WO2015057016A2 - 양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자 및 이의 용도 - Google Patents

양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자 및 이의 용도 Download PDF

Info

Publication number
WO2015057016A2
WO2015057016A2 PCT/KR2014/009793 KR2014009793W WO2015057016A2 WO 2015057016 A2 WO2015057016 A2 WO 2015057016A2 KR 2014009793 W KR2014009793 W KR 2014009793W WO 2015057016 A2 WO2015057016 A2 WO 2015057016A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
peptide molecule
amino acid
peptide
amino acids
Prior art date
Application number
PCT/KR2014/009793
Other languages
English (en)
French (fr)
Other versions
WO2015057016A3 (ko
Inventor
채수영
최은정
이정민
김민우
김수진
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2015057016A2 publication Critical patent/WO2015057016A2/ko
Publication of WO2015057016A3 publication Critical patent/WO2015057016A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/85Fusion polypeptide containing an RNA binding domain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • Peptide molecules comprising cationic and hydrophobic amino acids and uses thereof
  • the present invention relates to temporal molecules comprising cationic and hydrophobic amino acids, nucleic acid delivery methods using the peptide molecules, and nucleic acid-peptide molecule complexes comprising the peptide molecules and nucleic acids.
  • Gene transfer is a technology of changing a cell's characteristics by introducing a nucleic acid material such as DNA or RNA into a cell using a carrier and then expressing the introduced gene or RNA interference.
  • a nucleic acid material such as DNA or RNA
  • RNA interference is also a technique for introducing or exogenous exogenous double-stranded RNA (dsRNA) into the cell to specifically destroy or block specific messenger RNA (mRNA) to reduce or inhibit gene expression (A. Fi re et al., Nature, 391, 806-11 (1998)).
  • RNA interference effect RNA interference effect
  • s iRNAs small interfering RNAs
  • miRNAs micro RNAs
  • s i RNA is known to have a variety of applications, such as drug screening, disease treatment because it shows a specific interference effect on the mRNA of a specific target.
  • nucleic acid materials such as DNA and R A
  • efficient and cell specific delivery methods remain a challenge to be solved in various clinical purposes.
  • various techniques have been attempted with lipid-based, cationic low molecular-based, cationic polymer-based techniques and various combinations thereof.
  • delivery technologies have a problem that it is difficult to obtain a desired gene transfer effect because of low transfer efficiency.
  • hepatic cell delivery is efficient (especially lipid-based) due to very high liver accumulation, but it is known to have difficulty in other specific cell specific delivery.
  • cationic transporters In the used transfer, there is a difficulty in efficient transfer because small negatives form very weak ion complexes depending on density (or number).
  • nucleic acid binding agent that can not only form more stable ion complexes with nucleic acids, but also improve intracellular delivery of the formed ion complexes.
  • one embodiment of the present invention provides a peptide molecule comprising a cationic amino acid and a hydrophobic amino acid.
  • nucleic acid-peptide molecule complex comprising the peptide molecule and a nucleic acid.
  • Another embodiment provides a pharmaceutical composition comprising the peptide molecule and / or the nucleic acid-peptide molecule complex.
  • nucleic acid delivery method comprising administering a nucleic acid-peptide molecule complex comprising the peptide molecule and a nucleic acid.
  • the present invention is a peptide capable of forming an ion complex with a nucleic acid material such as DNA or RNA, and at least one cationic amino acid selected from the group consisting of arginine, lysine, ornithine, histidine, and tryptophan, tyrosine, phenylalanine, and louis.
  • New nucleic acid binding peptides comprising at least one hydrophobic amino acid selected from the group consisting of scenes and the like and uses thereof.
  • one example relates to peptide molecules comprising cationic and hydrophobic amino acids.
  • the total number of "amino acids contained in the peptide molecule is 2 to 100, and particularly 10 to 60, can be specifically 15 to 50 than, 18 to 45, or 20 to 40 the order.
  • the cationic amino acid in the peptide molecule binds to the anion of the nucleic acid by the electrostatic attraction and serves to enable the formation of an ion complex with the nucleic acid.
  • the number of cationic amino acids in the peptide molecule may be 1 to 35, specifically 10 to 30, more specifically 15 to 25.
  • the cationic amino acid may be at least one selected from the group consisting of arginine lysine and histidine. When two or more cationic amino acids are included, each cationic amino acid may be the same or different from each other and may be independently selected from the group consisting of arginine, lysine and histidine.
  • the hydrophobic amino acid in the peptide molecule serves to enhance the stability of the subsequent complex with the nucleic acid in the aqueous solution, and also to enhance the intracellular delivery efficiency of the nucleic acid during nucleic acid delivery.
  • the hydrophobic amino acid may be one containing a banzen ring. If the content of hydrophobic amino acids in the peptide molecule exceeds 50% by weight, there is a possibility of precipitation.
  • the hydrophobic amino acid content in the peptide molecule may be 1 to 50% by weight, specifically 10 to 48% by weight, more specifically 15 to 45% by weight.
  • the hydrophobic amino acid may be at least one selected from the group consisting of tryptophan, tyrosine, phenylalanine, leucine, and the like, specifically, at least one selected from the group consisting of hydrophobic amino acids including a benzene ring, such as tryptophan ⁇ tyrosine, and phenylalanine.
  • each of the hydrophobic amino acids may be the same or different from each other, and may each independently be one or more selected from the group consisting of tryptophan, tyrosine, and phenylalanine.
  • the peptide molecule may be represented by Formula 1 below:
  • Z is a bivalent amino acid
  • X is a hydrophobic amino acid containing a benzene ring
  • n is an integer of 1 to 20, an integer of 2 to 10, or an integer of 3 to 8 as the number of units
  • p of pl to pn is the number of cationic amino acids included in the unit, and is an integer of 1 to 10, or 1 to 5
  • pn means the number of bivalent amino acids contained in the nth unit
  • q in ql to ⁇ is the number of hydrophobic amino acids including the benzene ring included in the unit, and is an integer of 1 to 10, or 1 to 5, and qn is the hydrophobic amino acid including the benzene ring included in the n-th unit. Number,
  • the pl to pn and ql to pn may be the same or different values for each unit
  • Total amino acid length is 2-100, 10-60, or 15-40,
  • Z's When two or more Z's are present, they may be the same or different amino acids,
  • the peptide molecule may be one or more selected from the group consisting of (ZZZX) n, (ZZZXX) n, (ZZZZX) n, and (ZZZZXX) n.
  • Z is at least one member selected from the group consisting of arginine, lysine and histidine
  • X is at least one member selected from the group consisting of tryptophan tyrosine, and phenylalanine
  • n is an integer of 1 to 20 as the repeating number of the unit , An integer of 2 to 10, or an integer of 3 to 8.
  • the peptide molecule is (RRRW) n, (RRRY) n, (RRRF) n, (RRRWW) n, (RRRYY) n, (RRFF) n, (R RRW) n, (RRRRY.) N, (R RF) n, (RRRRWW) n, (RRRRYY) n, and (RRRRFF) n may be one or more selected from the group consisting of (R: arginine, ⁇ . Tryptophan, Y: tyrosine, F: phenylalanine; n: 1 to An integer of 20, an integer of 2 to 10, or an integer of 3 to 8).
  • the peptides not only form ion complexes by cationic amino acid residues and anions of nucleic acids by electrostatic attraction, but also show that the hydrophobic amino acid residues in the formed ion complexes enhance the stability of the complex in aqueous solution. Indicates.
  • the intracellular delivery effect of the nucleic acid / binding peptide complex formed by the introduction of hydrophobic amino acids has the advantage that can finally improve the nucleic acid delivery efficiency.
  • the peptides can be used to effectively ionic complexes with nucleic acids, especially siRNAs with low molecular weight. It is expected that the formed ion complex may be useful as a new nucleic acid carrier that can overcome the limitations of existing carriers due to its excellent stability.
  • nucleic acid delivery composition comprising the peptide molecule.
  • the nucleic acid delivery composition may further include a nucleic acid ⁇ peptide molecule complex including a peptide molecule and a nucleic acid, further including a nucleic acid molecule to be delivered.
  • a nucleic acid including the peptide molecule and a nucleic acid is a nucleic acid including the peptide molecule and a nucleic acid.
  • the nucleic acid in the complex may be a structure in which the cationic amino acid in the peptide molecule is bound by electrostatic attraction.
