WO2015055001A1 - Oled阵列基板及其制作方法、显示装置 - Google Patents

Oled阵列基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2015055001A1
WO2015055001A1 PCT/CN2014/077301 CN2014077301W WO2015055001A1 WO 2015055001 A1 WO2015055001 A1 WO 2015055001A1 CN 2014077301 W CN2014077301 W CN 2014077301W WO 2015055001 A1 WO2015055001 A1 WO 2015055001A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
organic light
emitting layer
layer material
Prior art date
Application number
PCT/CN2014/077301
Other languages
English (en)
French (fr)
Inventor
吴长晏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2015055001A1 publication Critical patent/WO2015055001A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • OLED array substrate manufacturing method thereof, and display device
  • At least one embodiment of the present invention is directed to an organic light emitting diode (OLED) array substrate, a method of fabricating the same, and a display device.
  • OLED organic light emitting diode
  • the organic light emitting diode is made of an organic material, and the layer of the light-emitting material in which the electric field is driven emits light.
  • the luminescent layer of the OLED display panel is generally formed by a fine metal mask (FMM) using a vacuum evaporation film forming technique, for example, an organic material is vapor-deposited by RGB side by side.
  • FMM fine metal mask
  • the corresponding pixel locations of the array substrate form a luminescent layer.
  • the pixel parallel method has three sub-pixels of red, green and blue in one pixel, each sub-pixel constitutes an independent light-emitting component, and the red, green and blue sub-pixels independently emit light, thereby forming one pixel.
  • the FMM is an extremely fine mesh or strip metal mask.
  • the metal mask itself is inflated and deformed after being heated in the evaporation process, and its own weight may also cause sagging, etc.
  • the aperture of the FMM may not accurately correspond to the corresponding sub-pixel on the array substrate during vapor deposition.
  • the position which may cause the organic material of a certain sub-pixel to be partially evaporated to a position corresponding to another sub-pixel adjacent thereto. Therefore, another sub-pixel emits light that it should not emit when it is displayed, that is, a serious color mixing phenomenon occurs. This severe color mixing reduces the display of the display. Summary of the invention
  • At least one embodiment of the present invention can alleviate the color mixing phenomenon and improve the display effect.
  • Some embodiments of the present invention provide a method for fabricating an organic light emitting diode (OLED) array substrate, including a front line track of an organic light emitting layer material of each sub-pixel when the organic light emitting layer of each sub-pixel in the pixel unit of the array substrate is fabricated. Energy levels are produced in order from low to high.
  • the organic light-emitting layer material of each sub-pixel has the same carrier type, and each of the pixel units includes at least two sub-pixels.
  • the organic light-emitting layer material of at least one of the sub-pixels is a fluorescent material
  • the organic light-emitting layer material of the remaining sub-pixels is a phosphorescent material
  • each of the pixel units includes three sub-pixels: a first sub-pixel, a second sub-pixel, and The third sub-pixel.
  • the front ray orbital energy level of the organic light emitting layer material of the first subpixel is smaller than the frontier orbital energy level of the organic light emitting layer material of the second subpixel, and the frontier orbital energy level of the organic light emitting layer material of the second subpixel is smaller than that of the third subpixel.
  • the frontier orbital energy level of the organic light-emitting layer material is smaller than that of the third subpixel.
  • the organic light emitting layer material of the three sub-pixels is an N-type material
  • the lowest unoccupied orbital energy level of the organic light-emitting layer material of the first sub-pixel is smaller than the lowest unoccupied orbital energy level of the organic light-emitting layer material of the second sub-pixel.
  • the lowest unoccupied orbital level of the organic light-emitting layer material of the second sub-pixel is smaller than the lowest unoccupied orbital level of the organic light-emitting layer material of the third sub-pixel.
  • the organic light emitting layer material of the three sub-pixels is a P-type material
  • the highest occupied orbital energy level of the organic light-emitting layer material of the first sub-pixel is smaller than the highest occupied orbital energy level of the organic light-emitting layer material of the second sub-pixel.
  • the highest occupied orbital energy level of the organic light-emitting layer material of the second sub-pixel is smaller than the highest occupied orbital energy level of the organic light-emitting layer material of the third sub-pixel.
  • the organic light-emitting layer material of each of the first sub-pixel and the second sub-pixel is a phosphorescent material
  • the organic light-emitting layer material of the third sub-pixel is a fluorescent material
  • Some embodiments of the present invention also provide an organic light emitting diode (OLED) array substrate, comprising: gate lines and data lines formed on a substrate, and a plurality of pixel units defined by the gate lines and the data lines.
