WO2015059324A1 - Material refractario autofraguante - Google Patents

Material refractario autofraguante Download PDF

Info

Publication number
WO2015059324A1
WO2015059324A1 PCT/ES2014/070715 ES2014070715W WO2015059324A1 WO 2015059324 A1 WO2015059324 A1 WO 2015059324A1 ES 2014070715 W ES2014070715 W ES 2014070715W WO 2015059324 A1 WO2015059324 A1 WO 2015059324A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
refractory composition
liquid
self
liquid binder
Prior art date
Application number
PCT/ES2014/070715
Other languages
English (en)
French (fr)
Inventor
Presentación Amezqueta Lizarraga
Mikel Arandigoyen Vidaurre
Jesús Fernández Suárez
Nicolás GANGUTIA PEPÍN
Íñigo Xabier GARCÍA ZUBIRI
Original Assignee
Magnesitas Navarras, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnesitas Navarras, S. A. filed Critical Magnesitas Navarras, S. A.
Priority to EP14795844.1A priority Critical patent/EP3050858B1/en
Priority to ES14795844T priority patent/ES2964058T3/es
Priority to PL14795844.1T priority patent/PL3050858T3/pl
Publication of WO2015059324A1 publication Critical patent/WO2015059324A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/12Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1626Making linings by compacting a refractory mass in the space defined by a backing mould or pattern and the furnace wall
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00525Coating or impregnation materials for metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a self-binding refractory composition for use as a working coating of metallurgical vessels.
  • the trough or crucible is the last vessel containing molten steel before solidifying into a mold.
  • the working lining of the trough or crucible is in direct contact with the molten steel and its slag, so it must be the most resistant part, with the highest performance and, in short, the most protective of it. Due to the continuous casting processes and the variables involved in them such as steel grades, this work coating has to be replaced much more frequently than the safety coatings that are also part of the refractory lining of the troughs or crucibles.
  • Other metallurgical vessels that are in direct contact with metals or molten steels that require working coatings with specific protective properties are also spoons, vats, sinks, buckets, slags, etc.
  • the present invention relates to a self-binding refractory composition for application as a working coating of metallurgical vessels.
  • self-binding is understood, in the present invention, as a material whose setting and / or forming occurs at room temperature, that is, without the need for any heating.
  • metallurgical vessel refers to any vessel used in the steel mill or foundry that requires a work lining in the present invention.
  • Non-limiting examples of metallurgical vessels are troughs, crucibles, strains, spoons, saucepans and vats.
  • the energy efficiency in the operation of applying the work lining and preparation times of the metallurgical vessel is improved with the use of the self-binding refractory composition of the invention, since it does not need to be heated at any time. of the cycle
  • the present invention eliminates the curing heating after the necessary application in the conventional dry method and the pre-drying heating of the wet compositions used in the conventional wet methods.
  • the present invention makes it possible to minimize the complete cycle time of coating of the metallurgical containers, allowing maximum availability thereof by reducing the application time of the composition that forms the work coating, reducing the forming or curing time of the composition, and reducing the time of demolding.
  • the forming times of the self-binding composition of the invention applied as a work coating range from 15 minutes to 2 hours, the times are markedly reduced compared to conventional wet and dry methods.
  • the deslobe or cleaning of the metallurgical container after casting is carried out with special ease when the self-binding composition of the invention is used, separating all the self-binding material in a single block from the work lining. Therefore, it is not usually necessary to clean before installing the metallurgical container. Damage to the work lining is minimized with respect to conventional methods.
  • the forming of the working lining of the metallurgical vessel ensures the absence of inclusions due to dragging of refractory particles.
  • liquid additives and binders of a different nature and in a different amount it is possible to modulate the speed of hardening or forming reaction of the self-binding composition of the invention, in addition to the mechanical strength, density and thermal conductivity of the work coating. For this reason the self-binding composition of the invention can be used on hot or cold working coatings.
  • the entrapment of hydrogen (in English hydrogen pick-up) by the self-binding composition of the invention improves the quality of the steels obtained.
  • Lower hydrogen contents have been observed in the first steel casting when the composition of the invention is used to coat metallurgical containers for use in the steel mill.
  • the self-binding composition of the present invention greatly facilitates the application of a working coating of a metallurgical container being faster, cleaner and simpler, also improving occupational health and safety conditions.
  • a first aspect of the invention relates to a self-binding refractory composition
  • a self-binding refractory composition comprising:
  • a calcined mineral to death selected from the list comprising brucite, dolomite and magnesite,
  • liquid binder which is selected from citric acid and asters or any combination thereof.
  • the term "calcination to death” or “sintering” refers to heat treatment at a temperature higher than that of calcination and below that of the melting of the substance or mineral, in which the particles decrease their porosity and increase its density as a result of an increase in crystal size and reduction of surface free energy.
  • the self-binding refractory composition described above further comprises at least one solid material selected from the list comprising calcined or uncalcined magnesite, calcined or uncalcrated dolomite, calcined or uncalcined dunite and calcined brucite.
  • the term "calcination” refers to the heat treatment by which a mineral loses its gaseous components decomposing into their corresponding oxides.
  • the self-binding refractory composition described above comprises magnesite calcined to death.
  • the granulated solid material has a grain size of less than 2 mm.
  • the uncalcined minerals mentioned above must also have this grain size if they are to be incorporated into the self-binding refractory composition of the invention.
  • Liquid additives and binders of different nature allow modulating the rate of hardening or forming reaction of the self-binding composition of the invention.
  • Properties such as mechanical strength, density and thermal conductivity of the work coating obtained can also be modified according to the type of material comprising said self-binding composition and the application method used. Look at the examples of the present invention.
  • Another feature that allows modulating the final properties of the self-binding composition and the final work coating obtained is the amount of liquid additives and binders used, that is, the weight percentage of these additives and liquid binders, as shown in the examples of The present invention.
  • the weight percentage of the liquid binder is between 4.5 and 10% with respect to the granulated solid material in a preferred embodiment.
  • the liquid binder is of an inorganic nature, preferably liquid sodium silicate. In this case the preferred proportion is between 4.5 and 6.5% by weight with respect to the granulated solid material.
  • the liquid binder is organic in nature, preferably it is a phenolic resin, more preferably it is a phenol / formaldehyde resin in a phenol / formalin molar ratio between 0.4: 1 to 0.6: one.
  • the liquid binder is organic
  • the preferred proportion is between 3 and 5% by weight with respect to the granulated solid material.
  • the liquid additive is ester derived from glycerin. Preferably it is selected from diacetin and triacetin.
  • the liquid additive is in a percentage of between 12 and 20% by weight with respect to the liquid binder. Preferably between 15 and 20% by weight with respect to the liquid binder.
  • the process for obtaining the self-binding refractory composition is a mixing carried out at room temperature. Usually a mixing machine like the one shown in Figure 3 is used and in it each of the components that form the self-binding refractory composition of the invention are introduced separately.
  • the present invention relates to the use of the composition described above to coat metallurgical vessels for use in the foundry or steel mill.
  • the containers are troughs, crucibles, strains, spoons, saucepans and vats.
  • the present invention relates to the use of the composition described above for coating work walls of metallurgical vessels for use in the foundry or steel mill.
  • the present invention relates to the use of the composition described above when the metallurgical vessels are hot.
  • the third aspect of the invention relates to the process for coating metallurgical containers for use in the foundry or steel mill with the self-binding refractory composition described above, which comprises the following steps: a) applying the self-binding refractory composition on the floor of the container metallurgical, b) place a mold around the safety walls of the metallurgical vessel, c) fill the space between the mold and the safety coating with the self-binding refractory composition, d) remove the mold.
  • metallurgical vessel safety coating refers to the coating that exists after the working coating, that is, if the working coating of a metallurgical container is removed, we give the safety coating.
