WO2015055916A1 - Brûleur de gaz pauvre - Google Patents

Brûleur de gaz pauvre Download PDF

Info

Publication number
WO2015055916A1
WO2015055916A1 PCT/FR2014/052523 FR2014052523W WO2015055916A1 WO 2015055916 A1 WO2015055916 A1 WO 2015055916A1 FR 2014052523 W FR2014052523 W FR 2014052523W WO 2015055916 A1 WO2015055916 A1 WO 2015055916A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
wall
air
zone
gas
Prior art date
Application number
PCT/FR2014/052523
Other languages
English (en)
Inventor
Louis Rousseau
Etienne Lebas
Christian BEDROSSIAN
Adrien QUEUCHE
Original Assignee
Cogebio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cogebio filed Critical Cogebio
Priority to US15/024,877 priority Critical patent/US10378760B2/en
Priority to EP14799187.1A priority patent/EP3058275A1/fr
Priority to JP2016547240A priority patent/JP6490698B2/ja
Priority to CA2925737A priority patent/CA2925737A1/fr
Publication of WO2015055916A1 publication Critical patent/WO2015055916A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03004Tubular combustion chambers with swirling fuel/air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2204/00Burners adapted for simultaneous or alternative combustion having more than one fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14002Special features of gas burners of premix or non premix types, specially adapted for the combustion of low heating value [LHV] gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously

Definitions

  • the invention belongs to the field of industrial gas burners, more particularly gas burners adapted to the combustion of poor gases.
  • a "synthesis gas” (or “syngas”) is a CO / H 2 mixture resulting from the gasification of carbonaceous products in the presence of steam and / or air, optionally enriched with oxygen.
  • the synthesis gas obtained from the conversion of biomass in a gasifier without oxygen enrichment has a lower heating value than that of fossil fuels (in particular propane and butane gases); it is a "low calorific gas”.
  • lean gas or "low calorific gas” means a gas with a heating value (LHV) of less than 3000 Kcal / m 3 .
  • Particularly patent FR 2 889 292 discloses a burner for lean fuel gas of the type comprising a combustion nose on a central axis and means for feeding a mixture of combustible gas and combustion air in rotation around the central axis of the burner.
  • the burner is distinguished by being configured to eject a non-flammable premix stream in front of the combustion nose containing a mixture of premix air and fuel gas, a complementary flow of reaching a flammability threshold of the mixture in front of the combustion nose, said flow being ejected at the center of the premix flow through a central complementary air flow and / or around the pre-mixing flow by through an additional peripheral air flow.
  • This configuration has a complexity of mounting and adjustment of the means implemented with the additional disadvantage if the lean gas is loaded with tars and particles progressive fouling equipment, especially in the premix zone before ignition of the fuel.
  • EP 1 800 062 discloses a burner for the combustion of a low calorific gas, comprising a channel extending along an axis of the burner, for the supply of combustion air, and a channel for the fuel gas, which is designed for a large volume stream of low calorific fuel gas, the gas channel and the air channel opening into a mixing zone.
  • the air channel has an immediately adjacent mouth area (flow technique) of the mixing zone and a swirl element for the production of turbulent combustion air is provided in the mouth zone. and swirl fins are disposed in the air channel upstream of the swirl element. Because of its configuration, this burner does not minimize the production of nitrogen oxides, and there are risks of pulsations of the flame. In addition, it is not suitable for poor gases containing tar because the tars are likely to condense on the cold wall of the duct and the lean gas introduction duct is sensitive to fouling (annular zone). The air-gas mixture is probably not very uniform.
  • US Pat. No. 7,003,957 relates to a synthesis gas burner.
  • the fuel gas is injected through radially inclined holes to the center of the combustion chamber, having a diameter D and an angle of injection alpha. These holes are placed at the exit of the burner, namely at the end of the swirl space.
  • Diameter D and angle alpha are specific parameters that are appropriately selected by those skilled in the art based on different variables (specific gas composition, emissions, etc.).
  • This burner is very sensitive to fouling because the injection of the lean gas is through holes, so the burner is not suitable for the presence of tars in the lean gas. It is a burner without pilot flame, which poses a problem to ensure the stability of combustion. Because of its configuration, this burner certainly produces a lot of nitrogen oxides, and there are risks of pulsations of the flame.
  • patent EP 0 008 842 describes a burner capable of simultaneously burning several gaseous fuels of different heat capacities.
  • the multi-burner Gaseous fuel utilizes pre-heated forced draft air, and comprises a cylindrical inner burner tube, means being provided for injecting through the upstream end of combustion air preheated to a selected temperature and compressed to a selected pressure.
  • the downstream end of the inner burner tube is closed, and a plurality of longitudinal slots are circumferentially spaced in the wall of the tube at the closed end.
  • Means are provided for injecting a rich fuel gas under a selected pressure into the inner burner tube along its axis.
  • An outer burner tube axially surrounds the inner burner tube and forms an annular passage.
  • Means are also provided for passing lean fuel gas at low pressure into the annular passage and out through a peripheral slot at the end of the outer burner tube into the furnace.
  • This burner is very sensitive to fouling because the injection of lean gas is through holes, the burner is not suitable for the presence of tars in the lean gas. It is a burner without pilot flame, which poses a problem to ensure the stability of combustion. Because of its configuration, this burner certainly produces a lot of nitrogen oxides, and there are risks of pulsations of the flame. This burner produces a flat flame, without the possibility of extending it, which destines it to specific furnaces.
  • EP 0 780 630 B1 (Alstom) describes a burner comprising a whirlpool followed by a tube, this tube itself being followed by the actual combustion chamber (in the direction of the gas flow).
  • the junction zone between the tube and the combustion chamber (called “A” in the patent description) has a particular shape that allows the formation of a "detachment edge" whose role is to stabilize a reflux zone.
  • This ebb area plays the role of a "flame catchper”.
  • This burner is very sensitive to fouling because the injection of the lean gas is through holes, the burner is not suitable for the presence of tars in the lean gas. It is a burner without pilot flame, which poses a problem to ensure the stability of combustion. Because of its configuration, this burner certainly produces a lot of nitrogen oxides, and there are risks of pulsations of the flame.
  • a first object of the invention is to provide an industrial burner adapted to the combustion of lean gas, that is to say having a low PCI (low calorific value) and whose PCI may be variable depending on the composition of the supply gas.
  • this lean gas is also available at a high temperature (up to 600 ° C).
  • the lean gas can also be loaded with tars and solid particles, it is therefore necessary to have a burner in which a good air-fuel mixture can be made without hindrance to the flow to prevent fouling of said obstacles.
  • Another object of the invention is to provide a lean gas burner, and in particular synthesis gas obtained from the gasification of biomass air, which can replace an existing burner in an installation.
  • the synthesis gas burner must have a design such that one can adjust the length and / or the flame diameter according to the geometry of the existing combustion chamber with which it is associated.
  • a gas burner for burning a gas with a low calorific value, such as synthesis gas resulting from biomass gasification
  • the burner being of substantially cylindrical shape, and comprising a first annular zone formed between the wall external burner and an inner wall of the burner substantially parallel to the outer wall, a second annular zone formed between the outer wall of the burner and the inner wall downstream of the first zone, and the burner further comprising a feed duct gas with a low calorific value substantially parallel to the burner axis, a primary air supply duct formed in the outer wall and opening into the first annular zone, a secondary air supply duct formed in the outer wall and opening in the second annular zone, an annular slot for introducing the primary air of the first annular zone into the zone of combi utilization, said annular gap being formed between the outer wall and the upstream end of the inner wall, secondary air introduction orifices of the second annular zone in the combustion zone, said orifices being pierced in the inner wall; said burner being further distinguished by the fact that the
  • the annular slot is formed by means of a so-called "air introduction” piece located at the upstream end of the internal wall of the burner.
  • This air introduction piece has a lip shape; more precisely, it has a conical portion diverging from the upstream downstream forming with the inner wall of the burner an angle of between 20 ° and 45 °, and a so-called “extrados” portion terminating on a trailing edge which allows to direct said annular air sheet become conical in the desired profile to form a compression zone located on the axis of the burner.
  • the compression zone comes into contact with the flow of lean gas to allow a good air-fuel mixture.
  • the air introduction piece has a flat upstream edge perpendicular to the burner axis and substantially parallel to a flat surface of the outer wall of the burner, thereby creating a rectified air flow perpendicular to the axis. burner.
  • the conical part of the air introduction piece is followed by a rounded portion along a radius of curvature r1, itself followed by a plane upstream edge, and the extrados portion follows the upstream plane edge, and is constituted by a first rounded portion with a radius of curvature r2 followed by a second portion consisting of three successive flat profiles forming respective angles ⁇ 1, ⁇ 2 and ⁇ 3 with the plane of the upstream edge, the angles ⁇ 1, ⁇ 2 and ⁇ 3 being respectively between 30 and 80 °.
  • the secondary air inlet orifices are of cylindrical or oblong section, and are distributed in the part of the internal wall of the burner facing the zone of secondary air introduction and have a unit diameter of between 3 and 15 mm, so as to allow the introduction of secondary air at a speed between 10 and 50 m / s.
  • the axes of the secondary air inlet orifices are inclined at angles between 15 and 40 °, and preferably substantially equal to 25 ° with respect to the plane perpendicular to the axis of the burner.
  • the axes of the orifices are further inclined at angles between 10 and 25 ° and preferably substantially equal to 15 °, with respect to the radius of the cylinder formed by the burner and passing through the orifice, so as to allow optimal swirling of the secondary air.
  • Yet another object of the invention is to be able to supply the burner with a supplement of fossil fuel to increase the PCI if necessary, or to increase the total power supplied, and / or to be able to have a pilot flame powered with a fossil fuel.
  • Yet another object of the invention is to allow operation with a fossil fuel substitution at 100% of the nominal power.
  • the burner can only work with a fossil fuel supply. This mode of operation can be useful in case of rupture of the supply of lean gas.
  • the burner according to the invention comprises a control means comprising a memory and regulating the flow rate of air introduced for each rate and ratio of lean gas / fossil fuel, as a function of operating points parameterized and set in memory.
  • Another object of the invention is to reduce the temperature of the internal wall of the burner so as to limit its thermal fatigue. Yet another object of the invention is to reduce the temperature of the outer wall of the burner so as to limit the need for thermal insulation. Yet another object of the invention is to preheat the primary air and secondary combustion air, so as to improve the quality of combustion.
  • Another object of the invention is the use of the burner according to the invention in ovens, boilers or dryers.
  • Yet another object of the invention is an installation comprising a burner according to the invention, associated with a biomass gasifier.
  • the burner according to the invention was developed for the combustion of lean gas, and in particular synthesis gas (or syngas) resulting from the gasification of biomass.
  • the burner according to the invention combines two air flows for a staged combustion.
  • Staged combustion involves introducing either combustion air or fuel into the flame at different stages.
  • a portion of the combustion air typically of the order of 5 to 50%, is supplied to a zone primary combustion with all the fuel. This results in a fuel-rich zone and the formation of nitrogen oxides is reduced.
  • the rest of the air is injected further downstream, forming a secondary flame zone, where combustion is complete.
  • the primary and secondary air flows are formed as follows:
  • the stability of the flame in the burner according to the invention is effective at all stages of combustion by combining the axial and rotary modes of the primary and secondary oxidizing air streams respectively.
  • this mode of combustion allows to vary the relative contribution of different fuels, including synthesis gas, natural gas and propane, depending on the desired power and the availability of said fuels.
  • the burner can support a mixed lean gas / fossil fuel input in varying proportions from 100% lean gas to 100% fossil fuel.
  • the quality of combustion depends on the quality of the air-fuel mixture. More specifically, it is important to achieve the air-fuel mixture as uniform as possible to limit hot spots and thus minimize the formation of nitrogen oxides.
  • the staged combustion used in the burner according to the invention also requires rapid mixing of fuel and air.
  • Various devices are used in existing burners to improve the quality of the mixture, such as baffles, fins, perforated plates or impact plates ("impact plate” means a screen placed perpendicular to the flow in its axial part). All these devices have the disadvantage of creating an obstacle to the flow and are therefore sensitive to fouling.
  • An advantage of the burner according to the invention is that it allows an optimal air-fuel mixture while presenting no obstacle to the flow.
  • the quality of mixing is ensured in particular by the particular shape of the primary air flow.
  • the annular slot has a shape such that the primary air is brought into the combustion zone in the form of a conical air space that supports or drives the fuel streams (lean gas and fossil fuel).
  • the burner according to the invention was designed to be able to burn mainly a lean gas and more particularly the synthesis gas resulting from the gasification of the biomass.
  • the burner according to the invention is also capable of burning a traditional fuel such as natural gas, propane, or even domestic fuel.
  • the burner according to the invention is a mixed burner that can operate indifferently to synthesis gas, natural gas or propane or with a mixture of these different fuels (especially with a mixture of synthesis gas and fossil fuels).
  • its particular design gives it a great flexibility of use, with a possible modulation of a 100% operation of fossil fuel to an operation with 100% of lean gas, in particular gas resulting from the conversion of biomass .
  • the amount of combustion air is adjusted to the fuel mixture that is supported by the burner.
  • this adjustment is achieved by means of a control means, such as a control automaton, which makes it possible to supply an air flow calculated for each rate and for each ratio of lean gas / fossil fuel, as a function of operating points. set and stored.
  • a lambda probe also measures the oxygen content of the combustion fumes, which makes it possible to refine the control of the combustion air flow rate.
  • the adjustment of the air flow is generally (total flow of primary air and secondary air).
  • the burner according to the invention is equipped with a pilot burner for ignition and flame safety. The pilot flame is mandatory in some cases for safety reasons (EN 746-2 standard).
  • FIGS 1, 2 and 3 illustrate an embodiment of the burner according to the invention.
  • Figure 1 is a front view of the burner according to the invention.
  • Figure 2 is a view of the burner according to the invention in section along the plane A - Figure 1.
  • FIG. 3 is an enlarged view of detail B of FIG.
  • the burner according to the invention has a substantially cylindrical shape. It has an outer wall 16, and an inner wall 17 separated from the wall 16 to form annular zones 5 and 8. These zones 5 and 8 are separated from each other by a partition 20.
  • the first annular zone 5 is used for the introduction of the primary air into the combustion zone 7.
  • the second annular zone 8 is used for the introduction of secondary air into the combustion zone 7.
  • a conduit 1 allows the introduction of lean gas into the burner.
  • the lean gas introduction duct 1 is cylindrical, and its diameter is calculated as a function of the amount of lean gas to be supported.
  • the rate of introduction of the lean gas into the burner is generally between 5 and 30 m / s, and preferably between 15 and 25 m / s.
  • a conduit 2 allows the introduction of fossil fuel (natural gas, propane or domestic fuel oil in particular).
  • the fossil fuel introduction pipe 2 is cylindrical preference. Its diameter is calculated according to the amount of fuel gas to be supported.
  • the rate of introduction of the fossil fuel into the burner is between 5 and 30 m / s (preferably between 15 and 25 m / s).
  • a liquid fuel domestic fuel
  • it is sprayed by a specific injector (not shown).
  • a duct 3 allows the introduction of primary air into the annular zone 5.
  • the primary air introduced into the annular zone 5 through the duct 3 is then directed towards an annular slot 6 which is shaped to create a blade cone air and a compression zone in zone 7. It is this specific configuration of the burner according to the invention which allows a good mixture of the primary air with the fuel.
  • the primary air velocity is 20 to 200 m / s at the lip or the annular gap 6.
  • the flow of primary air is in laminar flow.
  • the air introduction piece 14 has a flat upstream edge 19 perpendicular to the axis of the burner and substantially parallel to a flat surface of the outer wall 16 of the burner, thereby creating a rectified air flow perpendicular to the axis of the burner.
  • the profile of the air introduction part 14 supports the flow of air to direct it, without modification of its laminar flow, to an area located substantially on the axis of the burner.
  • the conical air knife is intended primarily to achieve a good air-fuel mixture, but it also allows to protect the inner wall of the burner, especially in the case where the lean gas is loaded with tars and particles.
  • a duct 4 allows the introduction of secondary air into the annular zone 8.
  • the secondary air introduced into the annular zone 8 via the duct 4 is directed towards a set of injection orifices 9 making it possible to put the secondary air in rotation or swirl.
  • the rotation of the secondary air makes it possible to avoid the stall of the high-power flame. It also helps to avoid the pulsations of the flame responsible for vibration phenomena that might otherwise occur at certain powers and for certain air / fuel ratios.
  • the orifices 9 are orifices of cylindrical or oblong section.
  • the secondary air introduction orifices 9 pierced in the internal wall 17 of the burner preferably have a unit diameter of 3 to 15 mm, thus allowing the injection of secondary air at speeds of between 10 and 50 m / s. and preferably between 20 and 40 m / s.
  • the inner wall 17 of the burner has a divergent conical shape (ie widening downstream) in its downstream portion, at the level of the secondary air introduction zone.
  • the orifices 9 are distributed in the conical portion of the inner wall 17 of the burner.
  • the axes of the orifices 9 are inclined at angles between 15 and 40 °, and preferably substantially equal to 25 ° relative to the plane perpendicular to the burner axis.
  • the axes of the orifices 9 are further inclined at angles between 10 and 25 ° and preferably substantially equal to 15 °, relative to the "radius of the cylinder formed by the burner and passing through the orifice", of in order to allow optimal swirling of the secondary air.
  • the compression zone is generally constituted by a line segment located substantially on the axis of the burner.
  • the compression zone is obtained by the flow of air in laminar flow whose trajectory is rectified by the profile of the lip ("in extrados").
  • the rectified annular air knife forms a cone whose thickness increases as it approaches the vertex.
  • the passages 10, 11 and 12 shown in Figure 2 allow the implantation of a conventional ignition member such as an ionization probe or a burner creating a pilot flame (not shown) or a flame detector.
  • the passages 10, 11 and 12 can also be used to implant one or more additional fossil fuel feedstocks to allow operation of the burner according to the invention with this type of fuel over a wide range of power. These passages are not limited in number. Depending on the power of the burner, one can imagine more passages for the supply of fossil fuels, a pilot flame and / or a flame detector.
  • Detail B of Figure 1 is shown in detail in Figure 3. It shows a particular form of the annular slot 6 for introducing the primary air into the combustion zone in the form of a conical blade.
  • the shape of the annular slot 6 shown in FIG. 3 has been designed to minimize pressure drops.
  • the annular slot 6 itself is formed by the space between a part 14 called “primary air introduction” into the burner, and the "bottom" of the outer wall 16 burner.
  • the primary air introduction part 14 is positioned at the upstream end 25 of the inner wall 17 of the burner.
  • the primary air introduction piece 14 is preferably formed in one piece with the inner wall 17.
  • the primary air introduction part 14 has a conical portion diverging from downstream upstream 15 forming with the inner wall 17 of the burner an angle ⁇ , the part conical 15 to create a blade of air.
  • the angle a is between 20 and 45 °.
  • the conical part 15 makes it possible to avoid a large recirculation of the air in the annular zone and thus to limit the pressure drop.
  • the conical portion 15 is followed by a rounded portion 18 with a radius of curvature r1, preferably between 3 and 15 mm.
  • the rounded portion 18 also makes it possible to limit the recirculations of the air inside the annular zone 5.
  • the sharp angles disturb the air circulation by creating micro-zones of turbulence which increase the air flow. loss of load, that is why it is preferred to use a rounded portion 18 rather than a right angle.
  • the rounded portion 18 is itself followed by a plane upstream edge 19 substantially parallel to the "bottom" of the outer wall 16 of the burner.
  • This upstream plane edge is then followed by a portion 13 having a shape called “extrados" which allows to direct the air gap in the desired profile, to form a compression zone on the burner axis.
  • the upper portion 13 is constituted by a first portion 21 rounded with a radius of curvature r2, preferably between 8 and 30 mm, followed by a second portion consisting of three successive flat profiles 22, 23, 24 forming respective angles. ⁇ 1, ⁇ 2 and ⁇ 3 with the plane of the upstream plane plane 19, the angles ⁇ 1, ⁇ 2 and ⁇ 3 preferably being respectively between 30 and 80 °.
  • the burner according to the invention in combination with a gasifier and especially in combination with a biomass gasifier, allows the total or partial substitution of a fossil fuel (fuel oil, natural gas, propane) with solid biomass for the production of heat.
  • a fossil fuel fuel oil, natural gas, propane
  • Usable biomass fuels include wood chips, crushed pallets, wood pellets and agricultural co-products.
  • the co-current fixed bed gasifier described in the patent application WO 2013/098525 in the name of Cogebio is particularly suitable for operating in association with the burner according to the invention.
  • This co-current fixed bed gasifier comprises a reactor body, said reactor body comprising an upper portion and a lower portion, and the biomass is introduced through an inlet conduit located at the top of the upper part of the body of the reactor.
  • said gasifier comprises, from top to bottom: a pyrolysis zone of the biomass, an oxidation zone of the biomass, a reduction zone, a grid comprising a plurality of openings through which the ashes to be evacuated, and said gasifier also comprises means for introducing a gasification agent, such as air or oxygen, and said gasifier being characterized in that said means for introducing the gasification agent comprise: a cone of diffusion of the gasification agent situated at the top of the oxidation zone of the gasifier or above said oxidation zone, and means of injection of the gasification agent located in the oxidation zone of the gasifier.

