WO2015059752A1 - 植物栽培システム - Google Patents

植物栽培システム Download PDF

Info

Publication number
WO2015059752A1
WO2015059752A1 PCT/JP2013/078478 JP2013078478W WO2015059752A1 WO 2015059752 A1 WO2015059752 A1 WO 2015059752A1 JP 2013078478 W JP2013078478 W JP 2013078478W WO 2015059752 A1 WO2015059752 A1 WO 2015059752A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant cultivation
cultivation system
light source
sterilization
crop
Prior art date
Application number
PCT/JP2013/078478
Other languages
English (en)
French (fr)
Inventor
矢澤 義昭
由美子 五十嵐
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/078478 priority Critical patent/WO2015059752A1/ja
Priority to JP2015543590A priority patent/JP6067875B2/ja
Publication of WO2015059752A1 publication Critical patent/WO2015059752A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a plant cultivation system that uses hydroponic cultivation to control a cultivation environment and grow a plant.
  • Plant plants that aim for stable production of high-quality crops by controlling the cultivation environment are attracting attention, and the use of hydroponics is growing as a cultivation method used there.
  • soil cultivation it is already widely recognized that the organic matter decomposition and nitrogen fixation of microorganisms existing in large quantities in the soil are important, and the method of measuring soil microflora using molecular biological techniques, fertilizers and pesticides Many achievements have been accumulated regarding management methods such as administration guidelines.
  • hydroponic culture the need for microbial measurement has not been strongly recognized because nutrients are supplied to the culture solution in the form of ions that can be absorbed by plants.
  • Patent Document 1 discloses a sterilization purification technology having a function of irradiating a culture solution with ultraviolet light, a function of supplying ozone, and a function of causing a photocatalyst to act.
  • Patent Document 2 discloses a technique for preventing contamination of cultivated soil by bacteria using titanium ion exchange apatite having a photocatalytic function.
  • Patent Document 3 discloses a method of irradiating a plant root region with visible light in order to promote plant growth.
  • Patent Document 1 the effect of sterilization against harmful microorganisms can be expected.
  • it is intended to sterilize the nutrient solution for cultivation and soil and does not act directly on the plant itself, so there is a limit to the sterilizing effect.
  • the culture solution sterilization mechanism is provided in a part of the culture solution circulation system.
  • the sterilization means is located at a position different from that of the crop culture tank, even if the culture solution is sterilized, the crop itself cannot be sterilized.
  • the technique of patent document 3 acts on a plant directly, it is for promoting the growth of a plant and does not consider the sterilization effect.
  • An object of the present invention is to provide a plant cultivation system that acts directly on plants in hydroponics and effectively sterilizes them.
  • the present invention relates to a plant cultivation system for growing a crop using a circulating culture solution, a culture tank that holds the culture solution, and sterilization that emits ultraviolet light that suppresses the activity of pathogenic microorganisms present in the culture solution and in the crop. And a light source for sterilization is emitted toward the root area of the crop.
  • the plant cultivation system which can prevent and maintain a disease more effectively can be provided.
  • FIG. 1 The figure which shows the whole structure of the plant cultivation system concerning Example 1.
  • FIG. 1 The figure which shows the relationship between an irradiation light wavelength and a sterilization effect.
  • FIG. 1 The figure which shows the relationship between an irradiation light wavelength and a sterilization effect.
  • Hydroponics used in plant factories can be broadly divided into three methods.
  • the first method is hydroponics.
  • Crop is cultivated by supplying nutrients from the culture solution in the culture tank without using any soil.
  • a 2nd system grows a crop by spraying a culture solution on a root by spray cultivation.
  • the third method is to give a culture solution to a crop through a solid medium and aim at stable production by the buffering action of the solid medium.
  • hydroponics that is the first method will be described, but the present invention can also be applied to spray cultivation that is the second method.
  • FIG. 1 is a diagram showing an overall configuration of a plant cultivation system to which the present invention is applied.
  • a plant (hereinafter referred to as crop) 1 to be cultivated is held by a fixed planting panel 3 and placed in a culture tank 4 in which a culture solution 5 is stored.
  • the culture solution 5 is lost due to absorption and evaporation by the crop 1, but is temporarily stored in a tank 22 from a water supply source 21 such as tap water and added with nutrients in the nutrient tank 23, and then the amount of water in the culture tank 4 is reduced. In response to this, it is introduced into the culture tank 4 from the pipe 26.
  • the culture solution 5 is drawn from one end of the culture tank 4 by the circulation pump 20 and returned to another place by the pipe 27 to circulate the culture solution 5.
  • the sterilization light source 8 irradiates light for sterilization of the root region 2 of the crop 1, and is attached to a light source support substrate 9 installed at regular intervals on the bottom of the culture tank 4.
