WO2015056434A1 - 生体信号測定器及び接触状態推定方法 - Google Patents

生体信号測定器及び接触状態推定方法 Download PDF

Info

Publication number
WO2015056434A1
WO2015056434A1 PCT/JP2014/005182 JP2014005182W WO2015056434A1 WO 2015056434 A1 WO2015056434 A1 WO 2015056434A1 JP 2014005182 W JP2014005182 W JP 2014005182W WO 2015056434 A1 WO2015056434 A1 WO 2015056434A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
biological
contact state
change rate
measuring device
Prior art date
Application number
PCT/JP2014/005182
Other languages
English (en)
French (fr)
Inventor
憲彦 御子柴
児玉 敬
岡本 明浩
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2015542517A priority Critical patent/JP6190466B2/ja
Priority to US15/027,845 priority patent/US20160242672A1/en
Priority to DE112014004760.0T priority patent/DE112014004760T5/de
Publication of WO2015056434A1 publication Critical patent/WO2015056434A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • A61B5/0533Measuring galvanic skin response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance

Definitions

  • EDA electrical dermatologic activity
  • SPA skin potential activity
  • SCA skin conductance
  • SPL skin potential level
  • SPR skin potential reflex
  • Skin potential level is a direct current component of skin potential activity (SPA), and this SPL is generally negatively high when arousal level is high (excited) and causes drowsiness, In a relaxed state, SPL tilts in the positive direction.
  • Skin potential reflex is an alternating component of skin potential activity (SPA). SPR occurs frequently even when stimulating, deep breathing, body movement, mental calculation, or thinking due to external environment changes such as pain, touch, hearing, and vision. . The amplitude of SPR is said to have a substantially linear relationship with the intensity of stimulation. These activities are thought to reflect the function of sweating nerve activity, and mental sweating can be qualitatively observed by observing this activity.
  • Electrodermal activity also refers to the electrical properties resulting from biochemical and physiological processes within or on the skin surface.
  • This electrodermal activity (EDA) can be measured using a galvanometer, that is, a constant voltage is applied between two parts on the skin surface, and the current flowing between them is measured. And calculate the electrical conductance.
  • the graph with respect to the time of measurement has two components.
  • a low frequency “tonic” component also referred to as “electrical skin level (“ EDL ”)” and a higher frequency “phase” component (also referred to as “electrical skin response” (also referred to as “EDR”)).
  • EDL electric skin level
  • EDR electric skin response
  • the amplitude of the low frequency component varies widely between individuals and varies slowly over time as the skin adapts to changes in the environment and achieves a homeostatic state.
  • electrodermal activity (EDA) is thought to reflect the human psychological state, and it can be applied to games and personal digital assistants. It has been studied. As described above, it is known that skin electrical activity such as skin conductivity and skin potential change is changed by human emotional activity, and is one of biological signals measured by a so-called “lie detector”. In recent years, electrodermal activity has been studied not only for psychological applications but also for the application of diagnosis and treatment progress judgment for patients with mental illness, and for health equipment (wellness / health care equipment) as an indicator of physical condition management and activity. There are cases of
  • the device described in Patent Document 1 relates to a device for measuring skin conductivity by providing an electrode on a teardrop-shaped box, and is a biometric sensor, that is, stress management and
  • the present invention relates to a biofeedback method and device suitable for use in entertainment.
  • the sensor includes a housing having first and second surfaces, which are suitable electrodes for detecting a biometric signal.
  • the housing has a first surface, a second surface configured to detect an electrodermal signal, and an element such as a processing element or a filter element.
  • the element is in electrical communication with the second surface and is disposed within the housing.
  • the element is configured to filter the electrodermal signal.
  • Patent Document 1 estimates, for example, the slope of each of a plurality of 16 pieces of data from the series of skin conductivity measurement values continuously measured by the least square method, and calculates the slope.
  • the accumulator is increased or decreased accordingly, and when the accumulator exceeds a predetermined threshold, it shifts to a predetermined stress state, thereby continuously monitoring the user's anxiety level without requiring the extraction of specific events.
  • the device described in Patent Document 2 relates to an emotion recognition device that recognizes a user's emotional state by monitoring a biological signal due to electrodermal activity (EDA).
  • EDA electrodermal activity
  • Patent Document 3 a feature amount is calculated by performing frequency analysis or the like from biological information time-series data, and noise is mixed by comparing the calculated feature amount with a reference value that is a standard feature amount. An apparatus for calculating whether or not is being described is described.
  • Each of the devices described in Patent Documents 1 and 2 described above is a biological signal measuring instrument that measures a biological signal by contacting a living body and estimates a state of the living body such as emotion from the measured biological signal.
  • the contact state between the living body and the biological signal measuring device may change according to the movement of the living body.
  • the measurement accuracy of the biological signal decreases. That is, the signal measured by the biological signal measuring device is a signal in which the ratio of the biological signal is low and noise and artifacts are mixed.
  • an error occurs in the estimation of the state of the living body such as emotion.
  • Patent Document 3 calculates a feature amount, calculates a difference from a stored reference feature amount, and determines a contact failure. There was a problem that the change in the contact state with the living body could not be accurately determined.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a biological signal measuring instrument and a contact state estimation method capable of accurately determining a change in contact state with a living body in real time. It is.
  • the following features are characterized. (1); a biological signal measuring device mounted on a living body and measuring a biological signal of the living body, the biological signal measuring unit measuring the biological signal and outputting a first signal corresponding to the biological signal; A time change rate signal output unit that receives the first signal and outputs an n-th order time change rate signal (n is an integer equal to or greater than 1) of the first signal; and based on the n-th order time change rate signal A contact state determination unit that determines a contact state between the biological signal measuring instrument and the living body.
  • an emotion fluctuation estimation unit is further provided for estimating the emotion fluctuation of the living body based on the n-th order time change rate signal.
  • the information variation estimation unit estimates the emotional variation of the living body by comparing the n-th time change rate signal with a first threshold value.
  • the contact failure determination unit changes a contact state between the biological signal measuring instrument and the living body based on the n-th time change rate signal and a negative threshold. It is determined that (5); In any one of (2) to (4), the contact state determination unit determines that the n-th time change rate signal is lower than a negative second threshold value and is higher than a positive third threshold value. It is determined that the contact state between the biological signal measuring instrument and the living body has changed when the increasing change is repeated by a value obtained by applying a floor function of (n + 1) / 2. (6); In any one of (2) to (4), the contact state determination unit determines that the n-th time change rate signal is higher than a positive fourth threshold value and lower than a negative fifth threshold value.
  • the emotion fluctuation estimation unit obtains the data of the n-th time change rate signal of the first time based on the n-th time change rate signal outside the first time. Correct it. (9) In (3), the emotional fluctuation estimation unit changes the first threshold value in accordance with the first signal. (10); In (9), the emotion fluctuation estimation unit changes the first threshold value so that the first threshold value is a monotone function related to an average value of the first signal. (11); In (1), the contact state determination unit determines that the contact state between the biological signal measuring instrument and the living body has changed based on the n-th time change rate signal and a negative threshold value. .
  • the contact state determination unit changes the n-th order time change rate signal to be lower than the negative second threshold and higher than the positive third threshold. Is repeated by a value obtained by applying a floor function of (n + 1) / 2, it is determined that the contact state between the biological signal measuring instrument and the living body has changed. (13); In (1) or (11), the contact state determination unit changes the n-th order time change rate signal higher than a positive fourth threshold and lower than a negative fifth threshold. Is repeated by a value obtained by applying a floor function of (n + 1) / 2, it is determined that the contact state between the biological signal measuring instrument and the living body has changed.
  • the contact state determination unit determines that the contact state has changed, the data of the first signal corresponding to the first time is corrected. And a first data correction unit for generating a second signal.
  • the first data correction unit corrects the data of the first signal at the first time based on the first signal outside the first time.
  • the time change rate signal output unit outputs an m-th order time change rate signal (m is an integer larger than n) of the first signal. Whether the first signal includes a noise signal resulting from a change in the contact state between the biological signal measuring instrument and the living body based on the n-th time changing rate signal and the m-th order time changing rate signal A noise signal determination unit.
  • the noise signal determination unit A signal is included, and it is determined that the noise signal is not included when a ratio of an amplitude of the m-th order time change rate signal to an amplitude of the n-th order time change rate signal is smaller than a seventh threshold.
  • the contact state determination unit determines that the noise signal determination unit includes the noise signal
  • the first state corresponding to the second time is determined. It further has a second data correction unit that corrects the signal data to generate a third signal.
  • the second data correction unit corrects the data of the first signal at the second time based on the first signal outside the second time.
  • the apparatus further includes an emotional fluctuation estimation unit that estimates emotional fluctuations of the living body based on the n-th time change rate signal, and the emotional fluctuation estimation unit includes the noise signal.
  • the determination unit determines that the noise signal is included, the data of the n-th order time change rate signal of the corresponding second time is corrected to generate a third signal, and the third signal Based on this, the emotional fluctuation is estimated.
  • the emotion fluctuation estimation unit obtains data of the n-th time change rate signal of the second time based on the n-th time change rate signal outside the second time. Correct it.
  • the first signal and the n-th time change rate signal are discrete time signals.
  • the biological signal measurement unit measures an electrical physical quantity in at least one electrode configured to contact the skin of the biological body, and the electrical physical quantity It is an electrical physical quantity measurement part which outputs the signal corresponding to 1 as said 1st signal.
  • the biological signal measurement unit measures a pulse wave of the living body from a volume pulse wave sensor, and outputs a signal corresponding to the pulse wave to the first signal. Output as.
  • (25) A contact state estimation method for determining a contact state of a biological signal measuring device that measures a biological signal in contact with a living body, the biological signal is measured, and a first signal corresponding to the biological signal is obtained. Outputting the n-th order time change rate signal (n is an integer of 1 or more) of the first signal, based on the n-th order time change rate signal, the biological signal measuring instrument and the living body. Determining a contact state.
  • (26) A program for executing the contact state estimation method according to (25) by a computer.
  • (27) A computer-readable recording medium on which the program according to (26) is recorded.
  • FIG. 1 is a block diagram for explaining an embodiment of a biological signal measuring instrument according to the present invention.
  • FIG. 2 is a block diagram for explaining Embodiment 1 of the emotional fluctuation estimation apparatus according to the present invention.
  • FIG. 3 is a diagram showing skin conductivity values obtained from the electrical physical quantity measuring unit shown in FIG. 4A and 4B are waveform diagrams of the skin conductivity, the first-order differential signal, and the output of the emotional fluctuation estimation unit.
  • FIG. 5 is a block diagram for explaining an embodiment 2 of the emotion fluctuation estimation apparatus according to the present invention.
  • FIGS. 6A to 6C are waveform diagrams of the skin conductivity, the first-order difference signal, and the second-order difference signal when the contact state between the skin and the electrode becomes instantaneously defective.
  • FIGS. 6A to 6C are waveform diagrams of the skin conductivity, the first-order difference signal, and the second-order difference signal when the contact state between the skin and the electrode becomes instantaneously defective.
  • FIGS. 7A to 7C are waveform diagrams of outputs of the skin conductivity, the first-order differential signal, and the second-order differential signal when the contact state between the skin and the electrode changes.
  • FIGS. 8A to 8C are waveform diagrams of the skin conductivity, the first-order differential signal, and the second-order differential signal when the contact state between the skin and the electrode repeats poor contact with a small amplitude.
  • FIGS. 9A to 9D are waveform diagrams of outputs of the first-order differential signal and the second-order differential signal before and after the correction of the poor contact portion between the skin and the electrode.
  • FIGS. 10A and 10B are waveform diagrams of the skin conductivity, the first-order differential signal, and the output of the emotional fluctuation estimation unit when the skin conductivity increases.
  • FIG. 11 is a block diagram for explaining the fifth embodiment of the emotional fluctuation estimation apparatus according to the present invention.
  • FIGS. 12A to 12C are diagrams for comparing the amplitude difference between the first-order difference and the second-order difference when there is a contact failure and when there is no contact failure.
  • FIG. 13 is a block diagram for explaining the sixth embodiment of the emotion fluctuation estimation apparatus according to the present invention.
  • FIG. 14 is a block diagram for explaining an embodiment 7 of the emotion fluctuation estimation apparatus according to the present invention.
  • FIG. 15 is a diagram illustrating a flowchart for explaining the emotion fluctuation estimation method according to the present invention.
  • FIG. 16 is a diagram showing another flowchart for explaining the emotion fluctuation estimation method according to the present invention.
  • FIG. 17 is a block diagram of a volume pulse wave measuring apparatus that includes a light emitting source and a light receiving element, receives light transmitted through or reflected from a living body by the light receiving element, and obtains a pulse signal from the output of the light receiving element. It is. 18A to 18C are examples of plethysmogram signals including artifact signals due to measured poor contact, and are waveform diagrams illustrating the first-order differential signal and the second-order differential signal together. FIGS. 19A and 19B are diagrams illustrating a specific example of a sensor unit that realizes the above-described embodiments.
  • FIG. 1 is a block diagram for explaining an embodiment of a biological signal measuring instrument according to the present invention.
  • reference numeral 60 is a biological signal measuring device
  • 62 is a biological signal measuring unit
  • 62a is an amplifier
  • 62b is an A / D converter
  • 63 is a processing unit
  • 64 is a time change rate signal output unit
  • 64a is an nth-order differential signal output.
  • Reference numeral 65 denotes an output unit.
  • the biological signal measuring device 60 of the present embodiment is a biological signal measuring device that is mounted on a living body and measures a biological signal of the living body, and includes an amplifier 62a, an A / D converter 62b, a processing unit 63, and an nth-order differential signal output unit 64a. And an output unit 65.
  • the amplifier 62a and the A / D converter 62b constitute a biological signal measuring unit 62 that measures a biological signal from the biological signal sensor 61 and outputs a first signal corresponding to the biological signal.
  • the time change rate signal output unit 64 includes an n-th order differential signal output unit 64a that receives the first signal and outputs an n-th order time change rate signal (n is an integer of 1 or more) of the first signal. .
  • the processing unit 63 functions as a contact state determination unit (first determination unit 21 in FIG. 5) that determines the contact state between the biological signal measuring device 60 and the living body based on the n-th floor time change rate signal.
  • an emotion fluctuation estimation unit (reference numeral 15 in FIG. 5) that estimates the emotion fluctuation of the living body based on the n-th order time change rate signal is further provided.
  • the information fluctuation estimation unit 15 compares the n-th order time change rate signal with the first threshold value to estimate the emotion fluctuation of the living body.
  • the contact state determination unit 21 determines that the contact state between the biological signal measuring device 60 and the living body has changed based on the n-th order time change rate signal and the negative threshold value. In addition, the contact state determination unit 21 applies a floor function of (n + 1) / 2 so that the n-th order time change rate signal is lower than the negative second threshold and higher than the positive third threshold. When the value is repeated, it is determined that the contact state between the biological signal measuring device 60 and the living body has changed. In addition, the contact state determination unit 21 applies a floor function of (n + 1) / 2 so that the n-th floor time change rate signal is higher than the positive fourth threshold and lower than the negative fifth threshold. When the value is repeated, it is determined that the contact state between the biological signal measuring device 60 and the living body has changed.
  • the emotion fluctuation estimation unit 15 corrects the data of the corresponding n-th floor time change rate signal of the first time to generate the second signal. And the emotional fluctuation is estimated based on the second signal. In addition, the emotional fluctuation estimation unit 15 corrects the data of the n-th time change rate signal of the first time based on the n-th time change rate signal outside the first time. Moreover, the emotion fluctuation
  • the contact state determination unit 21 determines that the contact state between the biological signal measuring device 60 and the living body has changed based on the n-th order time change rate signal and the negative threshold value. In addition, the contact state determination unit 21 applies a floor function of (n + 1) / 2 so that the n-th order time change rate signal is lower than the negative second threshold and higher than the positive third threshold. When the value is repeated, it is determined that the contact state between the biological signal measuring device 60 and the living body has changed. In addition, the contact state determination unit 21 applies a floor function of (n + 1) / 2 so that the n-th floor time change rate signal is higher than the positive fourth threshold and lower than the negative fifth threshold. When the value is repeated, it is determined that the contact state between the biological signal measuring device 60 and the living body has changed.
  • the first data correction unit when the contact state determination unit 21 determines that the contact state has changed, the first data correction unit generates a second signal by correcting the data of the first signal corresponding to the first time. 63,15. Further, the first data correction units 63 and 15 correct the data of the first signal at the first time based on the first signal outside the first time.
  • the time change rate signal output unit 64 outputs an m-th order time change rate signal (m is an integer larger than n) of the first signal, and is based on the n-th time change rate signal and the m-th order time change rate signal.
  • the noise signal determination unit 22 determines that a noise signal is included when the ratio of the amplitude of the m-th order time change rate signal to the amplitude of the n-th order time change rate signal is greater than the sixth threshold, and m When the ratio of the amplitude of the floor time change rate signal to the amplitude of the nth time change rate signal is smaller than the seventh threshold, it is determined that no noise signal is included. Further, when the noise signal determination unit 22 determines that the noise signal determination unit 22 includes a noise signal, the contact state determination unit 21 corrects the data of the first signal corresponding to the second time to generate a third signal. A second data correction unit (emotion fluctuation estimation unit in FIG. 5).
  • the second data correction unit 15 corrects the data of the first signal at the second time based on the first signal outside the second time.
  • the emotion variation estimation unit 15 further estimates an emotion variation of the living body based on the n-th order time change rate signal, and the emotion variation estimation unit 15 determines that the noise signal determination unit 22 includes a noise signal.
  • the data of the corresponding second-order n-th order time change rate signal is corrected to generate a third signal, and the emotional fluctuation is estimated based on the third signal.
  • the emotional fluctuation estimation unit 15 corrects the data of the n-th time change rate signal of the second time based on the n-th time change rate signal outside the second time.
  • the first signal and the n-th time change rate signal are discrete time signals.
  • the biological signal measuring unit 62 measures an electrical physical quantity at at least one electrode configured to come into contact with the skin of the living body, and outputs a signal corresponding to the electrical physical quantity as a first signal. Part.
  • the biological signal measuring unit 62 measures the pulse wave of the living body from the volume pulse wave sensors 71a and 71b and outputs a signal corresponding to the pulse wave as the first signal.
  • the contact state estimation method is a contact state estimation method for determining a contact state of a biological signal measuring device 60 that measures a biological signal by contacting a living body. Measuring a biological signal, outputting a first signal corresponding to the biological signal, outputting an n-th order time change rate signal (n is an integer of 1 or more) of the first signal, an n-th order time change rate signal And determining a contact state between the biological signal measuring device 60 and the living body.
  • the computer includes a program for executing the above-described contact state estimation method.
  • a computer-readable recording medium recording the program is also provided.
  • FIG. 2 is a block diagram for explaining Embodiment 1 of the emotional fluctuation estimation apparatus according to the present invention.
  • reference numerals 1a and 1b denote electrodes
  • 10 denotes an emotion fluctuation estimation device
  • 11 denotes a current source
  • 12 denotes an electrical physical quantity measuring unit
  • 12a denotes an amplifier (I / V conversion)
  • 12b denotes an A / D converter
  • 13 denotes data.
  • An accumulation unit 14 is a differential signal output unit
  • 14a is an nth-order differential signal output unit
  • 15 is an emotion fluctuation estimation unit
  • 16 is an output unit.
  • the emotional fluctuation estimation apparatus 10 is an emotional fluctuation estimation apparatus that measures the skin electrical activity of a living body and estimates the fluctuation of the excited state of the living body.
  • the electrical physical quantity measuring unit 12 and the difference signal output unit 14 And an emotion fluctuation estimation unit 15.
  • the emotion fluctuation estimation device 10 is built in a wristband type electronic device or the like worn by a living body.
  • the electrical physical quantity measuring unit 12 measures an electrical physical quantity in at least one electrode 1a, 1b configured to come into contact with the skin of a living body, and outputs a first signal a corresponding to the electrical physical quantity.
  • An amplifier (I / V conversion) 12a and an A / D converter 12b are provided.