Abstract

Brûleur de gaz pour brûler un gaz à faible pouvoir calorifique, tel que du gaz de synthèse issu de la gazéification de biomasse, le brûleur comprenant une première zone annulaire (5) formée entre la paroi externe (16) et une paroi interne (17) du brûleur sensiblement parallèle à la paroi externe, une seconde zone annulaire (8) formée entre la paroi externe (16) du brûleur et la paroi interne (17) en aval de la première zone, et le brûleur comprenant un conduit (1) d'alimentation en gaz à faible pouvoir calorifique sensiblement parallèle à l'axe du brûleur, un conduit (3) d'alimentation en air primaire formé dans la paroi externe (16) et débouchant dans la première zone annulaire (5), un conduit (4) d'alimentation en air secondaire formé dans la paroi externe (16) et débouchant dans la seconde zone annulaire (8), une fente annulaire (6) d'introduction de l'air primaire de la première zone annulaire (5) dans la zone de combustion (7), ladite fente annulaire (6) étant formée entre la paroi externe (16) et l'extrémité amont (25) de la paroi interne (17), des orifices (9) d'introduction de l'air secondaire de la seconde zone annulaire (8) dans la zone de combustion (7), lesdits orifices étant percés dans la paroi interne (17), et la fente annulaire (6) ayant une forme telle que l'air primaire est apporté dans la zone de combustion (7) sous forme d'une lame d'air conique, et crée une zone de compression, et les orifices (9) étant disposés de manière à permettre le tourbillonnement de l'air secondaire.

