WO2015056648A1 - ヒートポンプ装置 - Google Patents
ヒートポンプ装置 Download PDFInfo
- Publication number
- WO2015056648A1 WO2015056648A1 PCT/JP2014/077217 JP2014077217W WO2015056648A1 WO 2015056648 A1 WO2015056648 A1 WO 2015056648A1 JP 2014077217 W JP2014077217 W JP 2014077217W WO 2015056648 A1 WO2015056648 A1 WO 2015056648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- compressor
- heat pump
- discharge
- detection means
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Definitions
- the present invention relates to a heat pump device using a refrigerant.
- the refrigerant with specific characteristics that is, the isentropic line on the Ph diagram is in the superheated region on the low pressure side, and has the characteristic of having two or more intersections or contacts with the saturated gas line on the high pressure side.
- the refrigerant may be liquefied and liquid-compressed during the compression stroke of the compressor depending on the degree of overheating even if the suction portion is in an overheated state.
- Patent Document 1 As a means for solving this problem, for example, the one shown in Patent Document 1 is known.
- the refrigeration apparatus of Patent Document 1 compresses so that the isentropic line and the saturated gas line become larger than the entropy having a contact on the way based on the detection means for detecting the superheat degree of the suction point of the compressor and the data of the detection means. And a control means for controlling the degree of superheat of the suction point of the machine.
- the isentropic line on the Ph diagram is in the superheated region on the low pressure side as the refrigerant sealed in the refrigerant circuit, and the saturated gas line and the two points on the high pressure side. Liquid compression during the compression stroke of the compressor in the case of using a refrigerant including a single refrigerant and a mixed refrigerant having characteristics having the above intersections or contacts is avoided.
- the refrigerant may be liquefied and liquid-compressed during the compression stroke of the compressor depending on the superheat degree on the discharge side. is there.
- the present invention has been made in view of the above, and even when a refrigerant having the above-described specific characteristics is used, the compression state during the compression stroke is determined by setting the discharge state of the compressor as a degree of superheat above a predetermined level. It aims at providing the heat pump apparatus which can improve the reliability of a compressor by avoiding the liquid compression in a machine reliably.
- a heat pump device comprises an annular refrigerant circuit by sequentially connecting at least a compressor, a condenser, a throttle expander, and an evaporator with a connecting pipe.
- the isentropic line on the Ph diagram is in the superheated region on the low pressure side, and has the characteristic of having two or more intersections or contacts with the saturated gas line on the high pressure side.
- a discharge side detection means for detecting a refrigerant state on the discharge side of the compressor, and a discharge side of the compressor so that the refrigerant in the compression stroke is always in an overheated region based on the output of the discharge side detection means.
- a control means for adjusting the refrigerant state.
- the discharge side detection means detects the refrigerant state from the discharge pressure and discharge temperature of the compressor, and the control means has a saturation temperature calculated from the discharge pressure and the discharge temperature of the compressor equal to or greater than a predetermined temperature difference.
- the refrigerant state on the discharge side may be adjusted so that
- the compressor includes suction side detection means for detecting a refrigerant state on the suction side of the compressor, and the control means is configured so that the refrigerant during the compression stroke is always in an overheated region based on an output of the suction side detection means.
- the refrigerant state on the suction side may be adjustable.
- the suction side detection means detects the refrigerant state from the suction pressure and suction temperature of the compressor, and the control means has a saturation temperature calculated from the suction pressure and the suction temperature of the compressor equal to or greater than a predetermined temperature difference.
- the refrigerant state on the suction side may be adjusted so that
- the control means adjusts the refrigerant state on the suction side based on the output of the suction side detection means, and adjusts the refrigerant state on the discharge side based on the output of the discharge side detection means. You may make it perform by switching between 2 control modes.
- the control means executes the first control mode when starting the heat pump device, performs detection by the discharge side detection means during execution of the first control mode, and calculates the saturation temperature and the compression calculated from the discharge pressure. You may make it switch to said 2nd control mode, when the discharge temperature of a machine becomes more than a predetermined temperature difference.
- the throttle expander is an expansion valve
- the control means adjusts the refrigerant state by adjusting the opening of the expansion valve or adjusting the opening of the expansion valve and the rotation speed of the compressor. You may do it.
- the refrigerant state on the discharge side of the compressor can be adjusted to a superheat range of a predetermined level or higher by the control means so that the refrigerant in the compression stroke can always be in the overheat range. Therefore, there is an effect that the liquid compression in the compressor can be avoided.
- FIG. 1 is a schematic configuration diagram showing an embodiment of a heat pump device according to the present invention.
- FIG. 2 is a Ph diagram of R245fa as an example of a refrigerant having specific characteristics.
- FIG. 3 is a flowchart showing an example of a control flow of the heat pump apparatus shown in FIG.
- a heat pump device 1 includes a compressor 2 that compresses a refrigerant, a condenser 3 that exchanges heat between the refrigerant and feed water, and a throttle expander 5 that decompresses the refrigerant. And an evaporator 4 for exchanging heat of the refrigerant and the exhaust heat is sequentially constituted by an annular refrigerant circuit in which refrigerant pipes (connection pipes) 6 are connected.
- Discharge temperature detection means 11 for detecting the surface temperature of the refrigerant pipe 6 is provided on the discharge side of the compressor 2, and discharge pressure detection means 12 for detecting the refrigerant pressure inside the refrigerant pipe 6 is also provided on the discharge side of the compressor 2. Is provided.