  • mold is understood as a concentric mold to the safety walls of the metallurgical vessel that limits a volume to be filled by the composition of the invention and does not have to maintain the shape of the safety coating.
  • the purpose of this mold is to give thickness to the work lining, which can be different for each of its walls.
  • the mold mentioned in step b) can be an adjustable mold.
  • adjustable mold means that mold that fits around the safety walls of the metallurgical vessel to vary the thickness of the work lining.
  • Step d) of removing the mold is performed once the self-binding refractory composition has reached the required mechanical strength, that is, when the self-binding refractory composition "has set".
  • Figure 1 X-ray diffraction spectrum of the granulated solid material obtained after the sintering of the magnesite.
  • Figure 3 An example of a mixing machine design.
  • Figure 4 Application in the trough floor of the self-binding refractory material.
  • Figure 5 Filling the space between mold and safety lining of the trough of self-refractory refractory material.
  • Example 1 Characterization of the granulated solid material derived from the calcination at death of magnesite a) Particle size distribution
  • the solid material derived from the calcination at death of the magnesite has a particle size distribution below 2 mm, which was determined by a Mastersizer 2000 particle size analyzer and the use of the appropriate sieve set for particle sizes over 500 m.
  • the particle size distribution used in these tests is as shown below:
  • the sample In order to perform the measurement, the sample must be in the form of a 32 mm pearl. Therefore, a Peral X3 pearl from PANalytical was used, where 0.5-0.6 g of the milled sample is mixed with 4.5-5.4 g of the melting mixture comprising lithium tetraborate and lithium meta borate (2: 1), respectively.
  • the chemical composition is determined with respect to the oxides of the majority and minor components present in the sample in the form of a pearl, according to the protocol corresponding to the PHILIPS PW 2400 X-ray fluorescence equipment.
  • FIG. 1 A typical X-ray diffractogram obtained from the granulated solid material obtained after the calcination to death of the magnesite is shown in Figure 1. This spectrum indicates that the mineralogical phases present are mainly Periclasa, dicalcium silicate, and Magnesioferrite.
  • the liquid binder of inorganic nature could cause a variation of the mineralogical phases with respect to the granulated solid material.
  • the amount of inorganic liquid binder added with respect to the solid granulated material in the self-binding composition is so insignificant that the mineralogical phases and their proportions are not altered.
  • Example 2 Characterization of the properties of the self-binding composition of the invention when the liquid binder is inorganic.
  • a series of specimens of self-binding composition were prepared starting from the solid granulated materials whose chemical composition, obtained by X-ray fluorescence, is the one shown below.
  • Three materials rich in magnesium have been used for the evaluation of different characteristic parameters of this self-binding composition:
  • the granulated solid material is mixed with the liquid additive first, performing a vigorous manual kneading for one minute.
  • the liquid sodium silicate is then added as a liquid binder in a weight percentage of 5 and 6%, based on the weight of granulated solid material, depending on the specimen to be prepared and vigorously kneaded manually for one minute.
  • the amount of liquid additive is calculated based on the amount of liquid binder used.
  • the specimens are formed using prism-shaped molds with a quadrangular base of internal dimensions of 16cmx4cmx4cm. a) Measures of mechanical resistance of the samples The measurements of the test pieces of dimensions 16cmx4cmx4cm are tested in such a way that their rupture is evaluated before the impact of a "weight" of mass 64.2 g (a metal weight) that falls from a distance of 80 cm on the surface face 16cmx4cm at a distance of the short edge of the prism of 3 cm (0.5 J of potential energy).
  • A1 and A2 and B1 and B2 differ, in each other, in the compaction of the self-binding material, where (2) it implies non-compacted material.
  • test piece is separated into two fragments.
  • test piece is separated into 3 or more defined fragments.
  • Table 6 the degree of resistance is valued from 0 to 4, the most resistant grade being the one corresponding to the number "0".
  • Table 6 shows an increase in the mechanical strength of the specimens as the percentage of liquid additive increases without increasing the amount of liquid binder. The content of binder and additive is the minimum, resulting in this fact very suitable for the quality of the steel and improving its cleanliness.
  • the mechanical strength is improved in the present invention by using a low liquid binder content (liquid sodium silicate) with the use of liquid additive dosages (glycerol ester) greater than 12% based on the amount of binder (% by weight) . According to any of the attached Tables it is an amount of 5% or 6% as appropriate.
  • the degree of compaction of the material, as expected, also increases in all cases the mechanical strength of the specimens. So it can be modulated in situ the mechanical resistance of these materials in different grades by means of a manual compaction ("ramming" in English) or a mechanical compaction by vibration.
  • the liquid additive is a glycerol ester, selected from the list comprising diacetin, triacetin or a combination thereof.
  • reaction rate can be modulated using different liquid additives (1 and 2), different mixtures of diacetin and triacetin, for the same material (A).
  • Liquid additive 45 60 60 120 120 200
  • the hardening time is defined in the present invention as the time necessary for the mixture of granulated solid material + liquid additive + liquid binder to be hard enough to prevent penetration of a pointed metal piece that supports normal stress. It also corresponds to the moment in which the material can be removed from the mold without cracking, that is, the moment in which the material has acquired the appropriate consistency to be unmold.
  • Table 8 includes the comparison of the reaction rate obtained for two different liquid additives (1 and 2) for one of the granulated solid materials (material A).
  • Liquid additive 1 is the fastest catalyst of the hardening reaction and also used for the evaluation or mechanical resistance measurements.
  • the liquid additive 2 is a liquid additive that has a somewhat slower acceleration of the hardening characteristic of the liquid binder.
  • the reaction rate is also different (and therefore modulable) depending on the compaction.
  • Table 10 shows the thermal conductivity measured on the specimens according to said standard for the different compositions of granulated solid material, formed using the liquid additive 1 (glycerol ester) and the inorganic liquid binder (liquid sodium silicate).
  • Table 10 shows an example to compare the thermal conductivity of a mixture of two of the granulated solid materials at the four temperatures of the study (400, 700, 1000 and 1200 ° C).
  • the material of the example is a typical refractory lining material representative of the Dry vibe classic dry coating system (See example in patent W091 17969). This system requires a warm-up for forming or hardening.
  • C1 has lower thermal conductivity than A1.
  • C3 which is an intermediate composition between A1 and C1 has, as expected, an intermediate thermal conductivity with a value that is between those values obtained for A1 and C1.
  • the material with the lowest thermal conductivities is material B1, a material with a greater intragranular porosity and a smaller amount of fluxes compared to material A1. In this case its porosity determines its lower thermal conductivity.
  • Example 3 Characterization of the properties of the self-binding composition of the invention when the liquid binder is organic.
  • Solid granulated materials can also be formed with an organic binder such as a phenolic resin.
  • Table 1 1 Composition of the specimens under conditions of compaction (1) and non-compaction (2).
  • test specimens tested with phenol / formaldehyde resin have densities and conductivities slightly higher than those found for material A (See Table 8).
  • test specimens tested with phenol / formaldehyde resin show similar, even better, mechanical strengths and a reduction in hardening time, from 35 to 20 minutes for non-compacted material A2, and from 15 to 10 minutes for compacted material A1 (See Table 8).
  • Example 4 Application of the coating of the invention in a trough
  • troughs with both the open and open immersion casting system.
  • These types of troughs comprise an insulating layer, a permanent or safety coating composed of bricks or refractory concrete and a working lining layer that is in direct contact with the molten steel that inevitably deteriorates with use and must be replaced with certain frequency
  • sample type A a Mixing machine like the one shown in Figure 3.
  • the liquid binder 5.4% liquid sodium silicate
  • the liquid additive 15% glycerol ester based on the amount of sodium silicate
  • the procedure began by covering the floor of the troughs, as can be seen in Figure 4.
  • a mold was placed, which is adjustable to vary the thickness of the lining, and the space between the mold and the lining was filled of security. See Figure 5.
  • the release after casting was carried out with special ease, separating from the safety lining in a single block in just 30 minutes.
  • Example 5 Comparative study between the coatings of the state of the art and the invention of troughs of similar characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Abstract