Description

BRÛLEUR DE GAZ PAUVRE
Domaine de l'invention
L'invention appartient au domaine des brûleurs à gaz industriels, plus particulièrement les brûleurs à gaz adaptés à la combustion des gaz pauvres.
État de la technique
Il existe un besoin de brûler des gaz à faible pouvoir calorifique. Il s'agit le plus souvent de gaz de récupération issus de procédés industriels (haut fourneau, bio-gaz, gaz des décharges, gaz issus de procédés de gazéification divers, gaz d'étuves chargés en COV etc) dont le pouvoir calorifique est faible à cause de leur concentration élevée en gaz inerte. C'est le cas de certains types de gaz de synthèse. On appelle « gaz de synthèse » (ou « syngaz ») un mélange CO / H2 issu de la gazéification de produits carbonés en présence de vapeur d'eau et/ou d'air, éventuellement enrichi en oxygène. En particulier, le gaz de synthèse obtenu à partir de la conversion de biomasse dans un gazéifieur sans enrichissement en oxygène, a un pouvoir calorifique plus bas que celui des combustibles fossiles (notamment les gaz propane et butane) ; c'est un « gaz à faible pouvoir calorifique ».
On appelle « gaz pauvre » ou « gaz à faible pouvoir calorifique » un gaz dont le pouvoir calorifique (PCI) est inférieur à 3000 Kcal / m3.
D'autre part, ces gaz d'origines diverses, tel que le gaz de synthèse issu de biomasse, sont souvent chargés en goudrons et en particules. De ce fait, leur utilisation dans les brûleurs habituellement utilisés pour les combustibles fossiles n'est généralement pas possible, et il est nécessaire de développer des brûleurs spécifiques pour le gaz de synthèse (ou autres gaz pauvres). De tels brûleurs spécifiques existent, mais sont de conception complexe.
Particulièrement le brevet FR 2 889 292 décrit un brûleur pour gaz combustible pauvre du type comprenant un nez de combustion sur un axe central et des moyens d'alimentation d'un mélange de gaz combustible et d'air de combustion en rotation autour de l'axe central du brûleur. Le brûleur se distingue en ce qu'il est configuré de manière à éjecter devant le nez de combustion un flux de pré-mélange non inflammable contenant un mélange d'air de pré-mélange et de gaz combustible, un flux complémentaire de manière à atteindre un seuil d'inflammabilité du mélange devant le nez de combustion, ledit flux étant éjecté au centre du flux de pré-mélange par le biais d'un flux d'air complémentaire central et/ou autour du flux de pré-mélange par le biais d'un flux d'air complémentaire périphérique. Cette configuration présente une complexité de montage et de réglage des moyens mis en œuvre avec comme inconvénient complémentaire si le gaz pauvre est chargé en goudrons et en particules un encrassement progressif des équipements, notamment dans la zone de pré-mélange avant inflammation du combustible.
Le brevet EP 1 800 062 décrit un brûleur pour la combustion d'un gaz à faible pouvoir calorifique, comprenant un canal s'étendant le long d'un axe du brûleur, pour l'apport d'air de combustion, et un canal pour le gaz combustible, qui est conçu pour un grand courant en volume de gaz combustible à faible pouvoir calorifique, le canal pour le gaz et le canal pour l'air débouchant dans une zone de mélange. Le canal pour l'air a une zone d'embouchure voisine immédiatement (en technique d'écoulement) de la zone de mélange et un élément de tourbillonnement, pour la production d'air de combustion turbulent, est prévu dans la zone d'embouchure et des ailettes de tourbillonnement sont disposées dans le canal pour l'air en amont de l'élément de tourbillonnement. Du fait de sa configuration, ce brûleur ne minimise pas la production d'oxydes d'azote, et il existe des risques de pulsations de la flamme. De plus, il n'est pas adapté aux gaz pauvres contenant des goudrons car les goudrons sont susceptibles de se condenser sur la paroi froide du conduit et le conduit d'introduction du gaz pauvre est sensible à l'encrassement (zone annulaire). Le mélange air-gaz pauvre est sans doute assez peu uniforme.
Le brevet US 7,003,957 a pour objet un brûleur de gaz de synthèse. Le gaz combustible est injecté à travers des trous inclinés en direction radiale vers le centre de la chambre de combustion, et ayant un diamètre D et un angle d'injection alpha. Ces trous sont placés à la sortie du brûleur, à savoir à la fin de l'espace de tourbillonnement. Le diamètre D et l'angle alpha sont des paramètres spécifiques qui sont choisis de manière appropriée par l'homme du métier en fonction de différentes variables (composition de gaz spécifique, émissions, etc.). Ce brûleur est très sensible à l'encrassement car l'injection du gaz pauvre se fait par des trous, de ce fait le brûleur n'est pas adapté à la présence de goudrons dans le gaz pauvre. Il s'agit d'un brûleur sans flamme pilote, ce qui pose problème pour assurer la stabilité de combustion. Du fait de sa configuration, ce brûleur produit certainement beaucoup d'oxydes d'azote, et il existe des risques de pulsations de la flamme.
D'autre part, le brevet EP 0 008 842 décrit un brûleur capable de brûler simultanément plusieurs carburants gazeux de capacités calorifiques différentes. Le brûleur multi- combustibles gazeux utilise de l'air préchauffé à tirage forcé, et comprend un tube de brûleur intérieur cylindrique, des moyens étant prévus pour injecter à travers l'extrémité amont d'air de combustion préchauffé à une température sélectionnée et comprimé à une pression choisie. L'extrémité aval du tube de brûleur intérieur est fermée, et une pluralité de fentes longitudinales sont espacées de manière circonférentielle dans la paroi du tube au niveau de l'extrémité fermée. Des moyens sont prévus pour injecter un gaz combustible riche sous une pression choisie dans le tube de brûleur intérieur le long de son axe. Un tube de brûleur extérieur entoure axialement le tube de brûleur intérieur et forme un passage annulaire. Des moyens sont également prévus pour faire passer un gaz combustible pauvre à basse pression dans le passage annulaire et à l'extérieur à travers une fente périphérique à l'extrémité du tube de brûleur extérieur à l'intérieur le four. Ce brûleur est très sensible à l'encrassement car l'injection du gaz pauvre se fait par des trous, le brûleur n'est pas adapté à la présence de goudrons dans le gaz pauvre. Il s'agit d'un brûleur sans flamme pilote, ce qui pose problème pour assurer la stabilité de combustion. Du fait de sa configuration, ce brûleur produit certainement beaucoup d'oxydes d'azote, et il existe des risques de pulsations de la flamme. Ce brûleur produit une flamme plate, sans possibilité de l'allonger, ce qui le destine à des fours spécifiques.
Le brevet EP 0 780 630 B1 (Alstom) décrit un brûleur comprenant un tourbillonneur suivi d'un tube, ce tube étant lui-même suivi de la chambre de combustion proprement dite (dans le sens du flux de gaz). La zone de jonction entre le tube et la chambre de combustion (dénommée « A » dans la description du brevet) possède une forme particulière qui permet la formation d'une « arête de détachement » dont le rôle est de stabiliser une zone de reflux. Cette zone de reflux joue le rôle d'un « accrocheur de flamme ». Ce brûleur très sensible à l'encrassement car l'injection du gaz pauvre se fait par des trous, le brûleur n'est pas adapté à la présence de goudrons dans le gaz pauvre. Il s'agit d'un brûleur sans flamme pilote, ce qui pose problème pour assurer la stabilité de combustion. Du fait de sa configuration, ce brûleur produit certainement beaucoup d'oxydes d'azote, et il existe des risques de pulsations de la flamme.
La demanderesse a constaté que les brûleurs existants adaptés à la combustion du gaz de synthèse sont complexes, difficiles à régler et à faire fonctionner, et généralement sujets à l'encrassement. Il existe donc un besoin pour un brûleur de gaz pauvre de conception simple, facile à fabriquer et de faible coût, fiable, facile à régler, et ne nécessitant pas ou peu de maintenance. Objet de l'invention
Un premier but de l'invention est de fournir un brûleur industriel adapté à la combustion de gaz pauvre, c'est-à-dire ayant un PCI (pouvoir calorifique inférieur) faible et dont le PCI peut être variable en fonction de la composition du gaz d'alimentation. Dans certains cas, ce gaz pauvre est en outre disponible à une température élevée (jusqu'à 600°C). Le gaz pauvre peut de plus être chargé en goudrons et particules solides, il est donc nécessaire d'avoir un brûleur dans lequel on peut réaliser un bon mélange air-combustible sans obstacle à l'écoulement pour éviter l'encrassement desdits obstacles.
Un autre but de l'invention est de fournir un brûleur de gaz pauvre, et en particulier de gaz de synthèse obtenu à partir de la gazéification à l'air de la biomasse, qui puisse remplacer un brûleur déjà existant dans une installation. En particulier, le brûleur de gaz de synthèse doit avoir une conception telle que l'on peut régler la longueur et/ou le diamètre de flamme en fonction de la géométrie de la chambre de combustion existante à laquelle il est associé.
Ces buts sont atteints grâce à un brûleur de gaz pour brûler un gaz à faible pouvoir calorifique, tel que du gaz de synthèse issu de la gazéification de biomasse, le brûleur étant de forme sensiblement cylindrique, et comprenant une première zone annulaire formée entre la paroi externe du brûleur et une paroi interne du brûleur sensiblement parallèle à la paroi externe, une seconde zone annulaire formée entre la paroi externe du brûleur et la paroi interne en aval de la première zone, et le brûleur comprenant par ailleurs un conduit d'alimentation en gaz à faible pouvoir calorifique sensiblement parallèle à l'axe du brûleur, un conduit d'alimentation en air primaire formé dans la paroi externe et débouchant dans la première zone annulaire, un conduit d'alimentation en air secondaire formé dans la paroi externe et débouchant dans la seconde zone annulaire, une fente annulaire d'introduction de l'air primaire de la première zone annulaire dans la zone de combustion, ladite fente annulaire étant formée entre la paroi externe et l'extrémité amont de la paroi interne, des orifices d'introduction de l'air secondaire de la seconde zone annulaire dans la zone de combustion, lesdits orifices étant percés dans la paroi interne, ledit brûleur se distinguant en outre par le fait que la fente annulaire a une forme telle que l'air primaire est apporté dans la zone de combustion sous forme d'une lame d'air conique, et crée une zone de compression, les orifices sont disposés de manière à permettre le tourbillonnement (« swirl ») de l'air secondaire. Ce brûleur représente un premier objet de l'invention. Dans un mode de réalisation avantageux du brûleur selon l'invention, la fente annulaire est formée grâce à une pièce dite « d'introduction d'air » située à l'extrémité amont de la paroi interne du brûleur. Cette pièce d'introduction d'air présente une forme de lèvre ; plus précisément elle présente une partie conique divergente de l'aval vers l'amont formant avec la paroi intérieure du brûleur un angle a compris entre 20° et 45°, et une partie dite « en extrados » se terminant sur un bord de fuite qui permet de diriger ladite lame d'air annulaire devenue conique selon le profil souhaité afin de constituer un zone de compression situé sur l'axe du brûleur. La zone de compression vient au contact du flux de gaz pauvre pour permettre un bon mélange air-combustible.