  • the electrical physical quantity measurement unit 12 is a biological signal measurement unit that measures a biological signal from a living body and outputs a first signal a corresponding to the biological signal.
  • the differential signal output unit 14 receives data at a plurality of times of the first signal a and outputs an n-th order differential signal (n is an integer of 1 or more; b) of the first signal a.
  • An n-th order differential signal output unit 14a is provided.
  • the n-th order differential signal is an n-th order change rate signal of the first signal a.
  • the n-th order differential signal output unit 14a is a time change rate signal output unit that receives the first signal a and outputs an n-th order time change rate signal of the first signal a.
  • Embodiment 1 performs discrete time signal processing, continuous time signal processing may be performed without an A / D converter.
  • the nth order change rate signal is an nth order differential signal
  • the time change rate signal output unit is an nth order differential signal output unit.
  • the emotional fluctuation estimation unit 15 estimates the emotional fluctuation of the living body based on the nth-order differential signal b from the differential signal output unit 14.
  • the two electrodes 1a and 1b are configured to come into contact with the skin of a living body, and current is supplied from one current source to the one electrode 1a. When the two electrodes 1a and 1b are in contact with the living body skin, this current flows from one electrode 1a to the other electrode 1b through the living body skin. Then, the electrical physical quantity measuring unit 12 measures the electrical physical quantity in the other electrode 1b.
  • the electrical physical quantity is an electrical physical quantity such as conductivity, resistance value, capacitance value, skin potential, and the like.
  • the electrical physical quantity measurement unit 12 performs I / V conversion on the current flowing between the two electrodes 1a and 1b and measures the voltage at the other electrode 1b, and the measured voltage is converted to A / V.
  • an A / D converter 12b that outputs a digital signal which is a corresponding discrete-time signal after D conversion.
  • the digital signal output from the A / D converter 12b is a signal corresponding to the conductivity of the living body when the two electrodes 1a and 1b are in contact with the skin of the living body.
  • the block after the A / D converter 12b can be realized by a logic circuit, or loaded with a program such as a DSP (digital signal processor; microprocessor specializing in processing of sound, images, etc.) and a CPU. It can also be realized by a processor that performs a predetermined operation.
  • the digital signal output from the A / D converter is input to the data storage unit 13 and buffered, and then input to the differential signal output unit 14.
  • the data storage unit 13 can be realized by a known storage circuit such as a register, a RAM, or a cache memory. If the A / D converter 12b or the differential signal output unit 14 has a data storage function, that is, a buffer function, the data storage unit 13 of the first embodiment is not necessary.
  • the differential signal output unit 14 receives data at a plurality of times of the digital signal stored in the data storage unit 13, and the n-th order differential signal output unit 14 a receives an n-th order differential signal (n is 1 or more). Output an integer).
  • the n-th order differential signal is a first-order differential signal, and is a signal obtained from temporally adjacent data.
  • each discrete time signal is not represented by a point graph or bar graph, but is represented by a continuous graph connecting points or vertices of the bar graph.
  • the first-order difference signal is buffered by the data storage unit 13 and then input to the emotion fluctuation estimation unit 15.
  • variation estimation part 15 estimates the emotion fluctuation
  • the output unit 16 is not an essential component for the present invention.
  • the output unit 16 is configured by a buffer, a display, and the like. When the output unit 16 is configured by a display, the emotion variation estimation device 15 can notify the user of emotion change information.
  • FIG. 3 is a diagram showing skin conductivity values obtained from the electrical physical quantity measuring unit shown in FIG.
  • the skin conductivity value ( ⁇ s; micro-Siemens) is composed of a slow fluctuation and a sudden fluctuation. Abrupt fluctuations are referred to as skin conductivity response (SCR) or phase component (Physic), while the basal value of slow fluctuations is the skin conductivity level (SCL) or tonicity. It is called the component (Tonic).
  • SCR means that when the sweat glands of the human skin open, the skin conductivity measurement between the electrodes increases due to the influence of the conductivity of the dermis rather than the epidermis. It is known that an SCR reaction is observed.
  • SCL is said to be related to the state of sweating on the skin surface and the overall state of mental uplift.
  • Human instantaneous emotional fluctuations can be expressed as SCR change values, but the measured skin conductivity is simply observed as the SCR waveform is superimposed on the SCL value as shown in FIG. Based on the magnitude of the conductivity value, the SCR value cannot be extracted.
  • the difference value of the measured values of skin conductivity obtained adjacent in time is calculated, and the difference value is evaluated as SCR. As a result, it is possible to extract only the SCR reaction component without obtaining the SCL baseline level.
  • FIG. 4 (a) and 4 (b) are waveform diagrams of the skin conductivity, the first-order difference signal, and the output of the emotional fluctuation estimation unit
  • FIG. 4 (a) is the skin conductivity
  • FIG. 4 (b) is the first-order difference. It is a figure which shows the output of a signal and an emotion fluctuation
  • the emotion fluctuation estimation unit 15 compares the n-th order difference signal b with the first threshold value and estimates the emotion fluctuation of the living body. That is, the emotional fluctuation estimation unit 15 compares the first-order difference signal with a certain threshold value. If the first-order difference signal is larger than the threshold value, 1 is output. If the first-order difference signal is smaller than the threshold value, 0 is output. Is output.
  • the emotion fluctuation estimation device 10 can detect a fluctuation of an electrical physical quantity such as the skin conductivity of a living body at a high speed, and thus can estimate the emotion fluctuation of the living body at a high speed. .
  • the 1st floor difference value of the skin conductivity measurement value mentioned above was mentioned, even if it calculates
  • One concept of the present invention is to evaluate the n-th order difference (n is a natural number) of skin conductivity and extract a value corresponding to SCR. Information indicating that there is an SCR reaction is determined by the emotion fluctuation estimation unit 15 and output to the outside from the output unit. The output SCR value is used as an index to indicate that the (subject) 's emotional fluctuation has occurred, such as psychological tests, activity activity indices, visual and acoustic stimuli represented by games, etc. It can be used for biofeedback applications.
  • a difference between adjacent measurement values in a continuous skin conductivity measurement value is derived, the difference value is evaluated with a predetermined threshold value, the emotional state of the subject is estimated, and an evaluation value related to the emotional state May be output, or may be output as an evaluation value evaluated with a plurality of threshold values and weighted for each threshold value.
  • FIG. 5 is a block diagram for explaining an embodiment 2 of the emotion fluctuation estimation apparatus according to the present invention.
  • reference numeral 20 denotes an emotion fluctuation estimation device
  • 21 denotes a first determination unit.
  • symbol is attached
  • the emotional fluctuation estimation device 20 of the second embodiment is an emotional fluctuation estimation device that measures the skin electrical activity of a living body and estimates the fluctuation of the excited state of the living body.
  • An emotion fluctuation estimation unit 15 and a first determination unit 21 are provided.
  • the first determination unit 21 determines whether the contact state between the skin and the electrodes 1a and 1b has changed based on the nth-order difference signal b.
  • the emotional fluctuation estimation apparatus 20 of the second embodiment determines whether the contact state between the skin and the electrode has changed in the emotional fluctuation estimation apparatus 10 of the first embodiment described above based on the nth-order difference signal.
  • a first determination unit 21 is further provided. That is, the 1st determination part 21 is a contact state determination part which determines the contact state of a biological signal measuring device and a biological body based on an n-th floor time change rate signal.
  • the first determination unit 21 inputs the first-order difference signal held in the data storage unit 13 and compares the negative second threshold value with the positive third threshold value. Then, when the first-order differential signal changes to be lower than the negative second threshold and higher than the positive third threshold, it is determined that the contact state between the skin and the electrode has changed.
  • FIG. 6 (a) to 6 (c) are waveform diagrams of the output of the skin conductivity, the first-order differential signal, and the second-order differential signal when the contact state between the skin and the electrode becomes instantaneously defective.
  • (A) is skin conductivity
  • FIG.6 (b) is a figure which shows the 1st floor differential signal and the output of an emotion fluctuation
  • FIG.6 (c) is a figure which shows the 2nd floor differential signal and the output of an emotion fluctuation
  • the waveforms of the skin conductivity, the first-order differential signal, and the second-order differential signal when the contact state between the skin and the electrode is instantaneously defective are shown.
  • the first determination unit 21 in the emotion fluctuation estimation device 20 performs a change (n + 1) in which the nth-order differential signal b is lower than the negative second threshold and higher than the positive third threshold. It is determined that the contact state between the skin and the electrodes 1a and 1b has changed when the value obtained by applying a floor function of) / 2 is repeated. Then, the first determination unit 21 outputs this determination result to the emotion fluctuation estimation unit 15.
  • the skin conductivity measurement device (emotional fluctuation estimation device) has a wristwatch shape and is fixed to the wrist with a band
  • the contact between the electrode and the skin does not occur.
  • Situations that result in instantaneous failure occur frequently.
  • the skin conductivity measurement value is observed as if sudden noise is superimposed, as shown in FIG.
  • FIG. 6B shows the result of first-order difference processing performed on this measured value to extract the SCR response.
  • noise is observed as a value larger than the SCR reaction seen in the vicinity of the contact failure between the electrode and the skin.
  • the first-order differential signal changes to negative and changes positively.
  • a signal indicating that the contact state has changed is the first
  • the data is output from the determination unit 21 to the emotion fluctuation estimation unit 15.
  • the signal indicating that the contact state has changed is, for example, 0 when there is no change, and 1 when it has changed.
  • the contact state changed with the 2nd floor difference signal it can also be determined whether the contact state changed with the 2nd floor difference signal.
  • the second-order differential signal changes in the order of negative, positive, and negative. That is, even when the second-order difference signal is used, it is determined that the contact state between the skin and the electrode has changed when the change is lower than the negative second threshold and higher than the positive third threshold. do it.
  • a change in the contact state may be determined by detecting a change that is lower than the negative second threshold, higher than the positive third threshold, and lower than the negative second threshold again.
  • a third-order differential signal when a third-order differential signal is used, if there is a sudden change in the contact state, it changes in the order of negative, positive, negative, and positive.
  • the change to negative and positive change is repeated by floor ⁇ (n + 1) / 2 ⁇ .
  • n is an even number
  • the change to negative and positive is repeated by floor ⁇ (n + 1) / 2 ⁇ and changes to negative. That is, if it is detected that the change lower than the negative second threshold and higher than the positive third threshold is repeated by floor ⁇ (n + 1) / 2 ⁇ , even when the n-th order differential signal is used, A change in contact state can be determined.
  • floor (x) is a floor function for x.
  • FIGS. 7A to 7C are waveform diagrams of the output of the skin conductivity, the first-order differential signal, and the second-order differential signal when the contact state between the skin and the electrode changes
  • FIG. FIG. 7B is a diagram showing the conductivity
  • FIG. 7B is a diagram showing the first-order differential signal and the output of the emotional fluctuation estimation unit
  • FIG. Waveforms of skin conductivity, first floor differential signal, and second floor differential signal from a state of contact (a state where the electrode and skin are in strong contact) to a state where contact is not substantially made (the electrode and skin are in contact) No. or state in which the electrode and skin are weakly in close contact with each other, followed by a state in which the electrode is not in contact for a while (contact is weak), and then a waveform in which the state changes to a state in which contact is made again.
  • the skin conductivity measuring device is attached to the wrist, and the measured value of the skin conductivity measured when the palm is directed upward and when the palm is directed downward, and the first floor difference value, And the second-order difference value.
  • the direction of the palm changes with respect to the direction of gravity, and the skin conductivity measuring device also faces the ground side of the wrist or the opposite side.
  • the contact pressure between the skin and the electrode changes due to the weight of the skin conductivity measuring device, and thus the base value of the skin conductivity changes.
  • a rapid change in value in the positive direction and the negative direction is observed slightly apart in time.
  • pairs of rapid value fluctuations in the positive direction and the negative direction are further observed as two pairs having different order of value fluctuations.
  • Such a situation can also be determined using the first-order difference value or the second-order difference value of the skin conductivity.
  • the change in the contact state may be determined from both the change in the positive direction and the change in the negative direction using two thresholds, or may be determined from one of the changes.
  • the 1st determination part 21 should just determine the change of a contact state by setting either the 2nd threshold value or the 3rd threshold value to 0.
  • the emotional fluctuation estimation unit 15 corrects the data of the corresponding nth-order differential signal at the first time to the second And the emotional fluctuation may be estimated based on the second signal.
  • the emotional fluctuation estimation unit 15 may correct the data of the n-th order differential signal at the first time based on the n-th order differential signal outside the first time.
  • the skin conductivity data or difference value data of the part judged to be poor contact cannot be used for judgment of emotional change. Therefore, it is desirable to correct the skin conductivity data or the difference value data in some form and estimate the emotional fluctuation using the corrected data.
  • There are various methods of correction For example, if the measured value determined to be valid before the period determined to be an artifact due to poor contact is replaced with the measured value for that period, or the contact is poor If estimated, until it is determined that the poor contact state has been resolved, the previously determined measurement value is not updated, or it was determined that the artifact was caused by poor contact or contact variation.
  • Interpolation processing is performed using the measured value determined to be effective after the period determined as the measured value determined to be effective before the period, etc., responsiveness, how to use the skin conductivity measured value, Depending on the usage scene, the above-described method or other various interpolation and correction methods can be applied.
  • the previous data in time may be invalidated.
  • the skin conductivity changes in the positive direction (abnormal contact) ).
  • Such a change is sharper than the skin conductivity change (phasic) associated with human emotional changes, and the difference between adjacent measured values is larger than that of skin conductivity. Therefore, by evaluating with a large threshold value in both the positive direction and the negative direction, it can be distinguished from the change in the measured value due to poor contact.
  • the duration of the Nth order differential value In order to determine contact failure or abnormal contact, it is also useful to evaluate by the duration of the Nth order differential value.
  • the duration of skin conductivity change due to poor contact or abnormal contact is short and shorter than the time when skin conductivity changes due to emotional reaction.
  • the amplitude may be appropriately determined based on a threshold value, and a value equal to or greater than a predetermined amplitude threshold value may be employed.
  • a threshold value e.g., a value equal to or greater than a predetermined amplitude threshold value.
  • the emotion fluctuation estimation apparatus is the same as the emotion fluctuation estimation apparatus 20 according to the second embodiment described above.
  • the first determination unit 21 determines that the nth-order difference signal b is higher than the positive fourth threshold and is negative. It is determined that the contact state between the skin and the electrodes 1a and 1b has changed when a change lower than the fifth threshold is repeated by a value obtained by applying a floor function of (n + 1) / 2.
  • 8 (a) to 8 (c) are waveform diagrams of the skin conductivity, the first-order differential signal, and the second-order differential signal when the contact state between the skin and the electrode repeats poor contact with a small amplitude. 8 (a) is the skin conductivity, FIG.
  • FIG. 8 (b) is the output of the first-order differential signal
  • FIG. 8 (c) is the output of the second-order differential signal. That is, it is a waveform diagram of skin conductivity, first-order differential signal, and second-order differential signal when contact failure is repeated with a small amplitude.
  • the emotional fluctuation estimation unit 15 corrects the data of the corresponding nth-order difference signal b at the first time.
  • the second signal c may be generated, and the emotional fluctuation may be estimated based on the second signal c.
  • the emotional fluctuation estimation unit 15 may correct the data of the n-th order differential signal b at the first time based on the n-th order differential signal b outside the first time.
  • FIGS. 9A to 9D are waveform diagrams of the output of the first-order differential signal and the second-order differential signal before and after the correction of the contact failure portion between the skin and the electrode, and FIG. 9A shows the contact failure.
  • FIG. 9B shows the output of the second-order differential signal before the correction of the poor contact portion and the output of the emotion fluctuation estimation unit, and
  • FIG. 9C shows the contact failure.
  • FIG. 9D is a diagram showing the output of the second-order difference signal after correction of the poor contact portion, and the output of the first-order difference signal after correction of the portion and the output of the emotion fluctuation estimation unit.
  • the third embodiment can also perform data correction as shown in FIGS. 9C and 9D by the same means as in the second embodiment described above.
  • the emotional fluctuation estimation unit 15 in the emotional fluctuation estimation apparatus 10 according to the first embodiment described above changes the first threshold according to the digital signal (first signal). Is. Specifically, the emotional fluctuation estimation unit 15 changes the first threshold value so that the first threshold value is a monotone function related to the average value of the first signal. Information indicating that there was an SCR reaction is output to the outside, but whether or not it is significant as an SCR is evaluated with the first-order difference value at a predetermined threshold, and there is emotional fluctuation during the time exceeding the threshold Is output to the outside as an electrical signal or information. Alternatively, various methods such as outputting a flag in a pulse form when the threshold value is exceeded can be considered. A matter to be noted in this case is the influence of the SCL value on the SCR change value.
  • FIG. 10A and 10B are waveform diagrams of the skin conductivity, the first-order differential signal, and the output of the emotional fluctuation estimation unit when the skin conductivity is increased.
  • FIG. 10A is the skin conductivity
  • 10 (b) is a diagram illustrating the first-order differential signal and the output of the emotional fluctuation estimation unit.
  • the emotion fluctuation estimation unit 15 in the emotion fluctuation estimation device according to the fourth embodiment changes the first threshold according to the first signal a.
  • the emotional fluctuation estimation unit 15 changes the first threshold value so that the first threshold value is a monotone function related to the average value of the first signal a. As can be seen from FIG.
  • the determination threshold for SCR change is preferably changed according to the value of SCL as shown in FIG.
  • the determination threshold is a monotone change with respect to the SCL, but is changed as a non-linear change.
  • the reason is that when the value of SCL is large, in addition to the case where the subject's emotion is in an uplifted state, the subject may be sweating a lot due to the influence of environmental temperature and humidity. In the latter case, even if the SCL shows a large value such as 40 micro-Siemens, there are many cases where the SCR does not change greatly accordingly. Therefore, it is preferable to adjust so that the ratio of the change in the threshold to the SCL is smaller when the SCL is large, whereas the tendency of the SCL dependence change in the threshold when the SCL is small.
  • the threshold value for evaluating the skin conductivity change is preferably variable according to the DC level.
  • the DC level may be a long-term average of measured values, or a representative value of measured values obtained when a phenomenon in which the n-th order difference between adjacent measured values is equal to or less than a predetermined threshold value continues for a certain number of times may be used. .
  • the measured value when the n-th order difference becomes 0 may be selected as the DC level.
  • an emotional state change index is obtained not only by obtaining a difference value of the skin conductivity without obtaining a complicated circuit configuration, but also no emotional change occurs using the difference value.
  • a DC level can be obtained from the value at that time.
  • the measurement value itself for evaluating the change in conductivity may be used as a reference without estimating the DC level.
  • the amount of change in skin conductivity associated with emotional fluctuations is often a small value compared to the DC level of the measured value, and even if the value accompanying the fluctuation is superimposed on the DC level, it is generally DC There is little difference to the level and therefore does not give a large error to the threshold for assessing skin conductivity.
  • the threshold value which evaluates skin conductivity using the value of either of the adjacent measured values for evaluating the change in conductivity, or an average value thereof, and a numerical value derived by another method.
  • the idea of changing the first threshold value according to the first signal a has been described.
  • the value of the n-th order difference value is normalized using a DC level, and the threshold value is It is completely equivalent to not to change.
  • FIG. 11 is a block diagram for explaining the fifth embodiment of the emotional fluctuation estimation apparatus according to the present invention.
  • reference numeral 14b denotes an m-th order differential signal output unit
  • 22 denotes a second determination unit
  • 30 denotes an emotion fluctuation estimation device.
  • symbol is attached
  • the emotional fluctuation estimation apparatus 30 of the fifth embodiment is an emotional fluctuation estimation apparatus that measures the skin electrical activity of a living body and estimates the fluctuation of the excited state of the living body.
  • the electrical physical quantity measuring unit 12 and the difference signal output unit 14 An emotion fluctuation estimation unit 15 and a second determination unit 22 are provided.
  • the differential signal output unit 14 includes an n-th order differential signal output unit 14a and an m-th order differential signal output unit 14b.
  • the m-th order differential signal output unit 14b outputs the m-th order differential signal (m is an integer larger than n; d) of the first signal a to the data storage unit 13, and the m-th order differential signal d is the data storage unit 13 To the second determination unit 22.