La presente invención se refiere a una composición refractaria autofraguante para su uso como revestimiento de trabajo de recipientes metalúrgicos. La presente invención permite reducir al máximo el tiempo de ciclo completo de revestimiento de los recipientes metalúrgicos al prescindir de etapas de calentamiento, reduciendo por un lado el tiempo de aplicación del revestimiento, por otro, el tiempo de conformado o curado de la composición empleada para ello, y por último el tiempo de desmolde. Empleando aditivos y aglomerantes líquidos de distinta naturaleza y en distinta cantidad la presente invención modula la velocidad de reacción de endurecimiento o de conformado de la composición autofraguante. Propiedades como la resistencia mecánica, la densidad y la conductividad térmica del revestimiento de trabajo obtenido pueden ser modificadas también según el tipo de material que comprenda dicha composición autofraguante y la forma de aplicación empleada.

Description

MATERIAL REFRACTARIO AUTOFRAGUANTE
DESCRIPCIÓN La presente invención se refiere a una composición refractaria autofraguante para su uso como revestimiento de trabajo de recipientes metalúrgicos.
Por tanto, la invención se podría encuadrar en el campo de la acería y la fundición. ESTADO DE LA TÉCNICA ANTERIOR
El 90% de la producción de acero mundial se lleva a cabo mediante el proceso de colada continua donde la artesa o el crisol es el último recipiente que contiene el acero fundido antes de solidificarse en un molde. El revestimiento de trabajo de la artesa o el crisol está en contacto directo con el acero fundido y su escoria, por lo que ha de ser la parte más resistente, de mayores prestaciones y, en definitiva, más protectora de la misma. Debido a los procesos de colada continua y a las variables implicadas en ellos como son las calidades de acero, este revestimiento de trabajo ha de ser sustituido con mucha mayor frecuencia que los revestimientos de seguridad que también forman parte del revestimiento refractario de las artesas o crisoles. Otros recipientes metalúrgicos que están en contacto directo con metales o aceros fundidos que requieren de unos revestimientos de trabajo con unas propiedades protectoras específicas son también las cucharas, las cubas, los coladeros, los cazos, escorieros, etc.
Los procedimientos actuales para revestir recipientes de uso en la acería o la fundición se pueden dividir en función de cómo se incorporan o aplican en el recipiente metalúrgico. Existen procedimientos húmedos como es especialmente el esprayado, (ES2087727) y procedimientos en seco (W091 17969).
Para revestir el recipiente metalúrgico mediante procedimientos húmedos se requiere gran cantidad de agua y un posterior secado previo a su uso, lo que implica un gasto energético elevado y un tiempo de espera excesivo para obtener el revestimiento listo para su uso. Los procedimientos de revestimiento en seco disminuyen el gasto energético porque no requieren de una etapa de secado, sin embargo, la conformación de estos revestimientos se realiza en caliente empleando molde y vibración, lo que implica un gasto energético y un tiempo para el calentamiento y otro de espera de enfriamiento del recipiente metalúrgico tras el conformado para retirar el molde.
Por tanto, para superar todos los problemas técnicos mencionados, es necesario desarrollar una composición que no precise de calentamiento previo o posterior al conformado para su uso como revestimiento de trabajo de recipientes metalúrgicos y paredes de seguridad.
DESCRIPCION DE LA INVENCIÓN
La presente invención se refiere a una composición refractaria autofraguante para su aplicación como revestimiento de trabajo de recipientes metalúrgicos.
Por "autofraguante" se entiende, en la presente invención, como un material cuyo fraguado y/o conformado se da a temperatura ambiente, es decir, sin la necesidad de calentamiento alguno.
El término "recipiente metalúrgico" se refiere a cualquier recipiente de uso en la acería o la fundición que precise de un revestimiento de trabajo en la presente invención. Ejemplos no limitantes de recipientes metalúrgicos son artesas, crisoles, coladeros, cucharas, cazos y cubas.
En la presente invención, la eficiencia energética en la operación de aplicación del revestimiento de trabajo y de tiempos de preparación del recipiente metalúrgico se ve mejorada con el empleo de la composición refractaria autofraguante de la invención, ya que ésta no necesita ser calentada en ningún momento del ciclo. La presente invención elimina el calentamiento de curado tras la aplicación necesaria en el método convencional seco y el calentamiento previo de secado de las composiciones húmedas utilizadas en los métodos convencionales húmedos. La presente invención permite reducir al máximo el tiempo de ciclo completo de revestimiento de los recipientes metalúrgicos, permitiendo la máxima disponibilidad de los mismos reduciendo el tiempo de aplicación de la composición que forma el revestimiento de trabajo, reduciendo el tiempo de conformado o curado de la composición, y reduciendo el tiempo de desmolde. Los tiempos de conformado de la composición autofraguante de la invención aplicada como revestimiento de trabajo van desde los 15 minutos a 2 horas, los tiempos se reducen notablemente en comparación con los métodos convencionales húmedos y secos. El deslobe o limpieza del recipiente metalúrgico tras el colado se realiza con especial facilidad cuando se utiliza la composición autofraguante de la invención, separándose del revestimiento de trabajo normalmente todo el material autofraguante en un solo bloque. Por eso no suele ser necesaria una limpieza previa a la instalación del recipiente metalúrgico. El daño en el revestimiento de trabajo se minimiza con respecto a los métodos convencionales. En la presente invención, el conformado del revestimiento de trabajo del recipiente metalúrgico asegura la ausencia de inclusiones debida a arrastre de partículas de refractario.
Empleando aditivos y aglomerantes líquidos de distinta naturaleza y en distinta cantidad es posible modular la velocidad de reacción de endurecimiento o de conformado de la composición autofraguante de la invención, además de la resistencia mecánica, la densidad y la conductividad térmica del revestimiento de trabajo. Por este motivo la composición autofraguante de la invención puede utilizarse sobre revestimientos calientes o fríos de trabajo.
En el caso de la acería, el atrapamiento de hidrógeno (en inglés hydrogen pick-up) por parte de la composición autofraguante de la invención mejora la calidad de los aceros obtenidos. Se han observado menores contenidos de hidrógeno en la primera colada de acero cuando se utiliza la composición de la invención para revestir recipientes metalúrgicos de uso en la acería.
En general, la composición autofraguante de la presente invención facilita enormemente la aplicación de un revestimiento de trabajo de un recipiente metalúrgico siendo esta más rápida, limpia y sencilla, mejorando también las condiciones de seguridad y salud laboral.
Por tanto, un primer aspecto de la invención se refiere a una composición refractaria autofraguante que comprende:
• al menos un material sólido granulado seleccionado de entre:
olivino,
cuarcita,
alúmina,
un mineral calcinado a muerte seleccionado de la lista que comprende brucita, dolomita y magnesita,
• un aglomerante líquido,
• y un aditivo líquido, en un porcentaje en peso mayor de un 12 % respecto al aglomerante líquido, que se selecciona de entre ácido cítrico y ásteres o cualquiera de sus combinaciones.
En la presente invención el término "calcinación a muerte" o "sinterización" se refiere al tratamiento térmico a una temperatura superior a la de calcinación e inferior a la de fusión de la sustancia o mineral, en el que las partículas disminuyen su porosidad e incrementan su densidad como consecuencia de un aumento del tamaño de cristal y la reducción de energía libre de superficie.
