although it is the range of 3 weight part, Preferably it is 0.5-2.5 weight part, More preferably, it is 0.5-2 weight part from the point of heat resistant improvement. If the blending amount of the nucleating agent (C) is less than this range, the polylactic acid resin (A) cannot be crystallized quickly, and the object of the present invention is not achieved. On the other hand, if the blending amount of the nucleating agent (C) is larger than this range, the polylactic acid resin (A) is quickly crystallized, and a polylactic acid-based thermoplastic resin molded article having an excellent molding cycle cannot be obtained.

本発明で使用可能な核剤(C)としては、特に限定するものではなく、例えば、安息香酸ナトリウムなどの有機カルボン酸金属塩、フェニルホスホン酸金属塩、ロジン酸金属塩、燐酸エステル金属塩、フェニルスルホン酸金属塩などのスルホン化化合物の金属塩、カルボン酸アミドなどの有機核剤などが挙げられる。なお、核剤(C)は1種を単独で用いても良く、2種以上を混合して用いても良い。   The nucleating agent (C) that can be used in the present invention is not particularly limited, and examples thereof include organic carboxylic acid metal salts such as sodium benzoate, phenylphosphonic acid metal salts, rosin acid metal salts, phosphoric acid ester metal salts, Examples thereof include metal salts of sulfonated compounds such as phenylsulfonic acid metal salts, and organic nucleating agents such as carboxylic acid amides. In addition, a nucleating agent (C) may be used individually by 1 type, and 2 or more types may be mixed and used for it.

材]
本発明において、ポリ乳酸系熱可塑性樹脂組成物中のセルロース(D)の配合量は、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して0.1〜40重量部、好ましくは1〜40重量部の範囲であるが、好ましくは3〜35重量部、より好ましくは5〜30重量部であることが、耐熱性、成形サイクル性の改善、分散性の点において好ましい。この範囲よりも、セルロース(D)の配合量が少ないと成形時の冷却時間が長くなり、本発明の目的を達成しない。また、この範囲よりもセルロース(D)の配合量が多いと生産性や分散性に優れたポリ乳酸系熱可塑性樹脂成形品が得られなくなる。
[Filling Material]
In the present invention, the amount of cellulose scan (D) of the polylactic acid-based thermoplastic resin composition is 0.1 to per 100 parts by weight of the polylactic acid resin (A) and the rubber-reinforced resin (B) 40 parts by weight, preferably in the range of 1 to 40 parts by weight, preferably 3 to 35 parts by weight, more preferably 5 to 30 parts by weight improves heat resistance, molding cycleability, and dispersibility. It is preferable in terms. If the blending amount of cellulose (D) is less than this range, the cooling time at the time of molding becomes long and the object of the present invention is not achieved. Further, when the blending amount of cellulose (D) is larger than this range, a polylactic acid-based thermoplastic resin molded article excellent in productivity and dispersibility cannot be obtained.

本発明において、充填材として、機械的裁断および化学的処理にて精製された植物由来繊維のセルロース(D)を用いることが必須であり、必要に応じてセルロース(D)以外の針状(ここで、「針状」とは「繊維状」、「棒状」を含む、いわゆる長尺状のものをさす。)、板状、粉状のいずれかのフィラーの1種または2種以上を混合して用いても良い。
なお、ここで「セルロース」とは、天然の植物質から、ヘミセルロースとリグニンを除去したものをさす。「セルロース」の要件として、ヘミセルロースとリグニンを除去することは必須であり、これらを除去していない場合、例えば、単なる木粉などでは、成形サイクルを改善することはできず、また、変色等発色に大きな支障をきたすため、本発明の目的を達成しない場合がある。
In the present invention, as a filler, it is mandatory to use a mechanical cutting and chemical purified cellulose derived from plants fibers in process (D), needle-like non-cellulose (D) if necessary (Here, “needle” refers to a so-called long shape including “fiber” and “bar”.) One or more fillers in any one of plate-like and powdery forms. You may mix and use.
Here, “cellulose” refers to a product obtained by removing hemicellulose and lignin from natural plant matter. As a requirement of “cellulose”, it is essential to remove hemicellulose and lignin. If these are not removed, for example, simple wood flour cannot improve the molding cycle, and color development such as discoloration. In some cases, the object of the present invention may not be achieved.

セルロース(D)に、その他の充填材として針状、板状、粉状のいずれかのフィラーを混合使用する場合、その他の充填材は、無機フィラーであってもよく、有機フィラーであってもよい。具体的には、無機フィラーとしては、炭素繊維、ガラス繊維、タルク、ウォラストナイト、炭酸カルシウム、シリカなどが挙げられる。有機フィラーとしては、ケナフや竹繊維などの植物由来繊維(これらはヘミセルロースとリグニンを除去したものではなく、セルロース(D)とは区別される。)などが挙げられる。これらの他の充填材は1種のみを用いてもよく、2種以上を併用してもよいが、これらの他の充填材の配合量が多過ぎると、相対的にセルロースの配合量が少なくなって、得られるポリ乳酸系熱可塑性樹脂成形品の曲げ強度や弾性率が低下したり、結晶化の速度が低下する可能性があり、本発明の目的を達成しない場合があるため、その他の充填材を用いる場合は、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して1〜20重量部の範囲で用い、セルロース(D)が、セルロース(D)を含む充填材の全量に対して50〜100重量%で、セルロース(D)と他の充填材との合計が0.1〜40重量部の範囲となるように用いることが好ましい。 When any of fillers in the form of needles, plates, or powders is mixed with cellulose (D) , the other fillers may be inorganic fillers or organic fillers. Good. Specifically, examples of the inorganic filler include carbon fiber, glass fiber, talc, wollastonite, calcium carbonate, and silica. Examples of the organic filler include plant-derived fibers such as kenaf and bamboo fiber (these are not removed from hemicellulose and lignin, and are distinguished from cellulose (D)) . These other fillers may be used alone or in combination of two or more, but if the amount of these other fillers is too large, the amount of cellulose is relatively small. Since the bending strength and elastic modulus of the resulting polylactic acid-based thermoplastic resin molded article may decrease or the rate of crystallization may decrease, the object of the present invention may not be achieved. When using a filler, it is used in the range of 1 to 20 parts by weight with respect to a total of 100 parts by weight of the polylactic acid resin (A) and the rubber reinforced resin (B), and cellulose (D) is cellulose (D) . It is preferable to use 50 to 100% by weight with respect to the total amount of fillers contained so that the total of cellulose (D) and other fillers is in the range of 0.1 to 40 parts by weight .