  • OLED organic light emitting diode
  • Each of the pixel units includes at least two sub-pixels arranged in order of the front-line orbital level of the respective organic light-emitting layer materials, and the carrier types of the respective organic light-emitting layer materials are the same.
  • Some embodiments of the present invention also provide an organic light emitting diode (OLED) display device comprising the OLED array substrate of any of the above.
  • OLED organic light emitting diode
  • FIG. 1 is a schematic structural view showing formation of an anode and a hole transport layer on a substrate in a method of fabricating an OLED array substrate;
  • FIG. 2 is a schematic structural view of an organic light-emitting layer forming a first sub-pixel having the lowest front-level track level on the substrate structure formed in FIG. 1;
  • FIG. 3 is a second sub-pixel having a lower level of the front-line track energy level formed on the substrate structure formed in FIG. Schematic diagram of the organic light-emitting layer
  • FIG. 4 is a schematic structural view of an organic light-emitting layer having a third sub-pixel having the highest front-level track level on the substrate structure formed in FIG. 3;
  • FIG. 5 is a schematic structural view of a pixel unit used for an OLED array substrate. detailed description
  • the front-line orbital energy level of the organic light-emitting layer material of each sub-pixel is sequentially low to high.
  • the carrier type of the organic light-emitting layer material of each sub-pixel is the same.
  • each of the pixel units includes at least two sub-pixels.
  • the array substrate includes a pixel array composed of multi-pixel cells.
  • the following description will be made by taking one pixel unit including three sub-pixels (for example, RGB) as an example.
  • an anode 120 and a hole transport layer 130 are sequentially formed on a substrate 110, and then an organic light-emitting layer is formed, and the front-line orbital energy levels of the organic light-emitting layer materials of the respective sub-pixels are sequentially produced from low to high.
  • the substrate 110 is, for example, a glass substrate, a plastic substrate or the like.
  • the organic light-emitting layer 141 of the first sub-pixel is first formed; as shown in FIG. 3, the organic light-emitting layer 142 of the second sub-pixel is further formed; as shown in FIG. 4, the organic of the third sub-pixel is finally produced.
  • Light emitting layer 143 As shown in FIG. 2, the organic light-emitting layer 141 of the first sub-pixel is first formed; as shown in FIG. 3, the organic light-emitting layer 142 of the second sub-pixel is further formed; as shown in FIG. 4, the organic of the third sub-pixel is finally produced.
  • Light emitting layer 143 is first formed; as shown in FIG. 3, the organic light-emitting layer 142 of the second sub-pixel is further formed; as shown in FIG. 4, the organic of the third sub-pixel is finally produced.
  • the front ray orbital energy level of the organic light emitting layer material of the first subpixel is smaller than the frontier orbital energy level of the organic light emitting layer material of the second subpixel, and the frontier orbital energy level of the organic light emitting layer material of the second subpixel is smaller than that of the third subpixel The frontier orbital energy level of the organic light-emitting layer material.
  • the electron transport layer 150 and the cathode 160 are sequentially formed on the organic light-emitting layer, and the finally formed OLED array substrate is as shown in FIG.
  • the carriers are electrons, and the lowest unoccupied orbital (LUMO) level of the organic light-emitting layer material of the first sub-pixel is smaller than that of the second sub-pixel.
  • the lowest unoccupied orbital level of the luminescent layer material, and the lowest unoccupied orbital level of the organic luminescent layer material of the second sub-pixel is smaller than the lowest unoccupied orbital level of the organic luminescent layer material of the third sub-pixel.
  • the carrier is a hole, and the highest occupied orbital (HOMO) level of the organic light-emitting layer material of the first sub-pixel is smaller than the second sub-pixel.
  • the highest occupied orbital energy level of the organic light emitting layer material of the pixel, and the highest occupied orbital energy level of the organic light emitting layer material of the second subpixel is smaller than the highest occupied orbital energy level of the organic light emitting layer material of the third subpixel.
  • the lowest unoccupied orbit (LUMO) and the highest occupied orbit (HOMO) are collectively referred to as the frontline orbit.
  • an N-type material will be described as an example. Since the fabrication order is made from low to high according to the energy level, if the organic light-emitting material of the third sub-pixel is undesirably formed on the organic light-emitting layer of the second sub-pixel, the LUMO energy level is driven by the electric field. The recombination zone still only falls in the low-energy organic luminescent material (the organic luminescent layer of the second sub-pixel), and thus only the organic luminescent layer of the second sub-pixel is excited, and the organic luminescent material of the third sub-pixel does not The light is emitted, so that the color mixing phenomenon is improved.
  • the organic light-emitting material of the second sub-pixel is undesirably formed on the organic light-emitting layer of the first sub-pixel, only the organic light-emitting layer of the first sub-pixel is excited by the electric field driving due to the LUMO energy level relationship.
  • the organic light-emitting material of the second sub-pixel does not emit light, so that the color mixing phenomenon is improved.
  • the high-energy-level organic light-emitting material when the high-energy-level organic light-emitting material is undesirably formed on the low-energy organic light-emitting layer, the high-energy-level organic light-emitting material does not emit light, thereby reducing the color mixing phenomenon.
  • the organic light-emitting material may be formed first in the region of the second sub-pixel (when the second sub-pixel has not yet formed its organic light-emitting material), and similarly, the second sub-pixel organic light-emitting material It is possible to form an area in the third sub-pixel first. Since the pixel units are arranged in an array on the array substrate, it is also possible that the organic light-emitting material of the first sub-pixel is formed first in the region of the third sub-pixel. That is, it is possible that a low-energy organic light-emitting material is formed in advance in a region where the organic light-emitting layer of a high-energy level is present.
  • the layer material is a fluorescent material (such as: MADN, DSA-Ph or DPVBi), and the organic light-emitting layer material of the remaining sub-pixels is a phosphorescent material.
  • the organic light-emitting layer material of one of the three sub-pixels is a fluorescent material
  • the other two organic light-emitting layer materials are phosphorescent materials, or one of the organic light-emitting layers
  • the material is a phosphorescent material
  • the other two organic light-emitting layer materials are fluorescent materials.
  • the organic light-emitting layer material of each of the first sub-pixel and the second sub-pixel is a phosphorescent material
  • the organic light-emitting layer material of the third sub-pixel is a fluorescent material.
  • the phosphorescent organic light-emitting material of the second sub-pixel is formed in advance in the region of the third sub-pixel, when the organic light-emitting layer of the third sub-pixel driving the high-energy level emits light, the first excited state (T1) of the phosphorescent material is greater than The first excited state (T1) of the fluorescent material, the phosphorescent exciter does not emit light (since the T1 of the fluorescent material is small, the excitons are easily moved from the high energy level to the low energy level, so the excitons on the phosphorescent material run onto the fluorescent material, Therefore, no phosphorescence is produced, so the color mixing phenomenon is improved.
  • the phosphorescent organic light-emitting material of the first sub-pixel is formed in advance in the region of the third sub-pixel, so the phosphorescent excitons do not emit light, so the color mixing phenomenon is improved.
  • the respective organic light-emitting layers of the first sub-pixel and the second sub-pixel are each made of a phosphorescent organic light-emitting material, when the phosphorescent organic light-emitting material of the first sub-pixel is formed in advance in the region of the second sub-pixel, and When the organic light-emitting layer that drives the second sub-pixel of the high-energy level emits light, the phosphorescence of the first sub-pixel emits light, causing a color mixture phenomenon.
  • the carriers are holes, and the principle of avoiding color mixing is basically the same as that of N-type materials, except that the holes move in opposite directions.
  • the low-energy organic light-emitting layer material is previously fabricated in the region of the high-energy organic light-emitting layer, the carrier-composite light-emitting region of the bonding region does not fall on the low-level organic light-emitting layer due to the energy level, that is, high energy.
  • the low-energy organic light-emitting material below the level of the organic light-emitting layer does not emit light.
  • the OLED array substrate manufacturing method of at least one embodiment of the present invention although the OLED array substrate of three or more sub-pixels cannot completely avoid color mixing, the color mixing phenomenon is greatly reduced, and the display effect is improved. For the two sub-pixel OLED array substrates, it is theoretically possible to completely avoid color mixing.
  • the organic light-emitting layer of each sub-pixel can be formed by a conventional method such as FFM vapor deposition, and the organic light-emitting layer material corresponding to each sub-pixel is selected and produced in the order of the present invention. Production can achieve the effect of reducing the color mixing phenomenon.
  • At least one embodiment of the present invention also provides an OLED array substrate including gate lines and data lines formed on a substrate, and a plurality of pixel units defined by the gate lines and data lines, each of the pixel units Include at least two sub-pixels, each of which is organically illuminated
  • the frontier orbital energy levels of the layer materials are arranged in order, and the carrier types of the respective organic light-emitting layer materials are the same.
  • the OLED array substrate is produced, for example, by the above method.
  • the following description takes one pixel unit including three sub-pixels (RGB) as an example.
  • the pixel unit includes an anode 120, a hole transport layer 130, and an organic light emitting layer (a first organic light emitting layer 141, a second organic light emitting layer 142, and a third organic light emitting layer 143) which are sequentially formed on the base 110. ), an electron transport layer 150 and a cathode 160.