En una realización preferida, la composición refractaria autofraguante descrita anteriormente además comprende al menos un material sólido seleccionado de la lista que comprende magnesita calcinada o sin calcinar, dolomita calcinada o sin calcinar, dunita calcinada o sin calcinar y brucita calcinada.
En la presente invención el término "calcinación" se refiere al tratamiento térmico por el cual un mineral pierde sus componentes gaseosos descomponiéndose en sus óxidos correspondientes. En otra realización preferida, la composición refractaria autofraguante descrita anteriormente comprende magnesita calcinada a muerte.
En otra realización preferida, la composición refractaria descrita previamente, el material sólido granulado tiene un tamaño de grano menor de 2 mm. Los minerales sin calcinar mencionados anteriormente deben tener también este tamaño de grano si se quieren incorporar en la composición refractaria autofraguante de la invención.
Los aditivos y aglomerantes líquidos de distinta naturaleza permiten modular la velocidad de reacción de endurecimiento o de conformado de la composición autofraguante de la invención. Propiedades como la resistencia mecánica, la densidad y la conductividad térmica del revestimiento de trabajo obtenido pueden ser modificadas también según el tipo de material que comprenda dicha composición autofraguante y la forma de aplicación empleada. Mírese los ejemplos de la presente invención.
Otra característica que permite modular las propiedades finales de la composición autofraguante y del revestimiento de trabajo final obtenido es la cantidad de aditivos y aglomerantes líquidos empleada, es decir, el porcentaje en peso de estos aditivos y aglomerantes líquidos, como se muestra en los ejemplo de la presente invención.
En la presente invención, el porcentaje en peso del aglomerante líquido está entre un 4,5 y un 10 % con respecto al material sólido granulado en una realización preferida. Por un lado, en una realización preferida, el aglomerante líquido es de naturaleza inorgánica, siendo preferiblemente silicato sódico líquido. En este caso la proporción preferida es de entre 4,5 y 6,5 % en peso con respecto al material sólido granulado.
Por otro lado, en otra realización preferida, el aglomerante líquido es de naturaleza orgánica, preferiblemente es una resina fenólica, más preferiblemente es una resina fenol/formaldehido en una relación molar fenol/formol de entre 0,4:1 a 0,6:1.
En el caso de que el aglomerante líquido sea orgánico, la proporción preferida es de entre 3 y 5 % en peso con respecto al material sólido granulado. En otra realización preferida de la presente invención, el aditivo líquido es éster derivado de la glicerina. Preferiblemente se selecciona de entre diacetina y triacetina.
En otra realización preferida, el aditivo líquido se encuentra en un porcentaje de entre 12 y 20 % en peso con respecto al aglomerante líquido. Preferiblemente entre 15 y 20% en peso con respecto al aglomerante líquido.
El procedimiento de obtención de la composición refractaria autofraguante es un mezclado llevado a cabo a temperatura ambiente. Habitualmente se utiliza una máquina mezcladora como la que se muestra en la Figura 3 y en ella se introducen cada uno de los componentes que forman la composición refractaria autofraguante de la invención por separado.
En un segundo aspecto, la presente invención se refiere al uso de la composición descrita anteriormente para revestir recipientes metalúrgicos de uso en la fundición o acería. Preferiblemente los recipientes son artesas, crisoles, coladeros, cucharas, cazos y cubas.
En otra realización preferida, la presente invención se refiere al uso de la composición descrita anteriormente para revestir paredes de trabajo de recipientes metalúrgicos de uso en la fundición o acería.
En otra realización preferida, la presente invención se refiere al uso de la composición descrita anteriormente cuando los recipientes metalúrgicos están calientes.
Por último, el tercer aspecto de la invención se refiere al procedimiento para revestir recipientes metalúrgicos de uso en la fundición o acería con la composición refractaria autofraguante descrita anteriormente, que comprende las siguientes etapas: a) aplicar la composición refractaria autofraguante por el suelo del recipiente metalúrgico, b) colocar un molde alrededor de las paredes de seguridad del recipiente metalúrgico, c) rellenar el espacio entre el molde y el revestimiento de seguridad con la composición refractaria autofraguante, d) quitar el molde.
En la presente invención el término "revestimiento de seguridad del recipiente metalúrgico" se refiere al revestimiento que existe tras el revestimiento de trabajo, es decir, si se quita el revestimiento de trabajo de un recipiente metalúrgico damos con el revestimiento de seguridad.
En la presente invención se entiende por "molde" como un molde concéntrico a las paredes de seguridad del recipiente metalúrgico que limita un volumen a rellenar por la composición de la invención y que no tiene por qué mantener la forma del revestimiento de seguridad. La finalidad de este molde es dar espesor al revestimiento de trabajo, el cual puede ser distinto para cada una de sus paredes.
El molde mencionado en la etapa b) puede ser un molde ajustable. En la presente invención se entiende por "molde ajustable" aquel molde que se ajusta alrededor de las paredes de seguridad del recipiente metalúrgico para variar el espesor del revestimiento de trabajo.
La etapa d) de quitar el molde se realiza una vez la composición refractaria autofraguante ha alcanzado la resistencia mecánica requerida, es decir, cuando la composición refractaria autofraguante "ha fraguado".
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Espectro de Difracción de Rayos X del material sólido granulado obtenido tras la sinterización de la magnesita.
Figura 2: Conductividad térmica a 400, 700, 1000 y 1200°C
Figura 3: Un ejemplo de diseño de una máquina mezcladora. Figura 4: Aplicación en el suelo de la artesa del material refractario autofraguante.
Figura 5: Relleno del espacio entre molde y revestimiento de seguridad de la artesa del material refractario autofraguante. EJEMPLOS
Ejemplo 1 : Caracterización del material sólido granulado derivado de la calcinación a muerte de la magnesita a) Distribución de tamaño de partícula
El material sólido derivado de la calcinación a muerte de la magnesita presenta una distribución de tamaño de partícula por debajo de 2 mm, que se determinó mediante un analizador de tamaño de partícula Mastersizer 2000 y el empleo del adecuado set de tamices para los tamaños de partícula superiores a 500 m. La distribución de tamaño de partícula utilizada en estos ensayos es la que se muestra a continuación:
Tabla 1. Distribución granulométrica posible y propia de los ejemplos de materiales sólidos granulados empleados para la presentación de las propiedades de esta invención. Tamaño de grano (mm) %
> 2 2,0
2 - 1 4,0
1 - 0,5 26,0
0,5 - 0,3 21 ,0
0,3 - 0,09 31 ,0
0,09 - 0,04 9,0
< 0,04 7,0 a) Análisis químico por fluorescencia de rayos X
Se llevó a cabo su análisis químico por fluorescencia de rayos X mediante un espectrofotómetro de Fluorescencia de Rayos X "PHILIPS PW 2400".
Para poder realizar la medida, la muestra debe estar en forma de perla de 32 mm. Por lo que se utilizó una perladora Peral X3 de PANalytical, donde 0,5 - 0,6 g de la muestra molida se mezcla con 4,5 - 5,4 g de la mezcla fundente que comprende tetraborato de litio y meta borato de litio (2:1 ), respectivamente.
Se determina la composición química respecto a los óxidos de los componentes mayoritarios y minoritarios presentes en la muestra en forma de perla, de acuerdo al protocolo correspondiente al equipo de fluorescencia de Rayos X PHILIPS PW 2400.
La composición química encontrada se muestra a continuación:
Tabla 2. Composición química del ejemplo presentado determinada en forma de óxidos metálicos mediante espectroscopia de Fluorescencia de Rayos X.
Análisis Contenido
Químico (% en peso)
Si02 3,4
CaO 7,0
Fe203 , AI203 3,3
MgO 86,1 LO.I. (1050°C) 0,2 b) Determinación de las fases mineralógicas por difracción de rayos X