セルロース(D)を含む充填材の大きさについては、平均粒子径が10〜70μmの範囲であることが好ましく、より好ましくは13〜65μm、さらに好ましくは15〜60μmの範囲であることが、冷却時間短縮の点で好ましい。この平均粒子径範囲の外になると、冷却時間が長くなり、本発明の目的を達成し得ない場合がある。 Regarding the size of the filler containing cellulose (D) , the average particle diameter is preferably in the range of 10 to 70 μm, more preferably in the range of 13 to 65 μm, and still more preferably in the range of 15 to 60 μm. This is preferable in terms of time reduction. If the average particle size is out of the range, the cooling time becomes long and the object of the present invention may not be achieved.

なお、充填材の平均粒子径とは、当該充填材を2枚の平行な板で挟んだ場合に2枚の板の距離が最も大きくなる部分の長さをいい、セルロース(D)についてはD50のメディアン径の値をさす。また、粉状(粒状)フィラーの場合は粒子径をさし、針状のフィラーの場合、その長尺部分の長さをさす。更に板状のフィラーの場合、板面の最も長い部分の長さをさす。 The average particle diameter of the filler refers to the length of the portion where the distance of the two plates when sandwiched the filler two parallel plates is maximized, the cellulose (D) is D50 Indicates the median diameter value. In the case of a powdery (granular) filler, the particle diameter is indicated, and in the case of a needle-like filler, the length of the long part is indicated. Furthermore, in the case of a plate-like filler, it refers to the length of the longest portion of the plate surface.

また、2種以上の充填材を併用した場合は、各々の平均粒子径とその配合量とで全体の充填材の平均粒子径を求めることができる。例えば、2種の充填材を混合使用した場合一方の充填材の配合量をd1、平均粒子径をd1’、他方の充填材の配合量をd2、平均粒子径をd2’とすると、全体の充填材の平均粒子径は、下記式で算出される。
平均粒子径=(d1×d1’+d2×d2’)/(d1+d2)
Further, when used in combination of two or more fillers, it can determine the average particle size of the whole of the filler in each average particle diameter of its amount. For example, when two kinds of fillers are mixed and used, if the blending amount of one filler is d1, the average particle size is d1 ′, the blending amount of the other filler is d2, and the average particle size is d2 ′, The average particle diameter of the filler is calculated by the following formula.
Average particle diameter = (d1 × d1 ′ + d2 × d2 ′) / (d1 + d2)

セルロース(D)の大きさについては、平均粒子径が10〜70μmの範囲であることが好ましく、より好ましくは15〜60μm、さらに好ましくは25〜45μmの範囲であることが、冷却時間短縮の点で好ましい。この平均粒子径の範囲外になると、冷却時間が長くなり、本発明の目的を達し得ない場合がある。 Regarding the size of cellulose (D) , the average particle size is preferably in the range of 10 to 70 μm, more preferably in the range of 15 to 60 μm, and even more preferably in the range of 25 to 45 μm. Is preferable. If the average particle size is out of the range, the cooling time becomes long and the object of the present invention may not be achieved.

[分散剤(E)]
本発明において、ポリ乳酸系熱可塑性樹脂組成物中の分散剤(E)の配合量は、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して0.1〜4.3重量部の範囲であるが、好ましくは0.1〜3重量部、より好ましくは0.1〜2.5重量部であることが、耐熱性改善、分散性の点において好ましい。この範囲よりも、分散剤(E)の配合量が少なくても多くても、分散効果が不十分であり、また、成形時の冷却時間が長くなる可能性があり、本発明の目的を達成しない。
[Dispersant (E)]
In this invention, the compounding quantity of the dispersing agent (E) in a polylactic acid-type thermoplastic resin composition is 0.1- with respect to a total of 100 weight part of a polylactic acid resin (A) and a rubber reinforced resin (B). Although it is the range of 4.3 weight part, Preferably it is 0.1-3 weight part, More preferably, it is 0.1-2.5 weight part from the point of a heat resistant improvement and a dispersibility. If the blending amount of the dispersant (E) is smaller or larger than this range, the dispersion effect is insufficient, and the cooling time during molding may become longer, and the object of the present invention is achieved. do not do.