  • the nucleic acid may be one or more selected from the group consisting of single- or double-stranded DNA, RNA, small interference RNA (siRNA), shRNA, micro RNA (miRNAs) and the like.
  • the nucleic acid may be in the form of a monomer (single strand) or dimer (double strand) of 5 to 50mer, 10 to 40mer, 15 to 30mer, or 15 to 25mer, but is not limited thereto.
  • the content of nucleic acid that can be delivered by the nucleic acid delivery composition, or the content of nucleic acid in the nucleic acid-peptide complex is 1 to 10, 2 to 8, 3 when expressed in molar ratio of peptide / s iRWA. To 7, or 4 to 6, for example about 5.
  • Another example provides a nucleic acid delivery method comprising administering the nucleic acid-peptide molecule complex to a patient.
  • Another example provides the use for nucleic acid delivery of said peptide molecule or nucleic acid-peptide molecule complex.
  • the nucleic acid delivery may be in the body of the patient.
  • the peptide molecule or nucleic acid-peptide molecule may be in a state separated from a living body or generated unnaturally.
  • the peptide molecule or nucleic acid-peptide molecule may be synthesized in vitro.
  • the patient may be a mammal, such as a human, a primate, such as a primate, a rat, a mouse, or a rodent, such as a rodent, or a (isolated) cell, tissue, or culture thereof derived from the animal, wherein the nucleic acid contained in the complex Animals in need of delivery Or a cell or tissue derived therefrom.
  • the nucleic acid delivery method may further comprise identifying a patient in need of delivery of the nucleic acid prior to the administering step.
  • the nucleic acid peptide peptide complex may be administered orally or parenterally to a patient in need of administration of the nucleic acid, or may be treated in the cell or tissue.
  • the nucleic acid-peptide molecule complex may further comprise a pharmaceutically acceptable carrier, which carrier is commonly used in the formulation of a drug comprising a nucleic acid, lactose, dextrose, sucrose, sorbbi, Starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyridone, cellulose, water, syrup, methyl cellulose, methyl hydroxybenzoate, propyl hydroxy It may be one or more selected from the group consisting of benzoate, talc, magnesium stearate, mineral oil, and the like, but is not limited thereto.
  • a pharmaceutically acceptable carrier which carrier is commonly used in the formulation of a drug comprising a nucleic acid, lactose, dextrose, sucrose, sorbbi, Starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyridone, cellulose,
  • the pharmaceutical composition may also further include one or more selected from the group consisting of diluents, excipients, lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, and the like, which are commonly used in the manufacture of pharmaceutical compositions.
  • Administration of the nucleic acid-peptide molecule complex may be via an oral or parenteral route.
  • parenteral administration it can be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection endothelial administration, topical administration, intranasal administration, pulmonary administration and rectal administration.
  • oral administration because proteins or peptides are digested, oral compositions should be formulated to coat the active agent or to protect it from degradation in the stomach.
  • the nucleic acid-peptide molecule complex may also be formulated in the form of solutions, suspension syrups or emulsions in oil or aqueous media, or in the form of axes, powders, powders, granules, tablets or capsules, and for the formulation of dispersants Or stabilizers may additionally be included.
  • nucleic acid delivery composition and nucleic acid-peptide molecule complex comprising the same is characterized in that the nanoparticles in the blood to maintain a stable uniform particles without aggregation (aggregat ion). Therefore, they can deliver nucleic acids efficiently in a highly stable form of circulation without being degraded and congested in the blood even after systemic administration such as intravenous injection.
  • the peptide molecule provided in the present invention has a very good ability to form a defined ionic complex with a nucleic acid material, and also has a high efficiency of transferring the formed complex into a cell, and thus can finally exhibit a very high intracellular gene transfer efficiency.
  • Useful as nucleic acid binding peptides. Therefore, the peptide molecule may be usefully used for the treatment of various diseases used by gene transfer in the future.
  • FIG. 1 is a diagram schematically showing the structure of a peptide molecule according to the present invention.
  • 2A to 2D are graphs showing electrophoresis results and quantification of ionic complex formation efficiency between peptide molecules and siRNAs.
  • 3A and 3B are graphs showing nanoparticle formation behavior of peptide molecules.
  • 4A and 4B are electrophoresis results and quantitative graphs showing s iRNA protective effects of peptide molecules.
  • 5A and 5B are graphs showing the results of electrophoresis and quantification of ionic complexes of peptide molecules with s iRNAs.
  • 6A to 6C are graphs showing the strength of ionic complexes of peptide molecules with s iRNA using heparin.
  • 7 and 8 are graphs showing the intracellular delivery efficiency of the ionic complex of the tryptophan containing peptide with the s iRNA.
  • Peptides with the following primary structures were prepared by solid-phase peptide synthesis using Fmoc-based chemistry (customized to Anygen).
  • the primary structure of the prepared peptide, the number of cationic amino acids and the ratio of hydrophobic amino acids added are as follows:
  • Example 2 Consideration of the formation of a silver complex using a bioconjugate gene carrier The ion complex formation behavior with siRNA using the peptide prepared in Example 1 was investigated by gel retardation assay.
  • the experiment was performed to obtain the ion complex formation and the optimal ion complex formation ratio information between the cation transporter and the gene.
  • the experimental process is as follows.
  • 9R dimer 9Rd
  • the ion complex was mixed with serum to observe the effect of inhibiting the degradation of nucleic acid by nuclease in serum by complex formation.
  • yangyieun through the serum stability test serum stability test
  • serum stability test serum stability test
  • the experimental process is as follows.
  • FIGS. 4A and 4B The obtained results are shown in FIGS. 4A and 4B.
  • Other R3F, R3L, and R3Y peptides showed similar or lower half-lives than 9Rd.
  • the tryptophan-added peptide showed very good siRNA protection.
  • leucine showed lower siRNA protection ability than the peptide consisting of arginine, and it was confirmed that the hydrophobic amino acid containing banzen ring was more effective.
  • Example 5 Peptide / siRNA
  • the dissociation behavior of heparin added to the silver complex was carried out to secure data on the siRNA complexat ion through evaluation of the charge interaction intensity of the complex formed between the siRNA and the carrier (peptide). It was.
  • the intensity of the ion complex was measured by observing the dissociation behavior of the ion complex according to the addition of the anionic heparin to the ion complex using the peptide.
  • Heparin concentration (IC50) for decomplexat ion of 50% of siRNA was determined by increasing the amount of heparin and decomplexation behavior through agarose gel electrophoresis.
  • the experimental process is as follows.
  • Binding peptide Hepar in / siRNA mole rat io 0, 0.1, 1, 3, 10, 30, 100, 300 The results obtained are shown in Figs. 5A to 6D. As shown in FIGS. 5A to 6D, in the case of R3X series, the effect of amino acid changes on the strength of the ion complex was weak, whereas in the case of R3XX, it was confirmed that the strong ion complex was formed in the order of tryptophan>tyrosine> phenylalanine. . In addition, as a result of comparing the tryptophan-containing peptides, it was confirmed that the ionic complex strength increases as the composition ratio of tryptophan increases.
  • Example 6 Intracellular siRNA Delivery Effect of Peptide / siRNA Ion Complex
  • the intracellular siRNA delivery effect of the tryptophan-containing peptide and fluorescent siRNA was introduced into the cell culture.
  • SK-BR-3 (Her2 positive cells; ATCC) was seeded in 12 well-plates the day before the evaluation at a concentration of 2 ⁇ 10 5 cel Is / wel 1.
  • the complex of peptide / FITC-siRNA (21mer dimer, Bioneer; GFP Sense: GCAUCAAGGUGAACUUCAAdTdT) (SEQ ID NO: l- (dTdT)) was used for the test.
  • FIGS. 7 and 8 The obtained results are shown in FIGS. 7 and 8. As shown in FIG. 7 and FIG. 8, it was confirmed that siRNA was more effectively delivered into cells as the amount of tryptophan increased, which showed a tendency similar to that of the ion complex investigated in Example 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자, 상기 펩타이드 분자를 포함하는 핵산 전달용 조성물, 및 상기 펩타이드 분자와 핵산을 포함하는 핵산-펩타이드 분자 복합체가 제공된다.