De préférence, la pièce d'introduction d'air présente un bord amont plat perpendiculaire à l'axe du brûleur et sensiblement parallèle à une surface plane de la paroi externe du brûleur, créant ainsi un flux d'air redressé perpendiculaire à l'axe du brûleur.
Dans un mode de réalisation préféré du brûleur selon l'invention, la partie conique de la pièce d'introduction d'air est suivie d'une partie arrondie selon un rayon de courbure r1 , elle-même suivie d'une bord amont plan, et la partie en extrados suit le bord amont plan, et est constituée par une première partie arrondie selon un rayon de courbure r2 suivie d'une seconde partie constituée de trois profils plats successifs formant des angles respectifs β1 , β2 et β3 avec le plan du bord amont, les angles β1 , β2 et β3 étant respectivement compris entre 30 et 80°.
Dans un mode de réalisation préféré, les orifices d'entrée de l'air secondaire sont de section cylindrique ou oblongue, et sont répartis dans la partie de la paroi interne du brûleur en regard de la zone d'introduction de l'air secondaire et ont un diamètre unitaire compris entre 3 et 15 mm, de manière à permettre l'introduction d'air secondaire à une vitesse comprise entre 10 et 50 m/s.
En outre dans un mode de réalisation préféré, les axes des orifices d'entrée d'air secondaire sont inclinés selon des angles compris entre 15 et 40°, et de préférence sensiblement égal à 25° par rapport au plan perpendiculaire à l'axe du brûleur. De préférence, les axes des orifices sont en outre inclinés selon des angles compris entre 10 à 25° et de préférence sensiblement égal à 15°, par rapport au rayon du cylindre formé par le brûleur et passant par l'orifice, de manière à permettre un tourbillonnement optimal de l'air secondaire.
Encore un autre but de l'invention est de pouvoir alimenter le brûleur avec un appoint de combustible fossile pour augmenter le PCI le cas échéant, ou pour augmenter la puissance totale fournie, et/ou pour pouvoir disposer d'une flamme pilote alimentée avec un combustible fossile. Ces buts sont atteints grâce à la présence d'au moins un conduit d'introduction de combustible fossile. En outre, la flamme pilote assure la sécurité de la flamme principale.
Encore un autre but de l'invention est de permettre le fonctionnement avec un combustible fossile de substitution à 100% de la puissance nominale. Le brûleur peut en effet fonctionner uniquement avec une alimentation en combustible fossile. Ce mode de fonctionnement pouvant être utile en cas de rupture de l'approvisionnement en gaz pauvre.
Dans un mode de réalisation préféré, le brûleur selon l'invention comprend un moyen de commande comprenant une mémoire et régulant le débit d'air introduit pour chaque allure et chaque ratio gaz pauvre / combustible fossile, en fonction de points de fonctionnement paramétrés et mis en mémoire.
Un autre but de l'invention est de réduire la température de la paroi interne du brûleur de manière à limiter sa fatigue thermique. Encore un autre but de l'invention est de réduire la température de la paroi externe du brûleur de manière à limiter le besoin en isolation thermique. Encore un autre but de l'invention est de préchauffer l'air primaire et l'air secondaire de combustion, de manière à améliorer la qualité de la combustion. Ces buts sont atteints grâce au brûleur selon l'invention, du fait de la présence des première et seconde zones annulaires formées entre la paroi externe et la paroi interne du brûleur et qui permettent la circulation de l'air primaire et de l'air secondaire dans l'air entrant étant à température ambiante, à savoir de l'ordre de 20°C.
Un autre objet de l'invention est l'utilisation du brûleur selon l'inventions dan es fours, chaudières ou séchoirs.
Encore un autre objet de l'invention est une installation comprenant un brûleur selon l'invention, associé à un gazéifieur de biomasse.
Description de l'invention
Le brûleur selon l'invention a été développé pour la combustion de gaz pauvre, et notamment du gaz de synthèse (ou syngaz) issu de la gazéification de la biomasse.
Le brûleur selon l'invention conjugue deux flux d'air pour une combustion étagée. La combustion étagée consiste à introduire, soit l'air de combustion soit le combustible dans la flamme à différentes étapes. Lors de la combustion étagée par étagement de l'air, une partie de l'air de combustion, typiquement de l'ordre de 5 à 50%, est fournie à une zone de combustion primaire avec la totalité du carburant. On obtient ainsi une zone riche en combustible et la formation des oxydes d'azote est diminuée. Le reste de l'air est injecté plus en aval, formant une zone de flamme secondaire, où la combustion est achevée. Dans le brûleur selon l'invention, les flux d'air primaire et secondaire sont formés comme suit :
un flux d'air primaire axial qui permet d'accrocher la flamme pour tout type de combustible gazeux : gaz de synthèse, gaz naturel et propane.
un flux d'air secondaire rotatif qui stabilise la flamme sans avoir recours à un équipement complémentaire sujet à l'encrassement.
Ainsi, la stabilité de la flamme dans le brûleur selon l'invention est effective à toutes les allures de combustion grâce à la combinaison des modes axial et rotatif des flux d'air comburants primaire et secondaire respectivement.
En outre, ce mode de combustion permet de faire varier l'apport relatif des différents combustibles, notamment le gaz de synthèse, le gaz naturel et le propane, en fonction de la puissance recherchée et de la disponibilité desdits combustibles. Le brûleur peut prendre en charge un apport mixte gaz pauvre / combustible fossile dans des proportions variables de 100% gaz pauvre à 100% combustible fossile.
On sait que la qualité de la combustion, mesurée en particulier par la quantité d'imbrûlés et de polluants émis, dépend de la qualité du mélange air-combustible. Plus précisément, il est important de réaliser un mélange air-combustible le plus uniforme possible pour limiter les points chauds et ainsi minimiser la formation des oxydes d'azote. En outre, la combustion étagée utilisée dans le brûleur selon l'invention nécessite également un mélange rapide du carburant et de l'air. Différents dispositifs sont employés dans les brûleurs existants pour améliorer la qualité du mélange, tels que les déflecteurs, les ailettes, les plaques perforées ou les plaques d'impact (on entend par « plaque d'impact » un écran placé perpendiculairement à l'écoulement dans sa partie axiale). Tous ces dispositifs ont pour inconvénient de créer un obstacle à l'écoulement et sont par conséquent sensibles à l'encrassement. Un avantage du brûleur selon l'invention est qu'il permet un mélange air-combustible optimal tout en ne présentant aucun obstacle à l'écoulement. La qualité du mélange est assurée en particulier par la forme particulière du flux d'air primaire. La fente annulaire a une forme telle que l'air primaire est apporté dans la zone de combustion sous forme d'une lame d'air conique venant prendre en charge ou entraîner les flux de combustible (gaz pauvre et combustible fossile). Le brûleur selon l'invention a été conçu pour pouvoir brûler principalement un gaz pauvre et plus particulièrement du gaz de synthèse issu de la gazéification de la biomasse. Cependant, dans un mode de réalisation avantageux, le brûleur selon l'invention est également apte à brûler un combustible traditionnel tel que du gaz naturel, du propane, voire du fioul domestique. Le brûleur selon l'invention est donc un brûleur mixte qui peut fonctionner indifféremment au gaz de synthèse, au gaz naturel ou au propane ou encore avec un mélange de ces différents combustibles (surtout avec un mélange de gaz de synthèse et de combustibles fossiles). En outre, sa conception particulière lui confère une grande souplesse d'utilisation, avec une modulation possible d'un fonctionnement avec 100% de combustible fossile à un fonctionnement avec 100% de gaz pauvre, en particulier de gaz issu de la conversion de la biomasse.
A toutes les allures la quantité d'air comburant est ajustée au mélange de combustibles qui est pris en charge par le brûleur. Avantageusement cet ajustement est réalisé grâce à un moyen de commande, tel qu'un automate de contrôle, qui permet d'alimenter un débit d'air calculé pour chaque allure et pour chaque ratio gaz pauvre/combustible fossile, en fonction de points de fonctionnement paramétrés et mis en mémoire. Dans un mode de réalisation, une sonde lambda mesure en outre la teneur en oxygène des fumées de combustion, ce qui permet d'affiner le réglage du débit d'air comburant. De préférence, le réglage du débit d'air se fait de manière globale (flux total air primaire et air secondaire),. Avantageusement, le brûleur selon l'invention est équipé d'un brûleur pilote pour l'allumage et la sécurité de flamme. La flamme pilote est obligatoire dans certains cas pour des raisons de sécurité (norme EN 746-2).
Les figures 1 , 2 et 3 illustrent un mode de réalisation du brûleur selon l'invention.
La figure 1 est une vue de face du brûleur selon l'invention.
La figure 2 est une vue du brûleur selon l'invention en coupe selon le plan A - figure 1 .
La figure 3 est une vue agrandie du détail B de la figure 2.
Les repères suivants sont utilisés sur les figures :
1 Conduit d'introduction du gaz pauvre
2 Conduit d'introduction du combustible fossile
3 Conduit d'entrée d'air primaire
4 Conduit d'entrée d'air secondaire 5 Zone annulaire pour l'air primaire
6 Fente
7 Chambre de combustion
8 Zone annulaire pour l'air secondaire
9 Orifices d'injection de l'air secondaire
10, 1 1 ,12 Passages supplémentaires permettant « l'implantation » d'un organe d'allumage ou d'une entrée de combustible fossile
13 Forme en extrados de la « fente » 6 (entrée d'air primaire dans le brûleur)
14 Pièce d'introduction d'air primaire
15 Partie conique de la pièce 14
16 Paroi externe cylindrique du brûleur
17 Paroi interne du brûleur
18 Partie arrondie selon un rayon de courbure r1 de la pièce 14