  • the n-th order differential signal b and the m-th order differential signal d are input to the second determination unit via the data bus from the data storage unit 13 to the second determination unit 22.
  • the second determination unit 22 Based on the n-th order difference signal b and the m-th order difference signal d, the second determination unit 22 includes a noise signal resulting from a change in the contact state between the electrodes 1a and 1b and the skin. It is a judgment.
  • the second determination unit 22 determines that the noise signal is included when the ratio of the amplitude of the m-th order difference signal d to the amplitude of the n-th order difference signal b is larger than the sixth threshold value.
  • the ratio of the amplitude of the difference signal d to the amplitude of the n-th order difference signal b is in a range smaller than the seventh threshold, it is determined that no noise signal is included.
  • the emotion determination unit 15 determines that the second determination unit 15 includes a noise signal
  • the emotion fluctuation estimation unit 15 corrects the data of the corresponding second-order n-th difference signal b to generate a third signal. e is generated, and emotional fluctuation is estimated based on the third signal e.
  • the second-order difference value When the change in skin conductivity accompanying the change in emotion is evaluated by the second-order difference value, the positive value continues to the negative direction and further to the positive direction, but the amplitude is generally small. This is because the emotional changes that cause changes in skin conductivity are slow changes.
  • the amplitude of the first-order difference value of the variation in skin conductivity is observed to be relatively small.
  • the amplitude is the same as or larger than the amplitude in the case of the first-order difference. Therefore, it is easy to distinguish the fluctuation of the skin conductivity accompanying the fluctuation of emotion.
  • FIGS. 12A to 12C are diagrams for comparing the amplitude difference between the first-order difference and the second-order difference when there is a contact failure and when there is no contact failure. It can be seen that in the artifact due to the change in the contact state, the difference in amplitude between the first-order difference value and the second-order difference value is smaller than the signal change accompanying the emotional change. Similarly, in the artifacts shown in FIGS.
  • the emotion fluctuation estimation unit 15 further receives a signal indicating that the second determination unit includes a noise signal, that is, a signal indicating that the noise determination signal is included from the second determination unit. Then, the data of the n-th order differential signal b corresponding to the second time is corrected to generate the third signal e shown in FIG. 10C, and the emotional fluctuation is estimated based on the third signal e. To do.
  • variation estimation part 15 corrects the data of the n-th order differential signal b of 2nd time based on the n-th order differential signal b outside 2nd time.
  • the skin conductivity data or difference value data of the portion determined to be poor contact cannot be used for the determination of emotional change. Therefore, it is desirable to correct the skin conductivity data or the difference value data in some form and estimate the emotional fluctuation using the corrected data.
  • the previous data in time may be invalidated.
  • the skin conductivity changes in the positive direction.
  • Such a change is sharper than the skin conductivity change (phasic) associated with human emotional changes, and the difference between adjacent measured values is larger than that of skin conductivity. Therefore, by evaluating with a large threshold value in both the positive direction and the negative direction, it can be distinguished from the change in the measured value due to poor contact.
  • data correction as shown in FIGS. 8C and 8D can be performed.
  • FIGS. 12A and 12B are examples in which the peak values p1 and p2 of the first-order difference and the second-order difference having a predetermined width before and after are extracted at a certain time t, and the ratios thereof are calculated. It is.
  • the change in skin conductivity due to the emotional change is slower in the negative direction than the change in the positive direction. Different values may be used depending on the direction.
  • the measurement time interval needs to be a time interval that can capture a sharp change in the positive direction.
  • the change in the positive direction continues for about 1 second or more, and the subsequent negative direction change continues for several seconds.
  • the next positive direction change may occur during the negative direction change.
  • the effective measurement value is calculated from the measurement value without using the adjacent value of the measurement value raw data, and the difference value is obtained from the adjacent effective measurement value.
  • the measured value every second time or every fourth time is evaluated.
  • a method of performing evaluation by performing moving average or block average of the measurement data twice or four times may be considered. Thereby, the required resolution and noise characteristics in the measurement system are relaxed.
  • the measurement value every 50 ms may be evaluated.
  • FIG. 13 is a block diagram for explaining the sixth embodiment of the emotion fluctuation estimation apparatus according to the present invention.
  • symbol is attached
  • the emotional fluctuation estimation device 40 of the sixth embodiment is an emotional fluctuation estimation device that measures the skin electrical activity of a living body and estimates the fluctuation of the excited state of the living body.
  • the electrical physical quantity measuring unit 12 and the difference signal output unit 14 The emotion fluctuation estimation unit 15, the first determination unit 21, and the second determination unit 22 are provided.
  • the first determination unit 21 determines whether the contact state between the skin and the electrodes 1a and 1b has changed based on the nth-order difference signal b.
  • the second determination unit 22 includes a noise signal caused by a change in the contact state between the electrodes 1a and 1b and the skin based on the n-th order difference signal b and the m-th order difference signal d. It is determined whether or not.
  • FIG. 14 is a block diagram for explaining an embodiment 7 of the emotion fluctuation estimation apparatus according to the present invention.
  • the emotional fluctuation estimation apparatus 50 according to the seventh embodiment is an emotional fluctuation estimation apparatus that measures the skin electrical activity of a living body and estimates the fluctuation of the excited state of the living body, and the emotional fluctuation is measured by capacitance measurement due to contact with the skin of the living body. Is detected. Even in this case, it is possible to detect the capacitance variation caused by sweat or the like due to the emotional variation regardless of the baseline variation, and to determine the artifact due to the contact variation state such as poor contact or abnormal contact, and the data. It is requested to be corrected.
  • FIG. 15 is a diagram illustrating a flowchart for explaining the emotion fluctuation estimation method according to the present invention.
  • the emotional fluctuation estimation method of the present invention is an emotional fluctuation estimation method that measures the skin electrical activity of a living body and estimates the fluctuation of the excited state of the living body. First, an electrical physical quantity in at least one electrode 1a, 1b configured to come into contact with the skin of a living body is measured, and a first signal a corresponding to the electrical physical quantity is output (electrical physical quantity measurement step). have.
  • S1, S2 difference signal output step
  • FIG. 16 is a diagram showing another flowchart for explaining the emotion fluctuation estimation method according to the present invention.
  • Another emotional fluctuation estimation method of the present invention is an emotional fluctuation estimation method for measuring a skin electrical activity of a living body and estimating a fluctuation of an excited state of the living body. First, at least one configured to contact the skin of the living body.
  • the electrical physical quantity measuring step S11 is a step of measuring a biological signal and outputting a first signal a corresponding to the biological signal.
  • the difference signal output step S12 is a step of outputting an n-th order time change rate signal (n is an integer of 1 or more) of the first signal a.
  • the emotional fluctuation estimation step estimates the emotional fluctuation of the living body by comparing the nth-order differential signal b with the first threshold value. Moreover, it has determining whether the contact state of skin and electrode 1a, 1b changed based on the n-th floor difference signal b (1st determination step).
  • a 1st determination step is a step which determines the contact state of a biological signal measuring device and a biological body based on an n-th floor time change rate signal.
  • the change in which the n-th order differential signal b is lower than the negative second threshold and higher than the positive third threshold is only a value obtained by applying a floor function of (n + 1) / 2.
  • the first determination step is a value obtained by applying a floor function of (n + 1) / 2 to a change in which the n-th order differential signal b is higher than the positive fourth threshold and lower than the negative fifth threshold. Only when it is repeated, it is determined that the contact state between the skin and the electrodes 1a and 1b has changed.
  • the emotion fluctuation estimation step corrects the data of the corresponding nth-order difference signal b at the first time to obtain the second signal c. It is generated and the emotional fluctuation is estimated based on the second signal c.
  • the emotion fluctuation estimation step corrects the data of the n-th order differential signal b at the first time based on the n-th order differential signal b outside the first time.
  • the emotion fluctuation estimation step changes the first threshold value in accordance with the first signal a. Further, the emotion fluctuation estimation step changes the first threshold value so that the first threshold value is a monotone function related to the average value of the first signal a.
  • the differential signal output step outputs an m-th order differential signal (m is an integer greater than n; d) of the first signal a, and the first signal a is based on the n-th order differential signal b and the m-th order differential signal d. Is determined (second determination step) as to whether or not the signal a includes a noise signal resulting from a change in the contact state between the electrodes 1a and 1b and the skin.
  • This second determination step determines that a noise signal is included when the ratio of the amplitude of the m-th order difference signal d and the amplitude of the n-th order difference signal b is larger than the sixth threshold, and the m-th order difference When the ratio between the amplitude of the signal d and the amplitude of the n-th order differential signal b is smaller than the seventh threshold, it is determined that no noise signal is included.
  • the emotional fluctuation estimation step corrects the data of the corresponding second-order nth-order difference signal b when the second determination step determines that the noise signal is included, and converts the third signal e into the third signal e. It is generated and the emotional fluctuation is estimated based on the third signal e.
  • the emotion fluctuation estimation step corrects the data of the n-th order differential signal b at the second time based on the n-th order differential signal b outside the second time.
  • based on the n-th order difference signal b based on the first determination step for determining whether the contact state between the skin and the electrodes 1a and 1b has changed, on the basis of the n-th order difference signal b and the m-th order difference signal d.
  • a second determination step of determining whether or not the first signal a includes a noise signal resulting from a change in the contact state between the electrodes 1a and 1b and the skin.
  • a program for executing the above-described steps by a computer is provided based on an emotional fluctuation estimation method that measures skin electrical activity of a living body and estimates fluctuations in the excited state of the living body. Further, a computer-readable recording medium in which a program for executing each step described above is recorded is provided.
  • the discrimination of motion artifacts by the methods described in the second, third, and fifth embodiments is performed by attaching a detection device to a living body using an electrical physical quantity measurement or an optical method other than the skin conductivity, and other methods.
  • the present invention can also be applied when measuring biological information.
  • the same method as described above can be applied to the skin resistance value that is the reciprocal of the skin conductivity, but it can also be applied to, for example, measuring the capacitance between the skin and the electrode. it can.
  • the technique of measuring the capacitance between the skin and the electrode is used for skin moisture measurement and determination of contact itself. In this application, the measured value is stable to a DC value.
  • the threshold value for determining the contact state variation by the Nth floor difference value can be set to a value larger than the threshold value for determining the biological signal.
  • the threshold for determining contact failure and the threshold for determining abnormal contact need not be the same.
  • the threshold value changes depending on the type of biological signal to be used, the characteristics and structure of the sensor, and the configuration of the device in which the biological body is attached, and the threshold value should be set as appropriate.
  • FIG. 17 is a block diagram of a plethysmogram measuring apparatus in which light from the light emitting element is transmitted or reflected by the living body and received by the light receiving element, and a pulse signal is obtained from the output of the light receiving element.
  • reference numeral 70 is a volume pulse wave measuring device
  • 71a is a light emitting element
  • 71b is a light receiving element
  • 75 is a driver
  • 72 is a volume pulse wave measuring unit
  • 72a is an amplifier
  • 72b is an A / D converter
  • 73 is a processing unit
  • 74 represents a time change rate signal output unit
  • 74a represents an nth-order differential signal output unit
  • 75 represents an output unit.
  • the transmitted light or the reflected light varies in intensity in synchronization with the heartbeat due to the light absorption characteristics of blood, so that the heartbeat and pulse wave can be detected from the intensity of the light.
  • the pulse signal converted into the time-series signal by the A / D converter 72b is subjected to filter processing and the like by the processing unit 73 and output from the output unit 76, but at the same time, the difference signal is output from the n-th order differential signal output unit 74a. Is calculated and output to the processing unit 73.
  • the processing unit 73 determines whether or not the contact is poor based on the n-th order differential signal. If the contact is poor, the processing unit 73 processes the time series signal and outputs the result.
  • the contents of the processing include invalidating the signal of the poor contact state, replacing the poor contact state portion with data of the same time interval in the past, and when calculating the pulse by the processing unit 73, taking into account the poor contact portion.
  • the pulse rate is calculated, data is not acquired in a state where contact failure or abnormal contact is continuous, and other various processes for reducing the influence of contact failure are performed.
  • FIG. 1 is a block diagram when the biological signal of the present invention is expanded in general.
  • the biological sensor in the figure includes electrocardiogram, myoelectricity, body fat, bioimpedance, and various other than skin conductivity and pulse sensor.
  • the present invention may be applied to other biological sensors.
  • FIGS. 19A and 19B are diagrams illustrating a specific example of a sensor unit that realizes the above-described embodiments.
  • reference numeral 81 denotes an arm band
  • 82 denotes a fixture.
  • symbol is attached
  • It has a wristwatch shape that can be worn on the user's arm or wrist, and is provided with skin conductivity sensors 1a and 1b and optical volume pulse wave sensors 71a and 71b in its main body.
  • the skin conductivity sensor detects a change in skin conductivity
  • the pulse wave sensor detects a change in blood flow due to the pulsation of the heart.
  • the emotional fluctuation estimation device and the emotional fluctuation estimation method according to the embodiment of the present invention particularly relate to a technique for measuring a human skin conductivity fluctuation and estimating the emotional change.
  • Emotional change information can be used for psychological applications, medical applications, health management in the consumer field, and applications such as detecting patient responses related to game content.
  • the thing of the patent document 1 mentioned above uses the least squares method which is a statistical means, and since the fluctuation
  • the emotional fluctuation estimation apparatus and emotional fluctuation estimation method which are one form of the biological signal measuring instrument and the contact state estimation method of this embodiment, detect fluctuations in electrical physical quantities such as skin conductivity at high speed using n-th order differential signals. Therefore, it is possible to estimate the emotional fluctuation of the living body at high speed.
  • the present invention has been described with reference to specific embodiments. However, the present invention is not intended to be limited by these descriptions. From the description of the invention, other embodiments of the invention will be apparent to persons skilled in the art, along with various variations of the disclosed embodiments. Therefore, it is to be understood that the claims encompass these modifications and embodiments that fall within the technical scope and spirit of the present invention.
  • Embodiments of the information fluctuation estimation apparatus and the emotion fluctuation estimation method described above will be described below.
  • An electrical physical quantity measuring unit that measures an electrical physical quantity at at least one electrode configured to contact the skin of a living body and outputs a first signal corresponding to the electrical physical quantity;
  • a differential signal output unit that receives data at a plurality of times of the first signal and outputs an n-th order differential signal (n is an integer of 1 or more) of the first signal;
  • An emotional fluctuation estimation device comprising: an emotional fluctuation estimation unit that estimates emotional fluctuations of the living body based on the nth-order differential signal from the differential signal output unit.
  • the emotional fluctuation estimation unit estimates the emotional fluctuation of the living body by comparing the nth-order differential signal with a first threshold value.
  • the emotional fluctuation estimation apparatus according to Embodiment 1 or 2, further comprising a first determination unit that determines whether the contact state between the skin and the electrode has changed based on the nth-order difference signal.
  • the first determination unit includes: When the n-th order differential signal repeats a change lower than the negative second threshold and higher than the positive third threshold by a value obtained by applying a floor function of (n + 1) / 2, The emotion fluctuation estimation device according to embodiment 3, wherein the contact state with the electrode is determined to have changed.
  • the first determination unit includes: When the n-th order differential signal repeats a change that is higher than the positive fourth threshold and lower than the negative fifth threshold by a value obtained by applying a floor function of (n + 1) / 2, The emotion fluctuation estimation device according to embodiment 3, wherein the contact state with the electrode is determined to have changed.
  • the emotion fluctuation estimation unit When the first determination unit determines that the contact state has changed, the second signal is generated by correcting the data of the n-th order differential signal at the corresponding first time, and the second signal The emotion fluctuation estimation device according to the third, fourth, or fifth embodiment, wherein the emotion fluctuation is estimated based on the above.
  • the differential signal output unit is Outputting an m-th order differential signal (m is an integer greater than n) of the first signal;
  • a second determination unit configured to determine whether the first signal includes a noise signal caused by a change in a contact state between the electrode and the skin based on the n-th order difference signal and the m-th order difference signal;
  • the emotional fluctuation estimation apparatus according to the first or second embodiment.
  • the second determination unit includes: When the ratio of the amplitude of the m-th order differential signal to the amplitude of the n-th order differential signal is greater than a sixth threshold, it is determined that the noise signal is included, and the amplitude of the m-th order differential signal is the n-th order.
  • a seventh threshold value When the ratio of the amplitude of the m-th order differential signal to the amplitude of the n-th order differential signal is greater than a sixth threshold, it is determined that the noise signal is included, and the amplitude of the m-th order differential signal is the n-th order.
  • the emotion fluctuation estimation unit When the second determination unit determines that the noise signal is included, the data of the n-th order differential signal at the corresponding second time is corrected to generate a third signal, and the third signal The emotion fluctuation estimation device according to embodiment 10 or 11, wherein the emotion fluctuation is estimated based on a signal.
  • the emotional fluctuation estimation apparatus according to Embodiment 12, wherein the emotional fluctuation estimation unit corrects the data of the nth floor differential signal at the second time based on the nth floor differential signal outside the second time.
  • Emodiment 20 Measuring an electrical physical quantity at at least one electrode configured to contact the living body skin and outputting a first signal corresponding to the electrical physical quantity; Data at a plurality of times of the first signal is input, and an n-th order differential signal (n is an integer of 1 or more) of the first signal; Estimating the emotional fluctuation of the living body based on the nth-order differential signal.
  • Emodiment 21 Estimating the emotional variation 21.
  • Determining whether the contact state has changed is: When the n-th order differential signal repeats a change lower than the negative second threshold and higher than the positive third threshold by a value obtained by applying a floor function of (n + 1) / 2, The emotion fluctuation estimation method according to embodiment 22, wherein it is determined that the contact state with the electrode has changed.
  • Emodiment 26 Estimating the emotional variation 26. Emotion variation according to embodiment 25, wherein the emotion variation is estimated by correcting data of the n-th difference signal at the first time based on the n-th difference signal outside the first time. Estimation method.
  • Emodiment 27 Estimating the emotional variation The emotional fluctuation estimation method according to embodiment 21, wherein the emotional fluctuation is estimated by changing the first threshold in accordance with the first signal.
  • Emodiment 28 Estimating the emotional variation 28. The emotion variation estimation method according to embodiment 27, wherein the emotion variation is estimated by changing the first threshold so that the first threshold is a monotone function related to an average value of the first signal. .
  • Emodiment 31 Estimating the emotional variation By determining whether or not the noise signal is included, when it is determined that the noise signal is included, the data of the n-th order differential signal at the corresponding second time is corrected and the third signal is corrected. 31. The emotion fluctuation estimation method according to embodiment 29 or 30, wherein a signal is generated and the emotion fluctuation is estimated based on the third signal. [Embodiment 32] Estimating the emotional variation 32. The emotional variation according to embodiment 31, wherein the emotional variation is estimated by correcting the data of the nth-order differential signal at the second time based on the nth-order differential signal outside the second time. Estimation method.
  • Emodiment 35 35. A program for executing the steps according to any one of embodiments 20 to 34 by a computer.
  • Embodiment 36 36. A computer-readable recording medium on which a program for executing each step described in the embodiment 35 is recorded.
  • Electrodes 10, 20, 30, 40, 50 Emotion variation estimation device 11 Current source 12 Electrical physical quantity measuring unit 12a Amplifier (I / V conversion) 12b A / D converter 13 Data storage unit 14 Differential signal output unit 14a nth-order differential signal output unit 14b m-th order differential signal output unit 15 emotion fluctuation estimation unit 16 output unit 60 biological signal measuring device 62 biological signal measuring unit 62a, 72a Amplifiers 62b, 72b A / D converters 63, 73 Processing units 64, 74 Time change rate signal output units 64a, 74a Nth-order differential signal output units 65, 75 Output unit 70 Volume pulse wave measuring device 71a Light emitting element 71b Light receiving element 75 Driver 72 Volume pulse wave measurement unit 81 Arm band 82 Fixing tool