Description

【명세서】
【발명의 명칭】
양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자 및 이의 용도
【기술분야】
본 발명은 양이온성 아미노산과 소수성 아미노산을 포함하는 템타이드 분자, 상기 펩타이드 분자를 이용하는 핵산 전달 방법, 및 상기 펩타이드 분자와 핵산을 포함하는 핵산-펩타이드 분자 복합체에 관한 것이다.
【배경기술】
유전자 전달이란 DNA 또는 RNA와 같은 핵산 물질을 전달체를 이용하여 세포에 도입한 후 도입된 유전자의 발현 또는 RNA 간섭 등의 기능에 의하여 세포의 특성을 변화하는 기술이다. 환형 DNA (p lasmid DNA)를 도입하는 경우 도입된 DNA의 전사 및 발현에 의하여 새로운 단백질의 발현을 도모할 수 있는 기술이다. 또한 RNA 간섭 (RNA inter ference)은 외인성 이중가닥 RNA (dsRNA)를 세포내로 도입하여 특정 메신져 RNA (mRNA)를 특이적으로 파괴하거나 그 발현을 차단함으로써 유전자 발현을 감소 또는 억제 시키는 기술이다 (A . Fi re et al . , Nature , 391 , 806-11( 1998) ) . 소간섭 RNA ( s iRNA) 및 마이크로 RNA (miRNAs )와 같은 특이적 형태의 RM가 이러한 RNA 간섭 효과를 보이는 것으로 알려져 있다. 특히 s i RNA의 경우 특정 타겟의 mRNA에 특이적 간섭 효과를 보이기 때문에 약물 스크리닝, 질병 치료 등의 다양한 응용성을 갖고 있는 것으로 알려져 있다.
하지만 상기 DNA 및 R A와 같은 핵산 물질들의 경우 현재 효율적 및 세포 특이적 전달 방법이 다양한 임상 웅용에 있어서 필수적올 해결해야할 난제로 남아 있다. 유전자 물질의 세포내 전달올 위한 방법으로는 지질—기반, 양이은성 저분자-기반, 양이온성 폴리머 -기반 기술 들과 이들의 다양한 조합이 다양하게 시도되어 왔다. 반면 이러한 전달 기술들의 경우 전달 효율이 낮기 때문에 원하는 유전자 전달 효과를 얻기 어려운 문제를 갖고 있다. 또한 매우 높은 간 축적에 의하여 간세포 전달은 효율성이 있으나 (특히 지질-기반), 다른 특정세포 특이적 전달에 어려움이 있는 것으로 알려져 있다.
또한 s i RNA와 같은 저분자량의 핵산 물질의 경우 양이온성 전달체를 이용한 전달에 있어서, 작은 음이은 밀도 (또는 수)에 따른 매우 약한 이온복합체를 형성하기 때문에 효율적 전달에 있어서의 어려움이 있다.
따라서, 핵산 전달의 성공적이고 효율적 응용을 위하여, 핵산과 보다 안정적인 이온 복합체를 형성할 뿐만 아니라, 형성된 이온복합체의 세포 내 전달을 향상시킬 수 있는 새로운 핵산 결합물질의 개발이 필요한 실정이다.
【발명의 상세한 설명】
【기술적 과제】
이에 본 발명의 일 예는 양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자를 제공한다.
또 다른 예는 상기 펩타이드 분자와 핵산을 포함하는 핵산-펩타이드 분자 복합체를 제공한다.
또 다른 .예는 상기 펩타이드 분자 및 /또는 상기 핵산-펩타이드 분자 복합체를 포함하는 약학 조성물을 제공한다.
또 다른 예는 상기 펩타이드 분자와 핵산을 포함하는 핵산-펩타이드 분자 복합체를 투여하는 단계를 포함하는 핵산 전달 방법을 제공한다.
【기술적 해결방법】
본 발명은 DNA 또는 RNA와 같은 핵산 물질과 이온복합체를 형성할 수 있는 펩타이드로서 알지닌, 라이신, 오르니틴, 및 히스티딘 등으로 이루어진 군에서 선택된 1종 이상의 양이온성 아미노산과 트립토판, 타이로신, 페닐알라닌, 루이신 등으로 이루어진 군에서 선택된 1종 이상의 소수성 아미노산을 포함하는 새로운 핵산 결합 펩타이드 및 이의 용도와 관련된 것이다.
우선, 일 예는 양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자에 관한 것이다.
상기 펩타이드 분자에 '포함된 아미노산의 총 개수는 2 내지 100개, 구체적으로 10 내지 60개, 보다 구체적으로 15 내지 50개, 18 내지 45개, 또는 20 내지 40개 정도일 수 있다.
상기 펩타이드 분자 내의 양이온성 아미노산은 정전기적 인력에 의하여 핵산의 음이온과 결합하여 핵산과의 이온복합체 형성을 가능하게 하는 역할을 한다. 핵산과의 이은 복합체 형성에 보다 적합하도록 하기 위하여, 상기 펩타이드 분자 내의 양이온성 아미노산의 수는 1 내지 35개, 구체적으로 10 내지 30개, 보다 구체적으로 15 내지 25개일 수 있다. 상기 양이온성 아미노산은 아르기닌 라이신 및 히스티딘으로 이루어진 군에서 선택된 1종 이상일 수 있다. 양이온성 아미노산이 2개 이상 포함되는 경우, 각각의 양이온성 아미노산은 서로 동일하거나 상이할 수 있으몌 각각 독립적으로 아르기닌, 라이신 및 히스티딘으로 이루어진 군에서 선택될 수 있다.
상기 펩타이드 분자 내의 소수성 아미노산은 수용액 내에서 핵산과의 이은 복합체의 안정성을 향상시키는 역할과 더불어, 핵산 전달시 핵산의 세포 내 전달 효율을 증진시키는 역할을 한다. 이러한 안정화 효능을 적절하게 나타내기 위하여, 상기 소수성 아미노산은 밴젠고리를 포함하는 것일 수 있다. 상기 펩타이드 분자 내의 소수성 아미노산의 함량이 50중량 %를 넘는 경우 침전이 형성될 가능성이 있다. 따라서, 안정화 효능을 적절하게 나타내기 위하여, 상기 펩타이드 분자 내의 소수성 아미노산 함량은 1 내지 50 중량 %, 구체적으로 10 내지 48 중량 %, 더욱 구체적으로 15 내지 45 중량 %일 수 있다. 상기 소수성 아미노산은 트립토판, 타이로신, 페닐알라닌, 류신 등으로 이루어진 군에서 선택된 1종 이상, 구체적으로, 트립토판ᅳ 타이로신, 및 페닐알라닌과 같이 벤젠고리를 포함하는 소수성 아미노산으로 이루어진 군에서 선택된 1종 이상일 수 있다. 소수성 아미노산이 2개 이상 포함되는 경우, 각각의 소수성 아미노산은 서로 동일하거나 상이할 수 있으며, 각각 독립적으로 트립토판, 타이로신, 및 페닐알라닌으로 이루어진 군에서 선택된 1종 이상일 수 있다.
구체예에서, 상기 펩타이드 분자는 다음의 화학식 1로 표현되는 것일 수 있다:
[화학식 1]
[ (Z)pi(X)qi]厂 [
Figure imgf000004_0001
[ (Z)p(n— i)(X)q(n-i)]n— i-[ (Z)p
상기 식 중
Z는 양이은성 아미노산이고,
X는 벤젠고리를 포함하는 소수성 아미노산이고
n 은 단위체의 개수로서 1 내지 20 의 정수, 2 내지 10 의 정수, 또는 3 내지 8의 정수이고, pl 내지 pn 의 p 는 해당 단위체에 포함된 양이온성 아미노산의 개수로서 1 내지 10 , 또는 1 내지 5 의 정수이고, pn 은 n 번째 단위체에 포함된 양이은성 아미노산의 개수를 의미하며 ,
ql 내지 Φΐ 에서의 q 는 해당 단위체에 포함된 벤젠고리를 포함하는 소수성 아미노산의 개수로서 1 내지 10 , 또는 1 내지 5의 정수이고, qn은 n번째 단위체에 포함된 벤젠고리를 포함하는 소수성 아미노산의 개수를 의미하며,
상기 pl 내지 pn 과 ql 내지 pn 은 각 단위체마다 서로 같거나 상이한 수치일 수 있으며 ,
총 아미노산 길이는 2 내지 100 개 10 내지 60 개, 또는 15 내지 40개이고,
Z가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산일 수 있고
X가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산일 수 있다. 일 예에서, 상기 펩타이드 분자는 (ZZZX)n , (ZZZXX)n , (ZZZZX)n , 및 (ZZZZXX)n로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 식 중, Z는 아르기닌, 라이신 및 히스티딘으로 이루어진 군에서 선택된 1종 이상이고, X는 트립토판 타이로신, 및 페닐알라닌으로 이루어진 군에서 선택된 1종 이상이며, n은 단위체의 반복수로 1 내지 20의 정수, 2 내지 10의 정수, 또는 3 내지 8의 정수일 수 있다. 예컨대, 상기 펩타이드 분자는 (RRRW)n, (RRRY)n, (RRRF)n , (RRRWW)n , (RRRYY)n , ( RRFF)n , (R RRW)n , (RRRRY.)n , (R RF)n , (RRRRWW)n , (RRRRYY)n , 및 (RRRRFF)n로 이루어진 군에서 선택된 1종 이상일 수 있다 (R: 아르기닌, Ψ. 트립토판, Y : 타이로신, F : 페닐알라닌; n : 1 내지 20의 정수, 2 내지 10의 정수, 또는 3 내지 8의 정수) .
앞서 설명한 바와 같이, 상기의 펩타이드는 양이온성 아미노산 잔기와 핵산의 음이온이 정전기적 인력에 의하여 이온복합체를 형성할 뿐만 아니라, 형성된 이온복합체에서 소수성 아미노산 잔기가 수용액 내에서 복합체의 안정성을 향상시키는 효능을 나타낸다. 뿐만 아니라 소수성 아미노산의 도입에 의하여 형성된 핵산 /결합펩타이드 복합체의 세포내 전달 효과를 향상시켜 최종적으로 핵산전달 효율을 향상시킬 수 있는 장점을 갖고 있다. 따라서, 상기의 펩타이드는 핵산, 특히 분자량이 작은 siRNA 등과도 효과적 이온복합체를 형성할 수 있으며, 형성된 이온복합체의 경우 안정성이 우수하여 기존 전달체의 한계를 극복할 수 있는 새로운 핵산 전달체로 유용할 것으로 기대된다.
이에, 다른 예는 상기 펩타이드 분자를 포함하는 핵산 전달용 조성물을 제공한다. 상기 핵산 전달용 조성물은, 전달하고자 하는 핵산분자를 추가로 포함하여, 펩타이드 분자와 핵산을 포함하는 핵산ᅳ펩타이드 분자 복합체를 포함하는 것일 수 있다ᅳ 또 다른 예는 상기 펩타이드 분자와 핵산을 포함하는 핵산-펩타이드 분자 복합체를 제공한다. 상기 복합체 내에서 상기 핵산은 상기 펩타이드 분자 내의 양이온성 아미노산과 정전기적 인력에 의하여 결합되어 있는 구조일 수 있다.
상기 핵산은 단일가닥 또는 이중가닥 DNA , RNA , 소간섭 RNA (siRNA) , shRNA , 마이크로 RNA (miRNAs) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 핵산은 5 내지 50mer , 10 내지 40mer , 15 내지 30mer , 또는 15 내지 25mer의 모노머 (단일 가닥) 또는 다이머 (이중가닥) 형태일 수 있으나 이에 제한되는 것은 아니다.
핵산 전달 효율을 고려할 때, 상기 핵산 전달용 조성물에 의하여 전달 가능한 핵산의 함량, 또는 상기 핵산-펩타이드 복합체 내의 핵산의 함량은 펩타이드 /s iRWA의 몰비로 표현시에 1 내지 10 , 2 내지 8 , 3 내지 7 , 또는 4 내지 6일 수 있으며, 예컨대, 약 5일 수 있다.
또 다른 예는 상기 핵산-펩타이드 분자 복합체를 환자에게 투여하는 단계를 포함하는 핵산 전달 방법을 제공한다.
또 다른 예는 상기 펩타이드 분자 또는 핵산-펩타이드 분자 복합체의 핵산 전달을 위한 용도를 제공한다.
상기 핵산 전달은 환자의 체내에서 이루어지는 것일 수 있다. 상기 펩타이드 분자 또는 핵산-펩타이드 분자는 생체에서 분리된 상태의 것 또는 비자연적으로 생성된 것일 수 있다. 예컨대, 상기 펩타이드 분자 또는 핵산- 펩타이드 분자는 생체 외에서 합성된 것일 수 있다.
상기 환자는 인간, 원승이 등의 영장류, 래트, 마우스, 등의 설치류 등의 포유 동물 또는 상기 동물로부터 유래하는 (분리된) 세포, 조직, 또는 이의 배양물일 수 있으며, 상기 복합체에 포함된 핵산의 전달을 필요로 하는 동물 또는 이로부터 유래하는 세포 또는 조직일 수 있다. 상기 핵산 전달 방법은 상기 투여하는 단계 이전에 상기 핵산의 전달을 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다.
상기 핵산ᅳ펩타이드 분자 복합체는 상기 핵산 투여를 필요로 하는 환자에게 경구 또는 비경구 적으로 투여되거나, 상기 세포 또는 조직에 처리될 수 있다.
상기 핵산—펩타이드 분자 복합체는 약학적으로 허용 가능한 담체를 추가로 포함할 수 있으며, 상기 담체는 핵산을 포함하는 약물의 제제화에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비를, 만니를, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀를로스, 폴리비닐피를리돈, 샐를로스, 물, 시럽, 메틸 셀를로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 약학 조성물은 또한 약학 조성물 제조에 통상적으로 사용되는 회석제, 부형제, 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등으로 이루어진 군에서 선택된 1종 이상을 추가로 포함할 수 있다.