- a suction temperature detection means 13 for detecting the surface temperature of the refrigerant pipe 6 is provided on the suction side of the compressor 2, and a suction pressure detection for detecting the refrigerant pressure inside the refrigerant pipe 6 is also provided on the suction side of the compressor 2.
- Means 14 are provided. In the example of FIG. 1, other temperature / pressure detection means essential for the heat pump device and refrigerant components such as sight glass are not shown.
- the isentropic line on the Ph diagram is in the superheated region on the low pressure side, and the saturated gas line on the high pressure side or two or more intersections or contact points
- coolant is used.
- the isentropic line on the Ph diagram as shown in FIG. 2 is in the superheated region on the low pressure side, and the saturated gas line and two or more points on the high pressure side.
- R245fa which is a refrigerant having an intersection or a contact can be used.
- the isentropic line A line and the saturated gas line intersect at two points A1 and A2.
- the heat pump apparatus 1 includes a discharge side detection unit 15 that detects a refrigerant state on the discharge side of the compressor 2 via a discharge temperature detection unit 11 and a discharge pressure detection unit 12, and a suction temperature detection unit 13 and a suction pressure detection unit 14. And a control means 17 for adjusting the refrigerant state on the discharge side and the suction side of the compressor 2.
- the discharge side detection means 15 outputs the discharge pressure of the compressor 2 detected by the discharge pressure detection means 12 and the temperature detected by the discharge temperature detection means 11 to the control means 17.
- the suction side detection means 16 outputs the suction pressure of the compressor 2 detected by the suction pressure detection means 14 and the temperature detected by the suction temperature detection means 13 to the control means 17.
- the control means 17 adjusts the opening degree of the expansion expander 5 based on the output of the suction side detection means 16 so that the refrigerant in the compression stroke is always in the overheated region, so that the refrigerant state on the suction side of the compressor 2
- a first control mode (first control stage) for adjusting
- the control unit 17 calculates the saturation temperature at the suction pressure detected by the suction pressure detection unit 14 and detects the calculated saturation temperature and the suction temperature detection unit 13.
- the degree of superheat on the suction side of the compressor 2 is calculated by calculating the difference from the temperature, and the opening degree of the throttle expander 5 is adjusted to increase or decrease so that the degree of superheat does not become zero. Therefore, in this embodiment, an electronic expansion valve is used as the throttle expander 5.
- control means 17 adjusts the opening degree of the expansion expander 5 based on the output of the discharge side detection means 15 so that the refrigerant in the compression stroke is always in the overheated region, thereby controlling the discharge side of the compressor 2.
- a second control mode (second control stage) for adjusting the refrigerant state is provided.
- the control unit 17 calculates the saturation temperature at the discharge pressure detected by the discharge pressure detection unit 12 and also detects the calculated saturation temperature and the discharge temperature detection unit 11.
- the degree of superheat on the discharge side becomes equal to or greater than a predetermined value.
- the opening degree of the throttle expander 5 is adjusted to increase or decrease.
- step S1 of FIG. 3 the control means 17 executes the first control mode.
- the suction pressure of the compressor 2 detected by the suction pressure detection means 14 and the temperature detected by the suction temperature detection means 13 are transferred from the suction side detection means 16 to the control means 17. Is output.
- the control means 17 obtains the degree of superheat on the suction side of the compressor 2 based on the output from the suction side detection means 16, and adjusts the opening of the throttle expander 5 so that the obtained degree of superheat on the suction side does not become zero. To do. Specifically, the control means 17 reduces the amount of refrigerant flowing into the compressor 2 by reducing the opening of the throttle expander 5 to increase the degree of superheat, thereby always increasing the degree of superheat on the suction side. Control to maintain.
- the first control mode is a control mode dedicated to the activation of the heat pump device 1, and the second control mode is executed during steady operation.
- the discharge pressure of the compressor 2 detected by the discharge pressure detection means 12 and the temperature detected by the discharge temperature detection means 11 are output from the discharge side detection means 15 to the control means 17. Is done.
- the control means 17 obtains the degree of superheat on the discharge side of the compressor 2 based on the output from the discharge side detection means 15, and compares the obtained degree of superheat with a preset predetermined value (step S2).
- the control means 17 continues monitoring and determining whether or not the superheat degree on the discharge side becomes equal to or higher than a predetermined value during execution of the first control mode (No in step S2). Switching to the second control mode at step S2 (Yes), the second control mode is executed thereafter (step S3). Therefore, the predetermined value in step S2 is a switching timing setting value that defines the timing of switching from the first control mode to the second control mode. For example, 2K (Kelvin) is used as an index of the degree of superheat on the discharge side. Is set.
- the discharge pressure of the compressor 2 detected by the discharge pressure detection means 12 and the temperature detected by the discharge temperature detection means 11 are transferred from the discharge side detection means 15 to the control means 17. Is output.
- the control unit 17 obtains the discharge-side superheat degree based on the output from the discharge-side detection means 15, compares the obtained superheat degree with a predetermined value (for example, 5K (Kelvin)), and compares the magnitude.
- the opening degree of the expansion expander 5 is adjusted so that the discharge temperature of the nozzle becomes equal to or greater than a predetermined temperature difference. For example, when the calculated degree of superheat becomes smaller than a predetermined value during the operation of the heat pump device 1, the control means 17 adjusts the opening degree of the expansion expander 5 to be reduced.