19 Bord amont plan de la pièce 14 (formant la fente annulaire en coopération avec la paroi 16)
20 Séparation entre les zones d'entrée d'air primaire 5 et d'air secondaire 8
21 Partie arrondie selon r2
22,23,24 Profils plats successifs formant un angle respectif βΐ, β2, β3 avec la partie
19
25 Extrémité amont de la paroi interne 17
26 Base du cylindre formé par la paroi externe
Un mode de réalisation du brûleur selon l'invention est décrit ci-après en relation avec les figures 1 , 2 et 3. Le brûleur selon l'invention a une forme sensiblement cylindrique. Il a une paroi extérieure 16, et une paroi interne 17 séparée de la paroi 16 pour former des zones annulaires 5 et 8. Ces zones 5 et 8 sont séparées l'une de l'autre par une cloison 20. La première zone annulaire 5 est utilisée pour l'introduction de l'air primaire dans la zone de combustion 7. La seconde zone annulaire 8 est utilisée pour l'introduction de l'air secondaire dans la zone de combustion 7.
En référence aux figures 1 et 2, un conduit 1 permet l'introduction de gaz pauvre dans le brûleur. De préférence, le conduit d'introduction du gaz pauvre 1 est cylindrique, et son diamètre est calculé en fonction de la quantité de gaz pauvre à prendre en charge. La vitesse d'introduction du gaz pauvre dans le brûleur est généralement comprise entre 5 et 30 m/s, et de préférence entre 15 et 25 m/s.
Un conduit 2 permet l'introduction de combustible fossile (gaz naturel, propane ou fioul domestique notamment). Le conduit d'introduction du combustible fossile 2 est de préférence cylindrique. Son diamètre est calculé en fonction de la quantité de gaz combustible à prendre en charge. La vitesse d'introduction du combustible fossile dans le brûleur est comprise entre 5 et 30 m/s (de préférence entre 15 et 25 m/s). Dans le cas d'un combustible liquide (fioul domestique) celui-ci est pulvérisé par un injecteur spécifique (non représenté).
Un conduit 3 permet l'introduction d'air primaire dans la zone annulaire 5. L'air primaire introduit dans la zone annulaire 5 par le conduit 3 est ensuite dirigé vers une fente annulaire 6 qui est de forme telle qu'elle crée une lame d'air conique et une zone de compression dans la zone 7. C'est cette configuration spécifique du brûleur selon l'invention qui permet un bon mélange de l'air primaire avec le combustible.
La vitesse de l'air primaire est de 20 à 200 m/s au niveau de la lèvre ou de la fente annulaire 6. L'écoulement de l'air primaire se fait en régime laminaire.
De préférence, la pièce d'introduction d'air 14 présente un bord amont plat 19 perpendiculaire à l'axe du brûleur et sensiblement parallèle à une surface plane de la paroi externe 16 du brûleur, créant ainsi un flux d'air redressé perpendiculaire à l'axe du brûleur. Le profil de la pièce d'introduction d'air 14 prend en charge l'écoulement d'air pour le diriger, sans modification de son régime laminaire, vers une zone située sensiblement sur l'axe du brûleur.
La lame d'air conique est destinée principalement à réaliser un bon mélange air- combustible, mais elle permet en outre de protéger la paroi interne du brûleur, en particulier dans le cas où le gaz pauvre est chargé en goudrons et en particules.
Un conduit 4 permet l'introduction d'air secondaire dans la zone annulaire 8. L'air secondaire introduit dans la zone annulaire 8 par le conduit 4 est dirigé vers un ensemble d'orifices d'injection 9 permettant de mettre l'air secondaire en rotation ou en tourbillon (swirl). La mise en rotation de l'air secondaire permet en particulier d'éviter le décrochage de la flamme à forte puissance. Elle contribue également à éviter les pulsations de la flamme responsables de phénomènes vibratoires qui sinon pourraient se produire à certaines puissances et pour certain ratios air/combustible.
Les orifices 9 sont des orifices de section cylindrique ou oblongue. Les orifices 9 d'introduction d'air secondaire percés dans la paroi interne 17 du brûleur ont de préférence un diamètre unitaire de 3 à 15 mm, permettant ainsi l'injection d'air secondaire à des vitesses comprises entre 10 et 50 m/s et de préférence comprises entre 20 et 40 m/s.. De préférence, la paroi interne 17 du brûleur présente une forme conique divergente (i.e. s'élargissant vers l'aval) dans sa partie avale, au niveau de la zone d'introduction de l'air secondaire. Les orifices 9 sont répartis dans la partie conique de la paroi interne 17 du brûleur. De préférence, les axes des orifices 9 sont inclinés selon des angles compris entre 15 et 40°, et de préférence sensiblement égal à 25° par rapport au plan perpendiculaire à l'axe du brûleur. De préférence, les axes des orifices 9 sont en outre inclinés selon des angles compris entre 10 à 25° et de préférence sensiblement égal à 15°, par rapport au « rayon du cylindre formé par le brûleur et passant par l'orifice », de manière à permettre un tourbillonnement optimal de l'air secondaire.
La zone de compression est généralement constituée par un segment de droite situé sensiblement sur l'axe du brûleur.
La zone de compression est obtenue par l'écoulement de l'air en régime laminaire dont la trajectoire est redressée par le profil de la lèvre (« en extrados »). La lame d'air annulaire redressée forme un cône dont l'épaisseur croît en se rapprochant du sommet.
Les passages 10, 11 et 12 représentés sur la figure 2 permettent l'implantation d'un organe d'allumage classique tel qu'une sonde d'ionisation ou un brûleur créant une flamme pilote (non représenté) ou encore un détecteur de flamme. Les passages 10, 11 et 12 peuvent également servir à implanter une ou plusieurs arrivées supplémentaires de combustible fossile pour permettre un fonctionnement du brûleur selon l'invention avec ce type de combustible sur une large gamme de puissance. Ces passages ne sont pas limités en nombre. Suivant la puissance du brûleur, on peut imaginer plus de passages pour l'apport de combustibles fossiles, une flamme pilote et/ou un détecteur de flamme.
Le détail B de la figure 1 est présenté en détail sur la figure 3. Il représente une forme particulière de la fente annulaire 6 permettant l'introduction de l'air primaire dans la zone de combustion sous forme d'une lame conique. La forme de la fente annulaire 6 représentée sur la figure 3 a été conçue de façon à minimiser les pertes de charge.
Dans le mode de réalisation de la figure 3, la fente annulaire 6 proprement dite est formée par l'espace entre une pièce 14 dite « d'introduction d'air primaire » dans le brûleur, et le « fond » de la paroi externe 16 du brûleur. La pièce d'introduction d'air primaire 14 est positionnée à l'extrémité amont 25 de la paroi interne 17 du brûleur. La pièce d'introduction d'air primaire 14 est de préférence formée d'une seule pièce avec la paroi interne 17.
La pièce d'introduction d'air primaire 14 présente une partie conique divergente de l'aval vers l'amont 15 formant avec la paroi intérieure 17 du brûleur un angle a, la partie conique 15 permettant de créer une lame d'air. L'angle a est compris entre 20 et 45°. La partie conique 15 permet d'éviter une importante recirculation de l'air dans la zone annulaire et de limiter ainsi la perte de charge. La partie conique 15 est suivie d'une partie arrondie 18 selon un rayon de courbure r1 , compris de préférence entre 3 et 15 mm. La partie arrondie 18 permet elle aussi de limiter les recirculations de l'air à l'intérieur de la zone annulaire 5. De plus, les angles vifs perturbent la circulation de l'air par la création de micro-zones de turbulence qui augmentent la perte de charge, c'est pourquoi on préfère utiliser une partie arrondie 18 plutôt qu'un angle droit.
La partie arrondie 18 est elle-même suivie d'un bord amont plan 19 sensiblement parallèle au « fond » de la paroi externe 16 du brûleur. Ce bord amont plan est ensuite suivi d'une partie 13 ayant une forme dite « en extrados » qui permet de diriger la lame d'air selon le profil souhaité, afin de constituer une zone de compression sur l'axe du brûleur. La partie en extrados 13 est constituée par une première partie 21 arrondie selon un rayon de courbure r2, compris de préférence entre 8 et 30 mm, suivie d'une seconde partie constituée de trois profils plats successifs 22, 23, 24 formant des angles respectifs β1 , β2 et β3 avec le plan du bord amont plan 19, les angles β1 , β2 et β3 étant de préférence respectivement compris entre 30 et 80°. Ces profils plats successifs permettent d'augmenter progressivement le rayon de l'extrados, de façon à obtenir un décrochement de la veine d'air au bout du profil de la lèvre, ou pièce d'introduction d'air 14. L'angle β3 est supérieur à l'angle β2 qui est supérieur à l'angle βΐ.
Le brûleur selon l'invention, en association avec un gazéifieur et notamment en association avec un gazéifieur de biomasse, permet la substitution totale ou partielle d'un combustible fossile (fioul, gaz naturel, propane) par de la biomasse solide pour la production de chaleur. Les combustibles utilisables à titre de biomasse comprennent notamment les plaquettes forestières, les palettes broyées, les granulés de bois et de coproduits agricoles.
Le gazéifieur à lit fixe à co-courant décrit dans la demande de brevet WO 2013/098525 au nom de Cogebio est particulièrement approprié pour fonctionner en association avec le brûleur selon l'invention. Ce gazéifieur à lit fixe à co-courant comporte un corps de réacteur, ledit corps de réacteur comprenant une partie supérieure et une partie inférieure, et la biomasse est introduite par un conduit d'entrée situé dans le haut de la partie supérieure du corps du gazéifieur, le gaz de synthèse est évacué par un conduit d'évacuation du gaz de synthèse, et les cendres sont évacuées dans la partie basse de la partie inférieure du corps de réacteur à travers un conduit d'évacuation des cendres ; ledit gazéifieur comporte, de haut en bas : une zone de pyrolyse de la biomasse, une zone d'oxydation de la biomasse, une zone de réduction, une grille comportant une pluralité d'ouvertures à travers lesquelles passent les cendres pour être évacuées, et ledit gazéifieur comporte également des moyens d'introduction d'un agent de gazéification, tel que de l'air ou de l'oxygène, et ledit gazéifieur étant caractérisé en ce que lesdits moyens d'introduction de l'agent de gazéification comprennent : un cône de diffusion de l'agent de gazéification situé en haut de la zone d'oxydation du gazéifieur ou au-dessus de ladite zone d'oxydation, et des moyens d'injection de l'agent de gazéification situés dans la zone d'oxydation du gazéifieur.
En outre, la plupart des brûleurs industriels intégrés à des fours, chaudières ou séchoirs peuvent être remplacés par un brûleur selon l'invention dans une gamme de puissance allant de 500 à 2000 kW.