本発明で使用可能な分散剤(E)としては、特に限定するものではなく、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレン・ソルビタン脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリエチレングリコールジベンゾエート、カプリル酸モノグリセライドジアセテート、モンタン酸エステルなどのエステル類、エチレン・ビス脂肪酸アミド、エチレン・ビスステアリン酸アミド、高級脂肪酸ポリアミドなどのアミド化合物、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸リチウム、ステアリン酸カルシウム、燐酸亜鉛、燐酸マグネシウム、燐酸リチウム、燐酸カルシウムなどの金属塩、硬化ヒマシ油などの植物由来油などが挙げられ、特に、グリセリン脂肪酸エステル、燐酸カルシウムが好ましい。   The dispersant (E) that can be used in the present invention is not particularly limited, and glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene / sorbitan fatty acid ester, ethylene glycol fatty acid ester, polyethylene glycol diester. Benzoate, caprylic acid monoglyceride diacetate, esters such as montanic acid ester, amide compounds such as ethylene bis fatty acid amide, ethylene bis stearic acid amide, higher fatty acid polyamide, zinc stearate, magnesium stearate, lithium stearate, stear Examples thereof include metal salts such as calcium phosphate, zinc phosphate, magnesium phosphate, lithium phosphate, and calcium phosphate, and plant-derived oils such as hydrogenated castor oil. Ester, calcium phosphate is preferred.

なお、分散剤(E)は、1種を単独で用いてもよく、2種以上を混合して用いてもよいが、冷却時間の短縮の観点から、金属塩の1種以上とそれ以外の分散剤の1種以上を混合して用いることが好ましい。特に、グリセリン脂肪酸エステルと燐酸カルシウムとを併用することが冷却時間の短縮やウエルド外観が優れることから好ましい。   In addition, a dispersing agent (E) may be used individually by 1 type, and 2 or more types may be mixed and used from a viewpoint of shortening of cooling time, and 1 type or more and other than that of metal salt. It is preferable to use a mixture of one or more dispersants. In particular, it is preferable to use glycerin fatty acid ester and calcium phosphate in combination because of shortening of cooling time and excellent weld appearance.

このように金属塩の1種以上とそれ以外の分散剤の1種以上を併用する場合、分散剤(E)の合計に占める金属塩の割合が5〜50重量%、特に7〜35重量%となるように用いることが耐加水分解性の点で好ましい。   Thus, when using together 1 or more types of metal salt, and 1 or more types of other dispersing agents, the ratio of the metal salt to the sum total of a dispersing agent (E) is 5 to 50 weight%, especially 7 to 35 weight%. From the viewpoint of hydrolysis resistance, it is preferable to use it as follows.

[その他の成分]
本発明のポリ乳酸系熱可塑性樹脂組成物には、上記ポリ乳酸樹脂(A)、ゴム強化樹脂(B)、核剤(C)、セルロース(D)を含む充填材、分散剤(E)の他、更に各種の添加剤やその他の樹脂を配合することができる。この場合、各種添加剤としては、公知の酸化防止剤、紫外線吸収剤、滑剤、可塑剤、安定剤、離型剤、帯電防止剤、着色剤(顔料、染料など)、難燃剤(ハロゲン系難燃剤、リン系難燃剤、アンチモン化合物など)、ドリップ防止剤、抗菌剤、防カビ剤、シリコ−ンオイル、カップリング剤、耐加水分解防止剤などの1種または2種以上が挙げられる。
[Other ingredients]
The polylactic acid-based thermoplastic resin composition of the present invention includes the above-mentioned polylactic acid resin (A), rubber-reinforced resin (B), nucleating agent (C), filler containing cellulose (D) , and dispersing agent (E). In addition, various additives and other resins can be blended. In this case, various additives include known antioxidants, ultraviolet absorbers, lubricants, plasticizers, stabilizers, mold release agents, antistatic agents, colorants (pigments, dyes, etc.), flame retardants (halogen-based flame retardants). 1 type, or 2 or more types, such as a flame retardant, a phosphorus flame retardant, an antimony compound, etc.), a drip inhibitor, an antibacterial agent, an antifungal agent, a silicone oil, a coupling agent, an anti-hydrolysis agent.

また、その他の樹脂としては、HIPS樹脂などのゴム強化スチレン系樹脂、その他に、AS樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ナイロン樹脂、メタクリル樹脂、ポリ塩化ビニル樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンエーテル樹脂、ポリエチレン樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、ポリプロピレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂、ポリアセタール樹脂、ポリイミド樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂などが挙げられる。また、これらを2種類以上ブレンドしたものでも良く、さらに、相溶化剤や官能基などにより変性された上記樹脂を配合してもよい。   Other resins include rubber-reinforced styrene resins such as HIPS resin, AS resin, polystyrene resin, polycarbonate resin, nylon resin, methacrylic resin, polyvinyl chloride resin, polybutylene terephthalate resin, polyethylene terephthalate resin, Examples include polyphenylene ether resin, polyethylene resin, polyethylene naphthalate resin, polypropylene resin, polypropylene terephthalate resin, polyphenylene sulfide resin, polyacetal resin, polyimide resin, phenol resin, melamine resin, silicone resin, unsaturated polyester resin, and epoxy resin. Moreover, what blended these 2 or more types may be sufficient, and you may mix | blend the said resin modified | denatured with the compatibilizer, the functional group, etc. further.