- the opening degree of the expansion expander 5 is adjusted to be opened. By doing so, the amount of refrigerant flowing into the compressor 2 increases and the degree of superheat decreases.
- Such a second control mode is a control mode that is executed during steady operation after the completion of the first control mode when the heat pump device 1 is started up, and compression is performed by adjusting the opening of the expansion expander 5.
- the refrigerant state on the discharge side of the machine 2 is adjusted to a degree of superheat above a predetermined value. If the superheat degree on the discharge side is always positive by this adjustment, the superheat degree on the suction side will also be positive, so the refrigerant in the compression stroke will always be in the superheat zone, avoiding saturation in all strokes. Thus, liquid compression in the compressor 2 can be reliably prevented.
- the compressor 2 is in a steady state from the cold state at the time of starting (cold temperature starting time) or the like when the device is started from a completely cold state. It is difficult to execute the second control mode until it is heated to the temperature range during operation. That is, the compressor is generally made of a metal such as iron or aluminum so that it can withstand high pressure, and these metals have a high density and a large heat capacity of the compressor. For this reason, at the time of cold start, even if the degree of superheat on the suction side of the compressor 2 is sufficiently large, since the casing of the compressor 2 is cold, a part of the compressed refrigerant is still cold compressed.
- a part of the machine 2 is condensed by being cooled in the interior (compression section to discharge port). Therefore, until the metal casing of the compressor 2 is sufficiently heated, the state of the superheat degree on the discharge side continues to be zero, so the second control mode for maintaining the superheat degree on the discharge side at a predetermined value or more is started. If it is going to be executed from the start, the activation of the heat pump device 1 itself may be difficult or unstable.
- the heat pump device 1 executes the first control mode for controlling the refrigerant state on the suction side at the time of activation.
- the first control mode even if the superheat degree on the suction side of the compressor 2 is sufficiently large (for example, 10K), the superheat degree on the discharge side continues to be zero, and the compressor 2
- the superheat degree on the discharge side changes from zero to a positive value. That is, when the first control mode is executed, the superheat degree on the discharge side exceeds a predetermined value (switching timing setting value) before and after the timing, so that during the execution of the first control mode, the discharge side The refrigerant status of the system is monitored.
- the 2nd control mode which controls the refrigerant
- the first control mode may be omitted when the heat pump device 1 is used, for example, in an environment where there is no possibility of cold start, or when the specification is such that there is no possibility of cold start, In this case, the second control mode may be executed from the time of startup.
- the refrigerant in the compression stroke is always overheated based on the output of the discharge side detection means 15 that detects the refrigerant state on the discharge side of the compressor 2 and the discharge side detection means 15.
- the control means 17 which adjusts the refrigerant
- the control means 17 can adjust the refrigerant state on the discharge side of the compressor 2 so that the refrigerant in the compression stroke is always in the overheat region by setting the degree of superheat to a predetermined level or higher. Therefore, liquid compression in the compressor 2 can be avoided.
- the heat pump device 1 is provided with suction side detection means 16 for detecting the refrigerant state on the suction side of the compressor 2, and the control means 17 is based on the output of the suction side detection means 16 so that the refrigerant in the compression stroke is always overheated.
- the control unit 17 adjusts the refrigerant state on the discharge side based on the first control mode for adjusting the refrigerant state on the suction side based on the output of the suction side detection unit 16 and the output of the discharge side detection unit 15.
- the second control mode is switched and executed.
- the heat pump device 1 is in a cold state or the like, it is possible to start smoothly and stably by executing the first control mode.
- the second control mode is executed when the operation shifts to the steady operation after the start-up, the operation on the discharge side is always kept positive to enable a stable operation that prevents liquid compression.
- the first control mode is executed when the heat pump device 1 is activated, and the saturation temperature calculated from the discharge pressure and the discharge temperature of the compressor 2 are detected by the discharge-side detection means 15 during the execution of the first control mode. Is controlled so as to switch to the second control mode when the temperature difference exceeds a predetermined temperature difference, it is possible to prevent liquid compression in the compressor 2 while smoothly transitioning from the startup operation to the steady operation. .
- adjustment of the refrigerant state on the discharge side and suction side of the compressor 2 by the control means 17 is performed by adjusting the opening of the throttle expander 5 which is an electronic expansion valve. You may carry out by adjusting the rotation speed of the compressor 2 with adjustment. Then, there exists an advantage that the starting time of the heat pump apparatus 1 can be shortened, for example. Further, when the throttle expander 5 is not an electronic expansion valve but a temperature expansion valve or a pressure expansion valve, it is difficult to adjust the opening degree with a high degree of freedom. In that case, by combining with the rotation speed control of the compressor 2, The refrigerant state can be adjusted more smoothly.
- the suction side detection means 16 is exemplified by detecting the refrigerant state on the suction side of the compressor 2 via the suction temperature detection means 13 and the suction pressure detection means 14.
- the refrigerant state on the suction side of the compressor 2 is detected based on the temperature difference between the refrigerant temperatures on the inlet side and the outlet side through temperature detecting means for detecting the refrigerant temperature on the inlet side and the outlet side of the evaporator 4. It may be a thing.