  • the planting panel 3 since the planting panel 3 moves in the culture tank 4, even if the light sources 8 arranged at the bottom of the culture tank 4 are arranged at a constant interval, the planting panel 3 may be moved to the root zone 2 of the crop 1 over time. In this way, light is irradiated.
  • the crop 1 is fixed to a fixed planting panel 3 that serves as a support so that the root area 2 faces down with the leaves facing up, and at least the root area 2 in the culture tank 4 in which the culture solution 5 is placed. It is cultivated so that a part is immersed in the culture solution 5.
  • a sterilization light source 8 for irradiating the root zone 2 with ultraviolet light having a wavelength of 150 to 400 nm is provided at the bottom of the culture tank 5 for the purpose of sterilizing the root zone 2.
  • One or a plurality of light sources 8 are fixed to the light source support substrate 9, and these substrates 9 are fixed to the bottom of the culture tank 5.
  • an LED, a mercury lamp, a xenon lamp, or the like can be used as the light source 8 of the light having the above wavelength.
  • the crop 1 generally has a substantially symmetric shape with respect to the central axis along the growth direction (upward in the drawing), and as shown in FIG. 4) is irradiated with ultraviolet light. Thereby, a shadow is not formed in the specific area
  • the structure for installing the light source 8 can be simplified by disposing the light source 8 at the bottom of the culture tank 4 in the culture tank 4 that expands in the horizontal direction.
  • the planting panel 3 holding the crop 1 is floated on the surface of the culture solution 5, and each process from planting to harvesting is performed by moving through the culture tank 4 according to the growth of the crop 1. Can be managed in the same place.
  • reference numeral 10 indicates the moving direction of the planting panel 3.
  • the light source 8 for sterilization does not need to continuously irradiate a large number of crops 1 for a long time, and light is irradiated by continuous driving or pulse driving so that the integrated light intensity necessary for sterilization can be obtained in each root region 2 That's fine.
  • the light source 8 is arranged at a certain interval at the bottom of the culture tank 4 as shown in FIG. Since the planting panel 1 moves in the direction of the reference numeral 10, the integrated light intensity required for sterilization can be secured by driving the sterilization light source 8 according to the moving speed.
  • FIG. 2 is a diagram showing the relationship between the irradiation light wavelength and the sterilization effect.
  • the horizontal axis represents the wavelength of irradiation light
  • the vertical axis represents the bactericidal effect on microorganisms as a relative value. From this result, it can be seen that the sterilization effect is large in the deep ultraviolet wavelength region 150-400 nm.
  • the reason why deep ultraviolet light lowers the activity of microorganisms is that the molecular bonds of microorganisms (nucleic acids) are broken and damaged by irradiation with deep ultraviolet light having high photon energy.
  • the wavelength at which the molecular bond of nucleic acid is most efficiently cleaved is 254 nm.
  • the cleaving efficiency decreases, and at 400 nm or more, the cleaving efficiency becomes 1/1000 or less in peak ratio.
  • production of the unintended algae in a culture solution may be accelerated
  • FIG. 3 is a diagram showing the relationship between the irradiation light intensity and the sterilization effect.
  • the horizontal axis represents the energy intensity of the irradiation light (the amount of ultraviolet rays), and the vertical axis represents the survival rate of the microorganisms.
  • E. coli phages were irradiated with ultraviolet light having a wavelength of 254 nm. Accordingly, the survival rate is reduced to about 1/10 at an energy intensity of 4 mJ / cm 2 . If this relationship is extrapolated, the survival rate becomes 1 / 10,000 or less at 9 mJ / cm 2 . In the case of a highly resistant virus, the survival rate is 1 / 10,000 or less at 121 mJ / cm 2 . From these, it can be said that the energy intensity is preferably in the range of 0.1-200 mJ / cm 2 .
  • the root growth part is located inward from the root surface about 10 cells that make up the root crown from the most advanced part, and it is necessary to set the energy intensity of the irradiation light so that the nucleic acid of the apical cell is not destroyed. There is.
  • the absorption coefficient of the cell for light having a wavelength of 254 nm is 10 2 -10 4 / cm. If the thickness of the root crown is about 10 cells and the width is 30 ⁇ m, the transmittance of the irradiation light is 0.1 or less, which is 1/10 or less of the energy received by the microorganisms existing on the root surface. Therefore, even when the energy intensity is set, the growth of microorganisms attached to the root surface can be suppressed without hindering root growth.
  • FIG. 4 is a diagram illustrating the configuration of the culture tank according to the second embodiment.
  • a plurality of photosynthetic light sources 6 for photosynthesis guidance held by the light source support substrate 7 are arranged.
  • the light source 6 emits visible light including a wavelength range of 400 to 700 nm necessary for photosynthesis to the leaf portion of the crop 1.
  • the sterilization light source 8 disposed at the bottom of the culture tank 4 irradiates the root region 2 of the crop 1 with ultraviolet light for sterilization as described in the first embodiment.
  • the photosynthetic light source 6 and the sterilization light source 8 are driven not only with different wavelengths but also with different control patterns.
