WO2015058671A1 - 一种分隔板塔 - Google Patents

一种分隔板塔 Download PDF

Info

Publication number
WO2015058671A1
WO2015058671A1 PCT/CN2014/089039 CN2014089039W WO2015058671A1 WO 2015058671 A1 WO2015058671 A1 WO 2015058671A1 CN 2014089039 W CN2014089039 W CN 2014089039W WO 2015058671 A1 WO2015058671 A1 WO 2015058671A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
tower
shaft
partition plate
dividing
Prior art date
Application number
PCT/CN2014/089039
Other languages
English (en)
French (fr)
Inventor
高景山
杨秀娜
薄德臣
张胜中
廖昌建
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司抚顺石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020167013561A priority Critical patent/KR102228895B1/ko
Priority to US15/031,377 priority patent/US10005002B2/en
Priority to EP14855473.6A priority patent/EP3061507B1/en
Priority to JP2016526204A priority patent/JP6517794B2/ja
Publication of WO2015058671A1 publication Critical patent/WO2015058671A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/008Liquid distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30

Definitions

  • the invention relates to the field of chemical plants, and in particular to a novel partition plate tower.
  • Distillation technology is the most widely used unit operation in the chemical industry. Although it has many advantages, it is also a part of energy consumption and investment in industrial processes. In the chemical industry, its energy consumption accounts for the total energy consumption of the whole process. more than half.
  • Thermocouple distillation is a complex distillation method proposed in the 1940s and 1950s. It can reduce the irreversible energy loss in the process and reduce the energy consumption of the process. The theory and examples prove that the thermal coupling distillation tower can reduce the energy consumption by an average of about 30% compared with the conventional rectification scheme.
  • Thermocouple distillation generally refers to full thermocouple distillation.
  • thermocouple rectification column is divided into a Petlyuk rectification column and a vertical separation plate rectification column. Both are thermodynamically equivalent, but vertical divider distillation columns can further reduce equipment investment. However, since the separator distillation column integrates the pre-separation column and the main column into one column, the separator distillation column is regarded as a special case of the Petlyuk column.
  • Vertical partition plate rectification column means that a vertical partition is arranged inside the rectification column, and the rectification column is divided into a top section of the column, a bottom section of the column, and a feed section and a middle side line product production section separated by the partition plate.
  • Four main parts. Compared with the traditional two conventional tower sequence processes, it can save 30-60% energy, save equipment investment by about 30%, and increase operating capacity.
  • the dividing wall tower has the above-mentioned significant advantages, it has been going through a long period of time from the concept of the dividing slab tower in the 1930s to its successful industrial application, mainly due to the lack of reliable design methods and feasible Operation and control schemes have affected its wide range of applications.
  • the liquid reflux used in U.S. Patent No. 4,230,533 is powered by a liquid level difference, which is regulated by a flow meter; the bottom gas is bypassed to achieve distribution adjustment, and there is no correlation between liquid reflux distribution and gas distribution.
  • the dividing wall column of U.S. Patent No. 5,575,933 is to extend the separator to the top or bottom of the dividing wall column and then separately reflux through a condenser or reboil.
  • U.S. Patent No. 7,267,746 describes a method of controlling a dividing tray column by separately adding streams containing different components to different portions of the column to form liquid reflux control and adjusting the temperature at the top of the column. Adjust the flow of the incoming tower.
  • the reflux liquid at the top of the column and the rising gas at the bottom of the column cannot be independently controlled.
  • the object of the present invention is to overcome the shortcomings of the prior vertical separation plate column in the separation process of separating multi-components, that the overhead reflux liquid and the bottom rising gas cannot be independently controlled, and a novel separation plate tower is provided.
  • the present invention relates to a partition plate tower including a partition plate disposed axially along the partition plate tower, and a first portion along a radial direction of the partition plate tower is disposed below the partition plate a shaft and a first splitter plate fixedly coupled to the first shaft, the first splitter plate pivoting about the first shaft to control flow from the bottom of the first splitter plate at the partition plate The allocation in the space on both sides.
  • the first shaft is capable of driving the rotation of the first splitter plate.
  • the first diverter plate is disposed such that the first diverter plate is first in a space capable of blocking a flow from the bottom of the first diverter plate into a side of the partition plate. A position and a second position capable of blocking flow from the bottom of the first manifold into the other side of the divider.
  • the rotation angle of the first splitter plate is 90° to -90°, preferably 80° to -80° (based on the axis of the partition plate tower).
  • the dividing plate and the first shaft are on the same axial plane of the dividing plate column. That is, on the plane in which the central axis of the dividing plate tower is located.
  • the partition plate tower has a circular cross section
  • the first splitter plate has a circular crown shape.
  • the straight side of the first splitter plate is parallel to the partition plate, and the length of the straight side is the same as the inner diameter of the tower body, and the distance between the vertex edge of the first splitter plate and the midpoint of the straight edge of the splitter plate is 1/ 8D to 1/2D, preferably 1/3D to 1/2D (D is the inner diameter of the column).
  • a cross-sectional area of the space on both sides of the partition plate is the same, and a circular chord length of the first splitter plate is the same as an inner diameter of the partition plate tower, the first The distance from the top of the crown of a splitter to the chord is less than the distance from the center of the dividing tower to the inner wall of the dividing tower.
  • the first splitter plate is fixedly coupled to the first shaft, and the first shaft is rotatable and rotates the first splitter plate under the rotation of the first shaft;
  • the first shaft and the partition plate are connected by a baffle, the first shaft, the baffle and the partition plate are in the same plane; and one end of the first shaft is carried on the inner wall of the tower, and the other end Connected to the rotation controller through the tower body.
  • the first splitter plate is fixedly coupled to the first shaft, and the first shaft is rotatable and rotates the first splitter plate under the rotation of the first shaft.
  • the first shaft is placed at the bottom of the partition plate and achieves seamless rolling contact with the top of the partition plate, and one end of the first shaft is carried on the inner wall of the tower, and the other end is worn.
  • the tower body is connected to the rotation controller.
  • the partition plate tower may include a tower body and a partition plate, and the partition plate divides the tower body into a tower top section, a tower bottom section, a feeding section and a middle side line product.
  • the dividing plate tower further comprises a first splitter plate and a rotating shaft for gas splitting, the first splitter plate has a round crown shape, and the straight edge of the first splitter plate and the rotating shaft are fixedly connected And can be rotated by the rotating shaft in the bottom section of the tower, the rotating shaft is placed at the bottom of the partition plate, and seamlessly rolling contact with the bottom of the partition plate, one end of the rotating shaft is carried on the inner wall of the tower, and the other end is worn.
  • the tower body is connected to the rotation controller.
  • the partition plate is vertically placed along the center line of the tower body, and the center of the partition plate is consistent with the center of the tower body; the length of the partition plate is 0.3H-0.9H, preferably 0.4H-0.8H (H is tower height)
  • the rotation controller can be electrically or pneumatically controlled, and can realize continuous rotation adjustment with an adjustment precision of 0.3° to 0.5°.
  • the partition plate tower further includes one or more baffles disposed on an inner wall of the partitioning tower below the partitioning plate and a space above the first shaft board.
  • the partition tower further includes one or more baffles disposed on an inner wall of the partition tower adjacent to the bottom end of the partition plate in a space on both sides of the partition plate board.
  • the baffle has a circular crown shape and is based on a circumferential plane of the partition plate tower, and the baffle has an inclination angle of 5°. ⁇ 20°.
  • the baffles are symmetrically disposed with the plane on which the partition plates are located symmetrically.
  • the vertical distance between the apex of the curved edge of the baffle and the bottom end of the partition plate is 50 mm to 400 mm.
  • the partitioning tower further includes a speed measuring probe respectively mounted on an inner wall of the dividing plate tower on both sides of the gas distributing plate, and below the baffle plate and Within the space above an axis.
  • the rotation controller can be electrically or pneumatically controlled, and can realize continuous rotation adjustment with an adjustment precision of 0.3° to 0.5°.