Los difractogramas de las muestras en polvo fueron registrados en un difractómetro de rayos X Bruker D8 Advance, provisto de un generador de rayos X Kristalloflex K760, usando la radiación Kal del Cu (λ=1 ,5417 A), un incremento de 2Θ = 0,02° y 1 s/paso, en un intervalo de 2Θ desde 2° a 40°.
En la Figura 1 se muestra un difractograma de rayos X típico obtenido del material sólido granulado obtenido tras la calcinación a muerte de la magnesita. Este espectro indica que las fases mineralógicas presentes son principalmente Periclasa, Silicato dicálcico, y Magnesioferrita.
Tabla 3. Composición mineralógica del ejemplo presentado en esta invención determinada mediante difracción de Rayos X.
Figure imgf000011_0001
En la composición autofraguante de la invención, el aglomerante líquido de naturaleza inorgánica podría provocar una variación de las fases mineralógicas con respecto al material sólido granulado. Sin embargo, la cantidad de aglomerante líquido inorgánico añadido con respecto al material sólido granulado en la composición autofraguante es tan poco significativa que las fases mineralógicas y sus proporciones no se ven alteradas.
Ejemplo 2: Caracterización de las propiedades de la composición autofraguante de la invención cuando el aglomerante líquido es inorgánico. Se prepararon una serie de probetas de composición autofraguante partiendo de los materiales sólidos granulados cuya composición química, obtenida por fluorescencia de rayos X, es la que se muestra a continuación. Se han empleado tres materiales ricos en magnesio para la evaluación de distintos parámetros característicos de esta composición autofraguante:
Tabla 4. Composición química de los materiales empleados para la realización de las probetas determinada en forma de óxidos metálicos mediante espectroscopia de Fluorescencia de Rayos X.
Figure imgf000012_0001
El material sólido granulado se mezcla con el aditivo líquido en primer lugar, realizando un amasado manual vigoroso durante un minuto. Seguidamente se añade el silicato sódico líquido como aglomerante líquido en un porcentaje en peso de 5 y 6 %, basado en el peso de material sólido granulado, dependiendo de la probeta a preparar y se amasa vigorosamente de forma manual durante un minuto. La cantidad de aditivo líquido se calcula en función de la cantidad de aglomerante líquido empleado.
Las probetas se conforman empleando moldes de forma de prisma con base cuadrangular de dimensiones interiores de 16cmx4cmx4cm. a) Medidas de resistencia mecánica de las muestras Las medidas de las probetas de dimensiones 16cmx4cmx4cm se testan de manera que se evalúa su ruptura ante el impacto de una "pesa" de masa 64,2 g (una pesa de metal) que desde una distancia de 80 cm cae sobre la cara de superficie 16cmx4cm a una distancia del borde corto del prisma de 3 cm (0,5 J de energía potencial).
A1 y A2 y B1 y B2 difieren, entre si, en la compactación del material autofraguante, donde (2) implica material no compactado.
Tabla 5. Propiedades de las probetas en condiciones de compactación (1 ) y compactación (2).
Figure imgf000013_0001
La resistencia mecánica es evaluada por el procedimiento mencionado dando valores de 0 a 4 de manera que cada valor representa en la Tabla 6:
0: no se presenta afección de la probeta de ensayo
1 : aparecen fractura pero no hay separación de la probeta en dos partes.
2: la probeta se separa en dos fragmentos.
3: la probeta se separa en 3 o más fragmentos definidos.
4: la probeta se "desintegra" al menos en la zona de impacto de la pesa.
Tabla 6. Comparación de la resistencia mecánica obtenida para las probetas en función del porcentaje de aditivo líquido para dos de los materiales de esta invención en condiciones de compactación (1 ) y no compactación (2). Resistencia mecánica A1 A2 B1 B2
Aglomerante Aglomerante Aglomerante Aglomerante líquido líquido líquido líquido
Silicato sódico Silicato sódico Silicato sódico Silicato sódico líquido (5% en líquido (5% en líquido (6% en líquido (6% en peso) peso) peso) peso)
Aditivo líquido 2 3 3 4
Ester de glicerol
(8%)
Aditivo líquido 1 3 2 4
Ester de glicerol
(10%)
Aditivo líquido 1 2 2 3,5
Ester de glicerol
(12%)
Aditivo líquido 0-1 2 1 2
Ester de glicerol
(18%)
En la Tabla 6 el grado de resistencia se valora de 0 a 4 siendo el grado más resistente el correspondiente al número "0". En la Tabla 6 se observa un aumento de la resistencia mecánica de las probetas al ir aumentando el porcentaje de aditivo líquido sin aumentar la cantidad de aglomerante líquido. El contenido en aglomerante y aditivo es el mínimo, resultando este hecho muy adecuado para la calidad del acero y mejorando la limpieza del mismo.
La resistencia mecánica se mejora en la presente invención empleando un contenido bajo de aglomerante líquido (silicato sódico líquido) con el empleo de dosificaciones de aditivos líquidos (éster de glicerol) superiores a 12% en base a la cantidad de aglomerante (% en peso). De acuerdo a cualquiera de las Tablas adjuntas se trata de una cantidad de 5% ó 6% como adecuado. El grado de compactación del material, como era de esperar, también incrementa en todos los casos la resistencia mecánica de las probetas. Por lo que se puede modular in situ la resistencia mecánica de estos materiales en diferentes grados mediante un compactado manual ("ramming" en inglés) o un compactado mecánico por vibración. b) Evaluación de la velocidad de reacción
Tabla 7. Composición de las probetas en condiciones de compactacion (1 ) y no compactacion (2).
Figure imgf000015_0001
El aditivo líquido es un éster de glicerol, seleccionado de la lista que comprende diacetina, triacetina o una combinación de ellos.
Como se muestra en la Tabla 8, la velocidad de reacción puede ser modulada empleando distintos aditivos líquidos (1 y 2), distintas mezclas de diacetina y triacetina, para un mismo material (A).
Tabla 8. Comparación de la velocidad de endurecimiento de las probetas en función del tipo y el porcentaje de aditivo y aglomerante líquidos. Tiempo de A1 A2 A1 A2 B1 B2 endurecimiento (min)
Aglomer Aglomer Aglomer Aglomer Aglomer Aglomer ante ante ante ante ante ante líquido líquido líquido líquido líquido líquido silicato silicato silicato silicato silicato silicato sódico sódico sódico sódico sódico sódico líquido líquido líquido líquido líquido líquido
(5% en (5% en (5% en (5% en (6% en (6% en peso) peso) peso) peso) peso) peso)
Aditivo Aditivo Aditivo Aditivo Aditivo Aditivo líquido 1 líquido 1 líquido 2 líquido 2 líquido 1 líquido 1
Aditivo líquido 45 60 60 120 120 200
Ester de glicerol
(8%)
Aditivo líquido 35 60 60 1 10 120 170
Ester de glicerol
(10%)
Aditivo líquido 25 40 55 90 100 120
Ester de glicerol
(12%)
Aditivo líquido 15 35 45 70 75 150
Ester de glicerol
(18%)
El tiempo de endurecimiento se define en la presente invención como el tiempo necesario para que la mezcla material sólido granulado + aditivo líquido + aglomerante líquido sea lo suficientemente dura como para evitar la penetración de una pieza de metal con punta que soporta un esfuerzo normal. Se corresponde también con el momento en que el material puede ser sacado del molde sin producirse grietas, es decir, el momento en el cual el material ha adquirido la consistencia adecuada para ser desmoldado. La Tabla 8 incluye la comparación de la velocidad de reacción obtenida para dos aditivos líquidos distintos (1 y 2) para uno de los materiales sólidos granulados (el material A). El aditivo líquido 1 es el catalizador más rápido de la reacción de endurecimiento y empleado también para la evaluación o las medidas de resistencia mecánica. Y el aditivo líquido 2 es un aditivo líquido que presenta una aceleración algo más lenta del endurecimiento propio del aglomerante líquido.
Además existe la posibilidad de modular la velocidad de reacción empleando distintas concentraciones de un mismo aditivo líquido, como puede verse en la Tabla 8. Se presentan concentraciones desde 8 a 18% (en base al contenido del aglomerante líquido). Para un mismo material y un mismo aditivo se pasa por ejemplo de 45 minutos a 15 min (material A con aditivo líquido 1 , en Tabla 8), aunque esa reducción de tiempos de endurecimiento puede ser porcentualmente menor para otros materiales refractarios (véase el material B en la Tabla 8 por ejemplo) y también según el aditivo líquido catalizador empleado (material A en Tabla 8, con aditivo líquido 2).