- the heat pump device is a refrigerant having specific characteristics, that is, the isentropic line on the Ph diagram is in the superheated region on the low pressure side and the saturated gas line on the high pressure side.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本発明はヒートポンプ装置に関し、少なくとも圧縮機(2)、凝縮器(3)、絞り膨張器(5)、及び蒸発器(4)を順次接続管(6)で接続して環状の冷媒回路を構成し、前記冷媒回路に封入する冷媒としてP-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する特性を持つ冷媒を用い、圧縮機(2)の吐出側の冷媒状態を検知する吐出側検知手段(15)と、吐出側検知手段(15)の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように圧縮機(2)の吐出側の冷媒状態を調整する制御手段(17)とを備えた。
Description
本発明は、冷媒を用いたヒートポンプ装置に関するものである。
近年、高温領域で使用される低圧冷媒を用いたヒートポンプ装置では、等エントロピー線の傾斜が急峻で圧縮機からの吐出冷媒の過熱度が小さくなるので、液圧縮による損傷を回避するため、吸入を過熱状態とするのに蒸発器から圧縮機の間の冷媒を加熱している。
しかし、特有の特性を持った冷媒すなわち、P-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する特性を持つ単一冷媒及び混合冷媒を含む冷媒を用いたヒートポンプ装置においては、吸入部が過熱状態にあっても過熱の度合いによって圧縮機の圧縮行程中に冷媒が液化し液圧縮する可能性がある。
これに対する解決手段として、例えば、特許文献1に示すものが知られている。特許文献1の冷凍装置は、圧縮機の吸入点の過熱度を検知する検知手段と、検知手段のデータに基づいて等エントロピー線と飽和ガス線が途中で接点を持つエントロピーより大きくなる様に圧縮機の吸入点の過熱度を制御する制御手段を備えたものである。特許文献1ではこのような構成を採用することで、冷媒回路に封入する冷媒としてP-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する特性を持つ単一冷媒及び混合冷媒を含む冷媒を用いた場合における圧縮機の圧縮行程中の液圧縮を回避するようになっている。
ところで、上記の特有の特性を持つ冷媒を用いた圧縮機では、吸入側の過熱度と吐出側の過熱度を比較すると、一般に吐出側の過熱度が小さくなる傾向にある。従って、上記の従来の特許文献1のように圧縮機の吸入側の過熱度を制御しても、吐出側の過熱度によっては圧縮機の圧縮行程中に冷媒が液化し液圧縮する可能性がある。
本発明は、上記に鑑みてなされたものであって、上述したような特有の特性を持った冷媒を用いた場合でも、圧縮機の吐出状態を所定以上の過熱度として、圧縮行程中の圧縮機内での液圧縮を確実に回避することにより、圧縮機の信頼性を向上することができるヒートポンプ装置を提供することを目的とする。
上記した課題を解決し、目的を達成するために、本発明に係るヒートポンプ装置は、少なくとも圧縮機、凝縮器、絞り膨張器、及び蒸発器を順次接続管で接続して環状の冷媒回路を構成し、前記冷媒回路に封入する冷媒としてP-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する特性を持つ冷媒を用い、前記圧縮機の吐出側の冷媒状態を検知する吐出側検知手段と、前記吐出側検知手段の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように前記圧縮機の吐出側の冷媒状態を調整する制御手段とを備えたことを特徴とする。
前記吐出側検知手段は、前記圧縮機の吐出圧力と吐出温度から前記冷媒状態を検知し、前記制御手段は、前記吐出圧力から算出した飽和温度と前記圧縮機の吐出温度が所定の温度差以上となるように前記吐出側の冷媒状態を調整してもよい。
前記圧縮機の吸入側の冷媒状態を検知する吸入側検知手段を備え、前記制御手段は、前記吸入側検知手段の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように前記圧縮機の吸入側の冷媒状態を調整可能であってもよい。
前記吸入側検知手段は、前記圧縮機の吸入圧力と吸入温度から前記冷媒状態を検知し、前記制御手段は、前記吸入圧力から算出した飽和温度と前記圧縮機の吸入温度が所定の温度差以上となるように前記吸入側の冷媒状態を調整してもよい。
前記制御手段は、前記吸入側検知手段の出力に基づいて前記吸入側の冷媒状態を調整する第1制御モードと、前記吐出側検知手段の出力に基づいて前記吐出側の冷媒状態を調整する第2制御モードとを切り替えて実行するようにしてもよい。
前記制御手段は、当該ヒートポンプ装置の起動時には前記第1制御モードを実行し、該第1制御モードの実行中に前記吐出側検知手段による検知を行うと共に前記吐出圧力から算出した飽和温度と前記圧縮機の吐出温度が所定の温度差以上となった際に前記第2制御モードに切り替えるようにしてもよい。
前記絞り膨張器は膨張弁であり、前記制御手段は、前記膨張弁の開度の調整、又は、前記膨張弁の開度及び前記圧縮機の回転数の調整により、前記冷媒状態の調整を行うようにしてもよい。
本発明に係るヒートポンプ装置によれば、制御手段によって圧縮機の吐出側の冷媒状態を所定以上の過熱度にすることで、圧縮行程中の冷媒が常に過熱域となるように調整できる。従って、圧縮機内での液圧縮を回避することができるという効果を奏する。
以下に、本発明に係るヒートポンプ装置の実施の形態について図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