  • the baffle has a circular crown shape, and the partition plate is symmetrically placed symmetrically on both sides of the bottom section of the tower, and the inclination angle is 5°-20°, preferably 5 ° ⁇ 15° (based on the horizontal plane), the curved edge of the baffle is welded seamlessly with the inner wall of the tower.
  • the vertical distance between the vertex of the curved edge of the baffle and the bottom end of the partition plate is 50 mm to 400 mm, preferably 80 mm to 300 mm, and the straight side of the baffle is parallel to the bottom edge of the partition plate, and the curved edge of the baffle is The distance between the midpoints of the straight sides of the baffles is 1/8D to 1/2D, preferably 1/4D to 3/8D (D is the inner diameter of the tower).
  • the velocity probes of the flow rate detector are respectively installed in two pure gas phase fluid spaces formed on both sides of the gas manifold, and the speed probe Insert horizontally into the partition tower,
  • the length of the speed measuring probe inside the tower body is 50 mm to 300 mm, preferably 80 mm to 200 mm, and the vertical distance of the speed measuring probe from the baffle plate is 100 mm to 600 mm, preferably 150 mm to 500 mm.
  • a second shaft along a radial direction of the partition plate tower and a second split plate fixedly coupled to the second shaft at one end are disposed above the partition plate.
  • the second diverter plate pivots about the second axis to control the distribution of the stream from above the second diverter plate in the space on either side of the divider plate.
  • the second shaft is capable of driving the rotation of the second splitter plate.
  • the second diverter plate is disposed such that the second diverter plate is in a third position capable of blocking the flow from the second diverter plate into the space on the side of the partition plate and It is possible to block rotation between the fourth position from the other side space of the partition plate from the stream above the second splitter plate.
  • the rotation angle of the second splitter plate is 90° to -90°, preferably 80° to -80° (based on the axis of the partition plate tower).
  • the dividing plate and the second shaft are on the same axial plane of the dividing plate column. That is, on the plane in which the central axis of the dividing plate tower is located.
  • the partition plate tower has a circular cross section and the second splitter plate has a circular crown shape.
  • the straight side of the second splitter plate is parallel to the partition plate, the length of the straight side is the same as the inner diameter of the tower body, and the distance between the vertex edge of the second splitter plate and the midpoint of the straight side of the splitter plate is 1/ 8D to 1/2D, preferably 1/4D to 1/2D (D is the inner diameter of the column).
  • the cross-sectional area of the space on both sides of the partition plate is the same, and the chord length of the second shunt plate is the same as the inner diameter of the partition plate tower, the The distance between the crown top of the splitter plate and the crown chord is less than the distance from the center of the divider tower to the inner wall of the divider tower.
  • the second splitter plate is fixedly coupled to the second shaft, and the second shaft is rotatable and rotates the second splitter plate under the rotation of the second shaft.
  • the second shaft is placed on top of the partition plate and achieves seamless rolling contact with the top of the partition plate, and one end of the second shaft is carried on the inner wall of the tower, and the other end is connected to the rotation controller through the tower body.
  • the partitioning tower may include a tower body and a dividing board, and the dividing board divides the tower body into a tower top section, a tower bottom section, a feeding section, and a middle side line product production section.
  • a partitioning tower further comprising a second splitter plate and a rotating shaft for liquid splitting, the second splitter plate having a circular crown shape, the straight side of the second splitter plate and the rotating shaft being fixedly connected and capable of Rotating at the top of the dividing plate with the rotating shaft, the rotating shaft is placed on the top of the dividing plate and seamlessly rolling contact with the top of the dividing plate, one end of the rotating shaft is carried on the inner wall of the tower, and the other end is passed through the tower
  • the body is connected to the rotation controller.
  • the partition plate is vertically placed along the center line of the tower body, and the center of the partition plate is consistent with the center of the tower body; the length of the partition plate is 0.3H-0.9H, preferably 0.4H-0.8H (H is tower height) .
  • the rotation controller can be electric or pneumatic Dynamic control can achieve continuous rotation adjustment with an adjustment accuracy of 0.3° to 0.5°.
  • the first splitter plate for gas shunting works by first detecting the gas flow rate on both sides of the splitter plate by the flow rate detector, and transmitting the measured flow rate signal to the rotation controller.
  • the rotation controller calculates the gas distribution ratio on both sides of the partition plate according to the set calculation program, compares it with the set gas distribution ratio, performs logic analysis according to the difference between the two, and makes an adjustment command.
  • the rotation axis is adjusted by the rotation controller, and thereby the gas manifold is rotated to the desired position.
  • the working process of the second splitter plate for liquid shunting is: the rotation controller according to the requirements of the process operation, the liquid distribution ratio on both sides of the partition plate in the separator tower, through the internal
  • the defined calculation program analyzes and calculates the rotation angle of the liquid manifold to be adjusted to achieve the given liquid distribution ratio, and issues an execution command, and the rotation controller adjusts the rotation axis, thereby adjusting the liquid manifold to rotate to Just where you need it.
  • the operation of the separator column of the present invention is as follows: the stream to be separated is fed to the separator column, firstly subjected to flash separation, and the flashed gas phase stream is along The column rises and is separated from the liquid refluxing from the top of the column; the liquid phase stream flashed at the feed plate is down the column and is separated from the gas rising from the bottom of the column by countercurrent contact.
  • the gas rising from both sides of the partition plate is mixed and then taken out of the tower through the overhead pipe, and after being condensed by the overhead condenser, a part is taken as the top product, and a part is returned to the tower as the top reflux.
  • a side line discharge is provided at a suitable position on the side of the side line of the dividing tray tower for withdrawing the side line product.
  • the liquid flowing back from both sides of the partition plate passes through the baffles on both sides of the bottom of the partition plate, the liquid collects toward the center of the tower body, and in the area at the bottom of the baffle plate, two pure sides are formed on both sides of the baffle plate.
  • a gas phase fluid space in which two gas flow rate detectors are disposed for measuring a gas flow rate rising from the column kettle, and a detection signal of the gas flow rate detector is transmitted to the gas distribution control system, as the first of the present invention
  • the shunt plate is subjected to logic analysis by the gas distribution control system, and then a control command is executed and executed.
  • the gas rising from the tower is distributed by the gas distribution control system according to a certain distribution ratio, and then rises to both sides of the partition plate, and is in contact with the liquid returning from both sides of the split plate at the top of the tower.
  • the tower material is withdrawn through the bottom of the column as a bottom product.
  • the first splitter plate and the second splitter plate can be simultaneously operated while simultaneously performing flow from below the partition plate and from above the partition plate The diversion of logistics.
  • a novel separator tray of the present invention has the following advantages:
  • the method provided by the present invention integrates the gas phase distribution and detection work inside the column into the interior of the partition plate tower.
  • the simplification of the external ancillary structure of the tower body simplifies the design of the tower and reduces equipment investment;
  • the method provided by the invention solves the problem that the gas phase flow cannot be separately detected in the gas-liquid two-phase environment inside the tower, and realizes the detection of the gas phase flow rate in the case where the gas-liquid two phases coexist;
  • the partition plate tower provided by the invention can realize independent adjustment control of gas phase distribution and liquid phase distribution on both sides of the partition plate in the column, and can accurately realize gas phase distribution and liquid phase distribution on both sides of the partition plate. control;
  • the control method provided by the present invention is simple in operation and easy to adjust.
  • FIG. 1 is a schematic view showing a specific structure of a novel partition plate tower of the present invention
  • Figure 2 is a side view of the dividing tray tower
  • Figure 3 is a diagram of a liquid distribution control system
  • Figure 4 is a liquid splitter diagram
  • Figure 5 is a diagram of a gas distribution control system
  • Figure 6 is a gas splitter diagram
  • Figure 7 is a baffle diagram.