Claims

REVENDICATIONS
Brûleur de gaz pour brûler un gaz à faible pouvoir calorifique, tel que du gaz de synthèse issu de la gazéification de biomasse, le brûleur étant de forme sensiblement cylindrique, et comprenant :
o une première zone annulaire (5) formée entre la paroi externe (16) du brûleur et une paroi interne (17) du brûleur sensiblement parallèle à la paroi externe (16),
o une seconde zone annulaire (8) formée entre la paroi externe (16) du brûleur et la paroi interne (17) en aval de la première zone,
et le brûleur comprenant par ailleurs :
o un conduit (1 ) d'alimentation en gaz à faible pouvoir calorifique sensiblement parallèle à l'axe du brûleur,
o un conduit (3) d'alimentation en air primaire formé dans la paroi externe (16) et débouchant dans la première zone annulaire (5),
o un conduit (4) d'alimentation en air secondaire formé dans la paroi externe (16) et débouchant dans la seconde zone annulaire (8),
o une fente annulaire (6) d'introduction de l'air primaire de la première zone annulaire (5) dans la zone de combustion (7), ladite fente annulaire (6) étant formée entre la paroi externe (16) et l'extrémité amont (25) de la paroi interne (17),
o des orifices (9) d'introduction de l'air secondaire de la seconde zone annulaire (8) dans la zone de combustion (7), lesdits orifices étant percés dans la paroi interne (17),
ledit brûleur étant caractérisé en ce que :
o la fente annulaire (6) a une forme telle que l'air primaire est apporté dans la zone de combustion (7) sous forme d'une lame d'air conique, et crée une zone de compression,
o les orifices (9) sont disposés de manière à permettre le tourbillonnement (« swirl ») de l'air secondaire. Brûleur selon la revendication 1 , caractérisé en ce que la fente annulaire (6) est formée grâce à une pièce dite « d'introduction d'air » (14) située à l'extrémité amont (25) de la paroi interne (17) du brûleur, la pièce (14) présentant une partie conique divergente de l'aval vers l'amont (15) formant avec la paroi intérieure (17) du brûleur un angle a compris entre 20° et 45°, et une partie dite « en extrados » se terminant sur un bord de fuite (13) qui permet de diriger ladite lame d'air conique selon le profil souhaité afin de constituer une zone de compression située sensiblement sur l'axe du brûleur.
Brûleur selon la revendication 2, caractérisé en ce que ladite pièce d'introduction d'air (14) présente un bord amont plat perpendiculaire à l'axe du brûleur et sensiblement parallèle à une surface plane de la paroi externe du brûleur, créant ainsi un flux d'air redressé perpendiculaire à l'axe du brûleur.
Brûleur selon la revendication 2 ou 3, caractérisé en ce que la partie conique (15) est suivie d'une partie arrondie (18) selon un rayon de courbure r1 , elle-même suivie d'un bord amont plan (19) sensiblement perpendiculaire à la paroi interne (17) du brûleur, et sensiblement parallèle à la base du cylindre formé par la paroi externe du brûleur (16), et en ce que la partie en extrados (13) suit le bord amont plan (19) et est constituée par une première partie arrondie (21 ) selon un rayon de courbure r2 suivie d'une seconde partie constituée de 3 profils plats successifs (22,23,24) formant des angles respectifs β1 , β2 et β3 avec le plan du bord amont (19), les angles β1 , β2 et β3 étant respectivement compris entre 30 et 80°.
Brûleur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les orifices (9) d'introduction d'air secondaire percés dans la paroi (17) sont de section cylindrique ou oblongue et ont un diamètre unitaire compris entre 3 et 15 mm.
6. Brûleur selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comporte en outre des conduits (2) d'introduction d'un combustible fossile.
7. Brûleur selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte en outre des passages (10,1 1 ,12) destinés à équiper le brûleur d'un brûleur d'allumage, d'une flamme pilote ou d'un détecteur de flamme.
Brûleur selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend un moyen de commande comprenant une mémoire et régulant le débit d'air introduit pour chaque allure et chaque ratio gaz pauvre / combustible fossile en fonction de points de fonctionnement paramétrés et mis en mémoire.
Brûleur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les axes des orifices d'entrée d'air secondaire (9) sont inclinés selon des angles compris entre 15 et 40°, et de préférence sensiblement égal à 25° par rapport au plan perpendiculaire à l'axe du brûleur.
Brûleur selon la revendication 9, caractérisé en ce que les axes des orifices d'entrée d'air secondaire (9) sont en outre inclinés selon des angles compris entre 10° à 25° et de préférence sensiblement égal à 15°, par rapport au rayon du cylindre formé par le brûleur et passant par l'orifice, de manière à permettre un tourbillonnement optimal de l'air secondaire.
1 1 . Brûleur selon l'une des revendications 1 à 10, caractérisé en ce qu'il est dimensionné pour une puissance comprise entre 500 et 2000 kW.
12. Utilisation du brûleur selon l'une des revendications 1 à 1 1 dans des fours, chaudières ou séchoirs.
13. Utilisation selon la revendication 12, dans laquelle la vitesse de l'air primaire est de 20 à 200 m/s au niveau de la lèvre ou de la fente annulaire (5).
14. Utilisation selon la revendication 12 ou 13, dans laquelle la vitesse d'introduction du gaz pauvre dans le brûleur est comprise entre 5 et 30 m/s, et de préférence entre 15 et 25 m/s.
Installation comprenant un brûleur selon l'une des revendications 1 à 1 1 , associé à un gazéifieur de biomasse.
PCT/FR2014/052523 2013-10-14 2014-10-06 Brûleur de gaz pauvre WO2015055916A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/024,877 US10378760B2 (en) 2013-10-14 2014-10-06 Lean gas burner
EP14799187.1A EP3058275A1 (fr) 2013-10-14 2014-10-06 Brûleur de gaz pauvre
JP2016547240A JP6490698B2 (ja) 2013-10-14 2014-10-06 リーンガスバーナ
CA2925737A CA2925737A1 (fr) 2013-10-14 2014-10-06 Bruleur de gaz pauvre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359968 2013-10-14
FR1359968A FR3011911B1 (fr) 2013-10-14 2013-10-14 Bruleur de gaz pauvre

Publications (1)

Publication Number Publication Date
WO2015055916A1 true WO2015055916A1 (fr) 2015-04-23