ただし、本発明のポリ乳酸系熱可塑性樹脂組成物において、上述のその他の樹脂は、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計100重量部に対して50重量部以下、特に30重量部以下であることが、ポリ乳酸樹脂(A)の有効利用の面で好ましい。   However, in the polylactic acid-based thermoplastic resin composition of the present invention, the above-mentioned other resins are 50 parts by weight or less, particularly with respect to 100 parts by weight of the total of the polylactic acid resin (A) and the rubber-reinforced resin (B). 30 parts by weight or less is preferable in terms of effective use of the polylactic acid resin (A).

[ポリ乳酸系熱可塑性樹脂組成物の製造および成形]
本発明のポリ乳酸系熱可塑性樹脂組成物をペレット化する方法としては、特に制限はなく、例えば、二軸押出機、バンバリーミキサー、加熱ロール等を用いることができるが、中でも二軸押出機による溶融混練が好ましく、必要に応じて、サイドフィードなどにより樹脂やその他の添加剤を配合することもできる。
[Production and molding of polylactic acid-based thermoplastic resin composition]
There is no restriction | limiting in particular as a method of pelletizing the polylactic acid-type thermoplastic resin composition of this invention, For example, although a twin-screw extruder, a Banbury mixer, a heating roll, etc. can be used, especially by a twin-screw extruder. Melt kneading is preferable, and if necessary, resin and other additives can be blended by side feed or the like.

本発明のポリ乳酸系熱可塑性樹脂組成物は、射出成形、ブロー成形、シート成形、真空成形などの通常の成形方法によって、各種成形品に成形することができるが、その成形法としては特に射出成形が好適である。   The polylactic acid-based thermoplastic resin composition of the present invention can be molded into various molded products by ordinary molding methods such as injection molding, blow molding, sheet molding, vacuum molding, etc. Molding is preferred.

得られる成形品の用途としては特に制限はないが、家電関連では、冷蔵庫や洗濯機といった白物家電のハウジング部材や携帯電話の筐体、充電台など、自動車関連では、トランク内の敷板、タイヤカバー、フロアボックスなどに好適に用いることができる。   There are no particular restrictions on the use of the resulting molded product, but for home appliances, white goods such as refrigerators and washing machines, housings for mobile phones, charging stands, etc. It can be suitably used for a cover, a floor box and the like.

なお、本発明のポリ乳酸系熱可塑性樹脂組成物の各成分を調製する際、或いはこれらの成分を混合、混練、成形する際などに発生する樹脂屑等は、そのままの状態もしくは、場合によって破砕して溶融再生処理に供することができる。この場合、成形中に回収することも可能であるが、別途回収しておいて、上述のペレットの製造工程において、原料として混合使用することも可能である。   In addition, when preparing each component of the polylactic acid-based thermoplastic resin composition of the present invention, or when mixing, kneading, or molding these components, the resin waste, etc. generated as it is or in some cases is crushed. Thus, it can be subjected to a melt regeneration process. In this case, it can be recovered during molding, but it can also be recovered separately and used as a raw material in the above-described pellet manufacturing process.

以下に、合成例、実施例、参考例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
なお、以下において、「部」は「重量部」を意味するものとする。
Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples, reference examples, and comparative examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Absent.
In the following, “part” means “part by weight”.

重量平均分子量は、東ソー(株)製:GPC(ゲル・パーミエーション・クロマトグラフィー、溶媒;THF)を用いた標準PS(ポリスチレン)換算法にて測定した。ゴム質重合体の平均粒子径は、日機装(株)製:Microtrac Model:9230UPAを用いて動的光散乱法により求めた。
単量体の重量組成比率は、(株)堀場製作所製:FT−IRを使用して求めた。
The weight average molecular weight was measured by a standard PS (polystyrene) conversion method using Tosoh Co., Ltd. product: GPC (gel permeation chromatography, solvent; THF). The average particle diameter of the rubber polymer was determined by a dynamic light scattering method using Nikkiso Co., Ltd .: Microtrac Model: 9230UPA.
The weight composition ratio of the monomer was determined using FT-IR manufactured by Horiba Ltd.

[ポリ乳酸樹脂(A)]
ポリ乳酸樹脂(a−1):ポリ乳酸樹脂(L体/D体=98/2(重量比)、
重量平均分子量=140,000、融点=171℃)
[Polylactic acid resin (A)]
Polylactic acid resin (a-1): Polylactic acid resin (L-form / D-form = 98/2 (weight ratio),
(Weight average molecular weight = 140,000, melting point = 171 ° C.)

[ゴム強化樹脂(B)]
<合成例1:ゴム含有グラフト共重合体(b−1)の製造>
以下の配合にて、乳化重合法によりゴム含有グラフト共重合体を合成した。
[Rubber reinforced resin (B)]
<Synthesis Example 1: Production of rubber-containing graft copolymer (b-1)>
A rubber-containing graft copolymer was synthesized by the emulsion polymerization method with the following composition.

〔配合〕
スチレン(ST) 25部
アクリロニトリル(AN) 10部
ポリブタジエンラテックス 65部(固形分として)
不均化ロジン酸カリウム 1部
水酸化カリウム 0.03部
ターシャリードデシルメルカプタン(t−DM) 0.04部
クメンハイドロパーオキサイド 0.3部
硫酸第一鉄 0.007部
ピロリン酸ナトリウム 0.1部
結晶ブドウ糖 0.3部
蒸留水 190部
[Combination]
Styrene (ST) 25 parts Acrylonitrile (AN) 10 parts Polybutadiene latex 65 parts (as solids)
Disproportionated potassium rosinate 1 part Potassium hydroxide 0.03 part Tertiary decyl mercaptan (t-DM) 0.04 part Cumene hydroperoxide 0.3 part Ferrous sulfate 0.007 part Sodium pyrophosphate 0.1 Part Crystalline glucose 0.3 part Distilled water 190 part

オートクレーブに蒸留水、不均化ロジン酸カリウム、水酸化カリウムおよびポリブタジエンラテックス(ゲル含有量80重量%、平均粒子径0.3μm)を仕込み、60℃に加熱後、硫酸第一鉄、ピロリン酸ナトリウム、結晶ブドウ糖を添加し、60℃に保持したままST、AN、t−DMおよびクメンハイドロパーオキサイドを2時間かけて連続添加し、その後70℃に昇温して1時間保って反応を完結した。かかる反応によって得たABSラテックスに酸化防止剤を添加し、その後硫酸により凝固させ、十分水洗後、乾燥してABSグラフト共重合体(b−1)を得た。   An autoclave is charged with distilled water, disproportionated potassium rosinate, potassium hydroxide and polybutadiene latex (gel content 80% by weight, average particle size 0.3 μm), heated to 60 ° C., ferrous sulfate, sodium pyrophosphate Crystalline glucose was added and ST, AN, t-DM and cumene hydroperoxide were continuously added over 2 hours while maintaining the temperature at 60 ° C., and then the temperature was raised to 70 ° C. and maintained for 1 hour to complete the reaction. . An antioxidant was added to the ABS latex obtained by this reaction, then coagulated with sulfuric acid, sufficiently washed with water, and dried to obtain an ABS graft copolymer (b-1).

<合成例2:ゴム含有グラフト共重合体(b−2)の製造>
合成例1の原料配合において、ゴム質重合体としてゲル含有量97重量%であるポリブタジエン(平均粒子径0.3μm)50部(固形分として)を用い、単量体としてスチレン(ST)37部とアクリロニトリル(AN)13部を反応させたこと以外は、合成例1と同様にしてグラフト重合を行い、ABSグラフト共重合体(b−2)を得た。
<Synthesis Example 2: Production of rubber-containing graft copolymer (b-2)>
In the raw material blend of Synthesis Example 1, 50 parts (as a solid content) of polybutadiene (average particle size 0.3 μm) having a gel content of 97% by weight as a rubbery polymer and 37 parts of styrene (ST) as a monomer Graft polymerization was carried out in the same manner as in Synthesis Example 1 except that 13 parts of acrylonitrile (AN) were reacted with each other to obtain an ABS graft copolymer (b-2).

<合成例3:ゴム含有グラフト共重合体(b−1−3)の製造>
合成例1の原料配合において、ゴム質重合体としてポリアクリル酸ブチル(ゲル含有量65重量%、平均粒子径0.34μm)60部(固形分として)を用い、単量体としてメタクリル酸メチル(MMA)36部、アクリル酸メチル(MA)4部を反応させたこと以外は、合成例1と同様にグラフト重合を行いグラフト共重合体(b−3)を得た。
<Synthesis Example 3: Production of rubber-containing graft copolymer (b-1-3)>
In the raw material formulation of Synthesis Example 1, 60 parts (as solid content) of polybutyl acrylate (gel content 65% by weight, average particle size 0.34 μm) was used as the rubbery polymer, and methyl methacrylate ( Graft copolymerization was carried out in the same manner as in Synthesis Example 1 except that 36 parts of MMA and 4 parts of methyl acrylate (MA) were reacted to obtain a graft copolymer (b-3).

合成例1,2,3で製造したゴム含有グラフト共重合体のゴム含有量、単量体の重量組成比率、グラフト率、およびアセトン可溶分の重量平均分子量を測定したところ、以下の通りであった。
ゴム含有グラフト共重合体(b−1):ゴム含有量=66.2重量%
AN/ST=28/72
グラフト率=40重量%
重量平均分子量(Mw)=154,000
ゴム含有グラフト共重合体(b−2):ゴム含有量=52.4重量%
AN/ST=26/74
グラフト率=57重量%
重量平均分子量(Mw)=145,000
ゴム含有グラフト共重合体(b−3):ゴム含有量=62.3重量%
MMA/MA=90/10
グラフト率=35重量%
重量平均分子量(Mw)=70,000
The rubber content, the weight composition ratio of the monomer, the graft ratio, and the weight-average molecular weight of the acetone-soluble component of the rubber-containing graft copolymer produced in Synthesis Examples 1, 2, and 3 were measured. there were.
Rubber-containing graft copolymer (b-1): rubber content = 66.2% by weight
AN / ST = 28/72
Graft ratio = 40% by weight
Weight average molecular weight (Mw) = 154,000
Rubber-containing graft copolymer (b-2): rubber content = 52.4% by weight
AN / ST = 26/74
Graft ratio = 57% by weight
Weight average molecular weight (Mw) = 145,000
Rubber-containing graft copolymer (b-3): rubber content = 62.3 wt%
MMA / MA = 90/10
Graft ratio = 35% by weight
Weight average molecular weight (Mw) = 70,000

[その他の添加剤]
核剤(C)、充填材、分散剤(E)については、下記のものを使用した。
[Other additives]
About the nucleating agent (C), the filler , and the dispersing agent (E), the following were used.