  • the light source 6 for photosynthesis is operated so as to maximize the photosynthesis reaction, and the light source 8 for sterilization is operated to a minimum according to the occurrence of harmful microorganisms or the risk of occurrence. That is, the driving duties of the light sources are different, the use of light source driving power is minimized, and the effect of sterilization can be obtained while suppressing damage to the crop root area.
  • FIG. 5 is a diagram illustrating a configuration of a culture tank according to Example 3.
  • the light source 8 for sterilization is arranged at the bottom of the culture tank 4 in accordance with the interval between the crops 1 (that is, the interval between the planting panels 3).
  • the shadow of irradiated light does not generate
  • each crop 1 fixed planting panel 3 does not need to be moved and may be held at a fixed position.
  • FIG. 6 is a diagram showing another configuration of the culture tank according to Example 3.
  • the number of light sources 8 is reduced (in this example, one light source), and the light source 8 is moved together with the substrate 9 along the bottom of the culture tank 4 in the direction of reference numeral 11.
  • uniform irradiation is realized for each crop 1.
  • the number of installed light sources 8 is greatly reduced, and the equipment cost can be greatly reduced.
  • Example 4 is obtained by adding control by an environmental sensor to the configuration of Example 1.
  • the occurrence of disease is affected not only by the presence of harmful microorganisms but also by environmental parameters such as temperature, humidity, sunlight, pH of the culture solution and electrical conductivity.
  • environmental parameters such as temperature, humidity, sunlight, pH of the culture solution and electrical conductivity.
  • concentration of the culture solution decreases and the value of electrical conductivity increases, bacteria are likely to grow.
  • the growth of fungi is promoted in a high humidity and low temperature environment.
  • These parameters can be artificially controlled to some extent in plant factories. However, if there are inevitable parameter fluctuations due to large changes in the external environment or there are cost constraints such as fuel costs required for control, the parameters are fixed. Variation must be tolerated.
  • FIG. 7 is a diagram showing the configuration of the culture tank according to Example 4.
  • the environment temperature, humidity, etc.
  • the control system 13 receives the measurement data, predicts the risk of disease occurrence, and drives the sterilization mechanism. From this, the disease of the crop 1 is controlled prophylactically.
  • the microorganism sensor 12 is installed and the microorganisms in the culture solution 5 are measured.
  • the control system 13 drives the sterilization light source 8 when the number of microorganisms exceeds a certain number. Thus, operating costs can be reduced by operating the sterilization mechanism only when the number of microorganisms increases.
  • Example 5 a mechanism for swinging the roots of the crop is added to the configuration of Example 1. Since the roots of crops generally have a complicated shape, there may be a portion where light cannot be sufficiently irradiated even if a diffuse light source is used. The present embodiment is effective in such a case.
  • FIG. 8 is a diagram showing the configuration of the culture tank according to Example 5.
  • a stirrer 15 is provided to stir the culture solution 5 near the root region 2 of the crop 1.
  • the culture solution 5 in the vicinity of the root zone 2 is stirred and the root zone 2 of the crop 1 is rocked.
  • the ultraviolet light from the light source 8 can be irradiated to the root region 2 without unevenness.
  • FIG. 9 is a diagram showing another configuration of the culture tank according to Example 5.
  • a bubble generator 16 is provided in order to generate bubbles in the culture solution 5 near the root region 2 of the crop 1.
  • bubbles 17 are generated in the culture solution 5 near the root region 2 (the culture solution 5 is agitated), and the root region 2 of the crop 1 is oscillated.
  • the ultraviolet light from the light source 8 can be irradiated to the root region 2 without unevenness.
  • FIG. 10 is a diagram illustrating a configuration of the culture tank according to the sixth example.
  • the root region 2 of the crop 1 is irradiated with deep ultraviolet light, and at the same time, the fine particles 18 made of a material having a photocatalytic function are released into the culture solution 5 and stirred so as to be entangled with the root region 2.
  • the photocatalyst fine particles 18 are released from the discharger 19 into the culture solution 5 and then reach the root zone 2 in a state excited by deep ultraviolet light to sterilize the microorganisms in the root zone.
  • the photocatalyst material is coated on the inner surface of a solid medium or a medium container, and it can be directly applied to hydroponics and spray cultivation as in this embodiment. Can not.
  • the photocatalyst material is made into fine particles and released and stirred in the nutrient solution to enable effective sterilization of the root zone 2 even in hydroponics and spray cultivation.
  • each of the embodiments of the present invention deep ultraviolet light is irradiated toward the crop root region for microbial control of the crop root region in the culture tank. It is possible to minimize the formation of shadows by the plant body. Further, in order to prevent irradiation unevenness with respect to a root having a complicated shape, the root region is swung by stirring the culture solution, and further, the sterilization effect is increased by using it together with the photocatalyst fine particles.
  • Each of the above embodiments has been described for hydroponics, but can also be applied to spray cultivation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)