図1に示すように、本発明の実施の形態のヒートポンプ装置1は、冷媒を圧縮する圧縮機2と、冷媒と給水の熱を熱交換する凝縮器3と、冷媒を減圧する絞り膨張器5と、冷媒と排熱の熱を交換する蒸発器4とを順次、冷媒配管(接続管)6で接続した環状の冷媒回路により構成されている。
圧縮機2の吐出側には冷媒配管6の表面温度を検知する吐出温度検知手段11が設けられ、同じく圧縮機2の吐出側には冷媒配管6内部の冷媒圧力を検知する吐出圧力検知手段12が設けられている。また、圧縮機2の吸入側には冷媒配管6の表面温度を検知する吸入温度検知手段13が設けられ、同じく圧縮機2の吸入側には冷媒配管6内部の冷媒圧力を検知する吸入圧力検知手段14が設けられている。なお、図1の例では、ヒートポンプ装置に必須であるその他の温度・圧力検知手段やサイトグラスなどの冷媒用構成機器は図示を省略している。
ここで、ヒートポンプ装置1の冷媒回路に封入する冷媒としては、P-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する特性を持つ単一冷媒及び混合冷媒を含む冷媒を用いている。このような特有の特性を持つ冷媒としては、例えば図2に示すようなP-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する冷媒であるR245faを用いることができる。例えば、図2において、等エントロピー線であるA線と飽和ガス線とは、2つの交点であるA1点及びA2点で交差している。
このヒートポンプ装置1は、吐出温度検知手段11及び吐出圧力検知手段12を介して圧縮機2の吐出側の冷媒状態を検知する吐出側検知手段15と、吸入温度検知手段13及び吸入圧力検知手段14を介して圧縮機2の吸入側の冷媒状態を検知する吸入側検知手段16と、圧縮機2の吐出側及び吸入側の冷媒状態を調整する制御手段17とを備えている。
吐出側検知手段15は、吐出圧力検知手段12により検知された圧縮機2の吐出圧力と、吐出温度検知手段11により検知された温度とを制御手段17に出力するようになっている。吸入側検知手段16は、吸入圧力検知手段14により検知された圧縮機2の吸入圧力と、吸入温度検知手段13により検知された温度とを制御手段17に出力するようになっている。
制御手段17は、吸入側検知手段16の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように、絞り膨張器5の開度を調整することで圧縮機2の吸入側の冷媒状態を調整する第1制御モード(第1制御段階)を有する。第1制御モードが実行されると、制御手段17は、吸入圧力検知手段14により検知された吸入圧力時の飽和温度を算出すると共に、算出した飽和温度と、吸入温度検知手段13により検知された温度との差を算出して圧縮機2の吸入側の過熱度を求め、この過熱度がゼロにならないように絞り膨張器5の開度を増減調整する。そこで、本実施の形態では、絞り膨張器5として電子膨張弁を用いている。
制御手段17は、さらに、吐出側検知手段15の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように、絞り膨張器5の開度を調整することで圧縮機2の吐出側の冷媒状態を調整する第2制御モード(第2制御段階)を有する。第2制御モードが実行されると、制御手段17は、吐出圧力検知手段12により検知された吐出圧力時の飽和温度を算出すると共に、算出した飽和温度と、吐出温度検知手段11により検知された温度との差を算出して圧縮機2の吐出側の過熱度を求め、この過熱度と予め設定した所定の値との比較結果に基づいて、吐出側の過熱度が所定値以上となるように絞り膨張器5の開度を増減調整する。
次に、以上のように構成されたヒートポンプ装置1の動作及び作用について、図3に示すフローチャートを参照して説明する。
当該ヒートポンプ装置1が運転停止状態から起動されると、先ず、図3のステップS1において、制御手段17は、第1制御モードを実行する。
第1制御モードが実行されると、吸入圧力検知手段14により検知された圧縮機2の吸入圧力、及び吸入温度検知手段13により検知された温度が、吸入側検知手段16から制御手段17へと出力される。制御手段17は、吸入側検知手段16からの出力に基づいて圧縮機2の吸入側の過熱度を求め、求めた吸入側の過熱度がゼロとならないように絞り膨張器5の開度を調整する。具体的には、制御手段17は、絞り膨張器5の開度を絞ることで冷媒の圧縮機2への流入量を減少させて過熱度を増加させ、これにより吸入側の過熱度を常にプラスに維持するように制御する。詳細は後述するが、この第1制御モードは、ヒートポンプ装置1の起動時専用の制御モードであり、定常運転時には第2制御モードが実行される。
第1制御モードの実行中にも、吐出圧力検知手段12により検知された圧縮機2の吐出圧力、及び吐出温度検知手段11により検知された温度が、吐出側検知手段15から制御手段17に出力される。制御手段17は、吐出側検知手段15からの出力に基づいて圧縮機2の吐出側の過熱度を求め、求めた過熱度と予め設定した所定値とを大小比較する(ステップS2)。
すなわち、制御手段17は、第1制御モードの実行中に吐出側の過熱度が所定値以上となったか否かの監視と判定を続け(ステップS2のNo)、所定値以上となった場合(ステップS2のYes)に第2制御モードに切り換え、以降はこの第2制御モードを実行する(ステップS3)。従って、ステップS2での所定値とは、第1制御モードから第2制御モードへの切り替えのタイミングを規定した切替タイミング設定値であり、吐出側の過熱度の指標として、例えば2K(ケルビン)が設定される。
第2制御モードが実行されると、吐出圧力検知手段12により検知された圧縮機2の吐出圧力、及び吐出温度検知手段11により検知された温度が、吐出側検知手段15から制御手段17へと出力される。制御手段17は、吐出側検知手段15からの出力に基づいて吐出側の過熱度を求め、求めた過熱度と予め設定した所定値(例えば5K(ケルビン))とを大小比較し、圧縮機2の吐出温度が所定の温度差以上となるように絞り膨張器5の開度を調整する。制御手段17は、例えば、ヒートポンプ装置1の運転中に、求めた過熱度が所定値よりも小さくなった場合は、絞り膨張器5の開度を絞るように調整する。こうすることで冷媒の圧縮機2への流入量が減少し過熱度は増加する。逆に、過熱度が所定値よりも大きくなった場合は、絞り膨張器5の開度を開くように調整する。こうすることで圧縮機2への冷媒流入量が増加し過熱度は減少する。