<核剤(C)>
核剤(c−1):日産化学(株)社製「エコプロモートPPA−ZN」(フェニルスルホン酸亜鉛(II))
<Nucleating agent (C)>
Nucleating agent (c-1): “Eco Promote PPA-ZN” (Zinc Phenylsulfonate (II)) manufactured by Nissan Chemical Co., Ltd.

<充填材>
フィラー(d−1):日本製紙(株)社製「W−100GK」(セルロース 平均粒子径37μm 機械的裁断)
フィラー(d−2):日本製紙(株)社製「W50GK」(セルロース 平均粒子径45μm 機械的裁断)
フィラー(d−3):日本製紙(株)社製「W400G」(セルロース 平均粒子径25μm 化学的処理)
フィラー(d−4):日本製紙(株)社製「W−100Y」(セルロース 平均粒子径37μm 化学的処理)
フィラー(d−5):富士タルク工業(株)社製「TP−A25」(タルク(板状)、平均粒子径5μm,板の縦横比2.0)
フィラー(d−6):AMERICANWOOD FIBERS社製「Wood Flour12020」(木粉、平均粒子径117μm)
<Filler >
Filler (d-1): “W-100GK” manufactured by Nippon Paper Industries Co., Ltd. (cellulose average particle diameter: 37 μm mechanical cutting)
Filler (d-2): “W50GK” manufactured by Nippon Paper Industries Co., Ltd. (cellulose average particle size: 45 μm mechanical cutting)
Filler (d-3): “W400G” manufactured by Nippon Paper Industries Co., Ltd. (cellulose average particle size 25 μm chemical treatment)
Filler (d-4): “W-100Y” manufactured by Nippon Paper Industries Co., Ltd. (cellulose average particle size 37 μm chemical treatment)
Filler (d-5): “TP-A25” manufactured by Fuji Talc Kogyo Co., Ltd. (talc (plate), average particle size 5 μm, plate aspect ratio 2.0)
Filler (d-6): “Wood Floor 12020” (wood flour, average particle size 117 μm) manufactured by AMERICA WOOD FIBERS

<分散剤(E)>
分散剤(e−1):太陽化学(株)社製「VR−02」(グリセリン脂肪酸エステル系界面活性剤)
分散剤(e−2):丸尾カルシウム(株)社製「HAP−08NP」(燐酸カルシウム)
<Dispersant (E)>
Dispersant (e-1): “VR-02” manufactured by Taiyo Kagaku Co., Ltd. (glycerin fatty acid ester surfactant)
Dispersant (e-2): “HAP-08NP” (calcium phosphate) manufactured by Maruo Calcium Co., Ltd.

[ポリ乳酸系熱可塑性樹脂組成物ペレットの製造および評価]
上記の各成分を表1,2に示す配合割合で混合し、更に、安定剤として、日清紡(株)社製「カルボジライトHMV−8CA」0.3部と共に混合した後、200〜240℃で2軸押出機(日本製鋼所製「TEX−30α」)にて溶融混合し、ペレット化することにより、ポリ乳酸系熱可塑性樹脂組成物のペレットを作製した。
[Production and evaluation of polylactic acid-based thermoplastic resin composition pellets]
Each of the above components were mixed at the blending ratios shown in Tables 1 and 2, and further mixed with 0.3 parts of “Carbodilite HMV-8CA” manufactured by Nisshinbo Co., Ltd. as a stabilizer. Pellets of a polylactic acid-based thermoplastic resin composition were prepared by melting and mixing with a shaft extruder (“TEX-30α” manufactured by Nippon Steel Works) and pelletizing.

これらの樹脂ペレットを2オンス射出成形機(東芝(株)製)で200〜220℃にて成形し、曲げ強度、曲げ弾性率、耐熱性(荷重たわみ温度)を下記方法で測定した。
曲げ強度(MPa):ISO 178(常温)
曲げ弾性率(MPa):ISO 178(常温)
荷重たわみ温度(℃):ISO 75(測定荷重0.45MPa)
These resin pellets were molded at 200 to 220 ° C. with a 2 ounce injection molding machine (manufactured by Toshiba Corporation), and the bending strength, flexural modulus, and heat resistance (deflection temperature under load) were measured by the following methods.
Bending strength (MPa): ISO 178 (normal temperature)
Flexural modulus (MPa): ISO 178 (normal temperature)
Deflection temperature under load (° C): ISO 75 (measurement load 0.45 MPa)

また、以下の方法で冷却時間を調べると共に、生産性、分散性を評価した。   In addition, the cooling time was examined by the following method, and productivity and dispersibility were evaluated.

冷却時間:樹脂ペレットを2オンス射出成形機(東芝(株)製)で200〜220℃にて成形した際に、保圧終了後、金型冷却が開始されてから成形品を金型から取り出すまでの時間を冷却時間とした。   Cooling time: When the resin pellets are molded at 200 to 220 ° C. with a 2 ounce injection molding machine (manufactured by Toshiba Corporation), the molded product is removed from the mold after the mold cooling is started after the pressure holding is completed. The time until was the cooling time.