Abstract

養液栽培において植物に直接作用して効果的に除菌を行う植物栽培システムを提供する。植物栽培システムは、培養液5を保持する培養槽4と、培養液中および作物に存在する病原微生物の活性を抑制する紫外光を放出する滅菌用光源8を備え、滅菌用光源8からの放出光を作物の根域2に向けて照射する。

Description

植物栽培システム
 本発明は、養液栽培を利用し栽培環境を制御して植物を栽培する植物栽培システムに関する。
 栽培環境を制御することで高品質作物の安定生産をめざす植物工場が注目され、そこで使われる栽培方法として養液栽培の利用が拡大している。土耕栽培では土壌中に大量に存在する微生物が持つ有機物分解、窒素固定などの働きが重要であることが既に広く認識され、分子生物学的な手法による土壌微生物相の計測方法や肥料や農薬の投与指針などの管理方法について多くの実績が積み上げられてきた。一方、養液栽培では、栄養分を植物が吸収できるイオンの形で培養液中に供給するため、微生物計測の必要性が強く認識されてこなかった。しかし、近年、植物工場が大規模化し普及する中で、病害管理や微生物との共生を利用した品質向上における重要性が強く認識されるようになった。培養液中には多種多様な微生物が生息しており、上述の土壌微生物について得られた知見を応用することで培養液や養液栽培作物の根域微生物を解析し、これをもとに養液栽培における効果的な病害管理を行うものである。
 これに関連する技術として、特許文献1には、培養液に紫外線を照射する機能と、オゾンを供給する機能と、光触媒を作用させる機能を有する除菌浄化技術が開示されている。特許文献2には、光触媒機能をもつチタンイオン交換アパタイトを利用して栽培土壌の細菌類による汚染を防止する技術が開示されている。また特許文献3には、植物の生育を促進するために植物根域に可視光を照射する方法が開示されている。
特開2008-101072号公報 特開2006-050992号公報 特開2012-196202号公報
 植物工場において作柄や収量に大きな影響を与える病害が発生すると、場合によっては栽培施設棟全体を停止して1-2カ月かけて消毒をする必要があり、損失は多大に及ぶ。すなわち、水耕栽培方式では培養液が多数の株で同時に共有されるため、循環系の一か所に滅菌機構を設けたとしても1株で発生した病害が培養槽全体に及ぶことになる。また、噴霧栽培の場合も株ごとの分離は完全ではないことから、微生物の複数株へ感染が拡大する恐れがある。よって、植物工場において有害微生物による病害の防除は極めて重要な課題である。現状の植物工場における微生物の管理・制御は定期的に栽培棚の清掃・消毒をする方法が一般的であり、病害の予防保全を実現する新規の微生物制御技術が強く望まれている。
 前記特許文献1,2の技術によれば、有害微生物に対する除菌の効果が期待できる。しかしながら、栽培用養液や土壌に対して除菌を行うものであって、植物自身に直接作用するものではないから除菌効果には限界がある。例えば特許文献1では、培養液滅菌機構は培養液循環系の一部に設けられている。この構成の場合、滅菌の手段が作物の培養槽とは異なる位置にあるために培養液は滅菌されても作物自身の滅菌をすることができない。また特許文献3の技術は植物に直接作用するものであるが、植物の生育を促進するためのもので滅菌作用は考慮されていない。
 本発明の目的は、養液栽培において植物に直接作用して効果的に除菌を行う植物栽培システムを提供することである。
 本発明は、循環する培養液を用いて作物を生育させる植物栽培システムにおいて、培養液を保持する培養槽と、培養液中および作物に存在する病原微生物の活性を抑制する紫外光を放出する滅菌用光源を備え、滅菌用光源からの放出光を作物の根域に向けて照射することを特徴とする。
 本発明によれば、養液栽培において植物の根域や根域近傍の培養液中に存在する微生物を効率的に滅菌することができる。よって、より効果的に病害の予防保全が可能な植物栽培システムを提供できる。
実施例1にかかる植物栽培システムの全体構成を示す図。 照射光波長と滅菌効果の関係を示す図。 照射光強度と滅菌効果の関係を示す図。 実施例2にかかる培養槽の構成を示す図。 実施例3にかかる培養槽の構成を示す図。 実施例3にかかる培養槽の他の構成を示す図。 実施例4にかかる培養槽の構成を示す図。 実施例5にかかる培養槽の構成を示す図。 実施例5にかかる培養槽の他の構成を示す図。 実施例6にかかる培養槽の構成を示す図。
 植物工場で使われる養液栽培は3つの方式に大別される。第1の方式は水耕栽培で、土壌は一切使わずに作物は培養槽中の培養液からの栄養供給によって栽培される。第2の方式は、噴霧栽培で培養液を根に噴霧することで作物を栽培する。第3は固形培地を介して培養液を作物に与えるもので、固形培地の緩衝作用により安定した生産を目指す方式である。以下の実施例では第1の方式である水耕栽培について説明するが、第2方式である噴霧栽培の場合にも適用が可能である。
 図1は、本発明が適用される植物栽培システムの全体構成を示す図である。栽培対象の植物(以下、作物)1は定植パネル3にて保持し、培養液5が溜められた培養槽4に入れる。培養液5は、作物1による吸収や蒸発によって失われるが、水道などの水の供給元21からタンク22に一時貯留され、栄養タンク23にて栄養を添加されてから、培養槽4の水量減少に応じて配管26から培養槽4に導入される。また、循環ポンプ20によって培養槽4の一端から培養液5を汲み取り、配管27によって他の場所に戻すことにより培養液5を循環させる。滅菌用光源8は作物1の根域2の滅菌のために光照射を行うもので、培養槽4の底部に一定の間隔で設置された光源支持基板9に取り付けている。ここで、定植パネル3は培養槽4を移動するので、培養槽4の底部に配置された光源8が一定の間隔で配置されていても、時間の経過により作物1の根域2には一様に光が照射されることになる。
 培養槽4内では、作物1は葉を上にして根域2が下になるように支持体となる定植パネル3に固定され、培養液5が入れられた培養槽4において根域2の少なくとも一部が培養液5に浸漬されるようにして栽培される。培養槽5の底部には、根域2の滅菌を目的として、根域2に波長150-400nmの紫外光を照射する滅菌用光源8を備える。一個あるいは複数個の光源8が光源支持基板9に固定され、これらの基板9は培養槽5の底部に固定される。ここで上記波長の光の光源8として、LED、水銀ランプ、キセノンランプなどを利用することができる。作物1は一般に成長方向(図面上方向)に沿った中心軸についてほぼ対称な形状をしており、図1のように、培養槽4の底に光源8を配置して成長軸方向(培養槽4の上方向)に紫外光を照射する。これより、作物根域2の特定領域に影が形成されず、一様に紫外光を照射することができる。また、水平方向に拡がりをもつ培養槽4において光源8を培養槽4の底部に配置することで、光源8を設置するための構造を単純化することができる。水耕栽培では、作物1を保持する定植パネル3を培養液5の液面に浮かべた状態とし、作物1の成長に応じて培養槽4の中を移動させることによって定植から収穫までの各工程を同じ場所で管理できるようになる。図1において符号10は定植パネル3の移動方向を示す。
 滅菌用光源8は多数の作物1に対して長時間にわたって連続照射する必要はなく、滅菌に必要な光積算強度が各根域2において得られるように、連続駆動あるいはパルス駆動によって光を照射すればよい。滅菌用光源8の設置コストを低減しつつ上記の条件を得るためには、図1に示すように培養槽4の底部に一定の間隔をおいて光源8を配置する。定植パネル1は符号10の方向に移動するので、その移動速度に応じて滅菌用光源8を駆動することにより滅菌に必要な光積算強度を確保することができる。
 次に、滅菌用光源8の好適な駆動条件について述べる。
  図2は、照射光波長と滅菌効果の関係を示す図である。横軸は照射光の波長、縦軸は微生物に対する殺菌効果を相対値で示したものである。この結果より、深紫外光の波長領域150-400nmにおいて滅菌効果が大きいことが分かる。深紫外光が微生物の活性を低下させるのは、高い光子エネルギーを持つ深紫外光の照射により微生物の遺伝子(核酸)の分子結合が切断されて損傷を受けるためとされる。核酸の分子結合を最も効率的に切断する波長は254nmであり、この波長から外れると切断の効率は低下し、400nm以上では切断の効率はピーク比で1/1000以下になる。また、400nm以上の光照射を行うと、培養液中において意図しない藻の発生を促進する場合がある。そこで光源の電力消費、藻の繁殖を考慮し、滅菌用の光源の中心波長は254nmの近傍で、範囲が150-400nmに設定することが望ましい。
 図3は、照射光強度と滅菌効果の関係を示す図である。横軸は照射光のエネルギー強度(紫外線量)、縦軸は微生物の生存率を示したもので、一例として大腸菌ファージに波長254nmの紫外光を照射した場合である。これより、4mJ/cmのエネルギー強度で生存率は約1/10まで減少する。この関係を外挿すると、9mJ/cmでは生存率は1/10000以下になる。耐性の高いウィルスの場合には、121mJ/cmでは生存率は1/10000以下となる。これらより、エネルギー強度は0.1-200mJ/cmの範囲が好適と言える。
 一方、作物の根も遺伝子の情報を基にして成長しており、照射光による作物の遺伝子の損傷を抑えることが必要である。根の成長部は、最先端部から根冠を構成する細胞10個分ほど根の表面から内側に下がったところにあり、頂端細胞の核酸が破壊されないように照射光のエネルギー強度を設定する必要がある。波長254nmの光に対する細胞の吸収係数は10-10/cmである。根冠の厚さは細胞10個ほどでありその幅を30μmとすると、照射光の透過率は0.1以下になり、根の表面に存在する微生物が受けるエネルギーの1/10以下となる。したがって、上記エネルギー強度の設定でも、根の成長を妨げることなく根の表面に付着する微生物の繁殖を抑制することができる。
 実施例2では、実施例1の構成に作物生育のための光源を追加したものである。
  図4は、実施例2にかかる培養槽の構成を示す図である。培養槽4の上部には、光源支持基板7にて保持された光合成誘導のための光合成用光源6を複数個配置している。この光源6は、作物1の葉部に対して光合成に必要となる400-700nmの波長域を含む可視光を放出する。一方培養槽4の底部に配置した滅菌用光源8は、実施例1で述べたように、作物1の根域2に滅菌用の紫外光を照射する。
 ここで、光合成用光源6と滅菌用光源8は、波長が異なるだけでなく異なる制御パターンで駆動することが望ましい。光合成用光源6は光合成反応を最大化するよう運用し、滅菌用光源8は有害微生物の発生あるいは発生のリスクに応じて最小限の運用にする。すなわち両者の光源の駆動デューティは異なり、光源駆動用の電力使用を必要最小限とし、作物根域へのダメージを抑えながら滅菌の効果を得ることができる。
 実施例3は、実施例1における光源の配置を変え、より均一に照射するようにしたものである。
  図5は、実施例3にかかる培養槽の構成を示す図である。滅菌用光源8は培養槽4の底部に、ほぼ作物1の間隔(すなわち定植パネル3の間隔)に合わせて配置している。これにより、各作物1に対して照射光の影が発生せず、常に均一な光照射が可能になる。この場合、各作物1(定植パネル3)は移動させる必要がなく、定位置に留めても良い。
 図6は、実施例3にかかる培養槽の他の構成を示す図である。ここでは光源8の設置数を減らし(この例では1個の光源)、光源8を基板9とともに培養槽4の底部を符号11の方向に移動させる。これより各作物1に対して均一な照射を実現するものである。この構成によれば、光源8の設置数が大幅に減少し、設備コストを大幅に低減できる。
 実施例4は、実施例1の構成に環境センサによる制御を追加したものである。病害発生の発生は、有害微生物の存在だけでなく、気温、湿度、日照、培養液のpHや電気伝導度などの環境パラメータによっても影響を受ける。例えば培養液の濃度が下がり、電気伝導度の値が上昇すると細菌が増殖しやすくなる。また、微生物の種類によっては、高湿度で低温の環境では菌類の増殖が促進される。植物工場においてこうしたパラメータは人為的にある程度制御が可能であるが、外部環境の大きな変化によりパラメータ変動が不可避であったり、制御に要する燃料費などのコスト的な制約がある場合には、一定の変動を許容しなければならない。
 図7は、実施例4にかかる培養槽の構成を示す図である。この構成では、植物工場24内の環境(気温、湿度、ほか)を環境センサ25によって計測する。制御系13はその計測データを受け、病害発生の危険を予測して滅菌機構を駆動させる。これより、作物1の病害を予防的に防除するものである。また、微生物センサ12を設置し、培養液5中の微生物を計測する。制御系13は微生物の数が一定数を越えると滅菌用光源8を駆動する。このように、微生物の数が増加したときだけ滅菌機構を動作させることで、運用コストが低減できる。
 実施例5では、実施例1の構成に作物の根を揺動させる機構を追加したものである。作物の根は一般に複雑な形状を持つため、拡散光源を使ったとしても十分に光を照射できない部位が生じることがある。本実施例はそのような場合に有効となる。
 図8は、実施例5にかかる培養槽の構成を示す図である。ここでは、作物1の根域2付近の培養液5を撹拌するために撹拌器15を設けた。撹拌器15を駆動させることで、根域2付近の培養液5が撹拌され、作物1の根域2が揺動される。その結果、光源8からの紫外光を根域2に対してムラなく照射することができる。
 図9は、実施例5にかかる培養槽の他の構成を示す図である。ここでは、作物1の根域2付近の培養液5に気泡を発生させるために気泡発生器16を設けた。気泡発生器16を駆動させることで、根域2付近の培養液5に気泡17が発生し(培養液5が撹拌され)、作物1の根域2が揺動される。その結果、光源8からの紫外光を根域2に対してムラなく照射することができる。
 実施例6では、実施例1の構成に光触媒材料による滅菌機能を追加したものである。
  図10は、実施例6にかかる培養槽の構成を示す図である。実施例1で述べたように作物1の根域2に対して深紫外光を照射すると同時に、光触媒機能をもつ材料からなる微粒子18を培養液5に放出して根域2に絡むように撹拌器15で撹拌させる。光触媒微粒子18は放出器19から培養液5中に放出された後、深紫外光によって励起された状態で根域2に到達して根域の微生物を滅菌する。従来技術においても光触媒材料による滅菌作用は知られているが、固形培地や培地容器内面に光触媒材料をコートするものであり、本実施例のような水耕栽培や噴霧栽培にそのまま適用することはできない。本実施例では、光触媒材料を微粒子状にして養液中に放出・撹拌することで、水耕栽培や噴霧栽培においても根域2に対する効果的な滅菌を可能とするものである。
 以上のように本発明の各実施例では、培養槽における作物根域の微生物制御のために作物根域に向けて深紫外光を照射するものであるが、紫外光の光源を培養槽に底部に設置することで植物体による影の形成を最小限にすることができる。さらに複雑な形状を持つ根に対して照射ムラが生じないように、培養液の撹拌により根域を揺動させ、さらには光触媒微粒子との併用により滅菌効果を増大させている。以上の各実施例は水耕栽培について述べたが、噴霧栽培の場合にも適用が可能である。
 1:作物、2:根域、3:定植パネル、4:培養槽、5:培養液、6:光合成用光源、7:光源支持基板、8:滅菌用光源、9:光源支持基板、12:微生物センサ、13:制御系、14:配管、15:撹拌器、16:気泡発生器、17:気泡、18:光触媒微粒子、19:放出器、20:循環ポンプ、21:水の供給元、22:タンク、23:栄養タンク、24:植物工場、25:環境センサ、26:配管、27:配管。