상기 핵산-펩타이드 분자 복합체의 투여는 경구 또는 비경구 경로를 통할 수 있다. 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입 내피 투여, 국소 투여, 비내 투여, 폐내 투여 및 직장내 투여 등으로 투여할 수 있다. 경구 투여시, 단백질 또는 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 되어야 한다.
또한 상기 핵산-펩타이드 분자 복합체는 오일 또는 수성 매질중의 용액, 현탁액 시럽제 또는 유화액 형태이거나 액스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 등의 형태로 제형화될 수 있으며 , 제형화를 위하여 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명에서 제공되는 펩타이드 분자, 이를 포함하는 핵산 전달용 조성물 및 핵산-펩타이드 분자 복합체는 혈중에서 나노입자가 웅집 (aggregat ion)되지 않고 안정하게 균일한 입자를 유지할 수 있도록 하는 것을 특징으로 한다. 따라서, 이들은 정맥주사 등과 같이 전신투여 (systemi c de l ivery) 후에도 혈중에서 분해 및 웅집되지 않고 매우 안정적 형태의 순환을 이루며 핵산을 효율적으로 전달할 수 있다.
【유리한 효과】
본 발명에서 제공되는 펩타이드 분자는 핵산 물질과의 한정된 이온 복합체를 형성하는 능력이 매우 우수하고, 형성된 복합체를 세포 내로 전달 효율 또한 우수하므로, 최종적으로 매우 높은 세포 내 유전자 전달 효율을 나타낼 수 있어서, 새로운 핵산 결합 펩타이드로서 유용하다. 따라서, 상기 펩타이드 분자는 향후 유전자 전달에 의한 이용한 다양한 질병의 치료에 유용하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 본 발명쎄 따른 펩타이드 분자의 구조를 모식적으로 보여주는 그림이다.
도 2A 내지 2D는 펩타이드 분자와 siRNA와의 이온 복합체 형성 효율을 보여주는 전기영동 결과 및 이를 정량화한 그래프이다.
도 3A 및 3B는 펩타이드 분자의 나노입자 형성 거동을 보여주는 그래프이다.
도 4A 및 4B는 펩타이드 분자의 s iRNA 보호 효과를 보여주는 전기영동 결과 및 이를 정량화한 그래프이다.
도 5A 및 5B는 펩타이드 분자와 s iRNA와의 이온 복합체의 강도를 보여주는 전기영동 결과 및 이를 정량화한 그래프이다.
도 6A 내지 6C은 펩타이드 분자와 s iRNA와의 이온 복합체의 강도를 해파린을 이용하여 보여주는 그래프이다.
도 7 및 도 8은 트립토판 함유 펩타이드와 s iRNA와의 이온 복합체의 세포내 전달 효율을 보여주는 그래프이다.
【발명의 실시를 위한 형태】
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다. [실시예 1] 핵산 결합 펩타이드의 제조
다음의 일차구조를 갖는 펩타이드를 Fmoc 기반 chemistry를 이용한 solid-phase peptide synthesis를 통하여 제조하였다 (Anygen사에 주문 제작).
제조된 펩타이드의 일차구조, 양이온성 아미노산의 수 및 첨가된 소수성 아미노산의 비율은 다음과 같다 :
9 d: RR RRRRRR-GPG-RRRRRRRR -amide (18R)
3X: R RX R XRRRX RRX RRX RRX-amide
(X = W {tryptophan), Y (tyrosine), F (phenylalanine), L (leucine))
R3XX: RRRXXRRRXXRRRXX RRXXR RXXRRRXX-amide
(X = W (tryptophan), Y (tyrosine), F {phenylalanine))
R4X: RRRRXRR RXR RRXRRRRXRRRRX-amide
(X = W (tryptophan), Y (tyrosine), F (phenylalanine))
R4XX: RRR XXRR RXXRRRRXXRRRRXXRRRRXX-amide
(X = W (tryptophan), Y (tyrosine), F {phenylalanine})
X & R content:
4X (20%, 20 ), R3X (25%, 18R}( R4XX (33%, 20R),
R3XX (40%, 18R) 상기 제작된 펩타이드들을 하기의 실시예에 사용하였다.
[실시예 2] 생접합 유전자 전달체를 이용한 이은복합체 형성 거동 고찰 상기 실시예 1에서 제작된 펩타이드를 이용하여 siRNA와의 이온복합체 형성 거동을 gel retardation assay을 통하여 조사하였다.
전기장 하에서 음전하를 띄는 유전자의 단위시간 당 이동 거리가 유전자의 크기에 따라 달라짐을 이용하여, 양이온 전달체와 유전자 간의 ion complex 형성 여부 및 최적의 ion complex 형성 비율 정보를 획득하기 위한 실험을 진행하였다.
실험 과정은 다음과 같다:
- Binding peptide (실시예 1) + GFP siRNA (21mer 다이머, 바이오니아; GFP Sense: GCAUCAAGGUGAACUUCAAdTdT (서열번호 l-(dTdT))를 이용한 전기영동
- Peptide/siRNA mole ratio'- 0, 1, 2, 3, 5, 7.5, 10
- 2 % agarose gel을 이용하여 18min 동안 전기영동 진행 (100V) Peptide/siRNA ratio 5 이상에서 모두 완전한 이온 complex 형성함올 확인하였다.
상기 얻어진 결과를 도 2A 내지 2D에 나타내었다. 도 2A 내지 2D에 나타난 바와 같이, Peptide/siRNA ratio 5 이상에서 모두 완전한 이온 com lex 형성함이 확인되었으며, 특히 펩타이드 /siRNA의 몰비가 5인 경우에 가장 효과적인 이온 복합체를 형성하는 것으로 확인되었다.
[실시예 3] 펩타이드 /siRNA 이은복합체 나노입자 형성 거동
입자의 크기 및 운동성의 차이 (Brown motion, 주로 확산계수 (D, diffusion coeff.)로 환산됨)에 따른 광산란 거동 정보를 통하여 평균 입자의 크기와 입자분포, 분산도 등을 측정하기 위한 실험을 진행하였다.
실험 과정은 다음과 같다.