Family

ID=50023718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052523 WO2015055916A1 (fr) 2013-10-14 2014-10-06 Brûleur de gaz pauvre

Country Status (6)

Country Link
US (1) US10378760B2 (fr)
EP (1) EP3058275A1 (fr)
JP (1) JP6490698B2 (fr)
CA (1) CA2925737A1 (fr)
FR (1) FR3011911B1 (fr)
WO (1) WO2015055916A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605579A (zh) * 2016-02-26 2016-05-25 上海诺特飞博燃烧设备有限公司 一种金属纤维低氮燃烧装置的风燃全预混器
JP2017033869A (ja) * 2015-08-05 2017-02-09 東京瓦斯株式会社 燃焼器及び燃料電池モジュール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106524155B (zh) * 2016-11-28 2018-06-05 无锡市莱达热工工程有限公司 低压涡流式烧嘴
CZ201783A3 (cs) * 2017-02-13 2018-04-04 Vysoké Učení Technické V Brně Hořáková hlava na nízkovýhřevná paliva
EP3364105B1 (fr) 2017-02-16 2019-11-27 Vysoké ucení Technické v Brne Brûleur pour combustibles à faible pouvoir calorifique
US11098894B2 (en) * 2018-07-11 2021-08-24 Praxair Technology, Inc. Multifunctional fluidic burner
KR102532015B1 (ko) * 2022-12-16 2023-05-12 최진민 보일러용 가스 혼합기

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008842A1 (fr) 1978-09-05 1980-03-19 John Zink Company Brûleur pour gaz combustible à pouvoir calorifique variable avec préchauffement de l'air de combustion
FR2465158A3 (fr) * 1979-09-13 1981-03-20 Bosch Gmbh Robert Bruleur a mazout a pulverisation, notamment pour appareils de faible puissance
WO2001007833A1 (fr) * 1999-07-23 2001-02-01 Dyson Hotwork Limited Bruleur industriel de carburant ameliore
EP0780630B1 (fr) 1995-12-21 2001-09-26 ALSTOM (Schweiz) AG Brûleur pour un générateur de chaleur
US7003957B2 (en) 2001-10-19 2006-02-28 Alstom Technology Ltd Burner for synthesis gas
US20060246387A1 (en) * 2005-04-27 2006-11-02 Eclipse Combustion, Inc. Low NOx burner having split air flow
FR2889292A1 (fr) 2005-07-26 2007-02-02 Optimise Sarl Procede et installation de combustion sans soutien de gaz combustible pauvre a l'aide d'un bruleur et bruleur associe
EP1800062A1 (fr) 2004-10-11 2007-06-27 Siemens Aktiengesellschaft Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur
WO2013098525A1 (fr) 2011-12-29 2013-07-04 Cogebio Procede et equipement de gazeification en lit fixe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2469272A (en) * 1946-09-06 1949-05-03 Gilbert & Barker Mfg Co Pressure atomizing oil burner
JPS4887404U (fr) * 1972-01-28 1973-10-23
JPS4887403U (fr) * 1972-01-28 1973-10-23
US4095929A (en) * 1977-03-14 1978-06-20 Combustion Engineering, Inc. Low BTU gas horizontal burner
DE2836534C2 (de) * 1978-08-21 1982-09-02 Oertli AG Dübendorf, Dübendorf Verfahren zum Verbrennen flüssigen Brennstoffes und Brenner zur Durchführung des Verfahrens
JPS6055829U (ja) * 1983-09-20 1985-04-19 新日本製鐵株式会社 放射管加熱装置用バ−ナ
JPH0435693Y2 (fr) * 1987-11-20 1992-08-24
FR2654191B1 (fr) * 1989-11-09 1992-04-10 Rousseau Louis Bruleur a debit reglable et a air induit ou pulse.
JPH0712314A (ja) * 1993-06-23 1995-01-17 Nippon Sanso Kk ガスバーナー
JP2849977B2 (ja) * 1994-03-30 1999-01-27 矢崎総業株式会社 ガスバーナ
FR2817946B1 (fr) * 2000-12-11 2003-03-21 Inst Francais Du Petrole Dispositif de combustion catalytique avec pulverisation de combustible liquide sur parois chaudes
FR2824625B1 (fr) * 2001-05-10 2003-08-15 Inst Francais Du Petrole Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion
FR2926872B1 (fr) * 2008-01-28 2010-02-19 Imerys Tc Bruleur, notamment pour four de cuisson de produits en ceramique et installation correspondante.
JP2009299955A (ja) * 2008-06-11 2009-12-24 Chugai Ro Co Ltd バーナ燃焼方法及び高速噴流型拡散燃焼式バーナ
JP5486619B2 (ja) * 2012-02-28 2014-05-07 株式会社日立製作所 ガスタービン燃焼器及びその運転方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008842A1 (fr) 1978-09-05 1980-03-19 John Zink Company Brûleur pour gaz combustible à pouvoir calorifique variable avec préchauffement de l'air de combustion
FR2465158A3 (fr) * 1979-09-13 1981-03-20 Bosch Gmbh Robert Bruleur a mazout a pulverisation, notamment pour appareils de faible puissance
EP0780630B1 (fr) 1995-12-21 2001-09-26 ALSTOM (Schweiz) AG Brûleur pour un générateur de chaleur
WO2001007833A1 (fr) * 1999-07-23 2001-02-01 Dyson Hotwork Limited Bruleur industriel de carburant ameliore
US7003957B2 (en) 2001-10-19 2006-02-28 Alstom Technology Ltd Burner for synthesis gas
EP1800062A1 (fr) 2004-10-11 2007-06-27 Siemens Aktiengesellschaft Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur
US20060246387A1 (en) * 2005-04-27 2006-11-02 Eclipse Combustion, Inc. Low NOx burner having split air flow
FR2889292A1 (fr) 2005-07-26 2007-02-02 Optimise Sarl Procede et installation de combustion sans soutien de gaz combustible pauvre a l'aide d'un bruleur et bruleur associe
WO2013098525A1 (fr) 2011-12-29 2013-07-04 Cogebio Procede et equipement de gazeification en lit fixe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033869A (ja) * 2015-08-05 2017-02-09 東京瓦斯株式会社 燃焼器及び燃料電池モジュール
CN105605579A (zh) * 2016-02-26 2016-05-25 上海诺特飞博燃烧设备有限公司 一种金属纤维低氮燃烧装置的风燃全预混器

Also Published As

Publication number Publication date
JP2016536562A (ja) 2016-11-24
EP3058275A1 (fr) 2016-08-24
US10378760B2 (en) 2019-08-13
JP6490698B2 (ja) 2019-03-27
CA2925737A1 (fr) 2015-04-23
FR3011911B1 (fr) 2015-11-20
FR3011911A1 (fr) 2015-04-17
US20160238241A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
EP3058275A1 (fr) Brûleur de gaz pauvre
EP1907754B1 (fr) Procédé et installation de combustion de gaz combustible pauvre, sans soutien, à l'aide d'un brûleur et brûleur associé
FR2915989A1 (fr) Injecteur mixte a bas nox
FR2966561A1 (fr) Tuyere a combustible pour bruleur
FR2547020A1 (fr) Procede et appareil de combustion d'une emulsion du type eau dans l'huile
FR2535018A1 (fr) Bruleur a charbon pulverise
FR2706985A1 (fr)
EP0242249B1 (fr) Brûleur à faible émission de gaz polluants
CA2657537C (fr) Bruleur et procede pour la mise en oeuvre alternee d'une oxycombustion et d'une aerocombustion
KR101298717B1 (ko) 고탄소성 폐기물 열분해 가스를 연소시키는 사이클론 버너
EP2981761B1 (fr) Procédé de combustion d'un bruleur à gaz a premelange bas nox
BE1024784B9 (fr) Procédé de combustion de combustible dans une chambre de combustion cylindrique
EP3105506A1 (fr) Module de brûleur en veine
EP0926434A1 (fr) Brûleur à faible émission d'oxyde d'azote avec circuit de gaz recyclé
RU2454605C1 (ru) Вихревая эжекционная газовая горелка технологического назначения
EP3728949A1 (fr) Brûleur et ensemble de brûleurs compacts
FR2951525A1 (fr) Procede de fonctionnement d'une chaudiere
BE1023167B1 (fr) Foyer a combustible solide
EP3234462B1 (fr) Dispositif de combustion comprenant une enceinte de combustion a parois dites « froides », chaudière et four comportant un tel dispositif
FR2714455A1 (fr) Tête de combustion perfectionnée pour brûleur à gaz, brûleur équipé d'une telle tête et procédé de combustion.
BE564790A (fr)
BE537064A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14799187

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014799187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014799187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15024877

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2925737

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016547240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE