WO2015055515A1 - Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe - Google Patents

Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe Download PDF

Info

Publication number
WO2015055515A1
WO2015055515A1 PCT/EP2014/071706 EP2014071706W WO2015055515A1 WO 2015055515 A1 WO2015055515 A1 WO 2015055515A1 EP 2014071706 W EP2014071706 W EP 2014071706W WO 2015055515 A1 WO2015055515 A1 WO 2015055515A1
Authority
WO
WIPO (PCT)
Prior art keywords
pumps
channel
pump
liquid
supply device
Prior art date
Application number
PCT/EP2014/071706
Other languages
English (en)
French (fr)
Inventor
Melanie Tiller
Sami Er
Reiner Liebing
Original Assignee
Ecp Entwicklungsgesellschaft Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2925422A priority Critical patent/CA2925422A1/en
Priority to ES14781610T priority patent/ES2768339T3/es
Application filed by Ecp Entwicklungsgesellschaft Mbh filed Critical Ecp Entwicklungsgesellschaft Mbh
Priority to US15/029,092 priority patent/US10195323B2/en
Priority to EP14781610.2A priority patent/EP3060805B1/de
Priority to DK14781610.2T priority patent/DK3060805T3/da
Priority to EP22162535.3A priority patent/EP4033100A1/de
Priority to EP19195945.1A priority patent/EP3594500B8/de
Priority to CN201480055960.6A priority patent/CN105917118B/zh
Priority to KR1020237007535A priority patent/KR20230038595A/ko
Priority to KR1020167012259A priority patent/KR102311071B1/ko
Priority to KR1020217031033A priority patent/KR20210121302A/ko
Priority to JP2016523279A priority patent/JP6758181B2/ja
Publication of WO2015055515A1 publication Critical patent/WO2015055515A1/de
Priority to HK16111993.6A priority patent/HK1223670A1/zh
Priority to US16/228,005 priority patent/US10780205B2/en
Priority to US16/989,111 priority patent/US20210023284A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/13Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/17Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps
    • A61M60/174Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps discharging the blood to the ventricle or arterial system via a cannula internal to the ventricle or arterial system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/414Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted by a rotating cable, e.g. for blood pumps mounted on a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/562Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/825Contact bearings, e.g. ball-and-cup or pivot bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/827Sealings between moving parts
    • A61M60/829Sealings between moving parts having a purge fluid supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Definitions

  • the invention is in the field of electrical engineering and mechanics and can be used with particular advantage in the field of medical technology.
  • the invention deals with the supply of a channel with a liquid.
  • a channel For example, it may be necessary to fill a channel with a liquid to cool the walls of the channel, or to cool or lubricate and / or degas the moving parts located in the channel.
  • a channel for example a cannula
  • the liquid can in principle be moved by means of a pump into or through the channel.
  • a diaphragm pump for medical application which serves to promote insulin in small quantities. It is also described there a pulsating production operation.
  • DE 694 09 587 T2 discloses a method for flushing a catheter with a back and forth channel to minimize deposits within the catheter as possible. It is described there, inter alia, a pulsating flushing, which can be controlled by solenoid valves.
  • the present invention has the object to provide a supply device for acting on the channel with a liquid and a method for operating such a supply device, wherein in a structurally simple manner a solution is sought, in a controlled manner the Controlling the flow of the liquid at low flow rate allows.
  • the invention accordingly relates to a method for operating a supply device, which acts on a channel with a liquid, with a diaphragm pump.
  • the method is characterized in that the diaphragm pump is controlled with respect to the generated ruck and / or the delivery rate.
  • a supply device for acting on a channel with a liquid having at least one membrane pump.
  • the apparatus includes a controller that controls the pump with respect to the pressure generated (which in some embodiments may also include a vacuum or vacuum) and / or the rate of delivery.
  • the invention also relates to a hollow catheter and / or a catheter pump, It is important that both have a supply device according to the invention for flushing a channel of the Hohfkatheters or the catheter pump in the manner according to the invention.
  • One embodiment relates to the fact that the correspondingly equipped hollow catheter within the hollow catheter (preferably within the channel) has a rotatable shaft.
  • the catheter pump which preferably contains a hollow catheter according to the invention, is also traversed by a rotatable shaft.
  • a rotatable shaft is flexible.
  • a left ventricular assist system inserted intraventricularly from the leg artery and pushed into the left ventricle of the heart means that such a pump includes a rotatable shaft that is driven outside the body and drives a rotor in the heart; This wave must be flexible enough to follow the curvature of the aortic arch, for example, while still being able to rotate at high speed.
  • the rotatable in the lumen / channel to be washed shaft should be operable at a high speed, which may be, for example, about 10,000 revolutions per minute.
  • the supply device according to the invention in this case ensures the supply of liquid via the supply device according to the invention, for example to ensure freedom of air within the hollow catheter or the catheter pump, but also for the lubrication of the flexible shaft.
  • the invention also relates to a method for operating a supply device, which acts on a channel with a liquid, with two arranged at spaced-apart locations of the channel pumps. It is provided that the parameter values of at least one operating parameter of both pumps are controlled in a coordinated manner.
  • Operating parameters of the pumps are coordinated with each other, for example, the setting of a common pressure levels while maintaining appropriate pressure differences between an inlet region and a discharge region of the channel possible.
  • the control of a flow rate is possible by two tuned pumps such that on the one hand set a certain flow rate through the channel and on the other hand set loss rates of the liquid in the inlet and outlet or in the course of the channel leaks / openings to a certain value, in particular limited can be.
  • membrane pumps are particularly suitable for realizing the supply device. These may vary in terms of flow, i. H. the flow rate, are controlled very accurately and reproducibly.
  • each of the Locations where the fluid pressure is detected be assigned to one of the pumps, and it can be realized by means of the pressure sensing an optimal ratio of suction pressure and pressure by controlling the pump.
  • Such a control is particularly important if the channel is not closed ring-shaped, but has a suction in which the channel from the outside of a liquid reservoir liquid is supplied, and / or has a Auslaufkanai, through the liquid from the channel into a Collection reservoir is derived.
  • the corresponding pressure sensors can be constructed separately in the channel, but they can also be integrated into one of the pumps.
  • the adjusted parameter values of the two pumps are variable in time according to a fixed schedule and, in particular, are periodically changed over time after a start-up phase.
  • start-up phase for example, at least one of the pumps can be slowly increased in their performance.
  • a power peak may also be sought so that the liquid first flows through the channel at a high flow rate, with the flow rate decreasing again after the initial phase.
  • the pressure of at least one of the pumps is controlled periodically rising and falling or that correspondingly a periodically rising and falling
  • Flow rate is set. This is particularly advantageous when moving parts are present within the channel, such as within a cannula a drivable shaft, which in turn releases by abrasion small particles. Usually, these particles should not be moved along the channel, but still the liquid should be transported. Varying the operating parameters of the pumps allows for efficient flushing of the channel with the liquid, all non-stationary flow reaching all parts of the channel. Through the phases of lower throughput of the liquid, the particles in the flow can come to rest, so that the transport of the particles along the channel can be minimized. Varying the parameters of the pumps may be, besides varying the power of each of the pumps, also varying, for example, the power difference or a pressure difference created by the pumps. The pressure difference ensures the acceleration of the liquid and thus a periodically fluctuating pressure difference for a correspondingly periodically fluctuating liquid transport.
  • a liquid is understood to mean a liquid used for rinsing the shaft. In some embodiments, this is not a liquid to be delivered by the pump, although traces or a small amount of the liquid to be delivered by the pump may also enter the channel. In other embodiments, the liquid to be delivered by the pump is that which can be used for flushing.
  • a further advantageous embodiment of the invention provides that the coordinated parameter values of the two pumps are in a relationship which depends on detected values of the fluid pressure in the channel in a predetermined manner. In this way, the fluid pressure in the channel or a fluid pressure difference can be controlled periodically.
  • the delivery rates of the pumps can be determined by means of various parameters.
  • the measured variables or operating parameters for determining the delivery rate are the stroke frequency of the diaphragm, and / or the lift height of the diaphragm and / or the deflection of the diaphragm.
  • one of the above measured variables or a combination of at least two of the above measured variables can be used to determine the delivery rate.
  • Another possibility for determining the delivery rate is in some embodiments, the electrical
  • the tuned operating parameters of both pumps can thus z. B. be the respective subsidies. It can then, for example, a certain difference in the flow rates between the two pumps be set. This may then mean, for example, that a certain loss rate is generated in the course of the liquid transport channel.
  • the coordinated operating parameters of both pumps are the respective values of the fluid pressure generated by the pumps. The fluid pressure can be detected particularly simply and accurately in the channel, so that, for example, a specific quotient of the pressure values or a specific difference of the pressure values can be set by controlling the pumps.
  • Quotient and / or the difference can also be adjusted periodically variable to avoid a steady flow with dead water areas.
  • the matched operating parameters of both pumps are the respective electrical power consumption of the pump.
  • each pump can be assigned an electrical sensor for detecting the power consumption of the pump, in particular for detecting the current consumption.
  • the matched operating parameters of both pumps are the respective flow rates of the pump.
  • the flow rates can be detected separately, for example by flow measuring sensors or by recording the operating parameters of the pump, such as the power consumption and the prevailing
  • a fixed pressure difference and / or a fixed difference in the flow rate is set between the two pumps. It can be provided in particular that the difference in the fürfiussraten both pumps is less than 100 milliliters per day, in particular less than 10 milliliters per day or less than 1 milliliter per day.
  • the channel may have a transport channel and a return channel, wherein the transport channel, for example, at one at the end of a S
  • Cannula arranged blood pump ends and the return flow channel begins at the same point. A portion of the fluid, which is the difference in flow rates, may then flow out, for example, through the blood pump, flushing it, and, when implanted, draining it into the body of a patient.
  • a biocompatible, health-compatible liquid is selected as the liquid, such as a saline solution.
  • the direction of movement of the liquid is reversed.
  • Such a reversal of the direction of movement of the liquid may be provided periodically or only on certain occasions.
  • a direction of transport of fluid from a proximal end of the catheter to a distal end of the catheter and through a return flow channel back into a collection container is selected.
  • the invention relates not only to a method for operating a supply device to the design of a supply device for acting on a channel with a liquid, with at least two pumps, in particular diaphragm pumps, which are arranged at spaced-apart locations of the channel, and with a control device, the individually controls the pumps with regard to the pressure generated and / or the delivery rate.
  • the control device must be designed so that it allows a coordinated control of the individual pumps. It can be assigned to one of the pumps or can also be designed as a separate central control unit. The control device can also be used to control operating parameters of the pumps and is then connected to sensors for the acquisition of measured values.
  • each pump is assigned a fluid pressure sensor.
  • the controller can then a certain pressure ratio between suction pressure and pressure or a certain Ratio of the pressures generated by the two pumps or a certain pressure difference can be controlled.
  • the pumps can be operated, for example, as pressure sensors if their power consumption is detected and supplied to the control device.
  • the power consumption can also be an indicator of the flow rate achieved by the respective pump and be detected as such.
  • the prevailing fluid pressure is usually also taken into account, so that in such an operation, the simultaneous operation of pressure measuring sensors is advantageous.
  • flow rate sensors may be provided, one of which is associated with each of the pumps. It can then be set by the control device, a certain ratio of the flow rates in the range of the first and the second pump or a predetermined difference. Such a difference in the flow rates can be controlled, for example, periodically variable.
  • FIG. 1 shows a hollow catheter with a driven shaft and a supply device according to the invention
  • FIG. 2 shows the end of a hollow catheter in a longitudinal section with a distally mounted rotary pump for operation in a blood vessel
  • FIG. 3 shows a cross section through a hollow catheter
  • FIG. 5 shows a method sequence for a method for operating a
  • Fig. 6 is a diagram showing the time course of flow rates in three different variants, as well as
  • FIG. 7 shows a diagram which represents a time profile of the liquid pressure.
  • FIG. 1 shows a hollow catheter 1 in a representation interrupted in the longitudinal direction, with a proximal end la in medical use being shown in the lower region and a distal end 1b in the upper region.
  • an implantable blood pump especially for operation in a blood vessel and / or a heart chamber, may be provided at the distal end of the hollow catheter 1.
  • a rotatably drivable shaft 2 This serves for example for driving a blood pump and is connected at its proximal end 2a with a drive motor 3.
  • the shaft 2 may be inserted in the region of a bushing 4 in a coupling housing 5, wherein the bushing 4 is designed such that the passage of a medium along the shaft into the coupling housing 5 or out of the coupling housing 5 is prevented by a seal.
  • the drive shaft 2 is for example made of strands, in particular in twisted or stranded form, or formed as a helical spring or formed in a combination of both variants by a soul with a surrounding coil spring, on the one hand high numbers of revolutions to be able to transmit in the range of a few thousand revolutions per minute and on the other hand to be flexible.
  • a cooling and Schmierfiüsstechnik is usually provided within the channel formed in the hollow catheter 1, which is advantageously biocompatible.
  • the liquid is supplied to the coupling housing 5 via an inflow channel 9 and transported along the channel 8.
  • the inflow channel 9 is connected to a first pump, which is designed as a diaphragm pump 10 in the exemplary embodiment.
  • FIG. 1 shows a magnetic device 10a which serves as a drive for the diaphragm pump 10, the magnetic device 10a being controlled by an electric control device 11.
  • the diaphragm pump 10 sucks liquid from an inlet reservoir 12, as shown by the arrow 13, and transports them into the coupling housing 5 at an adjustable flow rate and an adjustable pressure via the inlet channel 9.
  • the liquid is distributed and moves in particular in the direction of the arrow 14 along the channel 8 in the direction of the distal end 1b of the hollow catheter.
  • the movement along the channel 8 can be assisted for example by the rotation of the shaft 2, if this has an at least partially helical outer contour and rotates in a suitable direction of rotation.
  • the rotation of the shaft 2 may aid in the movement of the fluid along the channel 8
  • the determination of the delivery rate due to the rotation of the shaft can then also be interpreted as a disturbance variable which is due to the adaptation of the delivery rate of the pumps. is equal to ensure a predetermined flow rate through the channel.
  • the delivery rate of the shaft 8 may depend, inter alia, on the rotational speed of the shaft, any wear on the shaft, the bending of the catheter, or the like. Although these sizes are determinable, a compensation of the resulting capacity of the shaft by the
  • 10 flow rates in the range of microliters or milliliters per hour can be set by means of the control of the diaphragm pump.
  • At least one suitable sensor 15 is provided in the channel 8, which is connected to the control device 11 by means of a communication line 16.
  • the sensor 15 may be formed, for example, as a pressure sensor, as a flow rate sensor or as a combined sensor for detecting the pressure and the flow rate.
  • the senor 15 is assigned to the first diaphragm pump 10 and detects the pressure generated by this first pump
  • the channel 8 is divided according to the principalsbeispiei of Figure 1 in the longitudinal direction in a first channel region 8a, which is flowed through in the direction of the coupling housing 5 to the distal end 1b of the hollow catheter 1 in the direction of arrow 14, and a second channel region 8b is designed as a return channel.
  • the two channel regions 8a, 8b are thus connected in series and form a total of the channel 8.
  • the return channel 8b may be separated from the first channel region 8a, for example by a partition wall 17, which is shown in Figure 3, or the second channel region / back channel 8b may be formed by a cannula 18 which extends within the hollow catheter 1. This variant is shown in Figure 4 in cross section.
  • the return channel 8b is designed in accordance with FIG.
  • the second diaphragm pump 19 may advantageously be formed as a magnetic diaphragm pump with a magnetic device 19 a, which is driven by the control device 11 and the drive of the
  • Diaphragm pump 19 forms.
  • the diaphragm pump 19 draws the liquid from the return channel 8b and conducts it via a discharge channel 20 into a discharge reservoir 21.
  • the control device 11 is also connected to a second sensor 22, which, like the first sensor 15, as a flow sensor and / or as Pressure sensor may be formed and the return channel 8b and thus the second diaphragm pump 19 is associated.
  • the flow rate of the return channel 8b or the suction pressure of the second diaphragm pump 19 can be detected by the second sensor 22.
  • Sensor 22 detected parameters are supplied via a second communication line 23 to the control device 11.
  • the control device 11 is in turn connected to an electrical supply connection IIa, which supplies the control device with a low supply
  • the control device 11 generates pulses which are fed to the magnetic devices 10a, 19a for driving the first and second diaphragm pumps 10, 19.
  • the flow rates and / or pressures generated by the first and second diaphragm pumps 10, 19 can be controlled.
  • FIG. 2 shows, as an example of a use of a hollow catheter with a drivable shaft, an implantable blood pump 24, which is designed as a rotary pump with a rotor 25 with conveying elements.
  • the rotor 25 is connected directly to the shaft 2, which is mounted at the distal end of the rotor 25 in a rotary bearing 26 in the housing 27 of the blood pump.
  • the blood pump 24 sucks blood via the intake openings 28 at its distal end in the direction of the arrows 29, 30 and transports it outside the hollow catheter 1 over a passage formed by a discharge hose 31
  • the shaft 2 is mounted at the end of the hollow catheter 1 in a bushing 33, which on the one hand permit high numbers of rotations, on the other hand should be as dense as possible in order to prevent or limit fluid exchange along the shaft 2. It should in particular be prevented that blood from the interior of the housing 27 of the blood pump 24 in the hollow catheter 1, ie in the channel 8, passes.
  • Partition 17 shown in dashed lines.
  • the inflow of the liquid through the first channel region 8a in the direction of the arrow 34 to the distal end of the hollow catheter 1 and the backflow in the direction of the arrow 35 through the second region 8b of the channel 8 are made possible.
  • the rotating shaft 2 can be supplied along its entire length with the liquid.
  • an overpressure of the liquid in the interior of the hollow catheter 1, d. h, can be adjusted in the channel 8, which causes fluid from the channel 8 to flow into the housing of the blood pump 24 at a very low flow rate, as indicated by the arrows 36, 37.
  • an outflow rate of a few microliters or milliliters per day can be set here, which represents a difference between the feed rate in the first channel area 8a and the return rate in the return channel 8b. This difference is adjustable and measurable as the difference between the delivery rates between the first pump 10 and the second pump 19.
  • FIG. 5 shows a flowchart for a method for operating the supply device shown.
  • a first step 38 becomes a
  • Venting of the channel 8 including the coupling housing 5 performed by 10 liquid is supplied by means of the first pump. After bleeding the channel 8 and the pumps, the speed of which may be adjustable, it is determined in a second step 39 in which direction of movement (flow / return) the liquid is to be moved through the channel 8.
  • the diaphragm pumps 10, 19 and the reservoirs 12, 21 can both Allow movement of the liquid. Depending on the direction of movement of the liquid, the pressures are set by the
  • Diaphragm pumps 10, 19 are generated.
  • a third step 40 it is decided whether the powers of the pumps should be set manually. If the pumps are adjusted manually, the further process proceeds via the path 40a, and in a step 46, the pressures and / or flow rates of the two pumps are adjusted. Usually, this variant is well chosen when the purge rate, i. H. the flow rate through the channel 8, should be small and constant.
  • step 41 the pressure at the two pressure sensors 15, 22 is initially detected in step 41, from which a pressure difference is calculated and from this in a fifth step 42, the control of the pumps 10, 19 calculated by corresponding pulses of the control device 11.
  • the desired pressure difference may also vary over time, for example periodically varying.
  • a sixth step 43 the generated pressure difference is compared with the target pressure difference. If the actual pressure difference corresponds to the differential pressure differential, then, for example, the pressure difference or a purge rate calculated therefrom is displayed in a seventh step 44, and the method is ended in an eighth step 45.
  • the termination of the method means that the supply device is in a stable operating state and the pumps 10, 19 are driven accordingly and work. If it is determined in the sixth step 43 that the pressure difference does not correspond to the desired pressure difference, the method returns via the path 43a to the fourth step 41, at which the pressure difference is measured and from this the control of the pumps is determined in a control step ,
  • FIG. 6 shows a typical time profile of flow rates in three exemplary variants.
  • the flow rate is given in volume per time, while time is plotted on the x-axis.
  • a first graph 48 shows the flow rate measured by the sensor 15 or the sensor 22, the flow rate being constant over much of the time, but from time to time, for example, every twenty seconds, or every few minutes, by a transient one Increase 49, 50 the flow rate is changed.
  • Blood pump can escape and enter the body inside a patient.
  • Washed blood from the bearing 33 Washed blood from the bearing 33.
  • a second variant 51 of the flow rate profile is periodically varied by a constant course 52, for example in the form of a sinusoid. This results in a constantly changing Naturalfiuss with it also constantly changing flow conditions that guarantee a fluid exchange in all areas of the channel 8.
  • the flow direction shown by the example of the flow rate reduction 55, is occasionally reversed.
  • the reversal of the flow causes a change in the flow direction of the liquid in the channel 8 and thus also the exchange of liquid in dead water areas.
  • Such a reversal of the flow direction can occur, for example, at intervals of five to ten minutes.
  • pressure measured values are plotted against the time t on the y axis, with a first curve 56 indicating the pressure in the region of the sensor 15 and a second curve 57 indicating the pressure in the region of the sensor 22. It can be seen that in two regions 58, 59 the pressure is temporarily raised by the first diaphragm pump 10, while the pressure in the region of the return line, detected by the sensor 22, remains constant. This requires that flows in the areas of the raised pressure 58, 59 through the bearing 33 liquid in the pump housing and thus the pressure in the channel 8 is relieved.
  • a supply device in the form of a purging device for a hollow catheter for a blood pump is realized, are used in the low wear parts and thus a stable operation with low fluid losses can be ensured for a long time.