生産性:粉原料を2軸押出機(日本製鋼所製)で200〜220℃にてコンパウンドした際に、(1)ホッパー内にある原料の棚付き性、(2)ストランド引取り性、(3)ペレタイザーによるカッティング性を生産性とし、(1)〜(3)の項目中悪い結果となった数を、下記基準で評価し、◎、○を実用性があると判断した。
◎:上記(1)〜(3)項目中該当数:0
○:上記(1)〜(3)項目中該当数:1
△:上記(1)〜(3)項目中該当数:2
×:上記(1)〜(3)項目中該当数:3
Productivity: When powder raw material is compounded at 200-220 ° C with a twin-screw extruder (manufactured by Nippon Steel), (1) the shelfability of the raw material in the hopper, (2) the strand take-up property, ( 3) Productivity was defined as the cutting performance with a pelletizer. The number of bad results among the items (1) to (3) was evaluated according to the following criteria, and ◎ and ○ were judged to be practical.
◎: Number of hits among items (1) to (3) above: 0
○: Number of hits among items (1) to (3) above: 1
Δ: Number of hits among items (1) to (3) above: 2
×: Number of hits among items (1) to (3) above: 3

分散性:射出成形機(日本製鋼所製)で成形して得た成形品の表面外観の状態(ムラ)を分散性として下記基準で評価し、◎、○を実用性があると判断した。
◎:表面外観にムラ無し
○:表面外観に若干ムラ有り
×:表面外観全体にムラ有り
Dispersibility: A surface appearance state (unevenness) of a molded product obtained by molding with an injection molding machine (manufactured by Nippon Steel) was evaluated as dispersibility according to the following criteria, and ◎ and ○ were judged to be practical.
A: There is no unevenness in the surface appearance
○: Some irregularities in the surface appearance
×: Unevenness on the entire surface appearance

[実施例、参考例および比較例]
表1,2に、実施例1〜11、参考例1,2、および比較例1〜8の結果を示した。
[Examples, Reference Examples and Comparative Examples]
Tables 1 and 2 show the results of Examples 1 to 11, Reference Examples 1 and 2, and Comparative Examples 1 to 8.

Figure 0005954507
Figure 0005954507

Figure 0005954507
Figure 0005954507

[考察]
表1,2から明らかなように、本発明の請求項の要件を満たす実施例1〜11のポリ乳酸系熱可塑性樹脂組成物は、成形サイクルが短く、機械的特性、耐熱性などにも優れる成形品を得ることができる。
[Discussion]
As is clear from Tables 1 and 2, the polylactic acid-based thermoplastic resin compositions of Examples 1 to 11 that satisfy the requirements of the claims of the present invention have a short molding cycle and are excellent in mechanical properties, heat resistance, and the like. A molded product can be obtained.

これに対して、核剤(C)を含まない比較例1では、冷却時間が長く、耐熱性も著しく劣る。逆に核剤(C)を多く含んだ比較例2でも冷却時間に改善が見られず、耐熱性も著しく劣る。充填材を含まない比較例3では、冷却時間が長く、耐熱性にも劣る。逆に、充填材を多く含んだ比較例4では、冷却時間の改善は見られるが、生産性と分散性が低下することから実用的とは言えない。分散剤(E)を含まない比較例5では、分散効果が不十分となる。逆に分散剤(E)を多く含んだ比較例6でも分散効果が不十分となる。いずれの場合も冷却時間が長い。比較例7、8のように、充填材を用いても、タルクや木粉単独添加でセルロース(D)を用いていないと、冷却時間を短縮し得ず、耐熱性も低い。なお、参考例1ではポリ乳酸樹脂(A)が少なく、ゴム強化樹脂(B)の比率が多く、ポリ乳酸樹脂(A)の結晶化が阻害されているため、冷却時間が長い結果となっている。参考例2ではポリ乳酸樹脂(A)が多いことにより結晶化に要する冷却時間が長くなる結果となっている。 On the other hand, in Comparative Example 1 not including the nucleating agent (C), the cooling time is long and the heat resistance is remarkably inferior. Conversely, even in Comparative Example 2 containing a large amount of the nucleating agent (C), the cooling time is not improved and the heat resistance is remarkably inferior. In Comparative Example 3 does not contain a filler, cooling time is long, poor in heat resistance. Conversely, in Comparative Example 4 contains much filler, improvement of the cooling time is observed, not be practical since the dispersibility and productivity is lowered. In Comparative Example 5 which does not contain the dispersant (E), the dispersion effect is insufficient. Conversely, even in Comparative Example 6 containing a large amount of the dispersant (E), the dispersion effect is insufficient. In either case, the cooling time is long. Even if a filler is used as in Comparative Examples 7 and 8, if cellulose (D) is not used by adding talc or wood powder alone, the cooling time cannot be shortened and the heat resistance is low. In Reference Example 1, the polylactic acid resin (A) is small, the ratio of the rubber-reinforced resin (B) is large, and the crystallization of the polylactic acid resin (A) is inhibited, resulting in a long cooling time. Yes. In Reference Example 2, a large amount of polylactic acid resin (A) results in a longer cooling time required for crystallization.

本発明のポリ乳酸系熱可塑性樹脂組成物は、成形サイクルが短く、生産性に優れ、その成形品は、耐熱性、曲げ強度、弾性率等の機械的特性等のバランスにも優れている。本発明のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品は、例えば、各種筐体や構造部材としての用途に適した素材であり、市場のニーズに合わせて多彩な用途に使用することができ、その工業的有用性は非常に高い上に、環境負荷の低減にも有効である。   The polylactic acid-based thermoplastic resin composition of the present invention has a short molding cycle and is excellent in productivity, and the molded product is excellent in the balance of mechanical properties such as heat resistance, bending strength and elastic modulus. The molded product formed by molding the polylactic acid-based thermoplastic resin composition of the present invention is a material suitable for use as, for example, various housings and structural members, and is used for various uses according to market needs. In addition to its very high industrial utility, it is also effective in reducing environmental burdens.

Claims (3)

ポリ乳酸樹脂(A)65〜90重量部と、ゴム質重合体に1種または2種以上のビニル系単量体をグラフト重合してなるゴム強化樹脂(B)35〜10重量部との合計100重量部(ただし、ポリ乳酸樹脂(A)とゴム強化樹脂(B)との合計で100重量部)に対して、核剤(C)0.1〜3重量部と、セルロース(D)0.1〜40重量部と、分散剤(E)0.1〜4.3重量部とを含有するポリ乳酸系熱可塑性樹脂組成物。 Total of 65 to 90 parts by weight of polylactic acid resin (A) and 35 to 10 parts by weight of rubber reinforced resin (B) obtained by graft polymerization of one or more vinyl monomers to a rubbery polymer 100 parts by weight (however, the polylactic acid resin (a) and rubber-reinforced resin (B) total 100 parts by weight of a) with respect to, nucleating agent (C) and 0.1 to 3 parts by weight, cellulose scan (D) The polylactic acid-type thermoplastic resin composition containing 0.1-40 weight part and a dispersing agent (E) 0.1-4.3 weight part. 前記ゴム質重合体が、ポリブタジエン系ゴム、アクリル系ゴム、およびオレフィン系ゴムよりなる群から選ばれる1種または2種以上である請求項1に記載のポリ乳酸系熱可塑性樹脂組成物。   2. The polylactic acid-based thermoplastic resin composition according to claim 1, wherein the rubbery polymer is one or more selected from the group consisting of a polybutadiene rubber, an acrylic rubber, and an olefin rubber. 請求項1又は2に記載のポリ乳酸系熱可塑性樹脂組成物を成形してなる成形品。 Claim 1 or 2 molded article obtained by molding the polylactic acid thermoplastic resin composition according to.
JP2016026016A 2016-02-15 2016-02-15 Polylactic acid-based thermoplastic resin composition and molded article thereof Active JP5954507B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026016A JP5954507B1 (en) 2016-02-15 2016-02-15 Polylactic acid-based thermoplastic resin composition and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026016A JP5954507B1 (en) 2016-02-15 2016-02-15 Polylactic acid-based thermoplastic resin composition and molded article thereof

Publications (2)

Publication Number Publication Date
JP5954507B1 true JP5954507B1 (en) 2016-07-20
JP2017145280A JP2017145280A (en) 2017-08-24

Family

ID=56418744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026016A Active JP5954507B1 (en) 2016-02-15 2016-02-15 Polylactic acid-based thermoplastic resin composition and molded article thereof

Country Status (1)

Country Link
JP (1) JP5954507B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411229B2 (en) * 2020-12-23 2024-01-11 竹本油脂株式会社 Modifier for polyester resin sheets, polyester resin compositions, polyester resin sheets, laminated sheets, and methods for producing molded bodies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
JP2007063368A (en) * 2005-08-30 2007-03-15 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2007126535A (en) * 2005-11-02 2007-05-24 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2011117001A (en) * 2011-03-17 2011-06-16 Umg Abs Ltd Polylactic acid thermoplastic resin composition and molding of the same
JP2015081282A (en) * 2013-10-22 2015-04-27 ユーエムジー・エービーエス株式会社 Polylactic acid-based thermoplastic resin composition and molded article thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
JP2007063368A (en) * 2005-08-30 2007-03-15 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2007126535A (en) * 2005-11-02 2007-05-24 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2011117001A (en) * 2011-03-17 2011-06-16 Umg Abs Ltd Polylactic acid thermoplastic resin composition and molding of the same
JP2015081282A (en) * 2013-10-22 2015-04-27 ユーエムジー・エービーエス株式会社 Polylactic acid-based thermoplastic resin composition and molded article thereof
WO2015060029A1 (en) * 2013-10-22 2015-04-30 ユーエムジー・エービーエス株式会社 Polylactic acid-containing thermoplastic resin composition and molded product thereof

Also Published As

Publication number Publication date
JP2017145280A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5737359B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5290313B2 (en) Method for producing resin composition
KR101922246B1 (en) Polymer resin composition having excellent impact resistance or heat resistance
JP2006137908A (en) Polylactic acid-based thermoplastic resin composition and molded article of the same
JP5120521B2 (en) Thermoplastic resin composition and molded article thereof
JP5352937B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5398224B2 (en) Resin composition
JP2010143978A (en) Resin composition and molded product using the same
JP2005220171A (en) Lactic acid-based polymer composition
JP5954507B1 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5704596B2 (en) Method for treating rubber-containing polylactic acid-based thermoplastic resin composition and recycled thermoplastic resin composition
JP2006328163A (en) Polylactic acid-based resin composition, molding of the same and method for molding the same
JP2007126589A (en) Injection-molded article
JP5092228B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5625720B2 (en) Composite polylactic acid-based thermoplastic resin composition and molded article thereof
JP5017818B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5353986B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP6249129B1 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5569118B2 (en) Method for producing polylactic acid-based thermoplastic resin pellets
JP5348161B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP6790883B2 (en) Polylactic acid-based thermoplastic resin composition and its molded product
JP5590182B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2011116954A (en) Polylactic acid resin composition and molded body
JP2006348159A (en) Polylactic acid-based resin composition, molded product thereof, and method for producing the same
JP2006342259A (en) Polylactic acid resin composition, its molded article and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250