このような第2制御モードは、ヒートポンプ装置1の起動時の第1制御モードが完了した後の定常運転中に実行される制御モードであり、絞り膨張器5の開度を調整することで圧縮機2の吐出側の冷媒状態を所定値以上の過熱度に調整する。この調整によって吐出側の過熱度を常にプラスにしておけば、吸入側の過熱度もプラスになるので、圧縮行程中の冷媒が全ての行程で飽和域となることを避けて必ず過熱域となるように調整でき、圧縮機2内での液圧縮を確実に防止することができる。
但し、ヒートポンプ装置1の運転が完全に停止してから数時間以上経過し、装置が完全に冷え切った状態から起動する起動時(冷温起動時)等において、圧縮機2が冷えた状態から定常運転時の温度域まで加熱されるまでの間は、上記第2制御モードを実行することが難しい。すなわち、一般的に圧縮機は、高い圧力に耐えられるよう鉄やアルミ等の金属で製造されており、これらの金属は密度が大きく圧縮機の熱容量も大きい。このため、冷温起動時には、圧縮機2の吸入側での過熱度が十分に大きい場合であっても、圧縮機2の筐体が冷えているため、圧縮された冷媒の一部がまだ冷たい圧縮機2の内部(圧縮部~吐出口)で冷やされて一部が凝縮する。従って、圧縮機2の金属筐体が十分に加熱されるまでは、吐出側の過熱度がゼロの状態が続くため、吐出側の過熱度を所定値以上に維持する第2制御モードを起動時から実行しようとすると、ヒートポンプ装置1の起動自体が困難となり或いは不安定となる場合がある。
そこで、当該ヒートポンプ装置1では、起動時には、吸入側の冷媒状態を制御する第1制御モードを実行する。この第1制御モードの実行中は、圧縮機2の吸入側の過熱度が十分に大きい状態(例えば、10K)であっても、吐出側の過熱度はゼロの状態が継続され、圧縮機2の筐体(特に圧縮部)が十分に加熱された時点で、吐出側の過熱度はゼロからプラスの値に転じる。すなわち、第1制御モードを実行していると、タイミングの前後はあってもいずれ吐出側の過熱度が所定値(切替タイミング設定値)を超えるため、第1制御モードの実行中は、吐出側の冷媒状態を監視しておく。そして、吐出側の過熱度が所定値(切替タイミング設定値)に到達したタイミングで吐出側の冷媒状態を制御する第2制御モードに切り替える。これにより、ヒートポンプ装置1が冷温状態等であっても円滑に且つ安定した起動が可能となり、起動後の定常運転中は、第2制御モードによって吐出側の過熱度が常にプラスに維持されるため、吸入側の過熱度もプラスになり、定常運転に移行して冷媒流量が増加した状態であっても確実に液圧縮を防止し、安定的に運転することができる。
なお、ヒートポンプ装置1が、例えば、冷温起動の可能性がない環境で使用され、或いは冷温起動の可能性がない仕様となっている場合等には、第1制御モードは省略してもよく、この場合には起動時から第2制御モードを実行すればよい。
以上説明したように、ヒートポンプ装置1によれば、圧縮機2の吐出側の冷媒状態を検知する吐出側検知手段15と、吐出側検知手段15の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように圧縮機2の吐出側の冷媒状態を調整する制御手段17とを備える。このように、制御手段17によって圧縮機2の吐出側の冷媒状態を所定以上の過熱度にすることで、圧縮行程中の冷媒が常に過熱域となるように調整できる。従って、圧縮機2内での液圧縮を回避することができる。
ヒートポンプ装置1では、圧縮機2の吸入側の冷媒状態を検知する吸入側検知手段16を備え、制御手段17は、吸入側検知手段16の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように圧縮機2の吸入側の冷媒状態を調整可能である。この際、制御手段17は、吸入側検知手段16の出力に基づいて吸入側の冷媒状態を調整する第1制御モードと、吐出側検知手段15の出力に基づいて吐出側の冷媒状態を調整する第2制御モードとを切り替えて実行する。これにより、ヒートポンプ装置1が冷温状態等であっても第1制御モードを実行することで円滑に且つ安定した起動が可能となる。また、起動後に定常運転に移行した際には第2制御モードが実行されるため、吐出側の過熱度を常にプラスに維持することで、液圧縮を防止した安定的な運転が可能となる。
この場合、ヒートポンプ装置1の起動時には第1制御モードを実行し、該第1制御モードの実行中に吐出側検知手段15による検知を行うと共に吐出圧力から算出した飽和温度と圧縮機2の吐出温度が所定の温度差以上となった際に第2制御モードに切り替えるように制御されると、起動運転から定常運転へと円滑に移行しつつ、圧縮機2での液圧縮を防止することができる。
上記では、制御手段17による圧縮機2の吐出側及び吸入側の冷媒状態の調整は、電子膨張弁である絞り膨張器5の開度調整によって行うものとしたが、絞り膨張器5の開度調整と合わせて圧縮機2の回転数を調整することで行ってもよい。そうすると、例えばヒートポンプ装置1の起動時間が短縮可能になる等の利点がある。また、絞り膨張器5が電子膨張弁ではなく、温度膨張弁や圧力膨張弁の場合には自由度の高い開度調整が難しく、その場合には圧縮機2の回転数制御と組み合わせることで、冷媒状態をより円滑に調整することができる。
また、上記では、吸入側検知手段16として、吸入温度検知手段13及び吸入圧力検知手段14を介して圧縮機2の吸入側の冷媒状態を検知するものを例示したが、吸入側検知手段16は、蒸発器4の入口側と出口側の冷媒温度を検知する温度検知手段を介して、これら入口側と出口側の冷媒温度の温度差に基づき、圧縮機2の吸入側の冷媒状態を検知するものであってもよい。
以上のように、本発明に係るヒートポンプ装置は、特有の特性を持った冷媒、すなわち、P-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する特性を持つ冷媒を用いたヒートポンプ装置に有用であり、特に、圧縮行程中の圧縮機内での液圧縮を確実に回避することにより、圧縮機の信頼性を向上するのに適している。
1 ヒートポンプ装置
2 圧縮機
3 凝縮器
4 蒸発器
5 絞り膨張器
6 冷媒配管(接続管)
11 吐出温度検知手段
12 吐出圧力検知手段
13 吸入温度検知手段
14 吸入圧力検知手段
15 吐出側検知手段
16 吸入側検知手段
17 制御手段
2 圧縮機
3 凝縮器
4 蒸発器
5 絞り膨張器
6 冷媒配管(接続管)
11 吐出温度検知手段
12 吐出圧力検知手段
13 吸入温度検知手段
14 吸入圧力検知手段
15 吐出側検知手段
16 吸入側検知手段
17 制御手段
Claims (7)
- 少なくとも圧縮機、凝縮器、絞り膨張器、及び蒸発器を順次接続管で接続して環状の冷媒回路を構成し、前記冷媒回路に封入する冷媒としてP-h線図上での等エントロピー線が低圧側では過熱域にあり、高圧側では飽和ガス線と2点以上の交点若しくは接点を有する特性を持つ冷媒を用い、前記圧縮機の吐出側の冷媒状態を検知する吐出側検知手段と、前記吐出側検知手段の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように前記圧縮機の吐出側の冷媒状態を調整する制御手段とを備えたことを特徴とするヒートポンプ装置。
- 請求項1に記載のヒートポンプ装置において、
前記吐出側検知手段は、前記圧縮機の吐出圧力と吐出温度から前記冷媒状態を検知し、
前記制御手段は、前記吐出圧力から算出した飽和温度と前記圧縮機の吐出温度が所定の温度差以上となるように前記吐出側の冷媒状態を調整することを特徴とするヒートポンプ装置。 - 請求項1又は2に記載のヒートポンプ装置において、
前記圧縮機の吸入側の冷媒状態を検知する吸入側検知手段を備え、
前記制御手段は、前記吸入側検知手段の出力に基づいて圧縮行程中の冷媒が常に過熱域となるように前記圧縮機の吸入側の冷媒状態を調整可能であることを特徴とするヒートポンプ装置。 - 請求項3に記載のヒートポンプ装置において、
前記吸入側検知手段は、前記圧縮機の吸入圧力と吸入温度から前記冷媒状態を検知し、
前記制御手段は、前記吸入圧力から算出した飽和温度と前記圧縮機の吸入温度が所定の温度差以上となるように前記吸入側の冷媒状態を調整することを特徴とするヒートポンプ装置。 - 請求項4に記載のヒートポンプ装置において、
前記制御手段は、前記吸入側検知手段の出力に基づいて前記吸入側の冷媒状態を調整する第1制御モードと、前記吐出側検知手段の出力に基づいて前記吐出側の冷媒状態を調整する第2制御モードとを切り替えて実行することを特徴とするヒートポンプ装置。 - 請求項5に記載のヒートポンプ装置において、
前記制御手段は、当該ヒートポンプ装置の起動時には前記第1制御モードを実行し、該第1制御モードの実行中に前記吐出側検知手段による検知を行うと共に前記吐出圧力から算出した飽和温度と前記圧縮機の吐出温度が所定の温度差以上となった際に前記第2制御モードに切り替えることを特徴とするヒートポンプ装置。 - 請求項1~6のいずれか1項に記載のヒートポンプ装置において、
前記絞り膨張器は膨張弁であり、
前記制御手段は、前記膨張弁の開度の調整、又は、前記膨張弁の開度及び前記圧縮機の回転数の調整により、前記冷媒状態の調整を行うことを特徴とするヒートポンプ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015542602A JP6132028B2 (ja) | 2013-10-18 | 2014-10-10 | ヒートポンプ装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013217384 | 2013-10-18 | ||
JP2013-217384 | 2013-10-18 | ||
JP2014-102650 | 2014-05-16 | ||
JP2014102650 | 2014-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056648A1 true WO2015056648A1 (ja) | 2015-04-23 |
Family
ID=52828092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077217 WO2015056648A1 (ja) | 2013-10-18 | 2014-10-10 | ヒートポンプ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6132028B2 (ja) |
WO (1) | WO2015056648A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016223739A (ja) * | 2015-06-03 | 2016-12-28 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | 冷凍サイクル装置 |
WO2020235043A1 (ja) * | 2019-05-22 | 2020-11-26 | 三菱電機株式会社 | ヒートポンプ装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01247962A (ja) * | 1988-03-29 | 1989-10-03 | Hisaka Works Ltd | ヒートポンプ |
JP2003106610A (ja) * | 2001-09-28 | 2003-04-09 | Daikin Ind Ltd | 冷凍装置 |
JP2007085615A (ja) * | 2005-09-21 | 2007-04-05 | Hitachi Ltd | 熱源装置 |
JP2008057874A (ja) * | 2006-08-31 | 2008-03-13 | Mitsubishi Electric Corp | 冷凍サイクル装置 |
JP2011075275A (ja) * | 2011-01-19 | 2011-04-14 | Mitsubishi Electric Corp | 冷凍空調装置及び冷凍空調装置の制御方法 |
JP2012141070A (ja) * | 2010-12-28 | 2012-07-26 | Panasonic Corp | 冷凍装置 |
JP2012167852A (ja) * | 2011-02-14 | 2012-09-06 | Fuji Electric Co Ltd | ヒートポンプ式蒸気生成装置 |
WO2014017345A1 (ja) * | 2012-07-23 | 2014-01-30 | 三浦工業株式会社 | ヒートポンプ |
-
2014
- 2014-10-10 JP JP2015542602A patent/JP6132028B2/ja active Active
- 2014-10-10 WO PCT/JP2014/077217 patent/WO2015056648A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01247962A (ja) * | 1988-03-29 | 1989-10-03 | Hisaka Works Ltd | ヒートポンプ |
JP2003106610A (ja) * | 2001-09-28 | 2003-04-09 | Daikin Ind Ltd | 冷凍装置 |
JP2007085615A (ja) * | 2005-09-21 | 2007-04-05 | Hitachi Ltd | 熱源装置 |
JP2008057874A (ja) * | 2006-08-31 | 2008-03-13 | Mitsubishi Electric Corp | 冷凍サイクル装置 |
JP2012141070A (ja) * | 2010-12-28 | 2012-07-26 | Panasonic Corp | 冷凍装置 |
JP2011075275A (ja) * | 2011-01-19 | 2011-04-14 | Mitsubishi Electric Corp | 冷凍空調装置及び冷凍空調装置の制御方法 |
JP2012167852A (ja) * | 2011-02-14 | 2012-09-06 | Fuji Electric Co Ltd | ヒートポンプ式蒸気生成装置 |
WO2014017345A1 (ja) * | 2012-07-23 | 2014-01-30 | 三浦工業株式会社 | ヒートポンプ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016223739A (ja) * | 2015-06-03 | 2016-12-28 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | 冷凍サイクル装置 |
WO2020235043A1 (ja) * | 2019-05-22 | 2020-11-26 | 三菱電機株式会社 | ヒートポンプ装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6132028B2 (ja) | 2017-05-24 |
JPWO2015056648A1 (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5042058B2 (ja) | ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置 | |
EP2693136A1 (en) | Expansion valve control device, heat source machine, and expansion valve control method | |
CN108291744B (zh) | 制冷循环装置 | |
JP2011052884A (ja) | 冷凍空調装置 | |
JP6029879B2 (ja) | ヒートポンプ式加熱装置 | |
JP5278452B2 (ja) | 冷凍サイクル装置及びそれを用いた温水暖房装置 | |
JP2005282972A (ja) | 冷凍装置 | |
WO2014091909A1 (ja) | ヒートポンプ式加熱装置 | |
JP5449266B2 (ja) | 冷凍サイクル装置 | |
US20120167604A1 (en) | Refrigeration cycle apparatus | |
US20200400347A1 (en) | Refrigeration apparatus | |
JP6680300B2 (ja) | 排熱回収ヒートポンプ装置 | |
JP6132028B2 (ja) | ヒートポンプ装置 | |
JP2010002173A (ja) | 冷凍装置 | |
WO2015001613A1 (ja) | 冷凍サイクル装置 | |
JP6704512B2 (ja) | 空気調和装置、鉄道車両用空気調和装置および空気調和装置の制御方法 | |
JP2012141070A (ja) | 冷凍装置 | |
JP6548890B2 (ja) | 冷凍サイクルの制御装置、冷凍サイクル、及び冷凍サイクルの制御方法 | |
JP2018021732A (ja) | ヒートポンプ装置及びその制御方法 | |
JP6076583B2 (ja) | ヒートポンプ | |
JP2014214974A (ja) | 加熱システム | |
JP2008190757A (ja) | 冷凍装置 | |
JP2011099571A (ja) | 冷凍サイクル装置及びそれを用いた温水暖房装置 | |
KR101123839B1 (ko) | 반도체 공정용 칠러에 적용되는 전자식 팽창밸브의 제어방법 | |
AU2020244901B2 (en) | Air conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14854441 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015542602 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14854441 Country of ref document: EP Kind code of ref document: A1 |