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 本発明は、生体信号測定器及び接触状態推定方法に関する。生体信号測定器(60)は、生体に装着され、生体の生体信号を測定する生体信号測定器で、増幅器(62a)とA/D変換器(62b)と処理部(63)とn階差分信号出力部(64a)と出力部(65)とを備えている。増幅器(62a)とA/D変換器(62b)は、生体信号センサ(61)から生体信号を測定し、生体信号に対応する第1の信号を出力する生体信号測定部(62)を構成している。時間変化率信号出力部(64)は、第1の信号が入力され、第1の信号のn階時間変化率信号(nは1以上の整数)を出力するn階差分信号出力部(64a)を備えている。処理部(63)は、n階時間変化率信号に基づいて、生体信号測定器(60)と生体との接触状態を判定する接触状態判定部として機能する。

Description

生体信号測定器及び接触状態推定方法
 本発明は、生体信号測定器及び接触状態推定方法に関し、より詳細には、生体から皮膚導電率や脈波信号等の生体信号を測定し、生体信号測定器と生体との接触状態を判定する生体信号測定器及び接触状態推定方法に関する。
 従来から、精神活動状態を示すパラメータとして、皮膚電気活動(Electro Dermal Activity;EDA)がある。このEDAは、一般に、エクリン汗腺の活動による電気現象が表皮や汗腺管等の状態によって修飾されて出現すると言われており、発汗現象と深い関わりがある。
 また、この皮膚電気活動(EDA)は、皮膚電位(skin potential activitiy;SPA)と皮膚コンダクタンス(skin conductance activity;SCA)とに大別され、皮膚電位活動(SPA)は、皮膚電位水準(skin potential level;SPL)と皮膚電位反射(skin potential reflex;SPR)に区別される。
 皮膚電位水準(SPL)は、皮膚電位活動(SPA)の直流成分で、このSPLは、一般に、覚醒水準が高いとき(興奮しているとき)は陰性に高い値を示し、眠気を催したり、リラックスした状態ではSPLが陽性方向に傾く。
 皮膚電位反射(SPR)は、皮膚電位活動(SPA)の交流成分で、痛覚,触覚,聴覚,視覚など外部環境変化による刺激や深呼吸・身体の動き、暗算や考え事をしてもSPRが頻発する。SPRの振幅は、刺激の強さとほぼ直線的な関係があると言われている。
 これらの活動は、発汗神経活動の機能を反映していると考えられており、この活動を観測することで精神性発汗を定性的に知ることができる。
 また、皮膚電気活動(EDA)は、皮膚表面内又は皮膚表面上で生物化学的プロセス及び生理的プロセスから生ずる電気的性質を表すものである。そして、この皮膚電気活動(EDA)は、検流計を用いて計測することができ、つまり、皮膚表面上にある2つの部位間に一定電圧を印加し、これらの間を流れる電流を測定することによって動作し、電気コンダクタンスを計算する。この計測の時間に対するグラフは、2つの構成要素を有する。
 すなわち、低周波数の「強壮」(tonic)成分(皮膚電気レベル(「EDL」ともいう)及びそれよりも高い高周波数の「位相」(phasic)成分(皮膚電気応答(「EDR」ともいう)である。低周波数成分の振幅は、個人間で大きく異なり、皮膚が環境における変化に順応して恒常性状態を達成するにしたがって経時的にゆっくりと変動する。高周波数成分は、ストレスが多い状況に対する個人の心理-肉体的反応に相関付けられるのである。このように、皮膚電気活動(EDA)は、人間の心理状態を反映していると考えられており、ゲームや携帯情報端末への応用が研究されている。
 このように、皮膚導電率や皮膚電位変化などの皮膚電気活動は、人間の情動活動により変化することが知られており、いわゆる「うそ発見器」で計測される生体信号の1つである。昨今、皮膚電気活動は、心理学応用以外にも精神疾患の患者の診断、治療の進捗の判断の応用が研究されたり、体調管理や活動量の指標として健康機器(ウェルネス・ヘルスケア機器)に取り込まれるなどの事例がみられる。
 一方、日常生活でのストレスを制御する訓練の用途として、皮膚導電率を利用することは広く応用されている。例えば、米国 Wild Divine, Inc.が販売する、「Journey to Wild Divine」の商品群は、ビデオゲームの遊技者の皮膚導電率と血流脈波を測定し、血流脈波から心拍数を計数し、遊技者の情動変動からストレスの度合いを推定するもので、遊技者の情動変動が収まった状態でないと次の場面に進行できないようにすることで、情動変動を抑える精神訓練を行うような仕組みである(例えば、非特許文献1参照)。この結果、遊技者はストレスを制御することを訓練できる。
 このように、皮膚導電率やその他の生体信号(バイタルサイン)は、ストレスなどの情動変動を抑制する訓練に用いるバイオフィードバック応用として利用されてきたが、これは変動していない状態を検出するということに指標を置いた技術である場合が多い。
 また、例えば、特許文献1に記載のものは、涙滴型の形状の函体に電極を設けて皮膚導電率を測定する装置に関するもので、生物計測(バイオメトリック)センサ、つまり、ストレス管理及び娯楽用途に用いた好適なバイオフィードバック方法及びデバイスに関するものである。このセンサは、第1及び第2面を有する筐体を含み、これらの表面は、生物計測信号を検出するのに適した電極となっている。この筐体は、第1面と、皮膚電気信号を検出するように構成されている第2面と、処理エレメント又はフィルタ・エレメントのようなエレメントとを有する。エレメントは、第2面と電気的に通信しており、筐体内に配置されている。エレメントは皮膚電気信号をフィルタ処理するように構成されている。
 この特許文献1で示されている技術は、連続して測定された一連の皮膚導電率測定値のなかから、例えば、16個の複数データごとにその傾きを最小二乗法で推定し、傾きに応じてアキュムレータを増加もしくは減少させ、アキュムレータが所定の閾値を越えた時点で所定のストレス状態に移行することで、具体的なイベントの抽出を必要とせずにユーザーの不安度を連続的に監視するものである(例えば、特許文献1の段落[0068][0069]参照)。
 また、例えば、特許文献2に記載のものは、皮膚電気活動(EDA)による生体信号もモニタリングしてユーザーの情緒状態を認識する情緒認識装置に関するものである。
 また、例えば、特許文献3には、生体情報時系列データから周波数分析等を行って特徴量を算出し、算出した特徴量と標準的な特徴量である参照値とを比較してノイズが混入しているかどうかを算出する装置が記載されている。
特開2010-518914号公報 特開2004-474号公報 特開平07-059738号公報
http://www.wilddivine.com/complete-programs/journey-to-wild-divine-the-passage-complete-with-iom/
 上述した特許文献1や2に記載のものは、いずれも、生体に接触して生体信号を測定し、測定した生体信号から情動等の生体の状態を推定する生体信号測定器である。
 しかしながら、このように、生体と接触して生体信号を測定する生体信号測定器は、生体の動きに応じて生体と生体信号測定器との接触状態が変化することがある。接触状態が変化すると、生体信号の測定精度が下がる。つまり、生体信号測定器が測定した信号は、生体信号の割合が低くてノイズやアーチファクトが混入した信号となる。このように、接触状態が変化すると、情動等の生体の状態の推定に誤りが生じる。このため、推定誤りを低減したり、測定信号からノイズやアーチファクトを除去するためには、接触状態が変化したことを検出する必要がある。
 また、上述した特許文献3に記載の技術は、特徴量を算出し、記憶してある参照特徴量との差分を算出し、接触不良を判定するため、演算量が多くなるうえに、リアルタイムで精度良く生体との接触状態の変化を判定できないという問題があった。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、リアルタイムで精度良く生体との接触状態の変化を判定できる生体信号測定器及び接触状態推定方法を提供することである。
 本発明の一態様によれば、以下の事項を特徴とする。
 (1);生体に装着され、該生体の生体信号を測定する生体信号測定器であって、前記生体信号を測定し、該生体信号に対応する第1の信号を出力する生体信号測定部と、前記第1の信号が入力され、前記第1の信号のn階時間変化率信号(nは1以上の整数)を出力する時間変化率信号出力部と、前記n階時間変化率信号に基づいて、前記生体信号測定器と前記生体との接触状態を判定する接触状態判定部と、を備えている。
 (2);(1)において、前記n階時間変化率信号に基づいて、前記生体の情動変動を推定する情動変動推定部をさらに備えている。
 (3);(2)において、前記情報変動推定部は、前記n階時間変化率信号と第1の閾値とを比較して前記生体の情動変動を推定する。
 (4);(2)又は(3)において、前記接触不良判定部は、前記n階時間変化率信号と負の閾値とに基づいて、前記生体信号測定器と前記生体との接触状態が変化したと判定する。
 (5);(2)~(4)のいずれかにおいて、前記接触状態判定部は、前記n階時間変化率信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する。
 (6);(2)~(4)のいずれかにおいて、前記接触状態判定部は、前記n階時間変化率信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する。
 (7);(2)~(6)のいずれかにおいて、前記情動変動推定部は、前記接触状態判定部が、接触状態が変化したと判定したときに、対応する第1の時間の前記n階時間変化率信号のデータを修正して第2の信号を生成し、該第2の信号に基づいて前記情動変動を推定する。
 (8);(7)において、前記情動変動推定部は、前記第1の時間外の前記n階時間変化率信号に基づいて、前記第1の時間の前記n階時間変化率信号のデータを修正する。
 (9);(3)において、前記情動変動推定部は、前記第1の信号に応じて、前記第1の閾値を変化させる。
 (10);(9)において、前記情動変動推定部は、前記第1の閾値が、前記第1の信号の平均値に関する単調関数となるように前記第1の閾値を変化させる。
 (11);(1)において、前記接触状態判定部は、前記n階時間変化率信号と負の閾値とに基づいて、前記生体信号測定器と前記生体との接触状態が変化したと判定する。
 (12);(1)又は(11)において、前記接触状態判定部は、前記n階時間変化率信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する。
 (13);(1)又は(11)において、前記接触状態判定部は、前記n階時間変化率信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する。
 (14);(11)~(13)のいずれかにおいて、前記接触状態判定部は、接触状態が変化したと判定したときに、対応する第1の時間の前記第1の信号のデータを修正して第2の信号を生成する第1のデータ修正部をさらに有する。
 (15);(14)において、前記第1のデータ修正部は、前記第1の時間外の前記第1の信号に基づいて、前記第1の時間の前記第1の信号のデータを修正する。
 (16);(1),(12)又は(13)において、前記時間変化率信号出力部は、前記第1の信号のm階時間変化率信号(mはnよりも大きな整数)を出力し、前記n階時間変化率信号と前記m階時間変化率信号に基づいて、前記第1の信号が前記生体信号測定器と前記生体との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定する雑音信号判定部を備えている。
 (17);(16)において、前記雑音信号判定部は、前記m階時間変化率信号の振幅の前記n階時間変化率信号の振幅に対する比が、第6の閾値よりも大きいときに前記雑音信号を含んでいると判定し、前記m階時間変化率信号の振幅の前記n階時間変化率信号の振幅に対する比が、第7の閾値よりも小さいときに前記雑音信号を含んでいないと判定する。
 (18);(16)又は(17)において、前記接触状態判定部は、前記雑音信号判定部が前記雑音信号を含んでいると判定したときに、対応する第2の時間の前記第1の信号のデータを修正して第3の信号を生成する第2のデータ修正部をさらに有する。
 (19);(18)において、前記第2のデータ修正部は、前記第2の時間外の前記第1の信号に基づいて、前記第2の時間の前記第1の信号のデータを修正する。
 (20);(16)又は(17)において、前記n階時間変化率信号に基づいて、前記生体の情動変動を推定する情動変動推定部をさらに備え、前記情動変動推定部は、前記雑音信号判定部が前記雑音信号を含んでいると判定したときに、対応する第2の時間の前記n階時間変化率信号のデータを修正して第3の信号を生成し、該第3の信号に基づいて前記情動変動を推定する。
 (21);(20)において、前記情動変動推定部は、前記第2の時間外の前記n階時間変化率信号に基づいて、前記第2の時間の前記n階時間変化率信号のデータを修正する。
 (22);(1)~(21)のいずれかにおいて、前記第1の信号及び前記n階時間変化率信号は、離散時間信号である。
 (23);(1)~(22)のいずれかにおいて、前記生体信号測定部は、前記生体の皮膚に接触するよう構成された少なくとも1つの電極における電気的物理量を測定し、該電気的物理量に対応する信号を前記第1の信号として出力する電気的物理量測定部である。
 (24);(1)~(22)のいずれかにおいて、前記生体信号測定部は、容積脈波センサから前記生体の脈波を測定し、該脈波に対応する信号を前記第1の信号として出力する。
 (25);生体に接触して生体信号を測定する生体信号測定器の接触状態を判定する接触状態推定方法であって、前記生体信号を測定し、該生体信号に対応する第1の信号を出力すること、前記第1の信号のn階時間変化率信号(nは1以上の整数)を出力すること、前記n階時間変化率信号に基づいて、前記生体信号測定器と前記生体との接触状態を判定すること、を有する。
 (26);コンピュータにより、(25)に記載の接触状態推定方法を実行するためのプログラムである。
 (27);(26)に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明の一態様によれば、リアルタイムで精度良く生体との接触状態の変化を判定できる。
図1は、本発明に係る生体信号測定器の実施形態を説明するためのブロック図である。 図2は、本発明に係る情動変動推定装置の実施形態1を説明するためのブロック図である。 図3は、図2に示した電気的物理量測定部から得られる皮膚導電率値を示す図である。 図4(a),(b)は、皮膚導電率と1階差分信号と情動変動推定部の出力の波形図である。 図5は、本発明に係る情動変動推定装置の実施形態2を説明するためのブロック図である。 図6(a)~(c)は、皮膚と電極との接触状態が瞬時に不良となるようなときの皮膚導電率と1階差分信号と2階差分信号の出力の波形図である。 図7(a)~(c)は、皮膚と電極との接触状態が変化するときの皮膚導電率と1階差分信号と2階差分信号の出力の波形図である。 図8(a)~(c)は、皮膚と電極との接触状態が小さな振幅で接触不良を繰り返したときの皮膚導電率と1階差分信号と2階差分信号の出力の波形図である。 図9(a)~(d)は、皮膚と電極との接触不良部の修正前と修正後の1階差分信号と2階差分信号の出力の波形図である。 図10(a),(b)は、皮膚導電率が増加したときの皮膚導電率と1階差分信号と情動変動推定部の出力の波形図である。 図11は、本発明に係る情動変動推定装置の実施形態5を説明するためのブロック図である。 図12(a)~(c)は、接触不良があるときとないときの1階差分と2階差分との振幅差を比較するための図である。 図13は、本発明に係る情動変動推定装置の実施形態6を説明するためのブロック図である。 図14は、本発明に係る情動変動推定装置の実施形態7を説明するためのブロック図である。 図15は、本発明に係る情動変動推定方法を説明するためのフローチャートを示す図である。 図16は、本発明に係る情動変動推定方法を説明するための他のフローチャートを示す図である。 図17は、発光源と受光素子を備え、発光素子からの光が生体を透過もしくは反射した光を受光素子にて受光し、受光素子の出力から脈拍信号を得る容積脈波測定装置のブロック図である。 図18(a)~(c)は、測定された接触不良によるアーチファクト信号を含む容積脈波信号の例で、1階差分信号と2階差分信号も合わせて例示した波形図である。 図19(a),(b)は、上述した各実施形態を実現するセンサ部の具体例を示す図である。
 以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
 以下、図面を参照して本発明の生体信号測定器及び接触状態推定方法の各実施形態について説明する。なお、各実施形態の説明において、情動変動推定装置を生体信号測定器の例として説明し、情動変動推定方法を接触状態推定方法の例として説明する。つまり、本発明は、情動変動推定装置や情動変動推定方法に限定されるものではない。
 図1は、本発明に係る生体信号測定器の実施形態を説明するためのブロック図である。図中符号60は生体信号測定器、62は生体信号測定部、62aは増幅器、62bはA/D変換器、63は処理部、64は時間変化率信号出力部、64aはn階差分信号出力部、65は出力部を示している。
 本実施形態の生体信号測定器60は、生体に装着され、生体の生体信号を測定する生体信号測定器で、増幅器62aとA/D変換器62bと処理部63とn階差分信号出力部64aと出力部65とを備えている。増幅器62aとA/D変換器62bは、生体信号センサ61から生体信号を測定し、生体信号に対応する第1の信号を出力する生体信号測定部62を構成している。
 時間変化率信号出力部64は、第1の信号が入力され、第1の信号のn階時間変化率信号(nは1以上の整数)を出力するn階差分信号出力部64aを備えている。
 処理部63は、n階時間変化率信号に基づいて、生体信号測定器60と生体との接触状態を判定する接触状態判定部(図5における第1の判定部21)として機能する。
 また、n階時間変化率信号に基づいて、生体の情動変動を推定する情動変動推定部(図5における符号15)をさらに備えている。情報変動推定部15は、n階時間変化率信号と第1の閾値とを比較して前記生体の情動変動を推定する。
 また、接触状態判定部21は、n階時間変化率信号と負の閾値とに基づいて、生体信号測定器60と生体との接触状態が変化したと判定する。
 また、接触状態判定部21は、n階時間変化率信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、生体信号測定器60と生体との接触状態が変化したと判定する。
 また、接触状態判定部21は、n階時間変化率信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、生体信号測定器60と生体との接触状態が変化したと判定する。
 また、情動変動推定部15は、接触状態判定部21が、接触状態が変化したと判定したときに、対応する第1の時間のn階時間変化率信号のデータを修正して第2の信号を生成し、第2の信号に基づいて情動変動を推定する。
 また、情動変動推定部15は、第1の時間外の前記n階時間変化率信号に基づいて、第1の時間のn階時間変化率信号のデータを修正する。
 また、情動変動推定部15は、第1の信号に応じて、第1の閾値を変化させる。また、情動変動推定部15は、第1の閾値が、第1の信号の平均値に関する単調関数となるように第1の閾値を変化させる。
 また、接触状態判定部21は、n階時間変化率信号と負の閾値とに基づいて、生体信号測定器60と生体との接触状態が変化したと判定する。
 また、接触状態判定部21は、n階時間変化率信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、生体信号測定器60と生体との接触状態が変化したと判定する。
 また、接触状態判定部21は、n階時間変化率信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、生体信号測定器60と生体との接触状態が変化したと判定する。
 また、接触状態判定部21は、接触状態が変化したと判定したときに、対応する第1の時間の第1の信号のデータを修正して第2の信号を生成する第1のデータ修正部63,15をさらに有する。
 また、第1のデータ修正部63,15は、第1の時間外の第1の信号に基づいて、第1の時間の第1の信号のデータを修正する。