La velocidad de reacción es también diferente (y por ello modulable) según la compactacion. A mayor compactacion, mayor velocidad de endurecimiento. c) Medidas de conductividad térmica
Para la realización de estos estudios se analizaron las probetas según la legislación vigente (UNE-EN 993-15) y se realizaron las medidas en cuatro puntos de temperatura 400, 700, 1000 y 1200 °C, como dice la norma.
Tabla 9. Composición de las probetas en condiciones de compactacion (1 ) y no compactacion (2).
Composición A1 A2 B1 C1 C3
(% en peso)
Si02 3,57 3,57 3,55 2,77 3,22
CaO 7,02 7,02 4,88 4,01 5,81
Fe203 3,29 3,29 1 ,88 2,14 2,83
Al203 0,49 0,49 0,61 0,52 0,50 MgO 85,45 85,45 88,24 90,22 87,4
L.O.I. 0,18 0,18 0,78 0,35 0,24
(1000°C)
Aglomerante 5 5 6 5 5
líquido
Silicato sódico
líquido (%)
Aditivo líquido 0,75 0,75 0,9 0,75 0,75
Ester de
glicerol (1 )
(15% en peso
con respecto
al aglomerante
líquido)
Densidad 1 ,81 1 ,54 1 ,67 1 ,76 1 ,79
(g/cm3)
Siendo C3=50% de A1 + 50% de C1 , es decir la muestra formada por un 50% de A1 y un 50% de C1. La Tabla 10 muestra la conductividad térmica medida sobre las probetas de acuerdo a dicha norma para las distintas composiciones de material sólido granulado, conformados empleando el aditivo líquido 1 (éster de glicerol) y el aglomerante líquido inorgánico (silicato sódico líquido). Además la Tabla 10 muestra un ejemplo para comparar la conductividad térmica de una mezcla de dos de los materiales sólidos granulados a las cuatro temperaturas del estudio (400, 700, 1000 y 1200 °C). El material del ejemplo es un material de revestimiento refractario típico representativo del sistema de revestimiento seco clásico Dry vibe (Mírese ejemplo en patente W091 17969). Este sistema precisa de un calentamiento para su conformado o endurecimiento.
Tabla 10. Conductividad térmica (W/mK) obtenida a distintas temperaturas para las probetas y un ejemplo comparativo de material de "revestimiento seco".
Figure imgf000019_0001
La composición química de C1 , con mayor contenido de MgO y menor presencia de fundentes Fe203 y/o Si02, presenta menor conductividad térmica que A1. C3, que es una composición intermedia entre A1 y C1 presenta, como es de esperar, una conductividad térmica intermedia con un valor que se encuentra entre aquellos valores obtenidos para A1 y C1. El material que presenta menores conductividades térmicas es el material B1 , un material de una mayor porosidad intragranular y menor cantidad de fundentes en comparación con el material A1. En este caso su porosidad determina su menor conductividad térmica. d) Modular la densidad del producto refractario final aplicado:
La posibilidad de compactar más o menos el material también permite aumentar o reducir, respectivamente, la densidad de la pared de refractario obtenido como recubrimiento (como puede verse en las Tablas 9 y 10). Se puede concluir que la reducción de densidad y de conductividad térmica se asocia a un incremento de la porosidad intergranular.
Esto supone en general para el acerista una reducción del consumo específico de material refractario (Kg/Tm acero producido), y por lo tanto supone un aumento de la eficiencia del recipiente metalúrgico. Ejemplo 3: Caracterización de las propiedades de la composición autofraguante de la invención cuando el aglomerante líquido es orgánico.
Los materiales granulados sólidos también se pueden conformar con un aglomerante orgánico como es una resina fenólica.
Tabla 1 1 : Composición de las probetas en condiciones de compactacion (1 ) y no compactacion (2).
Figure imgf000020_0001
Tabla 12. Propiedades de las probetas en condiciones de compactacion (1 ) y no compactacion (2).
Propiedades D1 D2 Resistencia 0-1 1
mecánica
Tiempo de 10 20
endurecimiento
(min)
Conductividad 1 ,74 1 ,70
térmica a
1200°C
Densidad 1 ,90 1 ,60
(g/cm3)
Porosidad 0,30
(g/cm3)
% Porosidad 15,79
Las probetas ensayadas con resina fenol/formaldehido presentan densidades y conductividades ligeramente superiores a las encontradas para el material A (Mirar Tabla 8).
Por otro lado, las probetas ensayadas con resina fenol/formaldehido muestran resistencias mecánicas similares, incluso mejores y una reducción del tiempo de endurecimiento, de 35 a 20 minutos para el material no compactado A2, y de 15 a 10 minutos para el material compactado A1 (Mirar Tabla 8).
Ejemplo 4: Aplicación del revestimiento de la invención en una artesa
Los ensayos se realizaron con artesas tanto con el sistema de colado de buza abierta como de buza sumergida. Este tipo de artesas comprenden una capa aislante, un revestimiento permanente o de seguridad compuesto por ladrillos u hormigón refractario y una capa de revestimiento de trabajo que está en contacto directo con el acero fundido que inevitablemente se deteriora con el uso y ha de ser sustituido con cierta frecuencia.
Para sustituir el revestimiento de trabajo de las artesas con la composición refractaria autofraguante de la invención descrita en el ejemplo 2 muestra tipo A se utilizó una máquina mezcladora como la que se muestra en la Figura 3. A lo largo del sinfín del mezclador unas paletas reforzadas frente a la abrasión mezclaron la magnesita calcinada, el aglomerante líquido (silicato sódico líquido en un 5,4%) y el aditivo liquido (éster de glicerol en un 15% basado en la cantidad de silicato sódico), los cuales se introdujeron en la mezcladora por separado.
El procedimiento comenzó revistiendo el suelo de las artesas, tal y como se puede observar en la Figura 4. A continuación se colocó un molde, que es ajustable para poder variar el espesor del revestimiento, y se rellenó el espacio entre el molde y el revestimiento de seguridad. Véase Figura 5. El tiempo medio utilizado para revestir una artesa de 6,2 m de longitud x 0,95 m de altura, dimensiones que implican una capacidad de unos 22-26 Tm de acero, unos 3,5 m3, fue de entre 23 y 28 minutos, utilizando entre 1800 y 2200 kg de la composición refractaria autofraguante de la invención. Los tiempos de espera de este conformado a temperatura ambiente fueron de 15 minutos a 2 horas en diferentes ensayos. El desmoldeo tras la colada se realizó con especial facilidad, separándose del revestimiento de seguridad en un solo bloque en sólo 30 minutos.
En todos los casos, los arranques de colada continua realizados en frió o con un precalentamiento previo de las artesas, las propiedades del revestimiento de trabajo obtenido con la composición refractaria autofraguante de la invención no se vieron afectadas.
Ejemplo 5: Estudio comparativo entre los revestimientos del estado del arte y la invención de artesas de similares características.
Placas Esprayado Seco Invención Frías o gunitado
Equipamiento necesario Ninguno Complejo Medio Medio
Necesidad de secador Si Si No
(Secado y
vibración para
realizar la
conformación) Coste energético Bajo Alto Medio (T=250°C) Ninguno
(T=700°C) (T amb)
Tiempo de secado No hay Largo Medio No hay secado (5-6 horas) (2 horas) secado
Tiempo máximo de Largo Medio Corto Corto construcción revestimiento (3 horas) (1 hora) (1 hora) y limpieza máquina de
aplicación del
revestimiento
Número de coladas antes Hasta 35 Hasta 35 Hasta de tener que sustituir el 45-55* revestimiento para el
mismo espesor (7-8 cm)
de los materiales de
revestimiento testados
Riesgo de inclusiones Existe Ninguno Ninguno
* Es difícil comparar el número de coladas antes de tener que sustituir el revestimiento porque estos datos se obtienen de experiencias en acerías, correspondientes a trabajos realizados como el detallado en el ejemplo 4 y no siempre se mantienen las mismas condiciones de trabajo por nuevas necesidades de la acería, por ejemplo el mismo espesor del revestimiento. Si bien es cierto que la composición refractaria autofraguante de la invención ha demostrado permitir aumentar el número de coladas con respecto al producto que se estaba utilizando hasta entonces en cada acería.