Claims (8)

  1.  循環する培養液を用いて作物を生育させる植物栽培システムにおいて、
     前記培養液を保持する培養槽と、
     前記培養液中および前記作物に存在する病原微生物の活性を抑制する紫外光を放出する滅菌用光源を備え、
     該滅菌用光源からの放出光を前記作物の根域に向けて照射することを特徴とする植物栽培システム。
  2.  請求項1に記載の植物栽培システムにおいて、
     前記滅菌用光源を前記培養槽の底部に設置し前記紫外光を前記培養槽の上方に向けて放出させ、
     前記作物を保持し前記培養槽内で移動可能な定植パネルを前記培養液の液面に沿って移動させることを特徴する植物栽培システム。
  3.  請求項1に記載の植物栽培システムにおいて、
     前記滅菌用光源を前記培養槽の底部を移動させるとともに前記紫外光を前記培養槽の上方に向けて放出させることを特徴する植物栽培システム。
  4.  請求項1に記載の植物栽培システムにおいて、
     当該植物栽培システム内の温度、湿度、日照、前記培養槽内の温度、pH、電気伝導度の少なくとも1つを測定する環境センサと、
     該環境センサの測定データに基づき、前記滅菌用光源の光強度と照射時間を制御する制御系を備えることを特徴する植物栽培システム。
  5.  請求項1に記載の植物栽培システムにおいて、
     前記滅菌用光源の近傍に前記培養液を撹拌する撹拌手段を備え、
     該撹拌手段により前記作物の根域を揺動させることを特徴する植物栽培システム。
  6.  請求項5に記載の植物栽培システムにおいて、
     前記滅菌用光源の近傍に光触媒材料がコーティングされた微粒子を放出する放出器を備え、
     前記撹拌手段により前記作物の根域を揺動させるとともに前記放出器から放出された微粒子を前記培養液中に拡散させ、前記微粒子の光触媒作用により前記作物の根域に対し滅菌することを特徴する植物栽培システム。
  7.  請求項1に記載の植物栽培システムにおいて、
     前記作物に対し光合成反応を誘導する可視光を放出する光合成用光源を具備し、
     該光合成用光源からの可視光は主として前記作物の葉に照射し、
     前記滅菌用光源と前記光合成用光源からの光放出を独立に制御することを特徴とする植物栽培システム。
  8.  請求項1ないし7のいずれかに記載の植物栽培システムにおいて、
     前記滅菌用光源が放出する紫外光の波長は150~400nmの範囲であり、根域に照射する光のエネルギーは一回の滅菌処理当たり0.1~200mJ/cmとすることを特徴とする植物栽培システム。
PCT/JP2013/078478 2013-10-21 2013-10-21 植物栽培システム WO2015059752A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/078478 WO2015059752A1 (ja) 2013-10-21 2013-10-21 植物栽培システム
JP2015543590A JP6067875B2 (ja) 2013-10-21 2013-10-21 植物栽培システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078478 WO2015059752A1 (ja) 2013-10-21 2013-10-21 植物栽培システム

Publications (1)

Publication Number Publication Date
WO2015059752A1 true WO2015059752A1 (ja) 2015-04-30

Family

ID=52992392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078478 WO2015059752A1 (ja) 2013-10-21 2013-10-21 植物栽培システム

Country Status (2)

Country Link
JP (1) JP6067875B2 (ja)
WO (1) WO2015059752A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040899B2 (en) 2019-03-15 2021-06-22 Fujifilm Business Innovation Corp. Water purification member, hydroponic system, and water purification apparatus
CN115428658A (zh) * 2021-09-24 2022-12-06 中国农业科学院都市农业研究所 一种用于农业照明的移动设备
US11547069B2 (en) 2019-03-15 2023-01-10 Fujifilm Business Innovation Corp. Water purification particles, water culture apparatus, and water purification apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305999A (ja) * 2001-04-10 2002-10-22 Yamamoto Co Ltd 養液殺菌装置
JP2006050992A (ja) * 2004-08-16 2006-02-23 Fujitsu Ltd 光触媒機能をもつ植物栽培システム及びそのシステムを用いた植物栽培方法
JP2009273451A (ja) * 2008-05-15 2009-11-26 Hirashiki Kazuyo モーアーサ(食用苔植物)の水耕栽培小型栽培装置。
JP2012070714A (ja) * 2010-09-30 2012-04-12 Daikin Industries Ltd 植物栽培装置
JP2012196202A (ja) * 2011-03-08 2012-10-18 Meiji Univ 植物の栽培方法および植物の栽培装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305999A (ja) * 2001-04-10 2002-10-22 Yamamoto Co Ltd 養液殺菌装置
JP2006050992A (ja) * 2004-08-16 2006-02-23 Fujitsu Ltd 光触媒機能をもつ植物栽培システム及びそのシステムを用いた植物栽培方法
JP2009273451A (ja) * 2008-05-15 2009-11-26 Hirashiki Kazuyo モーアーサ(食用苔植物)の水耕栽培小型栽培装置。
JP2012070714A (ja) * 2010-09-30 2012-04-12 Daikin Industries Ltd 植物栽培装置
JP2012196202A (ja) * 2011-03-08 2012-10-18 Meiji Univ 植物の栽培方法および植物の栽培装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040899B2 (en) 2019-03-15 2021-06-22 Fujifilm Business Innovation Corp. Water purification member, hydroponic system, and water purification apparatus
US11547069B2 (en) 2019-03-15 2023-01-10 Fujifilm Business Innovation Corp. Water purification particles, water culture apparatus, and water purification apparatus
CN115428658A (zh) * 2021-09-24 2022-12-06 中国农业科学院都市农业研究所 一种用于农业照明的移动设备
CN115428658B (zh) * 2021-09-24 2023-12-22 中国农业科学院都市农业研究所 一种用于农业照明的移动设备

Also Published As

Publication number Publication date
JP6067875B2 (ja) 2017-01-25
JPWO2015059752A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP7102339B2 (ja) 発光ダイオード光バイオリアクタ及び使用方法
US5846816A (en) Apparatus for biomass production
US20140190078A1 (en) Domestic plant factory capable of air purification
US20210112728A1 (en) High density plant growth systems and methods
KR101964121B1 (ko) 분무 생장 시스템
JP6067875B2 (ja) 植物栽培システム
US20150175946A1 (en) Photobioreactor for microalgae cultivation having arc-type partition structure for forming vortices
JP4019330B1 (ja) 微生物共生型水耕プラント及び水耕栽培方法
KR101798479B1 (ko) 순환식 수경재배 장치
JP5324532B2 (ja) 循環型の光生物反応器
KR102159475B1 (ko) 아쿠아 플라즈마 공법에 의하여 영양성분이 증가하는 수경재배 장치
JPH09327246A (ja) 植物栽培における酸化チタン系光触媒による培養液殺菌方法とその装置。
KR20180031141A (ko) 에어버블 초음파를 이용한 수처리 장치 및 이를 이용한 살균 시스템
KR102324510B1 (ko) 미세조류를 이용한 공기정화장치
CN104844352A (zh) 一种水培植物用杀菌增氧剂及其使用方法
KR102167921B1 (ko) 수직재배식 실내 공기정화장치
KR102599719B1 (ko) 아쿠아 플라즈마 공법을 이용하여 유해균을 억제하는 수경재배 장치
KR20210140887A (ko) 작물 생육을 위한 양액 공급 장치
KR20170002783U (ko) 식물 공장용 베드 부재와 형광등의 장착 시스템
JP2011172539A (ja) 栽培装置
JP2022028364A (ja) 水稲の栽培方法及び水稲の栽培プラント
JP2015192629A (ja) 水耕栽培装置
KR102641860B1 (ko) 수경재배를 위한 활성가스 공급 장치
JP4339646B2 (ja) マイナスイオンプランター
CN104871752B (zh) 一种橡胶树苗木丛生芽诱导培养前的外植体预处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896174

Country of ref document: EP

Kind code of ref document: A1