 また、時間変化率信号出力部64は、第1の信号のm階時間変化率信号(mはnよりも大きな整数)を出力し、n階時間変化率信号とm階時間変化率信号に基づいて、第1の信号が生体信号測定器60と生体との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定する雑音信号判定部(図11における第2の判定部)22を備えている。
 また、雑音信号判定部22は、m階時間変化率信号の振幅のn階時間変化率信号の振幅に対する比が、第6の閾値よりも大きいときに雑音信号を含んでいると判定し、m階時間変化率信号の振幅のn階時間変化率信号の振幅に対する比が、第7の閾値よりも小さいときに雑音信号を含んでいないと判定する。
 また、接触状態判定部21は、雑音信号判定部22が雑音信号を含んでいると判定したときに、対応する第2の時間の第1の信号のデータを修正して第3の信号を生成する第2のデータ修正部(図5における情動変動推定部)15をさらに有する。
 また、第2のデータ修正部15は、第2の時間外の第1の信号に基づいて、第2の時間の第1の信号のデータを修正する。
 また、n階時間変化率信号に基づいて、生体の情動変動を推定する情動変動推定部15をさらに備え、情動変動推定部15は、雑音信号判定部22が雑音信号を含んでいると判定したときに、対応する第2の時間のn階時間変化率信号のデータを修正して第3の信号を生成し、第3の信号に基づいて情動変動を推定する。
 また、情動変動推定部15は、第2の時間外のn階時間変化率信号に基づいて、第2の時間のn階時間変化率信号のデータを修正する。
 また、第1の信号及びn階時間変化率信号は、離散時間信号である。
 また、生体信号測定部62は、生体の皮膚に接触するよう構成された少なくとも1つの電極における電気的物理量を測定し、電気的物理量に対応する信号を第1の信号として出力する電気的物理量測定部である。
 また、生体信号測定部62は、容積脈波センサ71a,71bから生体の脈波を測定し、脈波に対応する信号を第1の信号として出力する。
 本発明に係る接触状態推定方法は、生体に接触して生体信号を測定する生体信号測定器60の接触状態を判定する接触状態推定方法である。
 生体信号を測定し、生体信号に対応する第1の信号を出力すること、第1の信号のn階時間変化率信号(nは1以上の整数)を出力すること、n階時間変化率信号に基づいて、生体信号測定器60と生体との接触状態を判定すること、を有する。
 また、コンピュータにより、上述した接触状態推定方法を実行するためのプログラムを備えている。また、プログラムを記録したコンピュータ読み取り可能な記録媒体を備えている。
〈実施形態1〉
 図2は、本発明に係る情動変動推定装置の実施形態1を説明するためのブロック図である。図中符号1a,1bは電極、10は情動変動推定装置、11は電流源、12は電気的物理量測定部、12aは増幅器(I/V変換)、12bはA/D変換器、13はデータ蓄積部、14は差分信号出力部、14aはn階差分信号出力部、15は情動変動推定部、16は出力部を示している。
 本実施形態1の情動変動推定装置10は、生体の皮膚電気活動を測定し、この生体の興奮状態の変動を推定する情動変動推定装置で、電気的物理量測定部12と差分信号出力部14と情動変動推定部15とを備えている。情動変動推定装置10は、生体が装着するリストバンド型電子機器等に内蔵される。
 電気的物理量測定部12は、生体の皮膚に接触するよう構成された少なくとも1つの電極1a,1bにおける電気的物理量を測定し、この電気的物理量に対応する第1の信号aを出力するもので、増幅器(I/V変換)12aとA/D変換器12bを備えている。
 電気的物理量測定部12は、生体から生体信号を測定し、生体信号に対応する第1の信号aを出力する生体信号測定部である。
 また、差分信号出力部14は、第1の信号aの複数の時刻におけるデータが入力され、第1の信号aのn階差分信号(nは1以上の整数;b)を出力するもので、n階差分信号出力部14aを備えている。ここで、n階差分信号は、第1の信号aのn階変化率信号である。また、n階差分信号出力部14aは、第1の信号aが入力され、第1の信号aのn階時間変化率信号を出力する時間変化率信号出力部である。
 また、第1の信号a及びn階差分信号bは、離散時間信号である。また、n階差分信号bは、第1の信号aにおいて時間的に隣接するデータから得られた信号である。また、n階差分信号bにおける整数n=1である。
 本実施形態1は、離散時間信号処理を行うものであるが、A/D変換器を備えずに、連続時間信号処理を行ってもよい。この場合、n階変化率信号は、n階微分信号となり、時間変化率信号出力部は、n階微分信号出力部となる。以下の各実施形態では、全て離散時間信号処理を行う構成について説明するが、連続時間信号処理を行う構成にしてもよい。
 また、情動変動推定部15は、差分信号出力部14からのn階差分信号bに基づいて、生体の情動変動を推定するものである。
 本実施形態1では、2つの電極1a,1bが生体の皮膚に接触するよう構成されており、一方の電極1aに電流源から電流が供給される。この電流は、2つの電極1a,1bが生体の皮膚に接触している場合、一方の電極1aから生体の皮膚を通じて他方の電極1bに流れる。そして、電気的物理量測定部12は、他方の電極1bにおける電気的物理量を測定する。なお、電気的物理量とは、導電率、抵抗値、容量値、皮膚電位等の電気的な物理量である。
 本実施形態1では、電気的物理量測定部12は、2つの電極1a,1b間に流れる電流をI/V変換し、他方の電極1bにおける電圧を測定する増幅器12と、測定した電圧をA/D変換して対応する離散時間信号であるディジタル信号を出力するA/D変換器12bとで構成されている。ここで、A/D変換器12bが出力するディジタル信号は、2つの電極1a,1bが生体の皮膚に接触している場合、生体の導電率に応じた信号となる。
 A/D変換器12bより後段のブロックは、論理回路で実現することもできるし、DSP(digital signal pocessor;音声や画像などの処理に特化したマイクロプロセッサ)やCPUなどのプログラムをロードして所定の演算を行うプロセッサで実現することもできる。
 また、A/D変換器が出力するディジタル信号は、データ蓄積部13に入力されてバッファされた後に、差分信号出力部14に入力される。データ蓄積部13は、レジスタ、RAM、キャッシュメモリなどの周知の記憶回路で実現できる。なお、A/D変換器12b又は差分信号出力部14がデータ蓄積機能、つまり、バッファ機能を有していれば、本実施形態1のデータ蓄積部13は不要である。
 また、差分信号出力部14は、データ蓄積部13にて蓄積されたディジタル信号の複数の時刻におけるデータが入力され、n階差分信号出力部14aでディジタル信号のn階差分信号(nは1以上の整数)を出力する。本実施形態1では、n階差分信号は、1階差分信号であり、時間的に隣接するデータから得られた信号である。なお、理解しやすいように、以降の図面では、各離散時間信号を点グラフや棒グラフで表記せずに、各点または棒グラフの頂点を結んだ連続的なグラフで表記する。1階差分信号は、データ蓄積部13でバッファされた後に情動変動推定部15へ入力される。
 また、情動変動推定部15は、1階差分信号に基づいて、生体の情動変動を推定する。具体的には、情動変動推定部15は、1階差分信号と閾値とを比較して情動変動を推定する。
 そして、情動変動推定部15は、情動変動の有り無し、情動変動の変化の度合いを推定結果として、出力部16を介して外部へ出力する。なお、出力部16は、本発明に必須の構成要件ではない。出力部16は、バッファやディスプレイなどで構成され、ディスプレイで構成される場合、情動変動推定装置15は、情動変化情報をユーザーに知らせることができる。
 図3は、図2に示した電気的物理量測定部から得られる皮膚導電率値を示す図である。皮膚導電率値(μs;マイクロシーメンス)は、ゆっくりとした変動と、急激な変動とで構成されている。急激な変動は、皮膚導電率反応(SCR;Skin Conductive Reaction)又は位相成分(Phasic)と呼ばれ、一方、ゆっくりとした変動の基底値は、皮膚導電率水準(SCL;Skin Conductive Level)又は強壮成分(Tonic)と呼ばれている。
 SCRは、人体の皮膚の汗腺が開くことにより、表皮ではなく真皮の導電率の影響を受けて電極間の皮膚導電率測定値が高くなることを意味しており、人の情動変動に伴い、SCRの反応がみられることが知られている。一方、SCLは、皮膚表面の発汗状況や、全体的な精神高揚状況などに関連しているといわれている。
 人間の瞬時的な情動変動は、SCRの変化値として表現できるが、皮膚導電率の測定値は、図3に示すように、SCL値にSCR波形が重畳して観測されるために、単に皮膚導電率の値の大きさをもとにしては、SCRの値を抽出することができない。
 本発明においては、時間的に隣接してえられた皮膚導電率の測定値の差分値を演算し、その差分値をSCRとして評価することとした。これにより、SCLの基線レベルを求めずに、SCRの反応分のみを抽出することができる。
 図4(a),(b)は、皮膚導電率と1階差分信号と情動変動推定部の出力の波形図で、図4(a)は皮膚導電率、図4(b)は1階差分信号と情動変動推定部の出力を示す図である。
 情動変動推定部15は、n階差分信号bと第1の閾値とを比較して生体の情動変動を推定するものである。つまり、情動変動推定部15にて、1階差分信号は一定の閾値と比較され、1階差分信号が閾値よりも大きければ、1が出力され、1階差分信号が閾値よりも小さければ、0が出力される。1は、大きな情動変動があったことを示し、0は、情動変動が小さい若しくはないことを示している。
 上述した構成及び動作により、本実施形態1の情動変動推定装置10は、生体の皮膚導電率などの電気的物理量の変動を高速で検出できるため、生体の情動変動を高速で推定することができる。
 なお、上述した皮膚導電率測定値の1階差分値について言及したが、2階差分値をもとめ、それを評価しても、SCLと分離してSCR反応値を抽出できる。本発明の一つの概念としては、皮膚導電率のn階差分(nは自然数)を評価してSCRに相当する値を抽出するということになる。
 また、SCR反応があったとする情報は、情動変動推定部15にて判定され、出力部より外部に出力される。出力されたSCR値は、(被検者)の情動変動があったことを示す指標として運用され、心理試験や、活動の活発度の指標、また、ゲームなどに代表される視覚や音響刺激などに対する反応として利用され、バイオフィードバック用途などに使うことができる。
 さらに、連続した皮膚導電率の測定値において隣接した測定値の差分を導出し、その差分値を所定の閾値で評価して、被検者の情動状態を推定し、情動状態に関連した評価値を出力してもよいし、複数の閾値で評価し、閾値ごとに重みづけをした評価値として出力してもよい。
〈実施形態2〉
 図5は、本発明に係る情動変動推定装置の実施形態2を説明するためのブロック図である。図中符号20は情動変動推定装置、21は第1の判定部を示している。なお、図2と同じ機能を有する構成要素には同一の符号を付してある。
 本実施形態2の情動変動推定装置20は、生体の皮膚電気活動を測定し、この生体の興奮状態の変動を推定する情動変動推定装置で、電気的物理量測定部12と差分信号出力部14と情動変動推定部15と第1の判定部21とを備えている。
 第1の判定部21は、n階差分信号bに基づいて、皮膚と電極1a,1bとの接触状態が変化したかどうかを判定するものである。つまり、本実施形態2の情動変動推定装置20は、上述した実施形態1の情動変動推定装置10において、n階差分信号に基づいて、皮膚と電極との接触状態が変化したかどうかを判定する第1の判定部21をさらに備えたものである。つまり、第1の判定部21は、n階時間変化率信号に基づいて、生体信号測定器と生体との接触状態を判定する接触状態判定部である。
 第1の判定部21は、データ蓄積部13に保持された1階差分信号を入力し、負の第2の閾値と正の第3の閾値とを比較する。そして、1階差分信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化をしたときに、皮膚と電極との接触状態が変化したと判定する。
 図6(a)~(c)は、皮膚と電極との接触状態が瞬時に不良となるようなときの皮膚導電率と1階差分信号と2階差分信号の出力の波形図で、図6(a)は皮膚導電率、図6(b)は1階差分信号と情動変動推定部の出力、図6(c)は2階差分信号と情動変動推定部の出力を示す図である。皮膚と電極との接触状態が瞬時に不良となるようなときの皮膚導電率と1階差分信号と2階差分信号の波形を示している。
 本実施形態2の情動変動推定装置20における第1の判定部21は、n階差分信号bが、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、皮膚と電極1a,1bとの接触状態が変化したと判定する。そして、第1の判定部21は、この判定結果を情動変動推定部15に出力する。
 例えば、皮膚導電率計測装置(情動変動推定装置)が腕時計型の形状で、手首にバンドで固定されている場合などに、歩行時などで腕を動かした場合に、電極と皮膚との接触が瞬時的に不良となるような事態は、頻繁に発生する。そのような時には、皮膚導電率測定値は、図6(a)に示すように、突発的なノイズが重畳したように観測される。この測定値に対して、SCR反応を抽出するために1階差分の処理をした結果が、図6(b)である。これを見てわかるように、1階差分値において、電極と皮膚との接触不良に伴いノイズはその周辺に見らえるSCR反応よりも大きな値として観測される。
 皮膚と電極との間に突発的な接触不良が発生すると、電極間の導電率が低くなる。電極間の導電率が低くなると、1階差分信号は、負へ変化して正に変化する。本実施形態2では、1階差分信号が負の第2の閾値よりも低くなり、正の第3の閾値よりも高くなったときに、接触状態が変化したことを示す信号が、第1の判定部21から情動変動推定部15へ出力される。この接触状態が変化したことを示す信号は、例えば、変化していないときには0であり、変化したときには1である。
 なお、図6(c)に示すように、2階差分信号により、接触状態が変化したかどうかを判定することもできる。皮膚と電極との間に突発的な接触不良が発生すると、2階差分信号は、負、正、負の順に変化する。
 つまり、2階差分信号を用いた場合も、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化をしたときに、皮膚と電極との接触状態が変化したと判定すればよい。なお、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなり再び負の第2の閾値よりも低くなる変化を検出し、接触状態の変化を判定してもよい。
 同様に、図示していないが、3階差分信号を用いた場合、突発的な接触状態の変化があると、負、正、負、正の順に変化する。n階差分信号を用いた場合、負へ変化して正に変化することをfloor{(n+1)/2}だけ繰り返す。さらに、nが偶数の場合、負へ変化して正に変化することをfloor{(n+1)/2}だけ繰り返し、負へ変化する。つまり、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化をfloor{(n+1)/2}だけ繰り返すことを検出すれば、n階差分信号を用いた場合でも、接触状態の変化を判定できる。なお、floor(x)は、xに対する床関数である。
 図7(a)~(c)は、皮膚と電極との接触状態が変化するときの皮膚導電率と1階差分信号と2階差分信号の出力の波形図で、図7(a)は皮膚導電率、図7(b)は1階差分信号と情動変動推定部の出力、図7(c)は2階差分信号と情動変動推定部の出力を示す図である。皮膚導電率と1階差分信号と2階差分信号の波形であり、接触している状態(電極と皮膚が強く密着している状態)から略接触されていない状態(電極と皮膚が接触されていない、または電極と皮膚が弱く密着している状態)へ変化し、しばらく接触されていない状態(接触が弱い)が続いた後に、再び接触している状態へ変化したときの波形である。
 具体的には、手首に皮膚導電率計測装置を装着し、掌を上側に向けたときと、下側に向けたときなどに測定された皮膚導電率の測定値と、その1階差分値、および2階差分値である。
 掌の向きが重力方向に対して変化し、皮膚導電率計測装置も、手首の地表側か、反対側かに向く。このような時は、皮膚導電率測定装置の自重のため皮膚と電極の接触圧が変化し、したがって皮膚導電率の基底値が変化をする。このような接触状態の変化のアーチファクトの場合、皮膚導電率の1階差分では、正方向および負方向への急激な値の変動が、時間的にやや離れて観測される。2階差分値では、正方向及び負方向への急激な値の変動の対が、さらに値の変動の順序の異なる2対として観測される。
 このような状況も、皮膚導電率の1階差分値もしくは2階差分値を用いて判別しうる。n階差分信号を用いる場合、2つの閾値により正方向への変化と負方向への変化の両方から接触状態の変化を判定してもよいし、どちらか一方の変化から判定してもよい。この場合、第1の判定部21が、第2の閾値及び第3の閾値のいずれかを0として、接触状態の変化を判定すればよい。ここで、さらに、情動変動推定部15は、第1の判定部21が、接触状態が変化したと判定したときに、対応する第1の時間のn階差分信号のデータを修正して第2の信号を生成し、第2の信号に基づいて、情動変動を推定してもよい。例えば、情動変動推定部15は、第1の時間外のn階差分信号に基づいて、第1の時間のn階差分信号のデータを修正すればよい。
 接触不良と判断された部分の皮膚導電率データ又は差分値データは、情動変化の判断には利用できない。したがって、何らかの形で皮膚導電率データもしくは差分値データを修正し、その修正されたデータを用いて情動変動の推定を行うのが望ましい。修正の方法は様々なものがあるが、例えば、接触不良によるアーチファクトと判断された期間の以前の有効と判定されている測定値を持って当該期間の測定値を置き換えるとか、接触不良であると推定された場合、接触不良状態が解消されたとの判断がなされるまでの間は、以前の有効と判定された測定値の更新を行わない、または、接触不良もしくは接触変動によるアーチファクトと判断された期間の以前の有効と判定されている測定値と判断された期間以降の有効と判定された測定値を用いて補間処理を行うなどがあり、応答性や、皮膚導電率測定値の利用方法、利用シーンに応じて、上述した方法又はそれ以外の様々な補間、修正方法が適用可能である。
 即時性が要求されない場合は、時間的に前のデータをも無効にすることもよい。皮膚に接触していない状態から接触をする場合や、強く握りしめるとか腕や手首の動きのために電極と皮膚との接触がより強くなる場合、皮膚導電率は正方向に変化をする(異常接触)。このような変化は、人間の情動変動に伴う皮膚導電率変化(phasic)に比べて急峻であり、隣接した測定値の差分値は皮膚導電率の場合に比べて大きい。したがって、正方向、負方向ともに大きな閾値で評価することで接触不良に伴う測定値の変化と区別することができる。
 接触不良や異常接触の判定をするのに、N階差分値の継続時間で評価することも有用である。接触不良や異常接触により皮膚導電率が変化をするその継続時間は短期間であり、情動反応により皮膚導電率が変化をする時間よりも短いので、結果として皮膚導電率のN階差分値の信号は短期間の間に負から正もしくは正から負に変化をする。したがって負の信号もしくは正の信号の継続時間を評価し、所定の閾値よりも短い継続時間の負信号、もしくは正信号のイベントが起こった場合は、接触不良や異常接触であると判断することが可能である。ノイズの影響を避けるために、N階差分信号を評価する際は振幅を適宜閾値で判断し、所定の振幅閾値以上の値を採用するようにしてもよい。
 また、信号の継続時間を評価する方法はさまざまなものがあるが、信号振幅が零であったときから次の零になった時までの区間の時間をアナログもしくはディジタルで(ゼロクロス評価)評価することは簡便である。
〈実施形態3〉
 本実施形態3の情動変動推定装置は、上述した実施形態2の情動変動推定装置20において、第1の判定部21は、n階差分信号bが、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、皮膚と電極1a,1bとの接触状態が変化したと判定するものである。
 図8(a)~(c)は、皮膚と電極との接触状態が小さな振幅で接触不良を繰り返したときの皮膚導電率と1階差分信号と2階差分信号の出力の波形図で、図8(a)は皮膚導電率、図8(b)は1階差分信号の出力、図8(c)は2階差分信号の出力を示す図である。つまり、小さな振幅で接触不良を繰り返したときの皮膚導電率と1階差分信号と2階差分信号の波形図である。
 ここで、さらに、情動変動推定部15は、第1の判定部21が、接触状態が変化したと判定したときに、対応する第1の時間のn階差分信号bのデータを修正して第2の信号cを生成し、第2の信号cに基づいて、情動変動を推定してもよい。例えば、情動変動推定部15は、第1の時間外のn階差分信号bに基づいて、第1の時間のn階差分信号bのデータを修正すればよい。
 図9(a)~(d)は、皮膚と電極との接触不良部の修正前と修正後の1階差分信号と2階差分信号の出力の波形図で、図9(a)は接触不良部の修正前の1階差分信号と情動変動推定部の出力、図9(b)は接触不良部の修正前の2階差分信号と情動変動推定部の出力、図9(c)は接触不良部の修正後の1階差分信号と情動変動推定部の出力、図9(d)は接触不良部の修正後の2階差分信号の出力を示す図である。
 アーチファクトは、接触不良のみならず、手首を曲げるなどの行為により電極と皮膚の接触が強まる場合(異常接触状態)にも発生する。この場合は、まず皮膚導電率の測定値が急激に上昇し、そののちに急激に低下する事象として観測される。信号変化の順序は、接触不良と逆になる。これについても、同様に測定値の1階差分値や2階差分値を用いて適当な閾値で評価することで、異常接触状態の判別が可能であり、また、上述したような修正を適用することができる。また、信号変化の順序、すなわち皮膚導電率の1階差分値の急激な上昇と急激な低下の対が観測されたことで、異常接触を判定できる。2階差分値の場合は、値の急激な上昇と急激な低下、さらに急激な上昇が起こる。このような順序で、振幅のおおきな信号変化が起こった場合に接触不良と判断できる。
 本実施形態3も、上述した実施形態2と同様の手段で、図9(c),(d)のようなデータ修正を行うことができる。
〈実施形態4〉
 本実施形態4の情動変動推定装置は、上述した実施形態1の情動変動推定装置10において、情動変動推定部15が、ディジタル信号(第1の信号)に応じて、第1の閾値を変化させるものである。具体的に、情動変動推定部15は、第1の閾値が第1の信号の平均値に関する単調関数となるように、第1の閾値を変化させる。
 SCR反応があったとする情報は、外部に出力されるが、SCRとして有意であるかどうかは、所定の閾値にて1階差分値を評価し、閾値を越えた時間の間、情動変動があるというフラグを、電気信号もしくは情報として外部に出力する。または、閾値を越えた時点でパルス状にフラグを出力するなど、様々な方法が考えられる。この際に留意しないといけない事項として、SCRの変化値に対するSCLの値の影響である。
 図10(a),(b)は、皮膚導電率が増加したときの皮膚導電率と1階差分信号と情動変動推定部の出力の波形図で、図10(a)は皮膚導電率、図10(b)は1階差分信号と情動変動推定部の出力を示す図である。
 本実施形態4の情動変動推定装置における情動変動推定部15は、第1の信号aに応じて、第1の閾値を変化させるものである。また、情動変動推定部15は、第1の閾値が、第1の信号aの平均値に関する単調関数となるように第1の閾値を変化させるものである。
 図10(b)を見て分かるように、SCLレベルが小さいときにはSCRの変化量も小さく、SCLが大きなときは、SCRの変化量も大きく観測される傾向がある。したがって、SCR変化の判定閾値は、図10(b)のように、SCLの値に応じて変化させることがよい。
 判定閾値は、SCLに対して単調変化だが、非線形な変化として変更される。その理由としては、まずSCLの値が大きいときは、被検者の情動が高揚状態にあるという場合のほかに、環境温度や湿度の影響で被検者が多く汗をかいているという場合もあり、後者の場合は、SCLが40マイクロシーメンスなどという大きな値を示していても、SCRがそれに応じて大きな変化をしない場合も多々見受けられるからである。したがって、SCLが小さな場合の、閾値のSCL依存変化の傾向に対し、SCLが大きな場合は、SCLに対しての閾値の変化の割合がより少なくなるような調整が好ましい。
 皮膚導電率の直流レベル(Tonic)が大きいときは情動変動に伴う皮膚導電率の変化分(Phasic)も大きくなる。したがって、皮膚導電率変化を評価する閾値は、直流レベルに応じて可変にするのがよい。直流レベルは、測定値の長期的な平均をとっても良いが、隣接した測定値のn階差分が所定の閾値以下である現象が一定回数連続した際の測定値の代表値を使用してもよい。n階差分が0となった時点の測定値を直流レベルとして選ぶことでもよい。
 本実施形態4においては、複雑な回路構成をすることなく、皮膚導電率の差分値をもとめることで情動状態の変化の指標を得るのみならず、差分値を用いて情動変動が起きていない状態を推定し、その時の値から直流レベルを得ることができる。
 さらに、直流レベルを推定せずとも、導電率変化を評価するための測定値そのものを基準にしてもよい。情動変動に伴う皮膚導電率の変化量は、測定値の直流レベルに比べて小さな値であることが多く、直流レベルに対して変動に伴う値が重畳していたとしても、大局的には直流レベルに対しての差異はすくなく、したがって、皮膚導電率を評価する閾値に対して大きな誤差を与えない。導電率変化を評価するための隣接した測定値のどちらかの値、もしくはその平均値、さらに他の手法で導出される数値を用いて、皮膚導電率を評価する閾値を適宜変化させればよい。
 上述した実施形態4の説明においては、第1の信号aに応じて、第1の閾値を変化させるという考え方を説明したが、直流レベルを用いてn階差分値の値を規格化し、閾値は変化させないということもまったく等価である。
〈実施形態5〉
 図11は、本発明に係る情動変動推定装置の実施形態5を説明するためのブロック図である。図中符号14bはm階差分信号出力部、22は第2の判定部、30は情動変動推定装置を示している。なお、図2と同じ機能を有する構成要素には同一の符号を付してある。
 本実施形態5の情動変動推定装置30は、生体の皮膚電気活動を測定し、この生体の興奮状態の変動を推定する情動変動推定装置で、電気的物理量測定部12と差分信号出力部14と情動変動推定部15と第2の判定部22とを備えている。
 差分信号出力部14は、n階差分信号出力部14aとm階差分信号出力部14bとから構成されている。
 m階差分信号出力部14bは、第1の信号aのm階差分信号(mはnよりも大きな整数;d)をデータ蓄積部13に出力し、m階差分信号dは、データ蓄積部13から第2の判定部22に入力される。なお、本例では、データ蓄積部13から第2の判定部22へのデータバスにより、n階差分信号bとm階差分信号dが第2の判定部へ入力される。
 第2の判定部22は、n階差分信号bとm階差分信号dに基づいて、第1の信号aが電極1a,1bと皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定するものである。
 また、第2の判定部22は、m階差分信号dの振幅のn階差分信号bの振幅に対する比が、第6の閾値よりも大きいときに雑音信号を含んでいると判定し、m階差分信号dの振幅のn階差分信号bの振幅に対する比が、第7の閾値よりも小さい範囲に存在するときに雑音信号を含んでいないと判定するものである。
 また、情動変動推定部15は、第2の判定部15が雑音信号を含んでいると判定したときに、対応する第2の時間のn階差分信号bのデータを修正して第3の信号eを生成し、この第3の信号eに基づいて情動変動を推定するものである。
 また、情動変動推定部15は、第2の時間外のn階差分信号bに基づいて、第2の時間のn階差分信号bのデータを修正するものである。また、m階差分信号dにおける整数m=2である。
 つまり、本実施形態5の情動変動推定装置30は、上述した実施形態1の情動変動推定装置10において、第2の判定部22を備えており、差分信号出力部14が、さらにディジタル信号のm階差分信号(mはnよりも大きな整数)を出力するようにしたものである。データ蓄積部13は、n階差分信号bとm階差分信号dとを保持し、これら2つの信号を第2の判定部22へ出力する。
 ここで、本実施形態5の情動変動推定装置30において、皮膚と電極との接触状態が小さな振幅で接触不良を繰り返したときの皮膚導電率と1階差分信号(n=1の場合のn階差分信号b)と2階差分信号(m=2の場合のm階差分信号)の出力の波形図は、図8(a)~(c)と同じである。
 情動変化に伴う皮膚導電率の変化を、2階差分値で評価すると、正方向に引き続き負方向、さらに正方向の値となるが、総じてその振幅は小さい。これは、皮膚導電率の変化を起こす情動変化がゆっくりとした変化であることによる。一方、接触不良に伴う皮膚導電率の変動は情動変動によるものに比べて急峻な変動であり、変化状態の継続時間も短い。したがって、接触不良に伴う皮膚導電率の変動を2階差分値で評価すると、振幅は情動変動によるものに比べて大きく観測される。別の見方で言えば、情動変動に伴う皮膚導電率の変化は、1階差分値の振幅に比べ2階差分値の振幅は小さく観測されるが、接触不良に伴う皮膚導電率の変化は、1階差分値の振幅と2階差分値の振幅の差が小さく観察される。また、場合によっては、1階差分値の振幅よりも、2階差分値の振幅の方が大きくなる場合もある。
 これは、皮膚に接触していない状態から接触をする場合や、強く握りしめるとか腕や手首の動きのために電極と皮膚との接触がより強くなる場合、においても同様である。
 さらに、素早く手を回転振動させるような動き(震え)が誘発する接触不良と再接触が反復継続するような状況においては、皮膚導電率の変動の1階差分値の振幅は比較的小さく観測され、情動変動との区別をしにくくなる場合があるが、皮膚導電率の変動の2階差分値を評価してみれば、その振幅が1階差分の場合の振幅と同程度かそれ以上の大きさの振幅であり、したがって情動変動にともなう皮膚導電率の変動との区別をすることが容易となる。
 図12(a)~(c)は、接触不良があるときとないときの1階差分と2階差分との振幅差を比較するための図である。この接触状態の変化によるアーチファクトでは情動変動に伴う信号変化に比べて、1階差分値と2階差分値での振幅の差が少ないことがわかる。図7(a)~(c)に示した、掌を上側に向けたときと、下側に向けたときなどに測定された皮膚導電率の測定値に重畳されるアーチファクトにおいても、同様に、アーチファクト部の1階差分値と2階差分値の振幅の差が、情動変動に伴う信号変化の1階差分値と2階差分値の振幅差に比べて小さいことがわかる。図6(a)に示した突発的な正負連続の接触不良においても同様なことがわかる。
 すなわち、皮膚導電率の測定値の1階微分値と2階微分値の振幅を評価し、振幅の差又は振幅の比をもとに、接触不良や異常接触などの接触状態の変動を判定することが有用である。
 また、情動変動推定部15は、さらに、第2の判定部が雑音信号を含んでいると判定したときに、つまり、雑音信号を含んでいることを示す信号が第2の判定部から入力されると、対応する第2の時間のn階差分信号bのデータを修正して図10(c)に示す第3の信号eを生成し、この第3の信号eに基づいて情動変動を推定する。
 図12(a)に示すように、情動変化に伴う皮膚導電率の変化の1階差分値で評価すると、負方向に引き続き正方向、またはその逆順の変化を示すが、さらに言えば、負方向の変化と正方向の変化の振幅値は、略等しい。これは、接触不良に伴う皮膚導電率の変動は、体動や、歩行などに起因するものが多く、その様な運動の変化の速さが一定値であることを反映している。一方、皮膚導電率の変化を起こす情動変化は、立ち上がりに比べて立下りがゆっくりであり、一階差分値は非対称となる。したがって、隣接した正方向と負方向の信号の対称性を評価することで、接触不良または異常接触を生体信号から判別することが可能になる。上記は、1階差分値に限らず、n階差分値を評価しても同様である。
 また、情動変動推定部15は、第2の時間外のn階差分信号bに基づいて、第2の時間のn階差分信号bのデータを修正する。
 接触不良と判断された部分の皮膚導電率データ又は差分値データは、情動変化の判断には利用できない。したがって、何らかの形で皮膚導電率データもしくは差分値データを修正し、その修正されたデータを用いて情動変動の推定を行うのが望ましい。修正の方法は様々なものがあるが、例えば、接触不良によるアーチファクトと判断された期間の以前の有効と判定されている測定値を持って当該期間の測定値を置き換えるとか、接触不良であると推定された場合、接触不良状態が解消されたとの判断がなされるまでの間は、以前の有効と判定された測定値の更新を行わない、または、接触不良もしくは接触変動によるアーチファクトと判断された期間の以前の有効と判定されている測定値と判断された期間以降の有効と判定された測定値を用いて補間処理を行うなどがあり、応答性や、皮膚導電率測定値の利用方法、利用シーンに応じて、上記述べた方法またはそれ以外の様々な補間、修正方法が適用可能である。
 即時性が要求されない場合は、時間的に前のデータをも無効にすることもよい。皮膚に接触していない状態から接触をする場合や、強く握りしめるとか腕や手首の動きのために電極と皮膚との接触がより強くなる場合、皮膚導電率は正方向に変化をする。このような変化は、人間の情動変動に伴う皮膚導電率変化(phasic)に比べて急峻であり、隣接した測定値の差分値は皮膚導電率の場合に比べて大きい。したがって、正方向、負方向ともに大きな閾値で評価することで接触不良に伴う測定値の変化と区別することができる。本実施形態5も、図8(c),(d)のようなデータ修正ができる。
 なお、図12(a),(b)は、ある時刻tにおいて、前後所定幅の1階差分、2階差分のそれぞれのピーク値p1,p2を抽出し、これらの比を算出したときの例である。
 以上の実施形態5においては、情動変動に伴う皮膚導電率の変化は、正方向への変化に比べて負方向への変化はゆっくりであるので、差分値を評価する閾値は、正方向と負方向で異なる値にすることもよい。なお、図6(a)~(c)に示した接触状態が瞬間的に不良となる場合には、正方向への変化と負方向への変化は共に急峻である。測定の時間間隔は、正方向の急峻な変化をとらえることができる時間間隔である必要がある。正方向への変化は1秒程度以上継続し、引き続く負方向変化は数秒程度継続するが、連続した刺激の場合は負方向変化の途中で次の正方向の変化が発生することがある。また、一般的に刺激から皮膚導電率の反応までは0.5秒程度かそれ以上の時間遅れがある。したがって、実時間で皮膚導電率の変化をとらえるには、少なくとも0.5秒以下の変化を検出できなければならない。
 少なくとも200ms(1秒間に5サンプル)ごと、または100ms(0.5秒間に5サンプル)での測定が望ましい。これよりも早い測定を行い、その平均値などの演算値をもって100msごとに評価することでもよい。
 すなわち、測定値生データの隣接した値を用いずとも、測定値から有効測定値を算出し、隣接した有効測定値から差分値を求めるということである。例えば、50msごとに測定した場合において、連続した測定値間の差分ではなく、2回ごとや4回ごとの測定値を有効データとして評価をすることも可である。さらにその2回又は4回の測定データの移動平均やブロック平均を行って評価する方法などが考えられる。
これにより、測定系における分解能やノイズの要求特性が緩和される。気温、湿度が高い条件ではSCRの反応が起きやすく、またSCLの大きな場合はSCRも大きい傾向がある。このような場合は50msごとの測定値を評価すればよいが、乾燥し足り気温が低い場合、またSCLの小さな被験者の場合などは、2回ごと、4回ごとなどの測定値を評価するという運用ができる。もちろん、測定間隔をSCLの値や環境に応じて変化させる方法を用いても、同様の効果が得られることは言うまでもない。なお、これらの方法は、上記実施形態1にも同様に適用できる。
 上述した有効測定値からは、接触状態の変動に伴うアーチファクトは排除、修正されていることが望ましい。
〈実施形態6〉
 図13は、本発明に係る情動変動推定装置の実施形態6を説明するためのブロック図である。なお、図5及び図11と同じ機能を有する構成要素には同一の符号を付してある。上述した各実施形態において、m階差分信号を出力する差分信号出力部と第1及び第2の判定部を備えるようにしてもよい。
 本実施形態6の情動変動推定装置40は、生体の皮膚電気活動を測定し、この生体の興奮状態の変動を推定する情動変動推定装置で、電気的物理量測定部12と差分信号出力部14と情動変動推定部15と第1の判定部21と第2の判定部22とを備えている。
 第1の判定部21は、n階差分信号bに基づいて、皮膚と電極1a,1bとの接触状態が変化したかどうかを判定するものである。また、第2の判定部22は、n階差分信号bとm階差分信号dに基づいて、第1の信号aが電極1a,1bと皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定するものである。
〈実施形態7〉
 図14は、本発明に係る情動変動推定装置の実施形態7を説明するためのブロック図である。図13と同じ機能を有する構成要素には同一の符号を付してある。
 本実施形態7の情動変動推定装置50は、生体の皮膚電気活動を測定し、この生体の興奮状態の変動を推定する情動変動推定装置で、生体の皮膚に接触による静電容量測定により情動変動を検出するものである。
 この場合においても、汗などによる静電容量の、情動変動に伴う変動を、基線の変動に寄らず検出すること、および接触不良や異常接触などの接触変動状態によるアーチファクトを判定し、そのデータを修正することが要望される。したがって、上記に述べた本発明を適用することで、静電容量測定による情動変動の検出ができる。
 その他、皮膚抵抗、皮膚電位、脈波、脳波、EEGなどの生体信号にかかわる電気物理量の測定に広く応用できることはいうまでもない。
 また、皮膚導電率の測定値に対して、本発明の実施形態を説明してきたが、本発明は、皮膚導電率以外の生体の電気的物理量信号を測定する場合においても適用できるのは言うまでもない。
 図15は、本発明に係る情動変動推定方法を説明するためのフローチャートを示す図である。本発明の情動変動推定方法は、生体の皮膚電気活動を測定し、この生体の興奮状態の変動を推定する情動変動推定方法である。
 まず、生体の皮膚に接触するよう構成された少なくとも1つの電極1a,1bにおける電気的物理量を測定し、この電気的物理量に対応する第1の信号aを出力すること(電気的物理量測定ステップ)を有している。
 次に、第1の信号aの複数の時刻におけるデータが入力され、第1の信号aのn階差分信号(nは1以上の整数;b=Xn)を取得するとともに、第1の信号aのm階差分信号(mはnよりも大きな整数;d=Xm)を取得すること(差分信号出力ステップ(S1,S2))を有している。これは、第1の信号aのn階時間変化率信号を出力するステップである。
 次に、n階差分信号Xnに基づいて、皮膚と電極1a,1bとの接触状態が変化したかどうかを判定するとともに、n階差分信号Xnとm階差分信号Xmに基づいて、第1の信号aが電極1a,1bと皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定すること(判定ステップ(S3))を有している。
 次に、判定ステップS3において、接触不良が発生した場合には、n階差分信号(Xn)を修正すること(修正ステップ(S4))を有している。
 次に、修正ステップS4からの出力に基づいて、生体の情動変動を推定すること(情動変動推定ステップ(S5))を有している。
 なお、接触状態の変化に伴う雑音信号を削除したデータを出力する用途であれば、修正ステップS4で終了してもよい。
 図16は、本発明に係る情動変動推定方法を説明するための他のフローチャートを示す図である。本発明の他の情動変動推定方法は、生体の皮膚電気活動を測定し、該生体の興奮状態の変動を推定する情動変動推定方法で、まず、生体の皮膚に接触するよう構成された少なくとも1つの電極1a,1bにおける電気的物理量を測定し、この電気的物理量に対応する第1の信号aを出力すること(電気的物理量測定ステップ(S11))と、次に、第1の信号aの複数の時刻におけるデータが入力され、第1の信号aのn階差分信号(nは1以上の整数;b)を出力すること(差分信号出力ステップ(S12))と、次に、差分信号出力ステップからのn階差分信号bに基づいて、生体の情動変動を推定すること(情動変動推定ステップ(S13))とを有している。電気的物理量測定ステップS11は、生体信号を測定し、生体信号に対応する第1の信号aを出力するステップである。差分信号出力ステップS12は、第1の信号aのn階時間変化率信号(nは1以上の整数)を出力するステップである。
 また、情動変動推定ステップは、n階差分信号bと第1の閾値とを比較して生体の情動変動を推定するものである。
 また、n階差分信号bに基づいて、皮膚と電極1a,1bとの接触状態が変化したかどうかを判定すること(第1の判定ステップ)を有している。第1の判定ステップは、n階時間変化率信号に基づいて、生体信号測定器と生体との接触状態を判定するステップである。
 電気的物理量測定ステップS11、差分信号出力ステップS12、及び第1の判定ステップを有することで、生体に接触して生体信号を測定する生体信号測定器の接触状態を判定する接触状態推定方法を実現できる。
 この第1の判定ステップは、n階差分信号bが、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、皮膚と電極1a,1bとの接触状態が変化したと判定するものである。
 また、第1の判定ステップは、n階差分信号bが、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、皮膚と電極1a,1bとの接触状態が変化したと判定するものである。
 また、情動変動推定ステップは、第1の判定ステップが、接触状態が変化したと判定したときに、対応する第1の時間のn階差分信号bのデータを修正して第2の信号cを生成し、この第2の信号cに基づいて情動変動を推定するものである。
 また、情動変動推定ステップは、第1の時間外のn階差分信号bに基づいて、第1の時間のn階差分信号bのデータを修正するものである。また、情動変動推定ステップは、第1の信号aに応じて、第1の閾値を変化させるものである。また、情動変動推定ステップは、第1の閾値が、第1の信号aの平均値に関する単調関数となるように第1の閾値を変化させるものである。
 また、差分信号出力ステップは、第1の信号aのm階差分信号(mはnよりも大きな整数;d)を出力し、n階差分信号bとm階差分信号dに基づいて、第1の信号aが電極1a,1bと皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定すること(第2の判定ステップ)を有している。
 この第2の判定ステップは、m階差分信号dの振幅とn階差分信号bの振幅との比が、第6の閾値よりも大きいときに雑音信号を含んでいると判定し、m階差分信号dの振幅とn階差分信号bの振幅との比が、第7の閾値よりも小さいときに雑音信号を含んでいないと判定するものである。
 また、情動変動推定ステップは、第2の判定ステップが雑音信号を含んでいると判定したときに、対応する第2の時間のn階差分信号bのデータを修正して第3の信号eを生成し、この第3の信号eに基づいて情動変動を推定するものである。
 また、情動変動推定ステップは、第2の時間外のn階差分信号bに基づいて、第2の時間のn階差分信号bのデータを修正するものである。
 また、n階差分信号bに基づいて、皮膚と電極1a,1bとの接触状態が変化したかどうかを判定する第1の判定ステップと、n階差分信号bとm階差分信号dに基づいて、第1の信号aが電極1a,1bと皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定する第2の判定ステップとを有している。
 また、生体の皮膚電気活動を測定し、この生体の興奮状態の変動を推定する情動変動推定方法に基づいて、コンピュータにより、上述した各ステップを実行するためのプログラムを備えている。また、上述した各ステップを実行するためのプログラムを記録したコンピュータ読み取り可能な記録媒体を備えている。
 本実施形態2,3,5に述べたような手法によるモーションアーチファクトの判別は、皮膚導電率以外の電気的物理量測定や光学的方法,さらにそれ以外の方法を用いて生体に検知機器を装着して生体情報を計測する場合にも応用が可能である。また、皮膚導電率の逆数である皮膚抵抗値において、上記同様の手法が適用しうるのはもちろんであるが、そのほかにもたとえば、皮膚と電極の間の静電容量を計測する場合においても適用できる。
 皮膚と電極の間の静電容量を測定する手法は、皮膚水分量測定や、接触そのものの判定に利用される。この応用では、測定値のDC的な値に安定している。この場合にも、測定値のN階差分値を用いて、接触が安定であるか、または接触状態が変動しているかを判断することは有用である。そのほかにも、本実施形態を応用して、電極で生体に起因する電気信号や電気的状態を計測する皮膚電位、筋電位、心電位など、また、光学的手法による容積脈波などの測定における、検出素子と皮膚の接触状態変動に起因するアーチファクトの判別と処理を行うことが可能である。
 一般に、生体信号の変化はA/Dコンバーターのデータサンプリングに比べてゆっくりであるので、時系列信号のN階差分値は、生体信号では小さい値を示すのに対し、接触状態変動に起因するアーチファクト信号では大きな値を示す。したがって、N階差分値で接触状態変動を判定する閾値は、生体信号を判定する閾値よりも大きな値を設定することが可能である。また、接触不良を判定する閾値と異常接触を判定する閾値は、同じである必要はない。接触不良が起こる場合は、たとえば生体センサを装着した被験者が歩いたり、運動したりする場合の振動によるものがあり、異常接触は、手を握るなどの生体の動き起因のものがある。その場合、信号の変化を起因する事象の違いから、信号変化速度に差異がある場合がある。このような場合、生体信号のN階差分値において、顕著に信号振幅の差が表れるので、接触不良と異常接触とで、それぞれ判定閾値を変えることができる。また閾値は、使用する生体信号の種類やセンサの特性、構造、またセンサを内包し、生体が装着する機器の構成によって変化するのは自明であり、適宜閾値を設定するのがよい。
 図17は、発光素子からの光が生体を透過もしくは反射した光を受光素子にて受光し、受光素子の出力から脈拍信号を得る容積脈波測定装置のブロック図である。図中符号70は容積脈波測定装置、71aは発光素子、71bは受光素子、75はドライバ、72は容積脈波測定部、72aは増幅器、72bはA/D変換器、73は処理部、74は時間変化率信号出力部、74aはn階差分信号出力部、75は出力部を示している。
 透過光もしくは反射光は、血液の光の吸収特性により、心拍に同期してその強度が変動するために、光の強度から心拍、脈波を検出することができる。
 容積脈波測定装置70は、発光素子71aのドライバ72と増幅器72aとA/D変換器72bと処理部73と出力部74とを備えている。時間変化率信号出力部64は、第1の信号が入力され、第1の信号のn階時間変化率信号(nは1以上の整数)を出力するn階差分信号出力部74aを備えている。
 発光素子71aは、青色、緑色、黄色、赤色、赤外もしくは白色の発光ダイオードや、半導体レーザ、キセノンランプ等が、受光素子71bにはフォトダイオードやフォトトランジスタを用いてもよいし、その他の実用的な素子を用いることができる。
 A/D変換器72bにて時系列信号に変換された脈拍信号は、処理部73でフィルタ処理などをされ、出力部76から出力されるが、同時にn階差分信号出力部74aにて差分信号を計算し、処理部73に出力される。処理部73では、n階差分信号をもとに接触不良状態かどうかを判定し、接触不良状態の場合は、時系列信号に処理をしてから出力するようにする。
 処理の内容は、接触不良状態の信号は無効化するとか、接触不良状態部分を、過去の同時間間隔のデータで置き換えるとか、また脈拍を処理部73で計算する場合は、接触不良部分を加味して脈拍数を演算する、接触不良や異常接触が連続している状態ではデータを取得しないなどであり、その他接触不良による影響を低減する様々な処理が行われる。
 図18(a)~(c)は、測定された接触不良によるアーチファクト信号を含む容積脈波信号の例で、1階差分信号と2階差分信号も合わせて例示した波形図である。1階差分信号と2階差分信号にて、アーチファクト信号の振幅が大きくなり、適当な閾値の設定で判別することが可能であるとわかる。
 上述したように、本発明は様々な生体信号に応用できる。図1は、本発明の生体信号一般に拡張した場合のブロック図であり、図中の生体センサは、皮膚導電率や脈拍センサ以外にも、心電、筋電、体脂肪、生体インピーダンス、その他様々の生体センサに応用しても良い。
 また、複数の生体センサを備えた機器の場合、どれか一つのセンサの信号を用いて、今まで述べた方法により接触性の判断を行うことも可能であり、複数のセンサの信号で接触性の判断を行うことも可能である。
 図19(a),(b)は、上述した各実施形態を実現するセンサ部の具体例を示す図である。図中符号81は腕バンド、82は固定具を示している。なお、図2及び図17と同じ機能を有する構成要素には同一の符号を付してある。
 使用者の腕や手首に装着できるような腕時計型の形状であり、その本体に、皮膚導電率センサ1a,1bと光学方式の容積脈波センサ71a,71bを備えている。
 上述した方法により、皮膚導電率センサは、皮膚導電率の変動を、脈波センサは、心臓の拍動による血流の変動を検出するとともに、その検出した信号のN階差分値から接触状態に関する情報を得ることができる。皮膚導電率センサから得た情報又は脈波センサから得た情報、もしくはその両者を用いて接触状態の判定をすればよい。接触不良もしくは異常接触である状態では、取得したデータを処理して異常なデータを排除する、無効化するなどを行ったり、光源を発光させないことで、消費電流を削減するなどの応用も可能である。
 以上のように、本発明の実施形態に係る情動変動推定装置及び情動変動推定方法は、特に、人間の皮膚導電率の変動を測定し、情動変化を推定するための技術に関するもので、推定した情動変化の情報は、心理学応用、医学的応用、さらには、コンスーマ分野での健康管理や、ゲーム・コンテンツに関する被検者反応を検知するなどの応用に用いることができる。
 なお、上述した特許文献1に記載のものは、統計学的手段である最小二乗法を用いており、生体の皮膚導電率の変動を高速で検出できないため、生体の情動変動を高速で推定できない。特許文献2に記載のものも、特許文献1と同様に生体の皮膚導電率の変動を高速で検出できないため、生体の情動変動を高速で推定できない。
 ところが、本実施形態の生体信号測定器及び接触状態推定方法の一形態である情動変動推定装置及び情動変動推定方法は、n階差分信号により皮膚導電率等の電気的物理量の変動を高速で検出できるため、生体の情動変動を高速で推定できる。
 以上のように、特定の実施形態を参照して本発明を説明したが、これらの説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の他の実施形態も明らかである。従って、特許請求の範囲は、本発明の技術的範囲及び要旨に含まれるこれらの変形例又は実施形態も網羅すると解すべきである。
 上述した情報変動推定装置及び情動変動推定方法の実施態様を以下に記載する。
[実施態様1]
 生体の皮膚に接触するよう構成された少なくとも1つの電極における電気的物理量を測定し、該電気的物理量に対応する第1の信号を出力する電気的物理量測定部と、
 前記第1の信号の複数の時刻におけるデータが入力され、前記第1の信号のn階差分信号(nは1以上の整数)を出力する差分信号出力部と、
 前記差分信号出力部からの前記n階差分信号に基づいて、前記生体の情動変動を推定する情動変動推定部と
 を備えている情動変動推定装置。
[実施態様2]
 前記情動変動推定部は、前記n階差分信号と第1の閾値とを比較して前記生体の情動変動を推定する実施態様1に記載の情動変動推定装置。
[実施態様3]
 前記n階差分信号に基づいて、前記皮膚と前記電極との接触状態が変化したかどうかを判定する第1の判定部を備えている実施態様1又は2に記載の情動変動推定装置。
[実施態様4]
 前記第1の判定部は、
 前記n階差分信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記皮膚と前記電極との接触状態が変化したと判定する実施態様3に記載の情動変動推定装置。
[実施態様5]
 前記第1の判定部は、
 前記n階差分信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記皮膚と前記電極との接触状態が変化したと判定する実施態様3に記載の情動変動推定装置。
[実施態様6]
 前記情動変動推定部は、
 前記第1の判定部が、接触状態が変化したと判定したときに、対応する第1の時間の前記n階差分信号のデータを修正して第2の信号を生成し、該第2の信号に基づいて前記情動変動を推定する実施態様3,4又は5に記載の情動変動推定装置。
[実施態様7]
 前記情動変動推定部は、
 前記第1の時間外の前記n階差分信号に基づいて、前記第1の時間の前記n階差分信号のデータを修正する実施態様6に記載の情動変動推定装置。
[実施態様8]
 前記情動変動推定部は、前記第1の信号に応じて、前記第1の閾値を変化させる実施態様2に記載の情動変動推定装置。
[実施態様9]
 前記情動変動推定部は、
 前記第1の閾値が、前記第1の信号の平均値に関する単調関数となるように前記第1の閾値を変化させる実施態様8に記載の情動変動推定装置。
[実施態様10]
 前記差分信号出力部は、
 前記第1の信号のm階差分信号(mはnよりも大きな整数)を出力し、
 前記n階差分信号と前記m階差分信号に基づいて、前記第1の信号が前記電極と前記皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定する第2の判定部を備えている実施態様1又は2に記載の情動変動推定装置。
[実施態様11]
 前記第2の判定部は、
 前記m階差分信号の振幅の前記n階差分信号の振幅に対する比が、第6の閾値よりも大きいときに前記雑音信号を含んでいると判定し、前記m階差分信号の振幅の前記n階差分信号の振幅に対する比が、第7の閾値よりも小さいときに前記雑音信号を含んでいないと判定する実施態様10に記載の情動変動推定装置。
[実施態様12]
 前記情動変動推定部は、
 前記第2の判定部が前記雑音信号を含んでいると判定したときに、対応する第2の時間の前記n階差分信号のデータを修正して第3の信号を生成し、該第3の信号に基づいて前記情動変動を推定する実施態様10又は11に記載の情動変動推定装置。
[実施態様13]
 前記情動変動推定部は、前記第2の時間外の前記n階差分信号に基づいて、前記第2の時間の前記n階差分信号のデータを修正する実施態様12に記載の情動変動推定装置。
[実施態様14]
 前記n階差分信号に基づいて、前記皮膚と前記電極との接触状態が変化したかどうかを判定する第1の判定部と、
 前記n階差分信号と前記m階差分信号に基づいて、前記第1の信号が前記電極と前記皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定する第2の判定部とを備えている実施態様1又は2に記載の情動変動推定装置。
[実施態様15]
 前記生体の皮膚に接触による静電容量測定により前記情動変動を検出する実施態様14に記載の情動変動推定装置。
[実施態様16]
 前記第1の信号及び前記n階差分信号は、離散時間信号である実施態様1~15のいずれか1項に記載の情動変動推定装置。
[実施態様17]
 前記n階差分信号は、前記第1の信号において時間的に隣接するデータから得られた信号である実施態様1~16のいずれか1項に記載の情動変動推定装置。
[実施態様18]
 前記n階差分信号における整数n=1である実施態様1~17のいずれか1項に記載の情動変動推定装置。
[実施態様19]
 前記m階差分信号における整数m=2である実施態様18に記載の情動変動推定装置。
[実施態様20]
 生体の皮膚に接触するよう構成された少なくとも1つの電極における電気的物理量を測定し、該電気的物理量に対応する第1の信号を出力することと、
 前記第1の信号の複数の時刻におけるデータが入力され、前記第1の信号のn階差分信号(nは1以上の整数)を出力することと、
 前記n階差分信号に基づいて、前記生体の情動変動を推定することと
 を有している情動変動推定方法。
[実施態様21]
 前記情動変動を推定することは、
 前記n階差分信号と第1の閾値とを比較して前記生体の情動変動を推定することである実施態様20に記載の情動変動推定方法。
[実施態様22]
 前記n階差分信号に基づいて、前記皮膚と前記電極との接触状態が変化したかどうかを判定することを有している実施態様20又は21に記載の情動変動推定方法。
[実施態様23]
 前記接触状態が変化したかどうかを判定することは、
 前記n階差分信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記皮膚と前記電極との接触状態が変化したと判定することである実施態様22に記載の情動変動推定方法。
[実施態様24]
 前記接触状態が変化したかどうかを判定することは、
 前記n階差分信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記皮膚と前記電極との接触状態が変化したと判定することである実施態様22に記載の情動変動推定方法。
[実施態様25]
 前記情動変動を推定することは、
 前記接触状態が変化したかどうかを判定することにより、接触状態が変化したと判定されたときに、対応する第1の時間の前記n階差分信号のデータを修正して第2の信号を生成し、該第2の信号に基づいて前記情動変動を推定することである実施態様22,23又は24に記載の情動変動推定方法。
[実施態様26]
 前記情動変動を推定することは、
 前記第1の時間外の前記n階差分信号に基づいて、前記第1の時間の前記n階差分信号のデータを修正して前記情動変動を推定することである実施態様25に記載の情動変動推定方法。
[実施態様27]
 前記情動変動を推定することは、
 前記第1の信号に応じて、前記第1の閾値を変化させて前記情動変動を推定することである実施態様21に記載の情動変動推定方法。
[実施態様28]
 前記情動変動を推定することは、
 前記第1の閾値が、前記第1の信号の平均値に関する単調関数となるように前記第1の閾値を変化させて前記情動変動を推定することである実施態様27に記載の情動変動推定方法。
[実施態様29]
 前記n階差分信号を出力することは、
 前記第1の信号のm階差分信号(mはnよりも大きな整数)を出力し、
 前記n階差分信号と前記m階差分信号に基づいて、前記第1の信号が前記電極と前記皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定することを有している実施態様20又は21に記載の情動変動推定方法。
[実施態様30]
 前記雑音信号を含んでいるかどうかを判定することは、
 前記m階差分信号の振幅の前記n階差分信号の振幅に対する比が、第6の閾値よりも大きいときに前記雑音信号を含んでいると判定し、前記m階差分信号の振幅の前記n階差分信号の振幅に対する比が、第7の閾値よりも小さいときに前記雑音信号を含んでいないと判定することである実施態様29に記載の情動変動推定方法。
[実施態様31]
 前記情動変動を推定することは、
 前記雑音信号を含んでいるかどうかを判定することにより、前記雑音信号が含まれていると判定されたときに、対応する第2の時間の前記n階差分信号のデータを修正して第3の信号を生成し、該第3の信号に基づいて前記情動変動を推定することである実施態様29又は30に記載の情動変動推定方法。
[実施態様32]
 前記情動変動を推定することは、
 前記第2の時間外の前記n階差分信号に基づいて、前記第2の時間の前記n階差分信号のデータを修正して前記情動変動を推定することである実施態様31に記載の情動変動推定方法。
[実施態様33]
 前記n階差分信号に基づいて、前記皮膚と前記電極との接触状態が変化したかどうかを判定することと、
 前記n階差分信号と前記m階差分信号に基づいて、前記第1の信号が前記電極と前記皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定することとを有している実施態様20又は21に記載の情動変動推定方法。
[実施態様34]
 生体の皮膚に接触するよう構成された少なくとも1つの電極における電気的物理量を測定し、該電気的物理量に対応する第1の信号を出力することと、
 前記第1の信号の複数の時刻におけるデータが入力され、前記第1の信号のn階差分信号(nは1以上の整数)を取得するとともに、前記第1の信号のm階差分信号(mはnよりも大きな整数)を取得することと、
 前記n階差分信号に基づいて、前記皮膚と前記電極との接触状態が変化したかどうかを判定するとともに、前記n階差分信号と前記m階差分信号に基づいて、前記第1の信号が前記電極と前記皮膚との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定することと、
 前記差分信号出力ステップからの前記n階差分信号に基づいて、前記生体の情動変動を推定することと、
 前記情動変動を推定することにおいて、接触不良が発生した場合には、前記n階差分信号を修正することと
 を有している情動変動推定方法。
[実施態様35]
 コンピュータにより、実施態様20~34のいずれか1項に記載の各ステップを実行するためのプログラム。
[実施態様36]
 実施態様35に記載の各ステップを実行するためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
1,1a,1b 電極
10,20,30,40、50 情動変動推定装置
11 電流源
12 電気的物理量測定部
12a 増幅器(I/V変換)
12b A/D変換器
13 データ蓄積部
14 差分信号出力部
14a n階差分信号出力部
14b m階差分信号出力部
15 情動変動推定部
16 出力部
60 生体信号測定器
62 生体信号測定部
62a,72a 増幅器
62b,72b A/D変換器
63,73 処理部
64,74 時間変化率信号出力部
64a,74a n階差分信号出力部
65,75 出力部
70 容積脈波測定装置
71a 発光素子
71b 受光素子
75 ドライバ
72 容積脈波測定部
81 腕バンド
82 固定具

Claims (27)

  1.  生体に装着され、該生体の生体信号を測定する生体信号測定器であって、
     前記生体信号を測定し、該生体信号に対応する第1の信号を出力する生体信号測定部と、
     前記第1の信号が入力され、前記第1の信号のn階時間変化率信号(nは1以上の整数)を出力する時間変化率信号出力部と、
     前記n階時間変化率信号に基づいて、前記生体信号測定器と前記生体との接触状態を判定する接触状態判定部と、
     を備えている生体信号測定器。
  2.  前記n階時間変化率信号に基づいて、前記生体の情動変動を推定する情動変動推定部をさらに備えている請求項1に記載の生体信号測定器。
  3.  前記情報変動推定部は、
     前記n階時間変化率信号と第1の閾値とを比較して前記生体の情動変動を推定する請求項2に記載の生体信号測定器。
  4.  前記接触状態判定部は、
     前記n階時間変化率信号と負の閾値とに基づいて、前記生体信号測定器と前記生体との接触状態が変化したと判定する請求項2又は3に記載の生体信号測定器。
  5.  前記接触状態判定部は、
     前記n階時間変化率信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する請求項2~4のいずれか1項に記載の生体信号測定器。
  6.  前記接触状態判定部は、
     前記n階時間変化率信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する請求項2~4のいずれか1項に記載の生体信号測定器。
  7.  前記情動変動推定部は、
     前記接触状態判定部が、接触状態が変化したと判定したときに、対応する第1の時間の前記n階時間変化率信号のデータを修正して第2の信号を生成し、該第2の信号に基づいて前記情動変動を推定する請求項2~6のいずれか1項に記載の生体信号測定器。
  8.  前記情動変動推定部は、
     前記第1の時間外の前記n階時間変化率信号に基づいて、前記第1の時間の前記n階時間変化率信号のデータを修正する請求項7に記載の生体信号測定器。
  9.  前記情動変動推定部は、
     前記第1の信号に応じて、前記第1の閾値を変化させる請求項3に記載の生体信号測定器。
  10.  前記情動変動推定部は、
     前記第1の閾値が、前記第1の信号の平均値に関する単調関数となるように前記第1の閾値を変化させる請求項9に記載の生体信号測定器。
  11.  前記接触状態判定部は、
     前記n階時間変化率信号と負の閾値とに基づいて、前記生体信号測定器と前記生体との接触状態が変化したと判定する請求項1に記載の生体信号測定器。
  12.  前記接触状態判定部は、
     前記n階時間変化率信号が、負の第2の閾値よりも低くなり正の第3の閾値よりも高くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する請求項1又は11に記載の生体信号測定器。
  13.  前記接触状態判定部は、
     前記n階時間変化率信号が、正の第4の閾値よりも高くなり負の第5の閾値よりも低くなる変化を(n+1)/2の床関数を施した値だけ繰り返したときに、前記生体信号測定器と前記生体との接触状態が変化したと判定する請求項1又は11に記載の生体信号測定器。
  14.  前記接触状態判定部は、
     接触状態が変化したと判定したときに、対応する第1の時間の前記第1の信号のデータを修正して第2の信号を生成する第1のデータ修正部をさらに有する請求項11~13のいずれか1項に記載の生体信号測定器。
  15.  前記第1のデータ修正部は、
     前記第1の時間外の前記第1の信号に基づいて、前記第1の時間の前記第1の信号のデータを修正する請求項14に記載の生体信号測定器。
  16.  前記時間変化率信号出力部は、
     前記第1の信号のm階時間変化率信号(mはnよりも大きな整数)を出力し、前記n階時間変化率信号と前記m階時間変化率信号に基づいて、前記第1の信号が前記生体信号測定器と前記生体との接触状態の変化に起因する雑音信号を含んでいるかどうかを判定する雑音信号判定部を備えている請求項1,12又は13に記載の生体信号測定器。
  17.  前記雑音信号判定部は、
     前記m階時間変化率信号の振幅の前記n階時間変化率信号の振幅に対する比が、第6の閾値よりも大きいときに前記雑音信号を含んでいると判定し、前記m階時間変化率信号の振幅の前記n階時間変化率信号の振幅に対する比が、第7の閾値よりも小さいときに前記雑音信号を含んでいないと判定する請求項16に記載の生体信号測定器。
  18.  前記接触状態判定部は、
     前記雑音信号判定部が前記雑音信号を含んでいると判定したときに、対応する第2の時間の前記第1の信号のデータを修正して第3の信号を生成する第2のデータ修正部をさらに有する請求項16又は17に記載の生体信号測定器。
  19.  前記第2のデータ修正部は、
     前記第2の時間外の前記第1の信号に基づいて、前記第2の時間の前記第1の信号のデータを修正する請求項18に記載の生体信号測定器。
  20.  前記n階時間変化率信号に基づいて、前記生体の情動変動を推定する情動変動推定部をさらに備え、
     前記情動変動推定部は、
     前記雑音信号判定部が前記雑音信号を含んでいると判定したときに、対応する第2の時間の前記n階時間変化率信号のデータを修正して第3の信号を生成し、該第3の信号に基づいて前記情動変動を推定する請求項16又は17に記載の生体信号測定器。
  21.  前記情動変動推定部は、
     前記第2の時間外の前記n階時間変化率信号に基づいて、前記第2の時間の前記n階時間変化率信号のデータを修正する請求項20に記載の生体信号測定器。
  22.  前記第1の信号及び前記n階時間変化率信号は、離散時間信号である請求項1~21のいずれか1項に記載の生体信号測定器。
  23.  前記生体信号測定部は、
     前記生体の皮膚に接触するよう構成された少なくとも1つの電極における電気的物理量を測定し、該電気的物理量に対応する信号を前記第1の信号として出力する電気的物理量測定部である請求項1~22のいずれか1項に記載の生体信号測定器。
  24.  前記生体信号測定部は、
     容積脈波センサから前記生体の脈波を測定し、該脈波に対応する信号を前記第1の信号として出力する請求項1~22のいずれか1項に記載の生体信号測定器。
  25.  生体に接触して生体信号を測定する生体信号測定器の接触状態を判定する接触状態推定方法であって、
     前記生体信号を測定し、該生体信号に対応する第1の信号を出力すること、
     前記第1の信号のn階時間変化率信号(nは1以上の整数)を出力すること、
     前記n階時間変化率信号に基づいて、前記生体信号測定器と前記生体との接触状態を判定すること、
     を有する接触状態推定方法。
  26.  コンピュータにより、請求項25に記載の接触状態推定方法を実行するためのプログラム。
  27.  請求項26に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2014/005182 2013-10-17 2014-10-10 生体信号測定器及び接触状態推定方法 WO2015056434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015542517A JP6190466B2 (ja) 2013-10-17 2014-10-10 生体信号測定器及び接触状態推定方法
US15/027,845 US20160242672A1 (en) 2013-10-17 2014-10-10 Vital signal measuring apparatus and method for estimating contact condition
DE112014004760.0T DE112014004760T5 (de) 2013-10-17 2014-10-10 Vitalsignal-Messapparat und Verfahren zum Schätzen einer Kontaktbedingung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-216311 2013-10-17
JP2013216311 2013-10-17

Publications (1)

Publication Number Publication Date
WO2015056434A1 true WO2015056434A1 (ja) 2015-04-23

Family

ID=52827891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005182 WO2015056434A1 (ja) 2013-10-17 2014-10-10 生体信号測定器及び接触状態推定方法

Country Status (4)

Country Link
US (1) US20160242672A1 (ja)
JP (1) JP6190466B2 (ja)
DE (1) DE112014004760T5 (ja)
WO (1) WO2015056434A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074123A (ja) * 2015-10-13 2017-04-20 東芝メディカルシステムズ株式会社 医用画像処理装置及びx線診断装置
JP2019518533A (ja) * 2016-05-25 2019-07-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 皮膚コンダクタンスの測定
JP2020010881A (ja) * 2018-07-19 2020-01-23 日本電気株式会社 検出装置、ウェアラブルセンシングデバイス、検出方法、およびプログラム
WO2021106551A1 (ja) * 2019-11-29 2021-06-03 ソニーグループ株式会社 情報処理装置、情報処理方法及びプログラム
US20210361255A1 (en) * 2019-02-06 2021-11-25 Omron Healthcare Co., Ltd. Biological sound measurement device, control method for biological sound measurement device, and non-transitory recording medium storing control program for biological sound measurement device
US11191487B2 (en) 2016-12-08 2021-12-07 Asahi Kasel Kabushiki Kaisha Contact state estimating device, and biological signal measuring device
WO2023002664A1 (ja) * 2021-07-19 2023-01-26 ソニーグループ株式会社 情報処理装置、情報処理方法、及び、プログラム
EP3307155B1 (en) * 2015-06-12 2023-03-15 Koninklijke Philips N.V. Surface electromyography system, recorder and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3484360B1 (en) * 2016-07-18 2023-09-06 Koninklijke Philips N.V. Device for assessing psychophysiological responsiveness
US11647967B2 (en) * 2016-09-22 2023-05-16 Vital Connect, Inc. Generating automated alarms for clinical monitoring
JP6859154B2 (ja) * 2017-03-29 2021-04-14 日本光電工業株式会社 血圧測定装置
US20220061701A1 (en) * 2018-12-10 2022-03-03 Sridhar Krishnan System and method for compressing and segmenting activity data in real-time
WO2020123715A1 (en) * 2018-12-11 2020-06-18 Vine Medical LLC Validating continual probe contact with tissue during bioelectric testing
KR20200087567A (ko) 2019-01-11 2020-07-21 삼성전자주식회사 혈압 추정 장치 및 방법
JP7204908B2 (ja) * 2019-05-31 2023-01-16 旭化成株式会社 計測装置、計測方法、およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204169A (ja) * 1994-01-21 1995-08-08 Pioneer Electron Corp 生体情報検出装置とその応用機器
JP2006006665A (ja) * 2004-06-25 2006-01-12 Olympus Corp 脳機能解析システム
JP2009222704A (ja) * 2008-02-22 2009-10-01 Omron Healthcare Co Ltd 電子体温計
JP2013132326A (ja) * 2011-12-26 2013-07-08 Tanita Corp 生体インピーダンス測定装置及び生体インピーダンス測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8265741B2 (en) * 2009-02-23 2012-09-11 Biotronik Crm Patent Ag Technique for determining signal quality in a physiologic sensing system using high frequency sampling
JP2012005717A (ja) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd 脳循環状態検査装置及びそれを備えたストレス計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204169A (ja) * 1994-01-21 1995-08-08 Pioneer Electron Corp 生体情報検出装置とその応用機器
JP2006006665A (ja) * 2004-06-25 2006-01-12 Olympus Corp 脳機能解析システム
JP2009222704A (ja) * 2008-02-22 2009-10-01 Omron Healthcare Co Ltd 電子体温計
JP2013132326A (ja) * 2011-12-26 2013-07-08 Tanita Corp 生体インピーダンス測定装置及び生体インピーダンス測定方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3307155B1 (en) * 2015-06-12 2023-03-15 Koninklijke Philips N.V. Surface electromyography system, recorder and method
JP2017074123A (ja) * 2015-10-13 2017-04-20 東芝メディカルシステムズ株式会社 医用画像処理装置及びx線診断装置
JP2019518533A (ja) * 2016-05-25 2019-07-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 皮膚コンダクタンスの測定
US11191487B2 (en) 2016-12-08 2021-12-07 Asahi Kasel Kabushiki Kaisha Contact state estimating device, and biological signal measuring device
JP2020010881A (ja) * 2018-07-19 2020-01-23 日本電気株式会社 検出装置、ウェアラブルセンシングデバイス、検出方法、およびプログラム
JP7206663B2 (ja) 2018-07-19 2023-01-18 日本電気株式会社 検出装置、ウェアラブルセンシングデバイス、検出方法、およびプログラム
US20210361255A1 (en) * 2019-02-06 2021-11-25 Omron Healthcare Co., Ltd. Biological sound measurement device, control method for biological sound measurement device, and non-transitory recording medium storing control program for biological sound measurement device
WO2021106551A1 (ja) * 2019-11-29 2021-06-03 ソニーグループ株式会社 情報処理装置、情報処理方法及びプログラム
WO2023002664A1 (ja) * 2021-07-19 2023-01-26 ソニーグループ株式会社 情報処理装置、情報処理方法、及び、プログラム

Also Published As

Publication number Publication date
US20160242672A1 (en) 2016-08-25
JP6190466B2 (ja) 2017-08-30
DE112014004760T5 (de) 2016-09-01
JPWO2015056434A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6190466B2 (ja) 生体信号測定器及び接触状態推定方法
JP6516846B2 (ja) 睡眠監視のデバイス及び方法
EP3153093B1 (en) Method and apparatus for generating assessments using physical activity and biometric parameters
KR101656611B1 (ko) 무구속적으로 측정한 생체신호를 이용하여 산소탈포화지수를 획득하는 방법
JP6799536B2 (ja) 加速度計を用いるウェアラブル痛みモニタ
JP6767503B2 (ja) 接触状態推定装置、生体信号測定装置、接触状態推定方法、接触状態推定プログラム、及び媒体
RU2602797C2 (ru) Способ и устройство измерения стресса
US7150718B2 (en) Sleep state estimation device and program product for providing a computer with a sleep state estimation function
KR20170087855A (ko) 적어도 부분적으로 펄스 파형에 기반하는 자동화 진단
JP6289313B2 (ja) 脳機能障害評価システム、脳機能障害評価方法およびプログラム
JP5175683B2 (ja) 指タップ力の推定方法
JP6579890B2 (ja) 疲労度計
JP5327458B2 (ja) 精神ストレス評価とそれを用いた装置とそのプログラム
JP7262006B2 (ja) ストレス評価装置、ストレス評価方法及びプログラム
JP2017063966A (ja) 疲労度計
JP2008079813A (ja) 血管年齢測定装置、脈波測定装置、生体情報処理システム、血管年齢測定方法
EP3203900A1 (en) Weaning readiness indicator, sleeping status recording device, and air providing system applying nonlinear time-frequency analysis
Sharma et al. Intelligent data analysis algorithms on biofeedback signals for estimating emotions
Boccanfuso et al. Collecting heart rate using a high precision, non-contact, single-point infrared temperature sensor
JP3687135B2 (ja) 音振動評価装置
Wilk et al. Assessment of a hand tremor based on analysis of the accelerometer signal
Kerr et al. Towards pulse detection and rhythm analysis using a biomimetic fingertip
WO2016053444A1 (en) System and method for motion artifact reduction using surface electromyography
JP2020073108A (ja) 睡眠段階判定方法、睡眠段階判定装置、及び睡眠段階判定プログラム
Jegan et al. Methodological role of mathematics to estimate human blood pressure through biosensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542517

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140047600

Country of ref document: DE

Ref document number: 112014004760

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853535

Country of ref document: EP

Kind code of ref document: A1