Claims

REIVINDICACIONES
1. Composición refractaria autofraguante que comprende
• al menos un material sólido granulado seleccionado de entre:
olivino,
cuarcita,
alúmina,
un mineral calcinado a muerte seleccionado de la lista que comprende brucita, dolomita y magnesita,
· un aglomerante líquido,
• y un aditivo líquido, en un porcentaje en peso mayor de un 12 % respecto al aglomerante líquido, que se selecciona de entre ácido cítrico y ásteres o cualquiera de sus combinaciones.
2. Composición refractaria autofraguante, según la reivindicación 1 , que además comprende al menos un material sólido granulado seleccionado de la lista que comprende magnesita calcinada o sin calcinar, dolomita calcinada o sin calcinar, dunita calcinada o sin calcinar y brucita calcinada.
3. Composición refractaria autofraguante, según cualquiera de las reivindicaciones 1 ó 2, que comprende magnesita calcinada a muerte.
4. Composición refractaria, según cualquiera de las reivindicaciones 1 a 3, donde el material sólido granulado tiene un tamaño de grano menor de 2 mm.
5. Composición refractaria, según cualquiera de las reivindicaciones 1 a 4, donde el porcentaje en peso del aglomerante líquido está entre un 4,5 y un 10 % con respecto al material sólido granulado.
6. Composición refractaria, según cualquiera de las reivindicaciones 1 a 5, donde el aglomerante líquido es de naturaleza inorgánica.
7. Composición refractaria, según la reivindicación 6, donde el aglomerante líquido es silicato sódico líquido.
8. Composición refractaria, según la reivindicación 7, donde el silicato sódico líquido se encuentra en una proporción de entre 4,5 y 6,5 % en peso con respecto al material sólido granulado.
9. Composición refractaria, según cualquiera de las reivindicaciones 1 a 5, donde el aglomerante líquido es de naturaleza orgánica.
10. Composición refractaria, según la reivindicación 9, donde el aglomerante líquido orgánico es una resina fenólica.
1 1 . Composición refractaria, según la reivindicación 10, donde el aglomerante líquido es una resina fenol/formaldehido en una relación molar fenol/formol de entre 0,4:1 a 0,6:1 .
12. Composición refractaria, según cualquiera de las reivindicaciones 9 a 1 1 , donde el aglomerante líquido orgánico se encuentra en una proporción de entre 3 y 5 % en peso con respecto al material sólido granulado.
13. Composición refractaria, según cualquiera de las reivindicaciones 1 a 12, donde el aditivo líquido es un éster derivado de la glicerina.
14. Composición refractaria, según la reivindicación 13, donde el éster derivado de la glicerina se selecciona de entre diacetina y triacetina.
15. Composición refractaria, según cualquiera de las reivindicaciones 1 a 14, donde el aditivo líquido se encuentra en un porcentaje de entre 12 y 20 % en peso con respecto al aglomerante líquido.
16. Composición refractaria, según la reivindicación 15, donde el aditivo líquido se encuentra en un porcentaje de entre 15 y 20% en peso con respecto al aglomerante líquido.
17. Uso de la composición, según cualquiera de las reivindicaciones 1 a 16, para revestir recipientes metalúrgicos de uso en la fundición o acería.
18. Uso de la composición, según la reivindicación 17, donde los recipientes metalúrgicos son artesas, crisoles, coladeros, cucharas, cazos y cubas.
19. Uso de la composición, según la reivindicación 17, para revestir paredes de trabajo de recipientes metalúrgicos de uso en la fundición o acería.
20. Uso de la composición, según cualquiera de las reivindicaciones 17 a 19, cuando los recipientes metalúrgicos están calientes.
21 . Procedimiento para revestir recipientes metalúrgicos de uso en la fundición o acería con la composición refractaria autofraguante según cualquiera de las reivindicaciones 1 a 16, que comprende las siguientes etapas:
a) aplicar la composición refractaria autofraguante por el suelo del recipiente metalúrgico,
b) colocar un molde alrededor de las paredes de seguridad del recipiente metalúrgico,
c) rellenar el espacio entre el molde y el revestimiento de seguridad con la composición refractaria autofraguante,
d) quitar el molde.
PCT/ES2014/070715 2013-09-23 2014-09-22 Material refractario autofraguante WO2015059324A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14795844.1A EP3050858B1 (en) 2013-09-23 2014-09-22 A method for lining metallurgical vessels using self hardening refractory material
ES14795844T ES2964058T3 (es) 2013-09-23 2014-09-22 Un método para revestir recipientes metalúrgicos usando material refractario autofraguante
PL14795844.1T PL3050858T3 (pl) 2013-09-23 2014-09-22 Sposób wykładania zbiorników metalurgicznych z użyciem samoutwardzalnego materiału ogniotrwałego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201331379A ES2532280B1 (es) 2013-09-23 2013-09-23 Material refractario autofraguante
ESP201331379 2013-09-23

Publications (1)

Publication Number Publication Date
WO2015059324A1 true WO2015059324A1 (es) 2015-04-30

Family

ID=51868980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070715 WO2015059324A1 (es) 2013-09-23 2014-09-22 Material refractario autofraguante

Country Status (5)

Country Link
EP (1) EP3050858B1 (es)
AR (1) AR097730A1 (es)
ES (2) ES2532280B1 (es)
PL (1) PL3050858T3 (es)
WO (1) WO2015059324A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534805B (zh) * 2018-10-16 2021-11-26 无锡顺佳特种陶瓷有限公司 锂电池粉烧结用镁橄榄石-刚玉匣钵及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB832858A (en) * 1957-11-15 1960-04-13 Monsanto Chemicals Improvements relating to refractories
GB1017745A (en) * 1964-03-10 1966-01-19 Kaiser Aluminium Chem Corp Improvements in or relating to refractory materials
GB1137842A (en) * 1966-01-21 1968-12-27 Monsanto Co Mouldable refractory materials
GB1360183A (en) * 1971-03-02 1974-07-17 Sanac Spa Method for manufacturing refractory products
US3879208A (en) * 1974-02-19 1975-04-22 Kaiser Aluminium Chem Corp Refractory composition
GB1479260A (en) * 1974-11-18 1977-07-13 Kaiser Aluminium Chem Corp Calcium aluminate cement
US5179177A (en) * 1990-08-02 1993-01-12 Borden, Inc. Method for retarding ambient temperature hardening of a phenolic resin composition
EP0579994A1 (en) * 1992-07-14 1994-01-26 Taikorozai Co., Ltd. Monolithic refractories

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474904A (en) * 1982-01-21 1984-10-02 Lemon Peter H R B Foundry moulds and cores
GB8404595D0 (en) * 1984-02-22 1984-03-28 Foseco Int Foundry sand compositions
GB8510143D0 (en) * 1985-04-20 1985-05-30 Foseco Trading Ag Pouring tubes
US5043412A (en) * 1988-06-23 1991-08-27 Borden, Inc. Ambient temperature curing, high carbon contributing compositions
SE529274C2 (sv) * 2005-11-03 2007-06-12 North Cape Minerals As Metod att framställa slitfoder innefattande tillsats av ester

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB832858A (en) * 1957-11-15 1960-04-13 Monsanto Chemicals Improvements relating to refractories
GB1017745A (en) * 1964-03-10 1966-01-19 Kaiser Aluminium Chem Corp Improvements in or relating to refractory materials
GB1137842A (en) * 1966-01-21 1968-12-27 Monsanto Co Mouldable refractory materials
GB1360183A (en) * 1971-03-02 1974-07-17 Sanac Spa Method for manufacturing refractory products
US3879208A (en) * 1974-02-19 1975-04-22 Kaiser Aluminium Chem Corp Refractory composition
GB1479260A (en) * 1974-11-18 1977-07-13 Kaiser Aluminium Chem Corp Calcium aluminate cement
US5179177A (en) * 1990-08-02 1993-01-12 Borden, Inc. Method for retarding ambient temperature hardening of a phenolic resin composition
EP0579994A1 (en) * 1992-07-14 1994-01-26 Taikorozai Co., Ltd. Monolithic refractories

Also Published As

Publication number Publication date
EP3050858C0 (en) 2023-11-01
PL3050858T3 (pl) 2024-04-29
ES2532280A1 (es) 2015-03-25
EP3050858A1 (en) 2016-08-03
EP3050858B1 (en) 2023-11-01
AR097730A1 (es) 2016-04-13
ES2964058T3 (es) 2024-04-03
ES2532280B1 (es) 2016-01-21

Similar Documents

Publication Publication Date Title
US9604882B2 (en) Spinel forming refractory compositions, their method of production and use thereof
CN108472722B (zh) 包含沸石型微结构的可浇筑耐火材料组合物及其用途
KR20160136340A (ko) 고로 노저부 보수 재료
Ko Role of spinel composition in the slag resistance of Al2O3–spinel and Al2O3–MgO castables
Silva et al. Effect of alumina and silica on the hydration behavior of magnesia‐based refractory castables
US4522926A (en) Aluminum resistant refractory composition
Zuo et al. Dissolution behavior of a novel Al2O3-SiC-SiO2-C composite refractory in blast furnace slag
Chen et al. The fabrication of porous corundum spheres with core-shell structure for corundum-spinel castables
JP5943032B2 (ja) 軽量断熱アルミナ・マグネシア質耐火物の製造方法
Wang et al. Matrix microstructure optimization of alumina-spinel castables and its effect on high temperature properties
ES2532280B1 (es) Material refractario autofraguante
AdabiFiroozjaei et al. Effects of AlPO4 addition on the corrosion resistance of andalusite-based low-cement castables with molten Al-alloy
BR112020015497B1 (pt) Composição refratária, método de produção de um revestimento, revestimento de trabalho e recipiente metalúrgico
BRPI0716400B1 (pt) Produto refratário queimado
BR112018067830B1 (pt) Dispositivo de desfosforação e processo para a fabricação de um revestimento de um dispositivo
RU2559964C1 (ru) Слюдокристаллический материал на основе фторфлогопита и способ его производства
AU742020B2 (en) Bottom lining for electrolytic cells and process for its manufacture
RU2410349C1 (ru) Способ получения плавленолитого материала комсилит стс для футеровки тепловых агрегатов цветной металлургии
ES2802424T3 (es) Placa refractaria para un cierre de deslizamiento, uso de una materia prima fundida como material en una placa de este tipo, así como un recipiente de fusión que presenta una placa de este tipo
ES2899921T3 (es) Mezcla refractaria, un procedimiento para la fabricación de un producto cerámico refractario no moldeado a partir de la mezcla así como un producto cerámico refractario no moldeado obtenido mediante el procedimiento
Aigbodion et al. Production of alumino-silicate clay-bonded bagasse ash composite crucible by slip casting
RU2412133C1 (ru) Шихта для изготовления огнеупорных изделий
Angelkort et al. The in-situ spinel formation in a magnesia alumina castable and the effect of selected additives on the properties of the castable
JPH10101441A (ja) 流し込み耐火物用組成物及びそれを使用した炉壁の形成方法
Nevřivová The Impact of In Situ-Formed Spinel on the Porosity of No-Cement Refractory Castables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014795844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014795844

Country of ref document: EP