  • 10-partition plate tower 11-partition plate; 12-liquid distributor; 13-second shaft; 14-gas distributor; 15-liquid distributor; 16-tower condenser; 17-tower buffer tank 18-return control valve; 19-top reflux pump; 20-liquid splitter (second splitter); 21-baffle; 22-first shaft; 23-gas splitter (first splitter); 24-flow rate detector; 25-side line production pump; 26-flow control valve; 27-flow meter; 28- bottom production pump; 29-level adjustment valve; 30-column reboiler; Distributor; 32-flow rate detector; 33-baffle; 34-gas distributor; 35, 36-rotation controller;
  • the partition plate tower includes a partition plate 11, a liquid distributor 12, a liquid distributor 15, a gas distributor 14, a liquid distributor 31, a gas distributor 34, and a liquid splitter plate.
  • the above structure mainly divides the partition plate tower into I zone, II zone, III zone and VI zone. Its The space between the middle gas distributor 14 and the liquid distributor 15 is the I zone, and the space separating the partition plates 11 is the II zone (feed section) and the III zone (measurement section), liquid Below the distributor 31 is an IV zone.
  • the partition plate is vertically disposed along the center line of the tower body, and the center of the partition plate 11 is coincident with the center of the tower body; the length of the partition plate 11 is 0.3H-0.9H, preferably 0.4H-0.8H (H is the tower high).
  • the liquid splitter plate 20 has a rotation angle of 90 to -90, preferably 80 to -80 (based on the axis of the separator column).
  • the gas splitter plate 23 has a rotation angle of 90 to -90, preferably 80 to -80 (based on the axis of the separator column).
  • the straight side of the liquid splitter plate 20 is fixedly connected to the second shaft 13 and can be rotated at the top of the tower by the rotating shaft.
  • the rotating shaft is placed on the top of the partition plate and is realized with the top of the partition plate 11
  • the seam is in rolling contact, one end of the rotating shaft is carried on the inner wall of the tower, and the other end is connected to the rotation controller 35 through the tower body.
  • the partition plate 11 is vertically placed along the center line of the tower body, and the center of the partition plate is coincident with the center of the tower body; the length of the partition plate 11 is 0.3H-0.9H, preferably 0.4H-0.8H (H is the tower high).
  • the rotation controller 35 can be electrically or pneumatically controlled to achieve continuous rotation adjustment with an adjustment accuracy of 0.3° to 0.5°.
  • the straight side of the gas splitter plate 23 is fixedly coupled to the first shaft 22 and is rotatable in the bottom portion of the tower by the rotating shaft.
  • the rotating shaft is placed at the bottom of the partitioning plate 11 and is realized with the bottom of the partitioning plate 11
  • the rolling contact is seamless, one end of the rotating shaft is carried on the inner wall of the tower, and the other end is connected to the rotation controller 36 through the tower body.
  • the partitioning plate 11 is vertically disposed along the center line of the tower body, and the center of the partitioning plate 11 is coincident with the center of the tower body; the length of the partitioning plate 11 is 0.3H to 0.9H, preferably 0.4H to 0.8H (H is
  • the rotation controller 36 can be electrically or pneumatically controlled to achieve continuous rotation adjustment with an adjustment accuracy of 0.3° to 0.5°.
  • the stream to be separated 1 entering the separator column contains three or more components, and enters the separator column 10 under certain conditions, and the feed stream in the zone II is first subjected to flash separation.
  • the separated gas phase rises in the II region and the gas rising from the III region merges in the upper portion of the liquid splitter plate 20, is uniformly distributed through the gas distributor 14, and then rises into the I region, and the gas rising in the I region is
  • the gas phase is taken out from the overhead pipe 2, condensed by the overhead condenser 16, and then passed through the pipe 3 into the top buffer tank 17, and the liquid in the top buffer tank 17 is passed from the overhead reflux pump.
  • a part of the product is taken as the top product via the pipe 5, and a part is returned as the top of the column, returned to the column via the pipe 4 under the adjustment of the return control valve 18, and is uniformly distributed by the liquid distributor 15 as the I zone. Reflux.
  • the liquid refluxed from the I zone is diverted by the liquid branching control system, it flows into both sides of the top of the partitioning plate 11 according to the distribution ratio prescribed by the control system, and the liquid which flows back from the top of the partitioning plate 11 passes through the liquid distributor 12 After a uniform distribution, contact separation with the ascending gas phase stream is carried out.
  • the side line product On the side of the side line of the dividing tray tower, the side line product is withdrawn by the side line extraction pump 25 via the line 6, and is adjusted by the flow regulating valve 26, metered by the flow meter 27, and sent out via the conduit 7 at a prescribed flow rate.
  • the liquid recirculated from both sides of the partitioning plate 11 is collected in the center of the tower body after the baffles 21 and 33 symmetrically distributed on both sides of the bottom of the partitioning plate 11, and the collected liquid is uniformly distributed through the liquid distributor 31.
  • two pure gas phase fluid spaces are formed on both sides of the manifold, and two gas flow rate detectors 24 and 32 are disposed in the gas phase fluid space for measurement from
  • the rising gas flow rate of the tower kettle the detection signal of the gas flow rate detector is transmitted to the rotation controller 36, and after the logic analysis by the rotation controller, a control command is executed and executed.
  • the gas rising from the tower is distributed by the gas distribution control system according to a predetermined distribution ratio, and then rises to both sides of the partition plate 11, respectively, after being uniformly distributed by the gas distributor 34, and both sides of the partition plate from the top of the tower
  • the refluxed liquid is subjected to contact separation.
  • a portion of the bottoms of the column is heated by the reboiler 30 and returned to the column, and the other portion is withdrawn from the bottom pump 28 via the pipe 8, and is extracted as a bottom product via the pipe 9 under the adjustment of the liquid level regulating valve 29.
  • the liquid distribution on both sides of the top of the partitioning plate 11 is adjusted by the liquid flow control system at the top of the partitioning plate.
  • the internal definition calculation program is used to analyze and calculate the required adjustment in order to achieve a given liquid distribution ratio.
  • the rotation angle of the liquid manifold 20 is issued and an execution command is issued, and the second shaft 13 is adjusted by the rotation controller, and thereby the liquid manifold is rotated to a desired position.
  • the gas distribution on both sides of the bottom of the partition is adjusted by the gas distribution control system at the bottom of the partition.
  • the flow velocity detectors 24 and 32 respectively detect the gas flow rates on both sides of the splitter plate, and transmit the measured flow rate signals to the rotation controller 36.
  • the rotation controller calculates the sides of the partition plate according to the set calculation program.
  • the gas distribution ratio is compared with the set gas distribution ratio, the logic analysis is performed according to the difference between the two, and an adjustment command is made, and the first shaft 22 is adjusted by the rotation controller, thereby adjusting the gas shunt
  • the plate 23 is rotated to the desired position.
  • the partition plate tower has a diameter of 0.4 m
  • the liquid splitter plate has a semicircular shape, a radius of 0.2 m
  • the liquid splitter plate has an area of 0.063 m 2
  • the gas splitter plate has an arc.
  • the distance between the apex of the shape and the midpoint of the straight side of the gas manifold is 0.14 m, the area of the gas manifold is 0.04 m 2 ; the inclination of the baffle is 10 °, and the vertical distance between the curved edge of the baffle and the bottom end of the partition is 0.1m, the distance between the curved edge of the baffle and the midpoint of the straight edge of the baffle is 0.1m; the velocity probes of the flow detector are installed in two pure gas phase fluid spaces formed on both sides of the gas manifold, and the speed is measured.
  • the probe is horizontally inserted into the partition tower, the length of the speed measuring probe inside the tower body is 0.05 m, and the vertical distance of the speed measuring probe from the baffle is 0.2 m.
  • Feed composition [C A , C B , C C ] [0.3,0.3,0.4] Total reflux ratio 3 Tower top temperature, °C 51 Tower kettle temperature, °C 101 Liquid distribution ratio (II zone / IV zone) 0.4:0.6 Gas distribution ratio (II zone / IV zone) 0.5:0.5
  • Liquid splitter 20 rotation angle (deflection to zone II) 11.5°
  • the angle of rotation of the gas splitter plate 23 (deflection to the IV zone) 8.5°
  • Liquid splitter 20 rotation angle (deflection to zone II) 11.5° Rotating angle of gas splitter plate 23 (deflection to zone II) 7° Gas flow rate (zone II) 0.63m/s Gas flow rate (zone IV) 0.77m/s
  • the IBP and FBP in the table indicate that the composition (D86) is 0% and 100%, respectively (the same below).
  • Naphtha was used as the separation system, and the properties of the oil were as shown in Table 11.
  • Example 4 The material of Example 4 was separated by the method described in U.S. Patent 4,230,533. The operating parameters and separation effects are shown in Table 15, Table 16:

Abstract

一种分隔板塔(10)包括:沿分隔板塔(10)轴向设置的分隔板(11),在分隔板(11)下方设置沿分隔板塔(10)的径向方向的第一轴(22)以及一端固定连接于第一轴(22)的第一分流板(23),第一分流板(23)围绕第一轴(22)进行枢轴转动,以控制来自第一分流板(23)下方的物流在分隔板(11)两侧的空间的分配;在分隔板(11)上方设置沿分隔板塔(10)的径向方向的第二轴(13)以及一端固定连接于第二轴(13)的第二分流板(20),第二分流板(20)围绕第二轴(13)进行枢轴转动,以控制来自第二分流板(20)上方的物流在分隔板(11)两侧的空间的分配。

Description

一种分隔板塔 技术领域
本发明涉及化工装置领域,具体涉及一种新型分隔板塔。
背景技术
精馏技术是化工领域中应用最为广泛的单元操作,虽有许多优点,但同时也是工业过程中能耗和投资较高的部分,在化工等行业中,其能耗占全过程总能耗的一半以上。热耦精馏是20世纪40~50年代提出的一种复杂精馏方式,它可以降低过程中的不可逆有效能损失,从而降低过程的能耗。理论和实例证明,热耦精馏塔比常规精馏方案减少能耗平均可达30%左右。热耦精馏一般是指全热耦精馏。对于三组分混合物分离或分离混合物得三产物的精馏过程,热耦精馏塔分为Petlyuk精馏塔和立式分隔板精馏塔。二者在热力学上是等价的,但立式分隔板精馏塔可进一步减少设备投资。但由于分隔板精馏塔将预分离塔和主塔集成于一个塔壳内,因此,有人把分隔板精馏塔视为是Petlyuk塔的一个特例。立式分隔板精馏塔是指在精馏塔内部设置一垂直隔板,将精馏塔分割成塔顶段、塔底段以及由隔板分开的进料段和中间侧线产品采出段四个主要部分。与传统的两个常规塔序列流程相比,可节能30-60%,节省设备投资30%左右,并且操作容量增大。虽然分壁塔具有上述显著优点,但是,从二十世纪三十年代分隔板塔概念的提出到其成功工业化应用却经历了很长一段时间,这主要是由于缺少可靠的设计方法和可行的操作和控制方案,从而影响了它的广泛应用。
美国专利US4230533中使用的液体回流是以液位差为动力,通过流量计调节;塔底上升气体通过走旁路的方式来实现分配调节,并且液体回流分配与气体分配之间没有相互关联。美国专利USPA5755933中的分壁塔是将分隔板延伸到分壁塔的顶部或底部,然后通过冷凝器或再沸分别回流。美国专利US7267746中介绍了一种分隔板塔的控制方法,该方法是将含有不同组分的物流分别在塔的不同部位加入,以形成液体回流控制,并以塔顶的温度为调节指标,对进塔的物流流量进行调整。但是上述技术中,均存在,塔顶回流液体与塔底上升气体不能实现独立控制的缺点。
发明内容
本发明的目的是克服现有立式分隔板塔在分离多组分的分离过程中,塔顶回流液体与塔底上升气体不能实现独立控制的缺点,提供一种新型分隔板塔。
本发明涉及一种分隔板塔,包括沿所述分隔板塔轴向设置的分隔板,且在所述分隔板下方设置有沿所述分隔板塔的径向方向的第一轴以及一端固定连接于所述第一轴的第一分流板,所述第一分流板围绕第一轴进行枢轴转动,以控制来自所述第一分流板下方的物流在所述分隔板两侧的空间中的分配。
在本发明的一个优选实施方式中,所述第一轴能够驱动第一分流板的转动。
在本发明的一个优选实施方式中,所述第一分流板设置为使得所述第一分流板在能够阻挡来自所述第一分流板下方的物流进入所述分隔板一侧空间的第一位置和能够阻挡来自所述第一分流板下方的物流进入所述分隔板另一侧空间的第二位置之间转动。具体可描述为所述第一分流板的转动角度为90°~-90°,优选为80°~-80°(以分隔板塔的轴线为基准)。
在本发明的一个优选实施方式中,所述分隔板和第一轴处于所述分隔板塔的同一个轴平面上。即,处于分隔板塔的中心轴线所处的平面上。
在本发明的一个优选实施方式中,所述分隔板塔的横截面为圆形,且所述第一分流板为圆冠形。具体可描述为,所述第一分流板的直边与分隔板平行,直边长度与塔体内径相同,第一分流板的弧形边顶点与分流板直边中点的距离为1/8D~1/2D,优选为1/3D~1/2D(D为塔内径)。
在本发明的一个优选实施方式中,所述分隔板两侧空间的横截面积相同,且所述第一分流板的圆冠弦长与所述分隔板塔的内径相同,所述第一分流板的圆冠顶部与弦的距离小于所述分隔板塔的中心至所述分隔板塔内壁的距离。
在本发明的一个优选实施方式中,所述第一分流板和与第一轴固定连接,且所述第一轴能够转动并在第一轴的转动的带动下转动所述第一分流板;所述第一轴和所述分隔板通过挡板连接,所述第一轴、挡板和所述分隔板处于同一平面;且所述第一轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器连接。
在本发明的一个优选实施方式中,所述第一分流板和与第一轴固定连接,且所述第一轴能够转动并在第一轴的转动的带动下转动所述第一分流板,所述第一轴在分隔板底部放置,并与分隔板顶部实现无缝滚动接触,且所述第一轴的一端承载于塔体内壁,另一端穿 过塔体与转动控制器连接。
在本发明的一个具体实施例中,所述分隔板塔可以包括塔体、分隔板,所述分隔板将塔体分成塔顶段、塔底段、进料段和中间侧线产品采出段四个部分,所述分隔板塔还包括用于气体分流的第一分流板和转动轴,所述第一分流板呈圆冠形,第一分流板的直边和转动轴固定连接并能够在转动轴的带动下在塔底段转动,所述转动轴在分隔板底部放置,并与分隔板底部实现无缝滚动接触,转动轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器连接。所述分隔板沿塔体中心线垂直放置,分隔板的中心与塔体的中心一致;分隔板的长度为0.3H~0.9H,优选为0.4H~0.8H(H为塔高)所述转动控制器可以采用电动或气动控制,可以实现连续转动调节,调节精度为0.3°~0.5°。
在本发明的一个优选实施方式中,所述分隔板塔还包括设置在所述分隔板下方和所述第一轴上方的空间的分隔板塔的内壁上的一个或多个折流板。
在本发明的一个优选实施方式中,所述分隔板塔还包括设置在所述分隔板两侧空间内且靠近分隔板底端的分隔板塔的内壁上的一个或多个折流板。
在本发明的一个优选实施方式中,其特征在于,所述折流板呈圆冠形,且以所述分隔板塔的周向平面为基准,所述折流板的倾斜角为5°~20°。
在本发明的一个优选实施方式中,以分隔板所在的面为对称面对称设置所述折流板。
在本发明的一个优选实施方式中,所述折流板弧形边顶点与分隔板底端的垂直距离为50mm~400mm。
在本发明的一个优选实施方式中,所述分隔板塔还包括测速探头,其分别安装在气体分流板两侧的分隔板塔的内壁上,且在所述折流板的下方和第一轴上方的空间内。
本发明一种新型分隔板塔中,所述转动控制器可以采用电动或气动控制,可以实现连续转动调节,调节精度为0.3°~0.5°。
在本发明的一个具体实施例中,所述折流板呈圆冠形,以分隔板为对称面对称倾斜放置在塔底段的两侧,倾角为5°~20°,优选为5°~15°(以水平面为基准),折流板弧形边同塔内壁无缝焊接为一体。折流板弧形边顶点与分隔板底端的垂直距离为50mm~400mm,优选为80mm~300mm,折流板的直边与分隔板的底边平行,折流板的弧形边顶点与折流板直边中点的距离为1/8D~1/2D,优选为1/4D~3/8D(D为塔内径)。在折流板的下方区域内,气体分流板的两侧形成两个纯气相流体的空间;流速检测仪的测速探头分别安装在气体分流板两侧形成的两个纯气相流体空间内,测速探头水平插入隔板塔内, 测速探头在塔体内部的长度为50mm~300mm,优选为80mm~200mm,测速探头距折流板的垂直距离为100mm~600mm,优选为150mm~500mm。
在本发明的一个优选实施方式中,在所述分隔板上方设置有沿所述分隔板塔的径向方向的第二轴以及一端固定连接于所述第二轴的第二分流板,所述第二分流板围绕第二轴进行枢轴转动,以控制来自所述第二分流板上方的物流在所述分隔板两侧的空间中的分配。
在本发明的一个优选实施方式中,所述第二轴能够驱动第二分流板的转动。
在本发明的一个优选实施方式中,所述第二分流板设置为使得所述第二分流板在能够阻挡来自所述第二分流板上方的物流进入分隔板一侧空间的第三位置和能够阻挡来自所述第二分流板上方的物流进入分隔板的另一侧空间的第四位置之间转动。具体可描述为所述第二分流板的转动角度为90°~-90°,优选为80°~-80°(以分隔板塔的轴线为基准)。
在本发明的一个优选实施方式中,所述分隔板和第二轴处于所述分隔板塔的同一轴平面上。即,处于分隔板塔的中心轴线所处的平面上。
在本发明的一个优选实施方式中,所述分隔板塔的横截面为圆形,且第二分流板为圆冠形。具体可描述为,所述第二分流板的直边与分隔板平行,直边长度与塔体内径相同,第二分流板的弧形边顶点与分流板直边中点的距离为1/8D~1/2D,优选为1/4D~1/2D(D为塔内径)。
在本发明的一个优选实施方式中,所述分隔板两侧空间的横截面积相同,且所述第二分流板的圆冠弦长与所述分隔板塔的内径相同,所述第二分流板的圆冠顶部与圆冠弦的距离小于所述分隔板塔的中心至所述分隔板塔内壁的距离。
在本发明的一个优选实施方式中,所述第二分流板和与第二轴固定连接,且所述第二轴能够转动并在第二轴的转动的带动下转动所述第二分流板,所述第二轴在分隔板顶部放置,并与分隔板顶部实现无缝滚动接触,且所述第二轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器连接。
在一个具体的实施例中,所述分隔板塔可以包括塔体、分隔板,所述分隔板将塔体分成塔顶段、塔底段、进料段和中间侧线产品采出段四个部分,所述分隔板塔还包括用于液体分流的第二分流板和转动轴,所述第二分流板呈圆冠形,第二分流板的直边和转动轴固定连接并能够在转动轴的带动下在塔顶段转动,所述转动轴在分隔板顶部放置,并与分隔板顶部实现无缝滚动接触,转动轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器连接。所述分隔板沿塔体中心线垂直放置,分隔板的中心与塔体的中心一致;分隔板的长度为0.3H~0.9H,优选为0.4H~0.8H(H为塔高)。所述转动控制器可以采用电动或气 动控制,可以实现连续转动调节,调节精度为0.3°~0.5°。
在本发明的分隔板塔中,用于气体分流的第一分流板的工作过程为:首先流速检测仪检测分流板两侧的气体流速,并将测得的流速信号传送给转动控制器,转动控制器根据设定的计算程序计算得出分隔板两侧的气体分配比,并将之与设定的气体分配比进行比较,根据两者的差值,进行逻辑分析,并作出调节指令,由转动控制器调整转动轴,并由此调整气体分流板转动到所需的位置上即可。
本发明一种分隔板塔中,用于液体分流的第二分流板的工作过程为:转动控制器根据工艺操作所提出的隔板塔内分隔板两侧液体分配比的要求,经过内部定义的计算程序,分析计算出为了达到所给定的液体分配比所需调整的液体分流板的转动角度,并发出执行指令,由转动控制器调整转动轴,并由此调整液体分流板转动到所需的位置上即可。
在本发明的一个具体实施例中,本发明所述分隔板塔的操作过程如下:使待分离物流进料至所述分隔板塔,首先进行闪蒸分离,闪蒸出的气相物流沿塔上升,与从塔顶回流的液体进行接触分离;在进料板处闪蒸出的液相物流沿塔向下,与从塔底上升的气体进行逆流接触分离。从分隔板上部两侧上升的气体混合后经塔顶管道引出塔外,经塔顶冷凝器冷凝后,一部分作为塔顶产品采出,一部分作为塔顶回流返回塔内。返回塔内的回流液体经分隔板顶部的第二分流板,通过控制系统按照规定的分配比例进行分配后,分别流入分隔板顶部两侧,从分隔板顶部两侧回流的液体经过液体分布器进行均匀分布之后,与上升的气相物流进行接触分离。在分隔板塔的侧线采出侧的某一合适位置处设置侧线出料,用于抽出侧线产品。
另外,从分隔板两侧回流的液体在经分隔板底部两侧的折流板后,液体向塔体中心汇集,在折流板底部的区域内,分流板的两侧形成两个纯气相流体的空间,在该气相流体空间内设置两处气体流速检测仪,用于测量从塔釜上升的气体流速,气体流速检测仪的检测信号传输给气体分配控系统,如本发明的第一分流板,经气体分配控制系统进行逻辑分析后,做出控制指令并执行。从塔釜上升的气体经过气体分配控制系统按照一定的分配比例进行分配后,分别上升进入分隔板的两侧,与从塔顶部分割板两侧回流的液体进行接触分离。塔釜物料经由塔底抽出,作为塔底产品。
在同时包括上述第一分流板和第二分流板的分隔板塔中,上述第一分流板和第二分流板可同时工作,同时进行对来自分隔板下方的物流和来自分隔板上方的物流的分流。
具体地说,本发明一种新型分隔板塔具有如下优点:
(1)本发明所提供的方法将塔内部的气相分配与检测工作集成在分隔板塔的内部完 成,简化了塔体的外部附属结构,简化了塔的设计,降低了设备投资;
(2)本发明所提供的方法解决了在塔内部气液两相环境下无法单独检测气相流量的难题,实现了在气液两相共存的情况下对气相流速的检测;
(3)本发明所提供的分隔板塔可以使得塔内分隔板两侧的气相分配和液相分配实现独立调节控制,并可以对分隔板两侧的气相分配和液相分配实现精确控制;
(4)本发明提供的控制方法操作简单,便于调节。
具体实施方式
图1为本发明一种新型分隔板塔具体结构示意图;
图2为分隔板塔侧视图;
图3为液体分配控制系统图;
图4为液体分流板图;
图5为气体分配控制系统图;
图6为气体分流板图;
图7为折流板图。
附图标记:
10-分隔板塔;11-分隔板;12-液体分布器;13-第二轴;14-气体分布器;15-液体分布器;16-塔顶冷凝器;17-塔顶缓冲罐;18-回流控制阀;19-塔顶回流泵;20-液体分流板(第二分流板);21-折流板;22-第一轴;23-气体分流板(第一分流板);24-流速检测仪;25-侧线采出泵;26-流量调节阀;27-流量计;28-塔底采出泵;29-液位调节阀;30-塔釜再沸器;31-液体分布器;32-流速检测仪;33-折流板;34-气体分布器;35,36-转动控制器;
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
如图1-7所示,所述分隔板塔包括分隔板11、液体分布器12、液体分布器15、气体分布器14、液体分布器31、气体分布器34、液体分流板(第二分流板)20、气体分流板(第一分流板)23等。上述结构将所述分隔板塔主要分为I区、II区、III区和VI区。其 中气体分布器14和液体分布器15之间的空间为I区,分隔板11分隔开的两侧空间分别为II区(进料段)和III取(测线采出段),液体分布器31的下方为IV区。
所述分隔板沿塔体中心线垂直放置,分隔板11的中心与塔体的中心一致;分隔板11的长度为0.3H~0.9H,优选为0.4H~0.8H(H为塔高)。所述液体分流板20的转动角度为90°~-90°,优选为80°~-80°(以分隔板塔的轴线为基准)。所述气体分流板23的转动角度为90°~-90°,优选为80°~-80°(以分隔板塔的轴线为基准)。
所述液体分流板20的直边和第二轴13固定连接并能够在转动轴的带动下在塔顶段转动,所述转动轴在分隔板顶部放置,并与分隔板11顶部实现无缝滚动接触,转动轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器35连接。所述分隔板11沿塔体中心线垂直放置,分隔板的中心与塔体的中心一致;分隔板11的长度为0.3H~0.9H,优选为0.4H~0.8H(H为塔高)。所述转动控制器35可以采用电动或气动控制,可以实现连续转动调节,调节精度为0.3°~0.5°。
所述气体分流板23的直边和第一轴22固定连接并能够在转动轴的带动下在塔底段转动,所述转动轴在分隔板11底部放置,并与分隔板11底部实现无缝滚动接触,转动轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器36连接。所述分隔板11沿塔体中心线垂直放置,分隔板11的中心与塔体的中心一致;分隔板11的长度为0.3H~0.9H,优选为0.4H~0.8H(H为塔高)所述转动控制器36可以采用电动或气动控制,可以实现连续转动调节,调节精度为0.3°~0.5°。
本发明中进入分隔板塔的待分离物流1含有三种或三种以上的组分,在一定的条件下进入到分隔板塔10中,在II区内进料物流首先进行闪蒸分离,分离出的气相在II区内上升与从III区内上升的气体在液体分流板20的上部汇合,经气体分布器14分布均匀后上升进入到I区内,在I区内上升的气体与塔顶回流的液体逆流接触分离后,气相由塔顶管道2引出,经塔顶冷凝器16冷凝后,经由管道3进入塔顶缓冲罐17,塔顶缓冲罐17内的液体由塔顶回流泵19抽出后,一部分作为塔顶产品经由管道5采出,一部分作为塔顶回流,在回流控制阀18的调节下经由管道4返回塔内,并经液体分布器15进行均布后作为I区的回流。从I区内回流的液体经液体分流控制系统分流后,按照控制系统规定的分配比例,分别流入分隔板11顶部的两侧,从分隔板11顶部两侧回流的液体经过液体分布器12进行均匀分布之后,与上升的气相物流进行接触分离。在分隔板塔的侧线采出侧,侧线产品经管道6由侧线采出泵25抽出,并在流量调节阀26调节下,经流量计27计量后,按照规定的流量经由管道7送出装置。从分隔板11两侧回流的液体在经分隔板11底部两侧对称分布的折流板21和33后,液体向塔体中心汇集,汇集后的液体经液体分布器31均布 后进入IV区,而在折流板底部的区域内,分流板的两侧形成两个纯气相流体的空间,在该气相流体空间内设置两处气体流速检测仪24和32,用于测量从塔釜上升的气体流速,气体流速检测仪的检测信号传输给转动控制器36,经转动控制器进行逻辑分析后,做出控制指令并执行。从塔釜上升的气体经过气体分配控制系统按照规定的分配比例进行分配后,分别上升进入分隔板11的两侧,经气体分布器34进行均布后,与从塔顶部分隔板两侧回流的液体进行接触分离。塔釜物料一部分经由再沸器30加热后返回塔内,另一部分经管道8,由塔底泵28抽出,在液位调节阀29的调节下,经由管道9抽出作为塔底产品。
在本发明中,分隔板11顶部两侧的液体分配比由分隔板顶部的液体分流控制系统来进行调整。首先由转动控制器35根据工艺操作所提出的隔板塔内分隔板两侧液体分配比的要求,经过内部定义的计算程序,分析计算出为了达到所给定的液体分配比所需调整的液体分流板20的转动角度,并发出执行指令,由转动控制器调整第二轴13,并由此调整液体分流板转动到所需的位置上即可。
在本发明中,分隔板底部两侧的气体分配比由分隔板底部的气体分配控制系统来进行调整。首先由流速检测仪24和32分别检测出分流板两侧的气体流速,并将测得的流速信号传送给转动控制器36,转动控制器根据设定的计算程序计算得出分隔板两侧的气体分配比,并将之与设定的气体分配比进行比较,根据两者的差值,进行逻辑分析,并作出调节指令,由转动控制器调整第一轴22,并由此调整气体分流板23转动到所需的位置上即可。
下面通过实施例进一步说明本发明的方案和效果。在实施例中,如图1-7所示分隔板塔的直径为0.4m,液体分流板为半圆形,半径为0.2m,液体分流板的面积为0.063m2;气体分流板的弧形边顶点与气体分流板直边中点的距离为0.14m,气体分流板的面积为0.04m2;折流板倾角为10°,折流板弧形边与分隔板底端的垂直距离为0.1m,折流板的弧形边顶点与折流板直边中点的距离为0.1m;流速检测仪的测速探头分别安装在气体分流板两侧形成的两个纯气相流体空间内,测速探头水平插入隔板塔内,测速探头在塔体内部的长度为0.05m,测速探头距折流板的垂直距离为0.2m。
实施例1
以正戊烷(A)、正己烷(B)和正庚烷(C)混合物为分离物系,基本操作参数如表1所示:
表1基本操作参数
进料量 1000kg/h
进料组成[CA,CB,CC] [0.3,0.3,0.4]
总回流比 3
塔顶温度,℃ 51
塔釜温度,℃ 101
液体分配比(II区/IV区) 0.4∶0.6
气体分配比(II区/IV区) 0.5∶0.5
物流分配控制系统的状态参数如表2所示:
表2物流分配控制系统状态参数
液体分流板20转动角度(向II区偏转) 11.5°
气体分流板23转动角度(向IV区偏转) 8.5°
气体流速(II区) 0.75m/s
气体流速(IV区) 0.75m/s
分离效果如表3所示:
表3分离效果
Figure PCTCN2014089039-appb-000001
实施例2
以直馏汽油作为分离物系,油品性质如表4所示。
表4直馏汽油性质
组成 馏程(D86)/%
IBP 67.1
10% 71.6
30% 78.5
50% 89.9
70% 122.7
90% 165.6
FBP 193.0
基本操作参数如表5所示:
表5基本操作参数
进料量 1000kg/h
总回流比 2
塔顶温度,℃ 74
塔釜温度,℃ 161
液体分配比(II区/IV区) 0.4∶0.6
气体分配比(II区/IV区) 0.45∶0.55
物流分配控制系统的状态参数如表6所示:
表6物流分配控制系统状态参数
液体分流板20转动角度(向II区偏转) 11.5°
气体分流板23转动角度(向II区偏转)
气体流速(II区) 0.63m/s
气体流速(IV区) 0.77m/s
分离效果如表7所示:
表7分离效果
Figure PCTCN2014089039-appb-000002
表中IBP和FBP分别表示组成(D86)为0%和100%(下同)。
实施例3
以直馏汽油作为分离物系,油品性质如表4所示。
基本操作参数如表8所示:
表8基本操作参数
进料量 1000kg/h
总回流比 2.5
塔顶温度,℃ 73.1
塔釜温度,℃ 162
液体分配比(II区/IV区) 0.5∶0.5
气体分配比(II区/IV区) 0.48∶0.52
物流分配控制系统的状态参数如表9所示:
表9物流分配控制系统状态参数
不设置液体分流板  
气体分流板23转动角度(向II区偏转) 4.5°
气体流速(II区) 0.72m/s
气体流速(IV区) 0.78m/s
分离效果如表10所示:
表10分离效果
Figure PCTCN2014089039-appb-000003
实施例4
以石脑油作为分离物系,油品性质如表11所示。
表11石脑油性质
组成 馏程(D86)/%
IBP 55.3
10% 85.3
30% 101.0
50% 117.1
70% 132.9
90% 153.7
FBP 171.5
基本操作参数如表12所示:
表12基本操作参数
总回流比 15
塔顶温度,℃ 68.5
塔釜温度,℃ 208.4
液体分配比(II区/IV区) 0.83∶0.17
气体分配比(II区/IV区) 0.4∶0.6
物流分配控制系统的状态参数如表13所示:
表13物流分配控制系统状态参数
液体分流板20转动角度(向II区偏转) 55°
气体分流板23转动角度(向II区偏转) 11°
气体流速(II区) 0.44m/s
气体流速(IV区) 0.67m/s
分离效果如表14所示:
表14分离效果
Figure PCTCN2014089039-appb-000004
Figure PCTCN2014089039-appb-000005
比较例1
将实施例4的物料采用US4230533所述的方法进行分离,其操作参数和分离效果如表15,表16所示:
表15基本操作参数
总回流比 16
塔顶温度,℃ 69.0
塔釜温度,℃ 212.3
液体分配比(II区/IV区) 0.85∶0.15
气体分配比(II区/IV区) 0.4∶0.6
表16分离效果
Figure PCTCN2014089039-appb-000006

Claims (21)

  1. 一种分隔板塔,包括沿所述分隔板塔轴向设置的分隔板,且在所述分隔板下方设置有沿所述分隔板塔的径向方向的第一轴以及一端固定连接于所述第一轴的第一分流板,所述第一分流板围绕所述第一轴进行枢轴转动,以控制来自所述第一分流板下方的物流在所述分隔板两侧的空间中的分配。
  2. 根据权利要求1所述的分隔板塔,其特征在于,所述第一轴能驱动第一分流板的转动。
  3. 根据权利要求1或2所述的分隔板塔,其特征在于,所述第一分流板设置为使得所述第一分流板在能够阻挡来自分流板下方的物流进入所述分隔板一侧空间的第一位置和能够阻挡来自分流板下方的物流进入所述分隔板另一侧空间的第二位置之间转动。
  4. 根据权利要求2或3所述的分隔板塔,其特征在于,所述分隔板和第一轴均处于所述分隔板塔的同一个轴平面上。
  5. 根据权利要求4所述的分隔板塔,其特征在于,所述分隔板塔的横截面为圆形,且所述第一分流板为圆冠形。
  6. 根据权利要求4所述的分隔板塔,其特征在于,所述分隔板两侧空间的横截面积相同,且所述第一分流板的圆冠弦长与所述分隔板塔的内径相同,所述第一分流板的圆冠顶部与弦的距离小于所述分隔板塔的中心至所述分隔板塔内壁的距离。
  7. 根据权利要求1-6中任一项所述的分隔板塔,其特征在于,所述第一分流板与第一轴固定连接,且所述第一轴能够转动并在第一轴的转动的带动下转动所述第一分流板;所述第一轴和所述分隔板通过挡板连接,所述第一轴、挡板和所述分隔板处于同一平面;且所述第一轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器连接。
  8. 根据权利要求1-6中任一项所述的分隔板塔,其特征在于,所述第一分流板与第一轴固定连接,且所述第一轴能够转动并在第一轴的转动的带动下转动所述第一分流板,所述第一轴在分隔板底部放置,并与分隔板顶部实现无缝滚动接触,且所述第一轴的一端承载于塔体内壁,另一端穿过塔体与转动控制器连接。
  9. 根据权利要求7所述的分隔板塔,其特征在于,所述分隔板塔还包括设置在所述分隔板下方和所述第一轴上方的空间的分隔板塔的内壁上的一个或多个折流板。
  10. 根据权利要求8所述的分隔板塔,其特征在于,所述分隔板塔还包括设置在所述分隔板两侧空间内且靠近分隔板底端的分隔板塔的内壁上的一个或多个折流板。
  11. 根据权利要求9或10所述的分隔板塔,其特征在于,所述折流板呈圆冠形,且以所述分隔板塔的周向平面为基准,所述折流板的倾斜角为5°~20°。
  12. 根据权利要求9-11中任一项所述的分隔板塔,其特征在于,以分隔板所在的面为对称面对称设置所述折流板。
  13. 根据权利要求9所述的分隔板塔,其特征在于,所述折流板弧形边顶点与分隔板底端的垂直距离为50mm~400mm。
  14. 根据权利要求9-13中任一项所述的分隔板塔,其特征在于,所述分隔板塔还包括测速探头,其分别安装在气体分流板两侧的分隔板塔的内壁上,且在所述折流板的下方和第一轴上方的空间内。
  15. 根据权利要求1-14中任一项所述的分隔板塔,其特征在于,在所述分隔板上方设置有沿所述分隔板塔的径向方向的第二轴以及一端固定连接于所述第二轴的第二分流板,所述第二分流板围绕所述第二轴进行枢轴转动,以控制来自所述第二分流板上方的物流在所述分隔板两侧的空间中的分配。
  16. 根据权利要求15所述的分隔板塔,其特征在于,所述第二轴能驱动第二分流板的转动。
  17. 根据权利要求15或16所述的分隔板塔,其特征在于,所述第二分流板设置为使得所述第二分流板在能够阻挡来自所述第二分流板上方的物流进入分隔板一侧空间的第三位置和能够阻挡来自所述第二分流板上方的物流进入分隔板的另一侧空间的第四位置之间转动。
  18. 根据权利要求15-17中任一项所述的分隔板塔,其特征在于,所述分隔板和第二轴处于所述分隔板塔的同一个轴平面上面。
  19. 根据权利要求18所述的分隔板塔,其特征在于,所述分隔板塔的横截面为圆形,且第二分流板为圆冠形。
  20. 根据权利要求19所述的分隔板塔,其特征在于,所述分隔板两侧空间的横截面积相同,且所述第二分流板的圆冠弦长与所述分隔板塔的内径相同,所述第二分流板的圆冠顶部与圆冠弦的距离小于所述分隔板塔的中心至所述分隔板塔内壁的距离。
  21. 根据权利要求18-20中任一项所述的分隔板塔,其特征在于,所述第二分流板和与第二轴固定连接,且所述第二轴能够转动并在第二轴的转动的带动下转动所述第二分流板,所述第二轴在分隔板顶部放置,并与分隔板顶部实现无缝滚动接触,且所述第二轴的 一端承载于塔体内壁,另一端穿过塔体与转动控制器连接。
PCT/CN2014/089039 2013-10-23 2014-10-21 一种分隔板塔 WO2015058671A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167013561A KR102228895B1 (ko) 2013-10-23 2014-10-21 분리판형 탑체
US15/031,377 US10005002B2 (en) 2013-10-23 2014-10-21 Divided-wall column
EP14855473.6A EP3061507B1 (en) 2013-10-23 2014-10-21 Partitioned column
JP2016526204A JP6517794B2 (ja) 2013-10-23 2014-10-21 分離壁型蒸留塔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310499259.0 2013-10-23
CN201310499259 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015058671A1 true WO2015058671A1 (zh) 2015-04-30

Family

ID=52992272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089039 WO2015058671A1 (zh) 2013-10-23 2014-10-21 一种分隔板塔

Country Status (6)

Country Link
US (1) US10005002B2 (zh)
EP (1) EP3061507B1 (zh)
JP (1) JP6517794B2 (zh)
KR (1) KR102228895B1 (zh)
CN (1) CN104548641B (zh)
WO (1) WO2015058671A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669214B (zh) * 2015-11-05 2019-01-08 中国石油化工股份有限公司大连石油化工研究院 一种分壁精馏塔
CN107400536B (zh) * 2016-05-21 2019-03-19 中国石油化工股份有限公司 焦化吸收稳定工艺和系统
US10435362B2 (en) * 2016-12-21 2019-10-08 Uop Llc Process for oxidizing one or more thiol compounds and subsequent separation in a single vessel
EP3559160B1 (en) * 2016-12-21 2023-08-16 Uop Llc Process for oxidizing thiol compounds in a single vessel
CN111344050A (zh) * 2017-11-14 2020-06-26 科氏-格利奇有限合伙公司 具有分隔壁的传质组件和塔及所涉及的方法
CN111344049B (zh) * 2017-11-14 2022-07-29 科氏-格利奇有限合伙公司 具有分隔壁的传质组件和塔及涉及其的方法
CN110354522B (zh) * 2018-04-09 2021-07-23 中国石化扬子石油化工有限公司 一种隔板塔气体分配控制方法及控制系统
CN108744574A (zh) * 2018-06-12 2018-11-06 杨柳 一种废油裂解精馏气液分离装置
US11207611B1 (en) 2018-07-03 2021-12-28 Burns & Mcdonnell Engineering Company, Inc. Process for separating hydrocarbons in a liquid feed utilizing an externally heated reboiler connected to a divided wall column as the primary source of heat energy
CN110960881B (zh) * 2018-09-28 2022-09-27 中国石油化工股份有限公司 一种Kaibel分壁精馏塔的控制结构及控制方法
CN112221181A (zh) * 2019-07-15 2021-01-15 中国石油化工股份有限公司 有机溶剂回收处理装置与处理方法
WO2021113166A1 (en) * 2019-12-07 2021-06-10 Sulzer GTC Technology US Inc. Place and cost efficient plant and process for separating one or more purified hydrocarbon streams from crude hydrocarbon streams, such as for naphtha stabilization and lpg recovery
CN112933647B (zh) * 2019-12-10 2022-07-08 中国石油化工股份有限公司 气相分配控制装置以及应用该装置的隔板精馏塔
CN113117362B (zh) * 2019-12-31 2022-08-12 中国石油化工股份有限公司 液相分配控制装置及含有其的隔板精馏塔
CN111905397A (zh) * 2020-08-10 2020-11-10 张家港保税区慧鑫化工科技有限公司 一种分壁塔精馏系统及工艺
CN114392577A (zh) * 2022-01-18 2022-04-26 山东新和成维生素有限公司 一种液体分布器、精馏塔及维生素e或其中间体的精馏工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230533A (en) 1978-06-19 1980-10-28 Phillips Petroleum Company Fractionation method and apparatus
US5755933A (en) 1995-07-24 1998-05-26 The M. W. Kellogg Company Partitioned distillation column
JP2001137604A (ja) * 1999-11-12 2001-05-22 Shibata Kagaku Kk 結合型蒸留塔
US7267746B1 (en) 2001-02-26 2007-09-11 Uop Llc Dividing wall distillation column control apparatus
CN101347683A (zh) * 2008-08-27 2009-01-21 王芳 新型塔内回流调节装置
CN201324536Y (zh) * 2008-12-19 2009-10-14 上海洁申实业有限公司 蒸馏装置中的回流分配器
CN102872609A (zh) * 2011-07-11 2013-01-16 中国石油化工股份有限公司 一种分壁精馏塔

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048957A (en) * 1958-09-04 1962-08-14 Foster Wheeler Corp Apparatus for effecting counter-current contact between liquid and vapor streams
US3332469A (en) * 1966-09-13 1967-07-25 Rosenblad Corp Falling film type heat exchanger
US4476852A (en) * 1982-12-06 1984-10-16 Lee Jonathan P Add-on catalytic damper assembly
DE4418488A1 (de) * 1994-05-27 1995-11-30 Basf Ag Verfahren und Vorrichtung zur destillativen Trennung von Stoffgemischen
US6551465B1 (en) * 2001-04-23 2003-04-22 Uop Llc Dividing wall column control system
US6558515B1 (en) * 2001-04-23 2003-05-06 Uop Llc Dividing wall fractionation column control system and apparatus
US7981253B2 (en) * 2006-02-01 2011-07-19 Exxonmobil Research & Engineering Company Distillation tower baffle
JP5410044B2 (ja) * 2007-08-16 2014-02-05 日揮株式会社 接触塔及び処理方法
EP2397205A4 (en) * 2009-02-12 2014-02-05 Lg Chemical Ltd PARTITION-DISTILLATION COLUMN
US9612028B2 (en) * 2010-01-26 2017-04-04 Ctb, Inc. Air check valve system and method of mounting same
CN201832434U (zh) * 2010-10-15 2011-05-18 中国石油化工股份有限公司 一种新型分壁精馏塔
CN102631791B (zh) * 2012-03-31 2016-03-09 中国石油化工股份有限公司 一种分壁精馏塔的控制方法
CN203620278U (zh) * 2013-12-12 2014-06-04 河北工业大学 用于隔板塔中的气体调配装置
CN103691144B (zh) * 2013-12-12 2015-05-20 河北工业大学 用于隔板塔中的气体调配装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230533A (en) 1978-06-19 1980-10-28 Phillips Petroleum Company Fractionation method and apparatus
US5755933A (en) 1995-07-24 1998-05-26 The M. W. Kellogg Company Partitioned distillation column
JP2001137604A (ja) * 1999-11-12 2001-05-22 Shibata Kagaku Kk 結合型蒸留塔
US7267746B1 (en) 2001-02-26 2007-09-11 Uop Llc Dividing wall distillation column control apparatus
CN101347683A (zh) * 2008-08-27 2009-01-21 王芳 新型塔内回流调节装置
CN201324536Y (zh) * 2008-12-19 2009-10-14 上海洁申实业有限公司 蒸馏装置中的回流分配器
CN102872609A (zh) * 2011-07-11 2013-01-16 中国石油化工股份有限公司 一种分壁精馏塔

Also Published As

Publication number Publication date
US20160263492A1 (en) 2016-09-15
KR20160074005A (ko) 2016-06-27
JP2016533875A (ja) 2016-11-04
JP6517794B2 (ja) 2019-05-22
CN104548641B (zh) 2016-08-17
KR102228895B1 (ko) 2021-03-16
EP3061507A1 (en) 2016-08-31
US10005002B2 (en) 2018-06-26
EP3061507B1 (en) 2018-06-20
EP3061507A4 (en) 2017-05-31
CN104548641A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2015058671A1 (zh) 一种分隔板塔
CN106139627B (zh) 一种分隔板精馏塔
CN205145640U (zh) 用于分壁精馏塔的气体分配装置
CN103691144B (zh) 用于隔板塔中的气体调配装置
CN106669214B (zh) 一种分壁精馏塔
CN203620278U (zh) 用于隔板塔中的气体调配装置
ES2390200T3 (es) Operación de un procedimiento para la fabricación de polilefina en múltiples reactores
CN207822549U (zh) 分壁精馏塔
CN102872609B (zh) 一种分壁精馏塔
CN104075766A (zh) 管内相分隔式高含气率气液两相流体流量测量装置及方法
CN106823439B (zh) 一种隔壁塔气相分配比调节装置及控制方法
CN106147821B (zh) 一种石脑油抽提原料预处理方法
CN107837556B (zh) 分壁精馏塔的操作控制方法
CN112933647B (zh) 气相分配控制装置以及应用该装置的隔板精馏塔
CN107837552B (zh) 分壁精馏塔的操作及控制方法
CN105062575B (zh) 控制苯回收系统内不凝性气体连续稳定排放的工艺及装置
CN107400536B (zh) 焦化吸收稳定工艺和系统
CN105713643B (zh) 一种加氢裂化产品分离方法
CN107837553B (zh) 分壁塔的操作控制方法
CN112774238B (zh) 一种管壳式主动型压差调控隔壁塔系统
CN112512655B (zh) 具有蒸气分离的分隔壁塔
CN107837555B (zh) 分壁精馏塔的质量控制方法
US11786855B2 (en) Vapor-liquid contacting apparatus and process with downcomer at shell
CN204637627U (zh) 一种内切线进料的分馏塔
CN113117362B (zh) 液相分配控制装置及含有其的隔板精馏塔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15031377

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016526204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014855473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014855473

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167013561

Country of ref document: KR

Kind code of ref document: A