Abstract

Die vorliegende Erfindung bezieht sich auf eine Versorgungseinrichtung für einen Kanal (8), insbesondere innerhalb eines Hohlkatheters (1), sowie ein Verfahren zum Betrieb einer solchen Versorgungseinrichtung, die einen Kanal (8) mit einer Flüssigkeit beaufschlagt, mit zwei an voneinander beabstandeten Stellen des Kanals angeordneten Pumpen (10, 19), dadurch gekennzeichnet, dass die Parameterwerte wenigstens eines Betriebsparameters beider Pumpen aufeinander abgestimmt gesteuert werden. Durch das Verfahren soll insbesondere bei Verwendung von verschleißfreien Membranpumpen mit einfachen konstruktiven Mitteln ein störungsfreier und genau steuerbarer Betrieb gewährleistet werden.

Description

VERFAH REN ZUM BETRIEB EI NER VERSORGUNGSEINRICHTUNG, DIE EINEN KANAL MIT EINER FLÜSSIGKEIT BEAUFSCHLAGT, SOWIE VERSORGUNGSEINRICHTUNG,
HOH LKATHETER UND KATHETERPUMPE
Die Erfindung liegt auf dem Gebiet der Elektrotechnik und der Mechanik und ist mit besonderem Vorteil auf dem Gebiet der Medizintechnik einsetzbar.
Konkret beschäftigt sich die Erfindung mit der Versorgung eines Kanals mit einer Flüssigkeit. Beispielsweise kann es notwendig sein, einen Kanal mit einer Flüssigkeit zu füllen, um die Wände des Kanals zu kühlen oder in dem Kanal angeordnete, bewegte Teile zu kühlen oder zu schmieren und/oder gasfrei zu machen. Zu diesem Zweck ist es grundsätzlich bekannt, einen derartigen Kanal, beispielsweise eine Kanüle, mit einer Kühl- und/oder Schmierflüssigkeit zu versorgen. Die Flüssigkeit kann grundsätzlich mittels einer Pumpe in den oder durch den Kanal bewegt werden. Oft ist es dabei, insbesondere bei medizinischen Anwendungen, wichtig, dass einerseits durch die Flüssigkeit im Kanal keine dort entstehenden Abriebteile transportiert werden und dass andererseits die Geschwindigkeit, mit der die Flüssigkeit durch den Kanal bewegt wird, möglichst gering aber präzise gesteuert ist. Es kann zudem auch gewünscht sein, dass der Flüssigkeitsverlust aus dem Kanal minimiert wird.
Aus dem Stand der Technik ist beispielsweise aus der DE 20 2005 021 999 Ul ein Wärmetauschsystem mit einer Pumpe bekannt, die den Transport eines Wärmetauschfluids von und zu einem Katheter bewirkt. Es ist ein Strömungsdetektor in Form eines Flügelrades beschrieben, wobei die Drehgeschwindigkeit des durch das Wärmetauschfluid bewegten Flügelrades der Durchflussrate entspricht. Die Geschwindigkeit des Flügelrades wird von außen durch eine Lichtschranke gemessen, die jeweils durch das Passieren einzelner Schaufeln des Flügelrades unterbrochen wird.
Aus der DD 202 805 AI ist eine Membranpumpe für die medizinische Anwendung bekannt, die dazu dient, Insulin in kleinen Mengen zu fördern. Es ist dort auch ein pulsierender Förderbetrieb beschrieben.
Die DE 694 09 587 T2 offenbart ein Verfahren zum Spülen eines Katheters mit einem Hin- und Rückkanal, um Ablagerungen innerhalb des Katheters möglichst zu minimieren. Es wird dort unter anderem ein pulsierendes Spülen beschrieben, das durch Magnetventile gesteuert werden kann.
Vor dem Hintergrund des Standes der Technik Hegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Versorgungseinrichtung zur Beaufschlagung des Kanals mit einer Flüssigkeit sowie ein Verfahren zum Betrieb einer solchen Versorgungseinrichtung zu schaffen, wobei in konstruktiv einfacher Weise eine Lösung angestrebt wird, die in kontrollierter Weise die Steuerung des Durchflusses der Flüssigkeit bei geringer Durchflussrate ermöglicht.
Erfindungsgemäß wird diese Aufgabe durch eine Versorgungseinrichtung und durch ein Verfahren gemäß den unabhängigen Ansprüchen gelöst, Spezielle Ausgestaltungen sind jeweils in den Unteransprüchen beschrieben. Die Erfindung bezieht sich demgemäß auf ein Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, mit einer Membranpumpe. Das Verfahren zeichnet sich dadurch aus, dass die Membranpumpe bezüglich des erzeugten rucks und/oder der Förderrate angesteuert wird.
Erfindungsgemäß wird auch eine Versorgungseinrichtung zur Beaufschlagung eines Kanals mit einer Flüssigkeit mit wenigstens einer Membranpumpe vorgeschlagen. Die Vorrichtung weist eine Steuereinrichtung auf, die die Pumpe bezüglich des erzeugten Drucks {was in einigen Ausführungsformen auch einen Unterdruck oder ein Vakuum umfassen kann) und/oder der Förderrate ansteuert.
Die Erfindung bezieht sich außerdem auf einen Hohlkatheter und/oder eine Katheterpumpe, Wichtig ist hierbei, dass beide über eine erfindungsgemä e Versorgungseinrichtung zur Spülung eines Kanals des Hohfkatheters bzw. der Katheterpumpe in der erfindungsgemäßen Weise verfügen.
Eine Ausführungsform bezieht sich darauf, dass der entsprechend ausgestattete Hohlkatheter innerhalb des Hohlkatheters (vorzugsweise innerhalb des Kanals) eine drehbare Welle aufweist.
Eine weitere Ausführungsform sieht vor, dass die Katheterpumpe, die vorzugsweise einen erfindungsgemäßen Hohlkatheter enthält, ebenfalls von einer drehbaren Welle durchzogen ist. Besonders vorteilhaft hierbei ist, wenn diese drehbare Welle flexibel ist. Für das Beispiel eines Linksherzunter- stützungssystems, das intraventrikulär von der Beinarterie eingeführt und bis in den linken Ventrikel des Herzens geschoben wird, heißt das, dass eine solche Pumpe eine drehbare Welle enthält, die außerhalb des Körpers angetrieben ist und einen Rotor im Herzen antreibt; diese Welle muss so flexibel sein, dass sie beispielsweise die Krümmung des Aortenbogens mitvollziehen und hierbei sich trotzdem noch mit hoher Geschwindigkeit drehen kann. Die im zu spülenden Lumen/Kanal drehbare Welle sollte mit einer hohen Drehzahl betreibbar sein, die beispielsweise über 10000 Umdrehungen pro Minute betragen kann. Die erfindungsgemäße Versorgungseinrichtung gewährleistet hierbei die Versorgung mit Flüssigkeit über die erfindungsgemäße Versorgungseinrichtung, beispielsweise zur Sichersteliung der Luftfreiheit innerhalb des Hohlkatheters bzw. der Katheterpumpe, aber auch zur Schmierung der flexiblen Welle.
Die Erfindung bezieht sich auch auf ein Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, mit zwei an voneinander beabstandeten Stellen des Kanals angeordneten Pumpen. Dabei ist es vorgesehen, dass die Parameterwerte wenigstens eines Betriebsparameters beider Pumpen aufeinander abgestimmt gesteuert werden.
Grundsätzlich ist es bekannt und möglich, eine Flüssigkeit mittels einer einzigen Pumpe durch einen Kanal zu bewegen. Durch die Merkmale der Erfindung, insbesondere die Verwendung mehrerer Pumpen, ist jedoch, wenn
Betriebsparameter der Pumpen aufeinander abgestimmt werden, beispielsweise die Einstellung eines gemeinsamen Druckniveaus bei Einhaltung von entsprechenden Druckdifferenzen zwischen einem Einlaufbereich und einem Auslaufbereich des Kanals möglich.
Auch die Steuerung einer Durchflussrate ist durch zwei abgestimmte Pumpen derart möglich, dass einerseits eine bestimmte Durchflussrate durch den Kanal eingestellt und andererseits Verlustraten der Flüssigkeit im Einlass- und Auslassbereich oder bei im Verlauf des Kanals vorhandenen Lecks/Öffnungen auf einen bestimmten Wert eingestellt, insbesondere begrenzt werden können.
Um eine besonders gute Einstellbarkeit und damit Steuerbarkeit des Betriebs der Versorgungseinrichtung zu erreichen, bieten sich besonders Membran- pumpen zur Realisierung der Versorgungseinrichtung an. Diese können bezüglich des Durchflusses, d. h. der Durchflussrate, besonders genau und reproduzierbar gesteuert werden.
Eine besonders effiziente Steuerung der Versorgungseinrichtung wird mög- lieh, wenn in vorteilhafter Weise an zwei voneinander beabstandeten Stellen in dem Kanal der Flüssigkeitsdruck erfasst wird. Insbesondere kann jede der Stellen, an denen der Flüssigkeitsdruck erfasst wird, einer der Pumpen zugeordnet sein, und es kann mittels der Druckerfassung ein optimales Verhältnis von Saugdruck und Überdruck durch Ansteuerung der Pumpen realisiert werden. Eine solche Steuerung ist insbesondere dann wichtig, wenn der Kanal nicht geschlossen ringförmig ausgebildet ist, sondern einen Ansaugbereich aufweist, in dem dem Kanal von außen aus einem Flüssigkeitsreservoir Flüssigkeit zugeführt wird, und/oder einen Auslaufkanai aufweist, durch den Flüssigkeit aus dem Kanal in ein Auffangreservoir abgeleitet wird. Die entsprechenden Drucksensoren können separat im Kanal aufgebaut sein, sie können jedoch auch jeweils in eine der Pumpen mit integriert sein.
Als besonders vorteilhaft hat sich bei dem erfindungsgemäßen Verfahren herausgestellt, dass die abgestimmten Parameterwerte der beiden Pumpen zeitlich nach einem festen Schema veränderlich sind und insbesondere nach einer Anlaufphase zeitlich periodisch verändert werden. In der Anlaufphase kann beispielsweise wenigstens eine der Pumpen langsam in ihrer Leistung gesteigert werden. Es kann jedoch auch eine Leistungsspitze angestrebt werden, so dass die Flüssigkeit zunächst mit einer hohen Durchflussrate durch den Kanal strömt, wobei die Durchflussrate nach der Anfangsphase wieder absinkt.
Unabhängig von der Gestaltung der Anlaufphase kann vorgesehen sein, dass der Druck wenigstens einer der Pumpen periodisch steigend und fallend gesteuert wird oder dass entsprechend eine periodisch steigende und fallende
Durchflussrate eingestellt wird. Dies ist insbesondere dann vorteilhaft, wenn innerhalb des Kanals bewegte Teile vorhanden sind, wie beispielsweise innerhalb einer Kanüle eine antreibbare Welle, die ihrerseits durch Abrieb kleine Partikel freisetzt. Üblicherweise sollen diese Partikel nicht entlang des Kanals weiterbewegt werden, jedoch soll dennoch die Flüssigkeit transportiert werden. Ein Variieren der Betriebsparameter der Pumpen erlaubt ein effizientes Spülen des Kanals mit der Flüssigkeit, wobei durch die nichtstationäre Strömung alle Teile des Kanals erreicht werden. Durch die Phasen geringeren Durchsatzes der Flüssigkeit können die Partikel in der Strömung zur Ruhe kommen, so dass der Transport der Partikel entlang des Kanals minimiert werden kann. Ein Variieren der Parameter der Pumpen kann außer der Variation der Leistung jeder einzelnen der Pumpen auch beispielsweise ein Variieren der Leistungsdifferenz oder einer durch die Pumpen erzeugten Druckdifferenz sein. Die Druckdifferenz sorgt für die Beschleunigung der Flüssigkeit und somit eine periodisch schwankende Druckdifferenz für einen entsprechend periodisch schwankenden Flüssigkeitstransport.
Nachfolgend wird unter einer Flüssigkeit eine zum Spülen der Welle verwendete Flüssigkeit verstanden. In einigen Ausführungsbeispielen ist dies nicht eine von der Pumpe zu fördernde Flüssigkeit, obgleich Spuren order geringe Menge der durch die Pumpe zu fördernden Flüssigkeit auch in den Kanal gelangen kann. In anderen Ausführungsbeispielen ist die von der Pumpe zu fördernde Flüssigkeit diejenige welche zur Spülung verwendet werden kann.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die abgestimmten Parameterwerte der beiden Pumpen in einem Verhältnis zueinander stehen, das von erfassten Werten des Flüssigkeitsdrucks im Kanal in vorbestimmter Weise abhängig ist. Auf diese Weise kann der Flüssigkeitsdruck im Kanal bzw. eine Flüssigkeitsdruckdifferenz periodisch gesteuert werden.
Die Förderleistungen der Pumpen können anhand verschiedener Messgrößen bestimmt werden. In einigen Ausführungsbeispielen sind die Messgrößen bzw. Betriebsparameter zur Bestimmung der Förderleistung die Hubfrequenz der Membran, und/oder die Hubhöhe der Membran und/oder die Auslenkung der Membran. Dabei kann zur Bestimmung der Förderleistung auf eine der obigen Messgrößen oder eine Kombination mindestens zweier der obigen Messgrößen zurückgegriffen werden. Eine weitere Möglichkeit zur Bestim- mung der Förderleistung ist in einigen Ausführungsbeispielen die elektrische
Leistungsaufnahme der Pumpe, insbesondere unter Berücksichtigung des herrschenden Flüssigkeitsdrucks.
Die abgestimmten Betriebsparameter beider Pumpen können somit z. B. die jeweiligen Förderleistungen sein. Es kann dann beispielsweise auch eine bestimmte Differenz der Förderleistungen zwischen den beiden Pumpen eingestellt werden. Dies kann dann beispielsweise bedingen, dass eine bestimmte Verlustrate im Verlauf des Kanals für den Flüssigkeitstransport erzeugt wird. Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die abgestimmten Betriebsparameter beider Pumpen die jeweiligen Werte des durch die Pumpen erzeugten Flüssigkeitsdrucks sind. Der Flüssigkeitsdruck iässt sich in dem Kanal besonders einfach und genau erfassen, so dass durch eine Steuerung der Pumpen beispielsweise ein bestimmter Quotient der Druckwerte oder eine bestimmte Differenz der Druckwerte einstellbar ist. Der
Quotient und/oder die Differenz können auch periodisch veränderlich eingestellt werden, um eine stationäre Strömung mit Totwassergebieten zu vermeiden. Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die abgestimmten Betriebsparameter beider Pumpen die jeweiligen elektrischen Leistungsaufnahmen der Pumpen sind. Dazu kann jeder Pumpe ein elektrischer Sensor zur Erfassung der Leistungsaufnahme der Pumpe, insbesondere zur Erfassung der Stromaufnahme, zugeordnet sein.
Es kann zudem vorteilhaft vorgesehen sein, dass die abgestimmten Betriebsparameter beider Pumpen die jeweiligen Durchflussraten der Pumpen sind. Die Durchflussraten können beispielsweise durch Durchflussmesssensoren separat erfasst werden oder auch durch die Aufnahme der Betriebsparameter der Pumpen, beispielsweise die Leistungsaufnahme und den herrschenden
Fluiddruck.
Zudem kann vorteilhaft vorgesehen sein, dass zwischen den beiden Pumpen eine feste Druckdifferenz und/oder eine feste Differenz der Durchflussrate eingestellt wird. Dabei kann insbesondere vorgesehen sein, dass die Differenz der Durchfiussraten beider Pumpen kleiner ist als 100 Milliliter pro Tag, insbesondere kleiner ist als 10 Milliliter pro Tag oder kleiner als 1 Milliliter pro Tag.
Entsprechende Verlustraten werden an den Öffnungen des Kanals eingestellt. Beispielsweise kann der Kanal einen Transportkanal und einen Rückflusskanal aufweisen, wobei der Transportkanal beispielsweise an einer am Ende einer S
Kanüle angeordneten Blutpumpe endet und der Rückflusskanal an derselben Stelle beginnt. Ein Teil der Flüssigkeit, der die Differenz der Durchflussraten ausmacht, kann dann beispielsweise durch die Blutpumpe abströmen, diese spülen und im implantierten Zustand in den Körper eines Patienten abgeleitet werden. In einer Weiterbildung der Erfindung wird in einem solchen Anwendungsfall als Flüssigkeit eine biokompatible, gesundheitsverträgliche Flüssigkeit gewählt, wie beispielsweise eine Kochsalzlösung.
Bei einer vorteilhaften Betriebsform des Verfahrens kann außerdem vorgesehen sein, dass die Bewegungsrichtung der Flüssigkeit umgekehrt wird. Eine solche Umkehrung der Bewegungsrichtung der Flüssigkeit kann periodisch vorgesehen sein oder auch nur zu bestimmten Anlässen. Üblicherweise wird bei der Verwendung zu einer Spülung eines Pumpenkatheters eine Transportrichtung der Flüssigkeit von einem proximalen Ende des Katheters zu einem distalen Ende des Katheters und durch einen Rückflusskanal zurück in einen Auffangbehälter gewählt.
Die Erfindung bezieht sich außer auf ein Verfahren zum Betrieb einer Versorgungseinrichtung auch auf die Gestaltung einer Versorgungseinrichtung zur Beaufschlagung eines Kanals mit einer Flüssigkeit, mit wenigstens zwei Pumpen, insbesondere Membranpumpen, die an voneinander beabstandeten Stellen des Kanals angeordnet sind, sowie mit einer Steuereinrichtung, die die Pumpen bezüglich des erzeugten Drucks und/oder der Förderrate einzeln ansteuert.
Die Steuereinrichtung muss derart gestaltet sein, dass sie eine abgestimmte Ansteuerung der einzelnen Pumpen erlaubt. Sie kann einer der Pumpen zugeordnet oder auch als separate zentrale Steuereinheit ausgebildet sein. Die Steuereinrichtung kann auch zur Regelung von Betriebsparametern der Pumpen dienen und ist dann mit Sensoren zur Erfassung von Messwerten verbunden.
Beispielsweise kann vorgesehen sein, dass jeder Pumpe ein Flüssigkeitsdrucksensor zugeordnet ist. Durch die Steuereinrichtung kann dann ein bestimmtes Druckverhältnis zwischen Saugdruck und Überdruck oder ein bestimmter Quotient der durch die beiden Pumpen erzeugten Drücke oder eine bestimmte Druckdifferenz ausgesteuert werden.
Da die Messgrößen zur Bestimmung der Förderleistung der Pumpen druckab- hängig sein können, können die Pumpen beispielsweise als Drucksensoren betrieben werden, wenn ihre Leistungsaufnahme erfasst und der Steuereinrichtung zugeführt wird. Jedoch kann die Leistungsaufnahme auch ein Indikator für die mittels der jeweiligen Pumpe erzielte Durchflussrate sein und als solche erfasst werden. Hierzu ist üblicherweise zudem der herrschende Flüssigkeitsdruck zu berücksichtigen, so dass bei einem solchen Betrieb der gleichzeitige Betrieb von Druckmesssensoren vorteilhaft ist.
Es können jedoch Durchflussratensensoren vorgesehen sein, von denen jeweils einer jeder der Pumpen zugeordnet ist. Es kann dann durch die Steuer- einrichtung ein bestimmtes Verhältnis der Durchflussraten im Bereich der ersten und der zweiten Pumpe oder eine vorbestimmte Differenz eingestellt werden. Eine solche Differenz der Durchflussraten kann beispielsweise auch periodisch veränderlich angesteuert werden. Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in
Figuren einer Zeichnung gezeigt und anschließend beschrieben. Dabei zeigt
Fig. 1 einen Hohlkatheter mit einer antreibbaren Welle sowie einer erfindungsgemäßen Versorgungseinrichtung,
Fig. 2 das Ende eines Hohlkatheters in einem Längsschnitt mit einer distal befestigten Rotationspumpe für den Betrieb in einem Blutgefäß, Fig. 3 einen Querschnitt durch einen Hohlkatheter,
Fig. 4 einen Querschnitt durch einen weiteren Hohlkatheter,
Fig. 5 einen Verfahrensablauf für ein Verfahren zum Betrieb einer
Versorgungseinrichtung, Fig. 6 ein Diagramm, das den zeitlichen Verlauf von Durchflussraten in drei verschiedenen Varianten wiedergibt, sowie
Fig. 7 ein Diagramm, das einen zeitlichen Verlauf des Flüssigkeits- drucks wiedergibt.
Figur 1 zeigt einen Hohlkatheter 1 in einer in Längsrichtung unterbrochenen Darstellung, wobei ein im medizinischen Gebrauch proximales Ende la im unteren Bereich und ein distales Ende lb im oberen Bereich dargestellt ist. Am distalen Ende des Hohlkatheters 1 kann beispielsweise eine implantierbare Blutpumpe, speziell für den Betrieb in einem Blutgefäß und/oder einer Herzkammer, vorgesehen sein.
Innerhalb des Hohlkatheters 1 verläuft eine drehbar antreibbare Welle 2. Diese dient beispielsweise zum Antrieb einer Blutpumpe und ist an ihrem proximalen Ende 2a mit einem Antriebsmotor 3 verbunden. Die Welle 2 kann im Bereich einer Durchführung 4 in ein Koppelgehäuse 5 eingeführt sein, wobei die Durchführung 4 derart gestaltet ist, dass durch eine Dichtung das Passieren eines Mediums entlang der Welle in das Koppelgehäuse 5 hinein oder aus dem Koppelgehäuse 5 heraus verhindert wird.
Es ist jedoch auch die Lösung denkbar, dass die rotierende Antriebsbewegung mittels einer Magnetkupplung durch eine geschlossene Wand des Koppelgehäuses 5 übertragen wird, indem ein erstes Magnetelement 6 innerhalb des Koppeigehäuses magnetisch mit einem zweiten Magnetelement 7 gekoppelt ist, das außerhalb des Koppelgehäuses 5 auf einem mit dem Motor 3 verbundenen Wellenstumpf befestigt ist. Die Welle 2 weist dann zwischen dem Motor 3 und ihrem weiteren Verlauf im Koppelgehäuse 5 eine Unterbrechung auf, und die entsprechende Wand des Koppelgehäuses 5 ist durchgehend und ohne eine Öffnung ausgebildet. Die Magnetelemente 6, 7 sind in Figur 1 als Alternative gestrichelt dargestellt.
Die Antriebswelle 2 ist beispielsweise aus Litzen, insbesondere in verdrehter oder verseilter Form, hergestellt oder als Schraubenfeder ausgebildet oder in einer Kombination beider Varianten durch eine Seele mit einer diese umgebenden Schraubenfeder gebildet, um einerseits hohe Umdrehungszahlen im Bereich von einigen tausend Umdrehungen pro Minute übertragen zu können und dabei andererseits biegsam zu sein.
Um eine solche Welle einerseits im Betrieb zu kühlen und andererseits die Reibung durch Schmierung zu vermindern, ist üblicherweise innerhalb des in dem Hohlkatheter 1 gebildeten Kanals S eine Kühl- und Schmierfiüssigkeit vorgesehen, die vorteilhaft biokompatibel ist. Die Flüssigkeit wird dem Koppelgehäuse 5 über einen Zuflusskanal 9 zugeführt und entlang des Kanals 8 transportiert. Hierzu ist der Zuflusskanal 9 mit einer ersten Pumpe, die in dem Ausführungsbeispiel als Membranpumpe 10 ausgebildet ist, verbunden.
Membranpumpen haben in diesem Zusammenhang die Eigenschaft, sehr zuverlässig und reproduzierbar ansteuerbar zu sein, um erzeugte Drücke und Durchflussraten exakt steuern zu können. Als besonders vorteilhaft erweist sich in diesem Zusammenhang die Verwendung von magnetisch angesteuer- ten Membranpumpen. Deshalb ist in Figur 1 eine Magneteinrichtung 10a dargestellt, die als Antrieb der Membranpumpe 10 dient, wobei die Magneteinrichtung 10a durch eine elektrische Steuereinrichtung 11 angesteuert ist.
Die Membranpumpe 10 saugt aus einem Zulaufreservoir 12 Flüssigkeit an, wie durch den Pfeil 13 dargestellt ist, und transportiert diese mit einer einstellbaren Durchflussrate und einem einstellbaren Druck über den Zuflusskanal 9 in das Koppelgehäuse 5 hinein. In dem Koppelgehäuse 5 verteilt sich die Flüssigkeit und bewegt sich insbesondere in Richtung des Pfeils 14 entlang des Kanals 8 in Richtung des distalen Endes lb des Hohlkatheters. Die Bewegung entlang des Kanals 8 kann beispielsweise durch die Drehung der Welle 2 unterstützt werden, wenn diese eine wenigstens teilweise helixförmige Außenkontur aufweist und in einer geeigneten Rotationsrichtung rotiert.
Obgleich die Drehung der Welle 2 die Bewegung der Flüssigkeit entlang des Kanals 8 unterstützen kann, ist es in einigen Ausführungsbeispielen möglich, den Beitrag der Drehung der Welle zur Förderleistung zu bestimmen, um so die Förderleistung der Pumpe(n) anzupassen. D.h. die aufgrund der Drehung der Welle auftretende Förderleistung wird durch eine Anpassung der Förderleistung der Pumpen kompensiert. Die Bestimmung der Förderleistung auf- grund der Drehung der Welle kann dann auch als Störgröße interpretiert werden, welche durch die Anpassung der Förderleistung der Pumpen ausge- glichen wird, um eine vorbestimme Förderleistung durch den Kanal zu gewährleisten. Die Förderleistung der Welle 8 kann unter anderem von der Drehzahl der Welle, eventuellem Verschleiß an der Welle, der Biegung des Katheters oder ähnlichem abhängen. Obgleich diese Größen bestimmbar sind, ist eine Kompensation der resultierenden Förderleistung der Welle durch die
Pumpe oftmals einfacher.
Üblicherweise können mittels der Ansteuerung der Membranpumpe 10 Durchflussraten im Bereich von Mikrolitern oder Millilitern pro Stunde einge- stellt werden.
Um entsprechende Durchflussraten und/oder Drücke geeignet steuern oder regeln zu können, ist wenigstens ein geeigneter Sensor 15 in dem Kanal 8 vorgesehen, der mittels einer Kommunikationsleitung 16 mit der Steuer- einrichtung 11 verbunden ist. Der Sensor 15 kann beispielsweise als Drucksensor, als Durchflussratensensor oder als kombinierter Sensor zur Erfassung des Drucks und der Durchflussrate ausgebildet sein.
In dem gezeigten Ausführungsbeispiel ist der Sensor 15 der ersten Membran- pumpe 10 zugeordnet und erfasst den durch diese erste Pumpe erzeugten
Druck und/oder die entsprechende Durchflussrate.
Der Kanal 8 ist gemäß dem Ausführungsbeispiei der Figur 1 in Längsrichtung unterteilt in einen ersten Kanalbereich 8a, der in Richtung von dem Koppel- gehäuse 5 zum distalen Ende lb des Hohlkatheters 1 in Richtung des Pfeils 14 durchströmt wird, und einen zweiten Kanalbereich 8b, der als Rückkanal ausgebildet ist. Die beiden Kanalbereiche 8a, 8b sind somit in Reihe geschaltet und bilden insgesamt den Kanal 8. Der Rückkanal 8b kann beispielsweise durch eine Trennwand 17, die in Figur 3 dargestellt ist, von dem ersten Kanalbereich 8a getrennt sein, oder der zweite Kanalbereich/Rückkanal 8b kann durch eine Kanüle 18 gebildet sein, die innerhalb des Hohlkatheters 1 verläuft. Diese Variante ist in Figur 4 im Querschnitt dargestellt. Der Rückkanal 8b ist gemäß Figur 1 derart ausgebildet, dass er einen Rückfluss der Flüssigkeit in das Koppelgehäuse 5 und von dort in eine zweite Membranpumpe 19 bewirkt. Auch die zweite Membranpumpe 19 kann vorteilhaft als magnetische Membranpumpe mit einer Magneteinrichtung 19a ausgebildet sein, die durch die Steuereinrichtung 11 angesteuert ist und den Antrieb der
Membranpumpe 19 bildet. Die Membranpumpe 19 saugt aus dem Rückkanal 8b die Flüssigkeit ab und leitet diese über einen Ablaufkanal 20 in ein Ablaufreservoir 21. Die Steuereinrichtung 11 ist zudem mit einem zweiten Sensor 22 verbunden, der, ebenso wie der erste Sensor 15, als Durchlaufsensor und/oder als Drucksensor ausgebildet sein kann und der dem Rückkanal 8b und damit der zweiten Membranpumpe 19 zugeordnet ist. Beispielsweise kann durch den zweiten Sensor 22 die Durchflussrate des Rückkanals 8b oder der Saugdruck der zweiten Membranpumpe 19 erfasst werden. Die durch den zweiten
Sensor 22 erfassten Parameter werden über eine zweite Kommunikations- ieitung 23 der Steuereinrichtung 11 zugeführt.
Die Steuereinrichtung 11 ist ihrerseits mit einem elektrischen Versorgungs- anschluss IIa verbunden, der die Steuereinrichtung mit einer niedrigen
Gleichspannung (Kleinspannung) versorgt. Die Steuereinrichtung 11 erzeugt Impulse, die den Magneteinrichtungen 10a, 19a zum Antrieb der ersten und zweiten Membranpumpe 10, 19 zugeleitet werden. Mittels der Frequenz und des Hubs der durch die Steuereinrichtung 11 erzeugten Impulse können die Durchflussraten und/oder Drücke gesteuert werden, die durch die erste und zweite Membranpumpe 10, 19 erzeugt werden.
Figur 2 zeigt als Beispiel für eine Verwendung eines Hohikatheters mit einer antreibbaren Welle eine implantierbare Blutpumpe 24, die als Rotations- pumpe mit einem Rotor 25 mit Förderelementen ausgebildet ist. Der Rotor 25 ist direkt mit der Welle 2 verbunden, die am distalen Ende des Rotors 25 in einem Rotationslager 26 im Gehäuse 27 der Blutpumpe gelagert ist. Die Blutpumpe 24 saugt über Ansaugöffnungen 28 an ihrem distalen Ende Blut in Richtung der Pfeile 29, 30 an und transportiert dieses außen an dem Hohl- katheter 1 vorbei über einen durch einen Abströmschlauch 31 gebildeten
Ringkanal 32 in ein nicht dargestelltes Blutgefäß. Die Welle 2 ist am Ende des Hohlkatheters 1 in einem Durchführungslager 33 gelagert, das einerseits hohe Rotationszahlen zulassen, andererseits möglichst dicht sein soll, um einen Flüssigkeitsaustausch entlang der Welle 2 zu ver- hindern oder zu begrenzen. Es soll insbesondere verhindert werden, dass Blut aus dem Inneren des Gehäuses 27 der Blutpumpe 24 in den Hohlkatheter 1, d. h. in den Kanal 8, gelangt.
In Figur 2 ist, um die Separierung zwischen dem ersten Kanalbereich 8a des Kanals 8 und dem zweiten Kanaibereich/Rückkanal 8b anzudeuten, eine
Trennwand 17 gestrichelt dargestellt. Es wird somit das Einströmen der Flüssigkeit durch den ersten Kanalbereich 8a in Richtung des Pfeils 34 zum distalen Ende des Hohlkatheters 1 und das Rückströmen in Richtung des Pfeils 35 durch den zweiten Bereich 8b des Kanals 8 ermöglicht. Damit kann die rotierende Welle 2 entlang ihrer gesamten Länge mit der Flüssigkeit versorgt werden.
Um das Einströmen von Blut in den Kanal 8 zu verhindern, kann ein Überdruck der Flüssigkeit im Inneren des Hohlkatheters 1, d. h, im Kanal 8, eingestellt werden, der dazu führt, dass mit einer sehr geringen Durchflussrate Flüssigkeit aus dem Kanal 8 in das Gehäuse der Blutpumpe 24 einströmt, wie durch die Pfeile 36, 37 angedeutet ist. Beispielsweise kann hier eine Ausflussrate von wenigen Mikrolitern oder Millilitern pro Tag eingestellt werden, die eine Differenz zwischen der Zulaufrate im ersten Kanalbereich 8a und der Rück- laufrate im Rückkanal 8b darstellt. Diese Differenz ist als Differenz der Förderraten zwischen der ersten Pumpe 10 und der zweiten Pumpe 19 einstellbar und messbar.
In Figur 5 ist ein Ablaufdiagramm für ein Verfahren zum Betrieb der gezeigten Versorgungseinrichtung dargestellt. In einem ersten Schritt 38 wird eine
Entlüftung des Kanals 8 einschließlich des Koppelgehäuses 5 durchgeführt, indem mittels der ersten Pumpe 10 Flüssigkeit zugeführt wird. Nach dem Entlüften des Kanals 8 und der Pumpen, dessen Geschwindigkeit einstellbar sein kann, wird in einem zweiten Schritt 39 festgelegt, in welcher Bewegungs- richtung (Vorlauf/Rücklauf) die Flüssigkeit durch den Kanal 8 bewegt werden soll. Die Membranpumpen 10, 19 sowie die Reservoirs 12, 21 können beide Bewegungsrichtungen der Flüssigkeit zulassen. Abhängig von der Bewegungsrichtung der Flüssigkeit werden die Drücke eingestellt, die durch die
Membranpumpen 10, 19 erzeugt werden. In einem dritten Schritt 40 wird entschieden, ob die Leistungen der Pumpen manuell eingestellt werden sollen. Werden die Pumpen manuell eingestellt, so verläuft der weitere Prozess über den Weg 40a, und in einem Schritt 46 werden die Drücke und/oder Durchflussraten der beiden Pumpen eingestellt. Üblicherweise wird diese Variante wohl gewählt, wenn die Spülrate, d. h. die Durchflussrate durch den Kanal 8, klein und konstant sein soll.
Soll keine manuelle Ansteuerung gewählt werden, so verläuft der weitere Weg über den Pfeil 40b, und es wird in einem vierten Schritt 41 die automatische Ansteuerung der Pumpen begonnen. Hierzu wird zunächst im Schritt 41 der Druck an den zwei Drucksensoren 15, 22 erfasst, hieraus eine Druckdifferenz berechnet und aus dieser in einem fünften Schritt 42 die Ansteuerung der Pumpen 10, 19 durch entsprechende Pulse der Steuereinrichtung 11 berechnet. Dabei kann die angestrebte Druckdifferenz auch zeitlich veränderlich, beispielsweise periodisch variierend sein.
In einem sechsten Schritt 43 wird die erzeugte Druckdifferenz mit der Solldruckdifferenz verglichen. Entspricht die Istdruckdifferenz der Sotldruck- differenz, so wird in einem siebten Schritt 44 beispielsweise die Druckdifferenz oder eine hieraus berechnete Spülrate angezeigt und in einem achten Schritt 45 das Verfahren beendet. Die Beendigung des Verfahrens bedeutet, dass sich die Versorgungseinrichtung in einem stabilen Betriebszustand befindet und die Pumpen 10, 19 entsprechend angesteuert werden und arbeiten. Wird in dem sechsten Schritt 43 festgestellt, dass die istdruck- differenz nicht der Solldruckdifferenz entspricht, so springt das Verfahren über den Weg 43a zu dem vierten Schritt 41 zurück, an dem die Druckdifferenz gemessen und hieraus in einem Regelschritt die neue Ansteuerung der Pumpen ermittelt wird.
Anstelle der Druckmessungen und entsprechender Druckregelung des Differenzdrucks kann auch die Durchflussrate gemessen und eine entsprechende Durchflussratendifferenz als Regelgröße eingestellt werden. In Figur 6 ist ein typischer zeitlicher Verlauf von Durchflussraten in drei beispielhaften Varianten gezeigt. Auf der y-Achse des Diagramms ist die Durchflussrate in Volumen pro Zeit angegeben, während auf der x-Achse die Zeit aufgetragen ist. Eine erste Kurve 48 zeigt beispielsweise die Durchflussrate, gemessen durch den Sensor 15 oder den Sensor 22, wobei die Durchflussrate über einen großen Teil der Zeit konstant ist, jedoch von Zeit zu Zeit, beispielsweise alle zwanzig Sekunden oder jeweils nach wenigen Minuten, durch eine vorübergehende Anhebung 49, 50 der Durchflussrate verändert wird. Damit wird erreicht, dass sich keine stationäre Strömung in dem Kanal 8 ausbildet, die möglicherweise bestimmte Bereiche des Kanals als sogenannte Totwassergebiete unberührt lässt, so dass dort befindliche Flüssigkeit sich nicht weiterbewegt. Eine Änderung der Durchflussrate erzeugt WirbeS und nichtstationäre Strömungsverhältnisse, die dann auch die Totwassergebiete erfassen und dort die Flüssigkeit austauschen.
Es ist weiterhin Aufgabe einer entsprechenden Steuerung der Durchflussrate, Partikel, die sich in der Flüssigkeit befinden und die beispielsweise durch Abrieb der rotierenden Welle 2 entstehen, möglichst nicht weiterzubewegen, so dass diese nicht durch das in Figur 2 dargestellte Lager 33 im Bereich der
Blutpumpe austreten und in das Körperinnere eines Patienten eintreten können.
Wenn man in demselben Diagramm die durch die beiden Sensoren 15, 22 erfassten Durchflussraten aufträgt, so kann sich beispielsweise besonders in den Bereichen 49, 50 eine angehobene Durchflussrate mit einer besonders auffälligen Differenz der Durchflussraten einstellen, was anzeigt, dass in diesen Bereichen 49, 50 stoßweise in sehr kleinen Mengen etwas von der Flüssigkeit aus dem Kanal 8 in das Innere des Pumpengehäuses der Blut- pumpe austritt und somit möglicherweise dort abgelagerte Mengen des
Blutes aus dem Lager 33 wegspült.
In einer zweiten Variante 51 des Durchflussratenverlaufs wird dieser um einen konstanten Verlauf 52 herum periodisch, beispielsweise in Form einer Sinuskurve, variiert. So ergibt sich ein sich ständig ändernder Durchfiuss mit sich ebenfalls ständig ändernden Strömungsverhältnissen, die einen Flüssigkeitsaustausch in allen Bereichen des Kanals 8 garantieren.
In der dritten Variante, die in der Kurve 53 dargestellt ist, wird außer vorübergehenden periodischen Anhebungen 54 der Durchflussrate gelegentlich auch die Durchflussrichtung, gezeigt am Beispiel der Absenkung 55 der Durchflussrate, umgekehrt. Die Umkehrung des Durchflusses bedingt eine Änderung der Flussrichtung der Flüssigkeit im Kanal 8 und damit ebenfalls den Austausch von Flüssigkeit in Totwassergebieten. Eine solche Umkehrung der Flussrichtung kann beispielsweise jeweils im Abstand von fünf bis zehn Minuten geschehen.
In Figur 7 sind Druckmesswerte auf der y-Achse gegen die Zeit t aufgetragen, wobei eine erste Kurve 56 den Druck im Bereich des Sensors 15 und eine zweite Kurve 57 den Druck im Bereich des Sensors 22 anzeigt. Es zeigt sich, dass in zwei Bereichen 58, 59 der Druck durch die erste Membranpumpe 10 vorübergehend angehoben wird, während der Druck im Bereich der Rück- leitung, nachgewiesen durch den Sensor 22, konstant bleibt. Dies bedingt, dass in den Bereichen des angehobenen Drucks 58, 59 durch das Lager 33 Flüssigkeit in das Pumpengehäuse abströmt und damit der Druck im Kanal 8 entlastet wird.
Durch die oben beschriebene Erfindung wird eine Versorgungseinrichtung in Form einer Spüleinrichtung für einen Hohlkatheter für eine Blutpumpe realisiert, bei der wenig Verschleißteile eingesetzt werden und somit über lange Zeit ein stabiler Betrieb mit geringen Flüssigkeitsverlusten gewährleistet werden kann.

Claims

Patentansprüche
Versorgungseinrichtung zur Beaufschlagung eines Kanals (8) mit einer Flüssigkeit mit wenigstens einer Membranpumpe (10, 19) sowie mit einer Steuereinrichtung (11), die die Pumpe bezüglich des erzeugten Drucks und/oder der Förderrate ansteuert.
Versorgungseinrichtung nach Anspruch 1 mit wenigstens zwei Pumpen (10, 19), insbesondere Membranpumpen, die an voneinander be- abstandeten Stellen des Kanals (8) angeordnet sind, sowie mit einer Steuereinrichtung (11), die die Pumpen bezüglich des erzeugten Drucks und/oder der Förderrate einzeln ansteuert.
Versorgungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jeder Pumpe ein Flüssigkeitsdrucksensor (15, 22) zugeordnet ist.
Versorgungseinrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass jeder Pumpe ein elektrischer Sensor zur Erfassung der Leistungsaufnahme der Pumpe, insbesondere der Stromaufnahme, zugeordnet ist.
Versorgungseinrichtung nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass jeder Pumpe ein Durchflussratensensor (15, 22) zugeordnet ist.
Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, mit einer Membranpumpe, dadurch gekennzeichnet, dass die Membranpumpe bezüglich des erzeugten Drucks und/oder der Förderrate angesteuert wird.
Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, mit zwei an voneinander beab- standeten Stellen des Kanals angeordneten Pumpen (10, 19), dadurch gekennzeichnet, dass die Parameterwerte wenigstens eines Betriebsparameters beider Pumpen (10, 19) aufeinander abgestimmt gesteuert werden.
Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass an an einer Stelle oder an mehreren verschiedenen, voneinander beabs- tandeten Stellen in dem Kanal der Fiüssigkeitsdruck erfasst wird.
Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die abgestimmten Parameterwerte der beiden Pumpen (10, 19) zeitlich nach einem festen Schema veränderlich sind und insbesondere nach einer Anlaufphase zeitlich periodisch verändert werden.
Verfahren nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass die abgestimmten Parameterwerte der beiden Pumpen (10, 19) in einem Verhältnis zueinander stehen, das von erfassten Werten des Flüssigkeitsdrucks im Kanal in vorbestimmter Weise abhängig ist.
Verfahren nach Anspruch 7 oder einem der folgenden, dadurch gekennzeichnet, dass die abgestimmten Betriebsparameter beider Pumpen {10, 19) die jeweiligen Förderleistungen sind.
Verfahren nach Anspruch 7 oder einem der folgenden, dadurch gekennzeichnet, dass die abgestimmten Betriebsparameter beider Pumpen (10, 19) die jeweiligen Werte des durch die Pumpen erzeugten Flüssigkeitsdrucks sind.
Verfahren nach Anspruch 7 oder einem der folgenden, dadurch gekennzeichnet, dass die abgestimmten Betriebsparameter beider Pumpen (10, 19) die jeweiligen Förderleistungen der Pumpen sind.
Verfahren nach Anspruch 7 oder einem der folgenden, dadurch gekennzeichnet, dass die abgestimmten Betriebsparameter beider Pumpen (10, 19) die jeweiligen Durchflussraten der Pumpen sind.
Verfahren nach Anspruch 7 oder einem der folgenden, dadurch gekennzeichnet, dass zwischen den beiden Pumpen (10, 19) eine feste Druckdifferenz und/oder eine feste Differenz der Durchflussrate eingestellt wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Differenz der Durchflussraten beider Pumpen (10, 19) kleiner ist als 100 Milliliter pro Tag, insbesondere kleiner ist als 10 Milliliter pro Tag, insbesondere kleiner als 1 Milliliter pro Tag.
17. Verfahren nach Anspruch 6 oder einem der folgenden, dadurch
gekennzeichnet, dass die Pumpe(n) (10, 19) derart angesteuert wird/ werden, dass die Bewegungsrichtung der Flüssigkeit umgekehrt wird.
18. Hohlkatheter mit einer Versorgungseinrichtung nach einem der Ansprüche 1 bis 5.
19. Hohlkatheter nach Anspruch 18, enthaltend eine innerhalb des Hohlkatheters drehbare Welle.
20. Hohlkatheter nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass innerhalb des Hohlkatheters eine flexible Welle angeordnet ist.
21. Katheterpumpe, insbesondere Katheterpumpe zum intraventrikulären Betrieb innerhalb eines Herzens, enthaltend einen Hohlkatheter nach einem der Ansprüche 18 bis 20.
PCT/EP2014/071706 2013-10-14 2014-10-09 Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe WO2015055515A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
KR1020237007535A KR20230038595A (ko) 2013-10-14 2014-10-09 채널에 액체를 공급하는 공급 장치의 작동방법, 공급 장치, 중공형 카테터 및 카테터 펌프
CN201480055960.6A CN105917118B (zh) 2013-10-14 2014-10-09 用于操作向通道供给液体的供给装置的方法,以及供给装置,中空导管和导管泵
US15/029,092 US10195323B2 (en) 2013-10-14 2014-10-09 Method for operating a supply device which supplies a liquid to a channel, and supply device, hollow catheter, and catheter pump
ES14781610T ES2768339T3 (es) 2013-10-14 2014-10-09 Procedimiento para el funcionamiento de un dispositivo de suministro que impulsa un líquido en un canal, así como dispositivo de suministro, catéter hueco y bomba de catéter
DK14781610.2T DK3060805T3 (da) 2013-10-14 2014-10-09 Fremgangsmåde til drift af en forsyningsindretning, der påvirker en kanal med en væske, samt forsyningsindretning, hult kateter og kateterpumpe
EP22162535.3A EP4033100A1 (de) 2013-10-14 2014-10-09 Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe
KR1020167012259A KR102311071B1 (ko) 2013-10-14 2014-10-09 채널에 액체를 공급하는 공급 장치의 작동방법, 공급 장치, 중공형 카테터 및 카테터 펌프
CA2925422A CA2925422A1 (en) 2013-10-14 2014-10-09 Method for operating a supply device that supplies a channel with a liquid, and supply device, hollow catheter and catheter pump
EP14781610.2A EP3060805B1 (de) 2013-10-14 2014-10-09 Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe
EP19195945.1A EP3594500B8 (de) 2013-10-14 2014-10-09 Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung und katheterpumpe
KR1020217031033A KR20210121302A (ko) 2013-10-14 2014-10-09 채널에 액체를 공급하는 공급 장치의 작동방법, 공급 장치, 중공형 카테터 및 카테터 펌프
JP2016523279A JP6758181B2 (ja) 2013-10-14 2014-10-09 カテーテルポンプ
HK16111993.6A HK1223670A1 (zh) 2013-10-14 2016-10-18 用於操作向通道供給液體的供給裝置的方法,以及供給裝置,中空導管和導管泵
US16/228,005 US10780205B2 (en) 2013-10-14 2018-12-20 Method for operating a supply device which supplies a liquid to a channel, and supply device, hollow catheter, and catheter pump
US16/989,111 US20210023284A1 (en) 2013-10-14 2020-08-10 Method for operating a supply device which supplies a liquid to a channel, and supply device, hollow catheter, and catheter pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13188579.0 2013-10-14
EP20130188579 EP2860399A1 (de) 2013-10-14 2013-10-14 Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, sowie Versorgungseinrichtung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/029,092 A-371-Of-International US10195323B2 (en) 2013-10-14 2014-10-09 Method for operating a supply device which supplies a liquid to a channel, and supply device, hollow catheter, and catheter pump
US16/228,005 Continuation US10780205B2 (en) 2013-10-14 2018-12-20 Method for operating a supply device which supplies a liquid to a channel, and supply device, hollow catheter, and catheter pump

Publications (1)

Publication Number Publication Date
WO2015055515A1 true WO2015055515A1 (de) 2015-04-23

Family

ID=49488465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/071706 WO2015055515A1 (de) 2013-10-14 2014-10-09 Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe

Country Status (10)

Country Link
US (3) US10195323B2 (de)
EP (4) EP2860399A1 (de)
JP (4) JP6758181B2 (de)
KR (3) KR102311071B1 (de)
CN (2) CN105917118B (de)
CA (1) CA2925422A1 (de)
DK (2) DK3060805T3 (de)
ES (2) ES2768339T3 (de)
HK (2) HK1223670A1 (de)
WO (1) WO2015055515A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018017683A1 (en) * 2016-07-21 2018-01-25 Thoratec Corporation Gas-filled chamber for catheter pump motor assembly
WO2018017678A1 (en) * 2016-07-21 2018-01-25 Thoratec Corporation Fluid seals for catheter pump motor assembly

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
JP2009530041A (ja) 2006-03-23 2009-08-27 ザ・ペン・ステート・リサーチ・ファンデーション 拡張可能なインペラポンプを有する心臓補助装置
WO2012094641A2 (en) 2011-01-06 2012-07-12 Thoratec Corporation Percutaneous heart pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
GB2504176A (en) 2012-05-14 2014-01-22 Thoratec Corp Collapsible impeller for catheter pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
EP4186557A1 (de) 2012-07-03 2023-05-31 Tc1 Llc Motoranordnung für katheterpumpe
EP2968718B1 (de) 2013-03-13 2021-04-21 Tc1 Llc Flüssigkeitsbehandlungssystem
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
WO2014143593A1 (en) 2013-03-15 2014-09-18 Thoratec Corporation Catheter pump assembly including a stator
EP2860399A1 (de) 2013-10-14 2015-04-15 ECP Entwicklungsgesellschaft mbH Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, sowie Versorgungseinrichtung
WO2015160943A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Sensors for catheter pumps
WO2015160979A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump with access ports
WO2015160942A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump with off-set motor position
WO2015160990A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump introducer systems and methods
US10449279B2 (en) 2014-08-18 2019-10-22 Tc1 Llc Guide features for percutaneous catheter pump
EP3598986B1 (de) 2015-01-22 2021-02-17 Tc1 Llc Motoranordnung mit wärmetauscher für katheterpumpe
WO2016118777A1 (en) 2015-01-22 2016-07-28 Thoratec Corporation Reduced rotational mass motor assembly for catheter pump
WO2016118784A1 (en) * 2015-01-22 2016-07-28 Thoratec Corporation Attachment mechanisms for motor of catheter pump
EP3634528B1 (de) 2017-06-07 2023-06-07 Shifamed Holdings, LLC Intravaskuläre fluidbewegungsvorrichtungen, systeme und verwendungsverfahren
CN111556763B (zh) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 血管内流体运动装置、系统
CN107882668B (zh) * 2017-12-28 2023-12-19 潍柴动力股份有限公司 一种燃油滤清器座
DE102018201030A1 (de) 2018-01-24 2019-07-25 Kardion Gmbh Magnetkuppelelement mit magnetischer Lagerungsfunktion
EP4085965A1 (de) 2018-02-01 2022-11-09 Shifamed Holdings, LLC Intravaskuläre blutpumpen und verfahren zur verwendung und herstellung
EP3536955A1 (de) 2018-03-08 2019-09-11 Berlin Heart GmbH Antriebsvorrichtung für eine membranfluidpumpe und betriebsverfahren
DE102018211327A1 (de) 2018-07-10 2020-01-16 Kardion Gmbh Laufrad für ein implantierbares, vaskuläres Unterstützungssystem
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
CN110917420B (zh) * 2019-11-27 2022-06-21 丰凯利医疗器械(上海)有限公司 一种通过灌注隔离并排出磨损颗粒的挠性轴结构
DE102020102474A1 (de) 2020-01-31 2021-08-05 Kardion Gmbh Pumpe zum Fördern eines Fluids und Verfahren zum Herstellen einer Pumpe
EP4302797A1 (de) * 2021-03-23 2024-01-10 TERUMO Kabushiki Kaisha Medizinisches instrument
CN112891732B (zh) * 2021-05-07 2021-08-03 丰凯医疗器械(上海)有限公司 一种灌注液输送装置及其控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD202805A1 (de) 1981-12-28 1983-10-05 Otto Grotewohl Boehlen Boehlen Pumpe fuer kleinste volumina
DE69409587T2 (de) 1993-06-22 1998-11-26 Siemens Elema Ab Verfahren zum Spülen eines Katheters und Katheter
DE102007040328A1 (de) * 2007-08-24 2009-02-26 Henkel Ag & Co. Kgaa WC-Spüler mit gerichteter Wirkstoffreisetzung
DE102007059239A1 (de) * 2007-12-07 2009-06-10 Thomas Magnete Gmbh Membran, und Hubkolben-Membranpumpe
DE202009014152U1 (de) * 2009-10-19 2011-03-03 Dürr Optronik GmbH & Co. KG Abrolleinrichtung für eine Materialbahn
EP2363157A1 (de) * 2010-03-05 2011-09-07 ECP Entwicklungsgesellschaft mbH Vorrichtung zur mechanischen Einwirkung auf ein Medium, insbesondere Fluidpumpe
EP2388028A1 (de) * 2010-05-20 2011-11-23 Berlin Heart GmbH Verfahren zum Betrieb eines Pumpensystems
EP2389961A1 (de) * 2010-05-31 2011-11-30 ORTHOS Orthopädietechnik GmbH Medizinisches Gerät zur Verbesserung des Wundheilungsprozesses
DE202005021999U1 (de) 2004-08-06 2012-02-17 Zoll Circulation, Inc. Heiz-/Kühlsystem für einen Wärmeaustausch-Dauerkatheter
DE102011106111A1 (de) * 2011-06-09 2012-12-13 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichiung zum Bestimmen mindestens eines vom Absolutdruck abhängigen Betriebsparameters einer Vorrichtung zur extrakorporalen Blutbehandlung, Vorrichtung zur extrakorporalen Blutbehandlung
DE102011053935A1 (de) * 2011-09-26 2013-03-28 Fresenius Medical Care Deutschland Gmbh Verfahren, Vorrichtung und System zur Blutbehandlung eines Patienten

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202805C (de)
US5116350B1 (en) * 1987-03-17 1997-06-17 Cordis Corp Catheter system having distal tip for opening obstructions
US4895557A (en) * 1987-12-07 1990-01-23 Nimbus Medical, Inc. Drive mechanism for powering intravascular blood pumps
WO1991012830A1 (en) * 1990-02-20 1991-09-05 The Regents Of The University Of California Apparatus, catheter and method for chemical contact dissolution of gallstones
EP0954244A1 (de) * 1994-07-01 1999-11-10 SciMed Life Systems, Inc. Intravaskuläre vorrichtung wobei eine flüssigkeit gebraucht wird um okklusives material zu beseitigen
WO2000037126A1 (de) * 1998-12-18 2000-06-29 Berlin Heart Ag Pulsatile pumpe
AU7354400A (en) 1999-09-03 2001-04-10 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US7311703B2 (en) * 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
JP2005169094A (ja) 2003-11-21 2005-06-30 Terumo Corp レーザー誘起液体噴流発生装置
CA2636505A1 (en) * 2006-01-09 2007-07-19 Biospiral Ltd. System and method for thermally treating tissues
JP5250866B2 (ja) * 2008-06-11 2013-07-31 株式会社サンメディカル技術研究所 人工心臓制御装置及び人工心臓システム
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
CN201293204Y (zh) * 2009-03-09 2009-08-19 韩红卫 液体辅助原料全自动集中供给装置
JP5468414B2 (ja) 2010-02-22 2014-04-09 国立大学法人 岡山大学 脳冷却装置及びこれに適した脳冷却用具
WO2012094535A2 (en) * 2011-01-06 2012-07-12 Thoratec Corporation Percutaneous heart pump
EP2860399A1 (de) 2013-10-14 2015-04-15 ECP Entwicklungsgesellschaft mbH Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, sowie Versorgungseinrichtung

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD202805A1 (de) 1981-12-28 1983-10-05 Otto Grotewohl Boehlen Boehlen Pumpe fuer kleinste volumina
DE69409587T2 (de) 1993-06-22 1998-11-26 Siemens Elema Ab Verfahren zum Spülen eines Katheters und Katheter
DE202005021999U1 (de) 2004-08-06 2012-02-17 Zoll Circulation, Inc. Heiz-/Kühlsystem für einen Wärmeaustausch-Dauerkatheter
DE102007040328A1 (de) * 2007-08-24 2009-02-26 Henkel Ag & Co. Kgaa WC-Spüler mit gerichteter Wirkstoffreisetzung
DE102007059239A1 (de) * 2007-12-07 2009-06-10 Thomas Magnete Gmbh Membran, und Hubkolben-Membranpumpe
DE202009014152U1 (de) * 2009-10-19 2011-03-03 Dürr Optronik GmbH & Co. KG Abrolleinrichtung für eine Materialbahn
EP2363157A1 (de) * 2010-03-05 2011-09-07 ECP Entwicklungsgesellschaft mbH Vorrichtung zur mechanischen Einwirkung auf ein Medium, insbesondere Fluidpumpe
EP2388028A1 (de) * 2010-05-20 2011-11-23 Berlin Heart GmbH Verfahren zum Betrieb eines Pumpensystems
EP2389961A1 (de) * 2010-05-31 2011-11-30 ORTHOS Orthopädietechnik GmbH Medizinisches Gerät zur Verbesserung des Wundheilungsprozesses
DE102011106111A1 (de) * 2011-06-09 2012-12-13 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichiung zum Bestimmen mindestens eines vom Absolutdruck abhängigen Betriebsparameters einer Vorrichtung zur extrakorporalen Blutbehandlung, Vorrichtung zur extrakorporalen Blutbehandlung
DE102011053935A1 (de) * 2011-09-26 2013-03-28 Fresenius Medical Care Deutschland Gmbh Verfahren, Vorrichtung und System zur Blutbehandlung eines Patienten

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018017683A1 (en) * 2016-07-21 2018-01-25 Thoratec Corporation Gas-filled chamber for catheter pump motor assembly
WO2018017678A1 (en) * 2016-07-21 2018-01-25 Thoratec Corporation Fluid seals for catheter pump motor assembly
EP3808403A1 (de) * 2016-07-21 2021-04-21 Tc1 Llc Fluiddichtungen für katheterpumpenmotoranordnung
EP3808402A1 (de) * 2016-07-21 2021-04-21 Tc1 Llc Gasgefüllte kammer für eine katheterpumpenmotoranordnung
US11160970B2 (en) 2016-07-21 2021-11-02 Tc1 Llc Fluid seals for catheter pump motor assembly
US11491322B2 (en) 2016-07-21 2022-11-08 Tc1 Llc Gas-filled chamber for catheter pump motor assembly
US11918800B2 (en) 2016-07-21 2024-03-05 Tc1 Llc Gas-filled chamber for catheter pump motor assembly
US11925795B2 (en) 2016-07-21 2024-03-12 Tc1 Llc Fluid seals for catheter pump motor assembly

Also Published As

Publication number Publication date
CA2925422A1 (en) 2015-04-23
US20160250399A1 (en) 2016-09-01
JP6758181B2 (ja) 2020-09-23
EP3594500A1 (de) 2020-01-15
CN108457844B (zh) 2020-06-30
US20190192752A1 (en) 2019-06-27
DK3594500T3 (da) 2022-06-27
CN105917118A (zh) 2016-08-31
US10780205B2 (en) 2020-09-22
CN105917118B (zh) 2018-03-06
JP2023174897A (ja) 2023-12-08
EP3060805B1 (de) 2019-12-04
JP7050854B2 (ja) 2022-04-08
ES2916710T3 (es) 2022-07-05
KR20160072149A (ko) 2016-06-22
JP2022079564A (ja) 2022-05-26
DK3060805T3 (da) 2020-03-09
KR102311071B1 (ko) 2021-10-08
JP2020151493A (ja) 2020-09-24
EP4033100A1 (de) 2022-07-27
EP3060805A1 (de) 2016-08-31
JP7372378B2 (ja) 2023-10-31
KR20210121302A (ko) 2021-10-07
KR20230038595A (ko) 2023-03-20
HK1252877A1 (zh) 2019-06-06
CN108457844A (zh) 2018-08-28
HK1223670A1 (zh) 2017-08-04
EP2860399A1 (de) 2015-04-15
EP3594500B8 (de) 2023-04-26
US20210023284A1 (en) 2021-01-28
ES2768339T3 (es) 2020-06-22
EP3594500B1 (de) 2022-04-27
JP2017500068A (ja) 2017-01-05
US10195323B2 (en) 2019-02-05

Similar Documents

Publication Publication Date Title
EP3060805B1 (de) Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe
EP1339443B1 (de) Verfahren zum Kalibrieren eines Drucksensors oder eines Flusssensors an einer Rotationspumpe
WO2017102164A1 (de) Blutpumpe zur herzunterstützung und verfahren zu ihrem betrieb
EP0925080A1 (de) Intrakardiale blutpumpe
EP2835141B1 (de) Steuerung einer Blutpumpe
EP1382291B1 (de) Vorrichtung zum Durchspülen einer Körperhöhle
DE2754894C2 (de) Vorrichtung zum Bilanzieren einer einem Patienten entnommenen Flüssigkeit mit einer Ersatzflüssigkeit
EP0279931B1 (de) Membranpumpvorrichtung
DE2345994A1 (de) Ausserhalb des koerpers angeordneter blutkreis
WO2016207066A1 (de) Vorrichtung und verfahren zur druckmessung am herzen eines patienten
DE102010011998A1 (de) Fluidpumpeinrichtung
DE2419516A1 (de) Konzentratverduenner fuer die herstellung der dialysierfluessigkeit in kuenstlichen nieren
EP2465553A1 (de) Extrakorporale Blutbehandlungsvorrichtung
WO2016173896A1 (de) Pumpeneinrichtung sowie verfahren zum betrieb einer pumpe für flüssigkeiten
WO2016166114A1 (de) Pumpe sowie verfahren zum betrieb einer pumpe für flüssigkeiten
EP2388028A1 (de) Verfahren zum Betrieb eines Pumpensystems
DE3726453A1 (de) Medizinische vorrichtung
EP3818996A1 (de) Pumpensystem, steuereinheit und verfahren zum betreiben eines pumpensystems
EP3263148B1 (de) Verfahren zur ermittlung von betriebsparametern einer blutpumpe
DE10322404B4 (de) Dosierpumpe und Verfahren zu deren Steuerung
EP3156085A1 (de) Herzunterstützungssystem mit zwei pumpen
WO2020035611A1 (de) Pumpensystem zum pumpen eines fluids und verfahren zum betrieb des pumpensystems
WO2019234153A1 (de) Implantierbares, vaskuläres unterstützungssystem
DE202005012136U1 (de) Liquor-Drainagesystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14781610

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2925422

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15029092

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016523279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012259

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014781610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014781610

Country of ref document: EP