- 상기 실시예 2의 Gel retardation assay에서와 동일한 조건으로 펩타이드와 siRNA를 complexation 한 후 Zetasizer를 이용하여 입자 크기 측정 ᅳ Peptide/siRNA mole ratio: 5
상기 얻어진 결과를 도 3A 및 3B에 나타내었다. R3X series (X=W, Y, F, 또는 L): 9Rd 대비 R3L → R3F → R3Y → R3W 순으로 갈수특 Peptide/siRNA com lex size 가 확연히 줄어드는 것을 관찰 할 수 있었고 R3W peptide의 경우 57.79ntn로 siRNA와 ion complex 형성시 매우 compact 해지는 것으로 확인되었다. 도 3에 나타난 바와 같이, 상기 펩타이드와 siRNA를 이용하여 형성된 이온복합체의 경우 (몰비 5) 나노입자를 형성하며, 소수성이 증가함에 따라서 입자 크기가 작아짐을 확인할 수 있었다. R3XX, R4X 및 R4XX의 경우에도 유사한 경향을 보였다. 반면 루이신이 포함된 펩타이드의 경우 9R dimer (9Rd)와 차이를 보이지 않음을 확인하여 벤젠고리가 포함된 아미노산이 보다 효과적으로 이온복합체를 형성함을 확인할 수 있었다.
[실시예 4] 펩타이드 /siRNA 이은복합체의 siRNA 보호 효과
siRNA와 전달체 (펩타이드) 간의 complex 형성에 의한 siRNA 보호 성능 평가를 목적으로, 이온복합체를 혈청과 흔합하여 혈청 내 핵산분해 효소에 의한 핵산의 분해가 복합체 형성에 의하여 억제되는 효과를 관찰하였다. 구체적으로, 50%의 serum 내 siRNA의 분해거동 관찰 (serum stability test)을 통하여 양이은 전달체와 유전자 간의 ion complex 형성에 따른 혈청 내에서의 siRNA 반감기 자료 (tl/2) 를 획득하기 위한 실험을 진행하였다.
실험 과정은 다음과 같다.
- peptide/siRNA mole ratio 5로 complex를 만들어 상온에서 30 min incubation
ᅳ FBS 10% 넣고 37°C에서 incubation
ᅳ Time point (Oh, lh, 3h, 6h, 24h)마다 lOul씩 sample prep한 후 heparin (시그마 -알드리치 , 2ul, ImM 용액)과 loading dye (인트론 사, Reds fe™, 1.5ul)를 첨가하여 mixing 후 -20°C 보관
ᅳ 2% agarose gel , 100V, 18m in eletrophoresis
상기 얻어진 결과를 도 4A 및 4B에 나타내었다. 도 4A 및 4B에서와 같이, R3X series (X=W, Y, F, 또는 L): W를 도입한 R3W peptide (t 1/2=16.86h)의 경우 serum 내에서의 siRNA 반감기가 9Rd (t 1/2=3.94h) 대비 약 4배 가량 길어진 것을 확인하였다. 그 외 R3F, R3L, R3Y peptide의 경우에는 9Rd와 비슷하거나 더 낮은 반감기 보였다. 즉, 트립토판이 첨가된 펩타이드의 경우 매우 우수한 siRNA 보호능을 보임을 확인할 수 있었다. 또한 루이신의 경우 알지닌으로 이루어진 펩타이드보다 낮을 siRNA 보호능을 보임을 확인하여, 밴젠고리가 포함된 소수성 아미노산이 보다 효과적임을 확인하였다.
[실시예 5] 펩타이드 /siRNA 이은복합체의 헤파린 첨가에 따른 해리 거동 siRNA와 전달체 (펩타이드) 간 형성된 complex의 강도 (charge interaction intensity) 평가를 통하여 효과적 siRNA complexat ion에 대한 자료를 확보하기 위한 실험을 진행하였다. 상기의 펩타이드를 이용한 이온복합체에 음이온성 헤파린의 첨가에 따른 이온복합체 해리 거동을 관찰하여 이온복합체의 강도를 측정하였다. 헤파린 첨가량을 증가시키며 decomplexation 거동을 agarose gel 전기영동올 통하여 측정하여 50%의 siRNA를 decomplexat ion 시키기 위한 Heparin 농도 (IC50)를 구하였다.
실험 과정은 다음과 같다.
ᅳ siRNA binding peptide와 siRNA의 결합 강도 측정
- Binding peptide (실시예 1) ― Hepar in/siRNA mole rat io 0, 0.1 , 1 , 3, 10 , 30, 100 , 300 상기 얻어진 결과를 도 5A 내지 도 6D에 나타내었다. 도 5A 내지 도 6D에 나타난 바와 같이, R3X series의 경우 아미노산의 변화가 이온복합체의 강도에 미치는 영향이 약한 반면, R3XX의 경우 트립토판 > 타이로신 〉 페닐알라닌의 순서로 강한 이온복합체를 형성함을 확인할 수 있었다. 또한 트립토판 함유 펩타이드를 비교한 결과 트립토판의 조성비가 증가함에 따라서 이온복합체 강도가 증가함을 확인하였다.
[실시예 6] 펩타이드 /siRNA 이온복합체의 세포내 siRNA 전달 효과 상기의 트립토판 함유 펩타이드와 형광 siRNA의 이온복합체를 세포배양에 도입하여 세포내 siRNA 전달 효과를 조사하였다.
구체적으로, SK-BR-3 (Her2 posi t ive 세포; ATCC)를 2 X 105cel Is/wel 1의 농도로 평가 전날 12 웰 -플레이트에 시딩하였다. 상기의 펩타이드 /FITC- siRNA(21mer 다이머, 바이오니아; GFP Sense : GCAUCAAGGUGAACUUCAAdTdT (서열번호 l-(dTdT) )의 복합체를 제작하여 시험에 사용하였다. 복합체는 펩타이드 /s iRNA 몰비 5로 흔합하여 실온에서 30분 동안 복합체화 (complexat ion) 한 뒤, 얻어진 복합체를 앞서 준비한 세포 (SK-BR— 37)에 각각 처리하였다 (복합체 처리 농도: s iRNA 농도 기준으로 20 nM) . 상기 세포를 37°C에서 4시간 인큐베이션한 후, 트립신으로 harvest하고, 세포 내로 internal i zat ion되지 않고 세포 표면에 남은 복합체를 제거하기 위해서 PBS/0.3%(v/v) BSA (pH 3.8)로 세포를 세척하였다. 최종적으로 얻어진 PBS 상의 세포 용액으로 FACS 분석을 진행하였다 (BD FACS Cant oi l 장비 사용) .
상기 얻어진 결과를 도 7 및 도 8에 나타내었다. 도 7 및 도 8에 나타난 바와 같이, 트립토판의 함량이 증가함에 따라서 보다 효과적으로 siRNA를 세포내로 전달함을 확인할 수 있었으며, 이는 실시예 5에서 조사한 이온복합체 강도와 유사한 경향을 보임을 확인하였다.

Claims

【청구의 범위】
【청구항 1】
양이은성 아미노산 및
벤젠고리를 포함하는 소수성 아미노산
을 포함하는, 템타이드 분자.
【청구항 2]
제 1 항에 있어서, 상기 벤젠고리를 포함하는 소수성 아미노산의 함량이 1 내지 50 증량 %인, 펩타이드 분자.
【청구항 3】
제 1항에 있어서, 다음의 화학식 1로 표현되는 펩타이드 분자:
[화학식 1]
[ (Z)pi(X)qi] i-[ (Z)p2(X)q2 ] 2 ' " [ (Z)p(n-1)(X)q(n-i)]n-i-[ (Z)pn(X)qn]n,
상기 식 중
Z는 양이온성 아미노산이고,
X는 벤젠고리를 포함하는 소수성 아미노산이고
n은 단위체의 개수로서 1 내지 20의 정수이고,
'pi 내지 pn' 에서 p는 해당 단위체에 포함된 양이온성 아미노산의 개수로서 1 내지 10의 정수이고,
'ql , 내지 qn' 에서 q는 해당 단위체에 포함된 벤젠고리를 포함하는 소수성 아미노산의 개수로서 1 내지 10의 정수이고,
상기 pi 내지 pn과 ql 내지 qn은 각 단위체마다 서로 같거나 상이하며, 총 아미노산 길이는 2 내지 100개이고,
Z가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산이고,
X가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산임 .
【청구항 4】
제 3 항에 있어서, 상기 양이온성 아미노산은 아르기닌, 라이신 및 히스티딘으로 이루어진 군에서 선택되는 것인, 펩타이드 분자.
【청구항 53 제 3 항에 있어서, 상기 벤젠고리를 포함하는 소수성 아미노산은 트립토판, 타이로신, 및 페닐알라닌으로 이루어진 군에서 선택되는 것인, 펩타이드 분자.
【청구항 6】
제 1항의 펩타이드 분자 및 상기 펩타이드 분자의 양이온성 아미노산과 결합된 핵산을 포함하는, 핵산-펩타이드 분자 복합체.
【청구항 7]
제 6항에 있어서, 상기 핵산은 DNA, RNA, 소간섭 RNA (siRNA), shRNA, 및 마이크로 RNA (miR As)로 이루어진 군에서 선택된 1종 이상인, 핵산-펩타이드 분자 복합체 .
【청구항 8】
제 6항에 있어서, 상기 핵산은 5 내지 50mer의 모노머 또는 다이머 형태인ᅳ 핵산-펩타이드 분자 복합체 .
【청구항 9】
거 16항에 있어서, 복합체 내의 펩타이드 /siRNA 몰비가 1 내지 10인, 핵산- 펩타이드 분자 복합체 .
【청구항 10】
제 6항에 있어서, 복합체 내의 펩타이드 /siRNA 몰비가 2 내지 8인, 핵산- 펩타이드 분자 복합체 .
【청구항 11】
제 6 항에 있어서, 상기 펩타이드 분자 내의 벤젠고리를 포함하는 소수성 아미노산의 함량이 1 내지 50 중량 %인 핵산-펩타이드 분자 복합체.
【청구항 12】
제 6항에 있어서 , 상기 펩타이드 분자는 다음의 화학식 1로 표현되는 것인, 핵산-펩타이드 분자 복합체:
[화학식 1]
[(Z)pl(X)ql]厂 [(Z)p2(X)q2]2..' [(Z)p(n— (X^ -i n—厂 [(Z)pn
상기 식 중
Z는 양이온성 아미노산이고,
X는 벤젠고리를 포함하는 소수성 아미노산이고 n은 단위체의 개수로서 1 내지 20의 정수이고,
'pi 내지 pn' 에서 p는 해당 단위체에 포함된 양이온성 아미노산의 개수로서 1 내지 10의 정수이고,
ql , 내지 qn' 에서 q는 해당 단위체에 포함된 벤젠고리를 포함하는 소수성 아미노산의 개수로서 1 내지 10의 정수이고
상기 pl 내지 pn과 ql 내지 qn은 각 단위체마다 서로 같거나 상이하며 , 총 아미노산 길이는 2 내지 100개이고,
Z가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산이고,
X가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산임 .
【청구항 13】
제 12 항에 있어서, 상기 양이온성 아미노산은 아르기닌, 라이신 및 히스티딘으로 이루어진 군에서 선택되는 것인, 핵산-펩타이드 분자 복합체.
【청구항 14】
제 12 항에 있어서, 상기 벤젠고리를 포함하는 소수성 아미노산은 트립토판, 타이로신, 및 페닐알라닌으로 이투어진 군에서 선택되는 것인, 핵산- 펩타이드 분자 복합체ᅳ
【청구항 15】
제 6항의 핵산-펩타이드 분자 복합체를 환자에게 투여하는 단계를 포함하는 핵산 전달 방법 .
【청구항 16】
제 15항에 있어서, 상기 핵산은 5 내지 50mer의 단일가닥 또는 이증가닥 형태인, 핵산 전달 방법 .
【청구항 17】
제 15항에 있어서, 복합체 내의 펩타이드 /s iRNA 몰비가 1 내지 10인, 핵산 전달 방법ᅳ
【청구항 18】
제 15 항에 있어서, 상기 펩타이드 분자 내의 벤젠고리를 포함하는 소수성 아미노산의 함량이 1 내지 50 중량 ¾인, 핵산 전달 방법 .
【청구항 19] 제 15항에 있어서, 상기 펩타이드 분자는 다음의 화학식 1로 표현되는 것인, 핵산 전달 방법:
[화학식 1]
[ (Z)pl(X)ql]厂 [ (Z)p2(X)q2]2"' [ (Z)p(n— "(X^in— " Jn-i-f (Z)pn(^
상기 식 중
Z는 양이온성 아미노산이고,
X는 벤젠고리를 포함하는 소수성 아미노산이고
n은 단위체의 개수로서 1 내지 20의 정수이고,
l 내지 pn' 에서 p는 해당 단위체에 포함된 양이은성 아미노산의 개수로서 1 내지 10의 정수이고,
'ql , 내지 qn' 에서 q는 해당 단위체에 포함된 밴젠고리를 포함하는 소수성 아미노산의 개수로서 1 내지 10의 정수이고,
상기 pl 내지 pn과 ql 내지 qn은 각 단위체마다 서로 같거나 상이하며 , 총 아미노산 길이는 2 내지 100개이고,
Z가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산이고,
X가 2개 이상 존재하는 경우 서로 같거나 상이한 아미노산임 .
【청구항 20】
제 19 항에 있어서, 상기 양이온성 아미노산은 아르기닌, 라이신 및 히스티딘으로 이루어진 군에서 선택되는 것이고, 상기 벤젠고리를 포함하는 소수성 아미노산은 트립토판, 타이로신, 및 페닐알라닌으로 이루어진 군에서 선택되는 것인, 핵산 전달 방법.
【청구항 21]
제 6 항 내지 제 14 항 중 어느 한 항의 핵산-펩타이드 분자 복합체를 포함하는, 핵산 전달용 조성물.
【청구항 22】
핵산 전달에 사용하기 위한 제 6항 내지 제 14항 중 어느 한 항의 핵산-펩타이드 분자 복합체 .
PCT/KR2014/009793 2013-10-18 2014-10-17 양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자 및 이의 용도 WO2015057016A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0124811 2013-10-18
KR20130124811A KR20150045559A (ko) 2013-10-18 2013-10-18 양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자 및 이의 용도

Publications (2)

Publication Number Publication Date
WO2015057016A2 true WO2015057016A2 (ko) 2015-04-23
WO2015057016A3 WO2015057016A3 (ko) 2015-06-18

Family

ID=52828821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009793 WO2015057016A2 (ko) 2013-10-18 2014-10-17 양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자 및 이의 용도

Country Status (2)

Country Link
KR (1) KR20150045559A (ko)
WO (1) WO2015057016A2 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065053A (ko) * 2002-01-29 2003-08-06 주식회사 웰진 Dna의 세포 또는 조직 내 전달 효율을 높이는 펩타이드
JP2008520209A (ja) * 2004-11-17 2008-06-19 ユニヴァーシティ・オブ・メリーランド,バルチモア siRNAの有効なキャリアとしての高度に枝分かれしたHKペプチド
KR20080109751A (ko) * 2008-09-05 2008-12-17 학교법인 포항공과대학교 신규한 세포 내 물질 전달용 펩타이드
KR20110002794A (ko) * 2009-07-02 2011-01-10 한양대학교 산학협력단 아르기닌―기제 양친성 펩티드 마이셀
US20130115700A1 (en) * 2010-07-10 2013-05-09 Kitakyushu Foundation For The Advancement Of Industry Science And Technology Method for transfecting nucleic acid to cell and nucleic acid complex

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065053A (ko) * 2002-01-29 2003-08-06 주식회사 웰진 Dna의 세포 또는 조직 내 전달 효율을 높이는 펩타이드
JP2008520209A (ja) * 2004-11-17 2008-06-19 ユニヴァーシティ・オブ・メリーランド,バルチモア siRNAの有効なキャリアとしての高度に枝分かれしたHKペプチド
KR20080109751A (ko) * 2008-09-05 2008-12-17 학교법인 포항공과대학교 신규한 세포 내 물질 전달용 펩타이드
KR20110002794A (ko) * 2009-07-02 2011-01-10 한양대학교 산학협력단 아르기닌―기제 양친성 펩티드 마이셀
US20130115700A1 (en) * 2010-07-10 2013-05-09 Kitakyushu Foundation For The Advancement Of Industry Science And Technology Method for transfecting nucleic acid to cell and nucleic acid complex

Also Published As

Publication number Publication date
KR20150045559A (ko) 2015-04-29
WO2015057016A3 (ko) 2015-06-18

Similar Documents

Publication Publication Date Title
US11305024B2 (en) Cross-linked polymer modified nanoparticles
JP6239565B2 (ja) 細胞内に送達するためのジブロックコポリマーおよびそのポリヌクレオチド複合体
Lin et al. Intracellular cleavable poly (2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo
Gooding et al. Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: in vitro analysis
CA2697951A1 (en) Amino acid pairing-based self assembling peptides and methods
Ji et al. Functional gene silencing mediated by chitosan/siRNA nanocomplexes
CN109355310B (zh) Ros响应的基因递送载体及其制备方法和应用
O’Mahony et al. In vitro investigations of the efficacy of cyclodextrin-siRNA complexes modified with lipid-PEG-Octaarginine: towards a formulation strategy for non-viral neuronal siRNA delivery
EP3107549B1 (en) Anionic polyplexes for use in the delivery of nucleic acids
Li et al. Dual-vectors of anti-cancer drugs and genes based on pH-sensitive micelles self-assembled from hybrid polypeptide copolymers
WO2019086542A1 (en) Metal organic framework-based compositions and uses thereof
WO2021134023A2 (en) Compositions and methods for nucleic acid delivery
JP2021512892A (ja) 核酸分子送達のためのナノ粒子−ヒドロゲル複合材料
WO2015090212A1 (zh) 多肽及其作为递送载体的用途
EP2296712A1 (en) Amphiphilic block copolymers for nucleic acid delivery
Panigrahi et al. Peptide generated anisotropic gold nanoparticles as efficient siRNA vectors
CN111249469B (zh) 一种能够溶酶体逃逸的肽纳米颗粒及其制备方法和应用
Bozdoğan et al. Novel layer-by-layer self-assembled peptide nanocarriers for siRNA delivery
WO2016197264A1 (zh) 一种结合异核苷修饰、末端肽缀合及阳离子脂质体的小干扰rna修饰方法及制剂
WO2015057016A2 (ko) 양이온성 아미노산과 소수성 아미노산을 포함하는 펩타이드 분자 및 이의 용도
CN106512020B (zh) 一种靶向缺血心肌的纳米化microRNA精准诊疗系统
KR102366784B1 (ko) 암 세포 표면 단백질 결합 펩타이드가 컨쥬게이트된 항-miRNA 전달체 및 이의 용도
WO2012008361A1 (ja) 細胞への核酸導入方法および核酸複合体
Kedracki et al. Self‐Assembly of Biohybrid Polymers
KR20150028644A (ko) siRNA 전달을 위한 히알루론산-콜레스테롤 나노파티클 및 이를 포함하는 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853700

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853700

Country of ref document: EP

Kind code of ref document: A2