  • the first organic light-emitting layer 141, the second organic light-emitting layer 142, and the third organic light-emitting layer 143 form three sub-pixels with other structures, respectively.
  • the organic light-emitting layers of the three sub-pixels have the same carrier type, and are sequentially arranged according to the front-line orbital level of the organic light-emitting layer material, such as: the material of the organic light-emitting layer 141 of the first sub-pixel.
  • the front line orbital level is smaller than the front line orbital level of the material of the organic light emitting layer 142 of the second subpixel, and the front line orbital level of the organic light emitting layer material of the second subpixel is smaller than the front line of the material of the organic light emitting layer 143 of the third subpixel.
  • Orbital energy level is smaller than the front line orbital level of the material of the organic light emitting layer 143 of the third subpixel.
  • the carriers are electrons, and the lowest unoccupied orbital (LUMO) level of the organic light-emitting layer material of the first sub-pixel is smaller than the lowest unoccupied orbital level of the organic light-emitting layer material of the second sub-pixel.
  • the lowest unoccupied orbital level of the organic light-emitting layer material of the second sub-pixel is smaller than the lowest unoccupied orbital level of the organic light-emitting layer material of the third sub-pixel.
  • the carriers are holes, and the highest occupied orbital (HOMO) level of the organic light-emitting layer material of the first sub-pixel is smaller than the highest occupied orbital level of the organic light-emitting layer material of the second sub-pixel.
  • the highest occupied orbital energy level of the organic light-emitting layer material of the second sub-pixel is smaller than the highest occupied orbital energy level of the organic light-emitting layer material of the third sub-pixel.
  • the array substrate is fabricated in accordance with the front-line orbital energy level of the organic light-emitting layer material from low to high, when the high-level organic light-emitting material is undesirably formed on the low-level organic light-emitting layer, the high-energy level The organic luminescent material does not illuminate, thereby reducing color mixing.
  • the organic light-emitting layer material of at least one of the sub-pixels is a fluorescent material
  • the organic light-emitting layer material of the remaining sub-pixels is a phosphorescent material
  • the organic light-emitting material of each of the first sub-pixel and the second sub-pixel is a phosphorescent material
  • the organic light-emitting layer material of the third sub-pixel is a fluorescent material.
  • the organic light-emitting layer material is divided into two materials of fluorescence and phosphorescence, in the case where the OLED array substrate includes three sub-pixels, if the phosphorescent organic light-emitting material of the first sub-pixel is formed in advance in the region of the third sub-pixel, phosphorescence excitation The child does not emit light, so the color mixing phenomenon is improved; for the two subimages For the OLED array substrate, the color mixing phenomenon can be completely avoided in theory.
  • the OLED array substrate greatly reduces the color mixing phenomenon and improves the display effect.
  • At least one embodiment of the present invention also provides an OLED display device comprising the above-described OLED array substrate.
  • the OLED display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED阵列基板制作方法,在制作阵列基板的像素单元中各子像素的有机发光层(141、142、143)时按各子像素的有机发光层材料的前线轨道能级由低到高依序制作,且各子像素的有机发光层材料的载流子类型相同,每个所述像素单元包括至少两个子像素。还公开了一种由上述方法制得的OLED阵列基板及显示装置。该OLED阵列基板能够减轻混色现象,提高显示效果。

Description

OLED阵列基板及其制作方法、 显示装置 技术领域
本发明的至少一个实施例涉及一种有机发光二极管 (OLED ) 阵列基板 及其制作方法、 显示装置。
背景技术
有机发光二极管 (OLED )釆用有机材料制成, 在电场驱动下其中的发 光材料层会发光。 OLED显示屏的发光层一般是通过精细的金属掩膜板 ( fine metal mask, FMM )利用真空蒸镀成膜技术而形成的, 例如将有机材料以像 素并列法(RGB side by side ) 蒸镀在阵列基板相应的像素位置形成发光层。 像素并列法是在一个像素内有红、 绿、 蓝三个子像素, 每个子像素构成独立 的发光元器件, 红、 绿、 蓝三色子像素独立发光, 从而构成一个像素。
FMM是极为精细的网状或条状金属掩膜板。 但是, 由于该种金属掩膜 板本身在蒸镀制程中受热后会膨胀变形, 而且自身重量也会造成下垂等, 因 此蒸镀时 FMM 的小孔可能无法精确地对应到阵列基板上相应子像素的位 置, 这可能导致某个子像素的有机材料会部分蒸镀到与其紧邻的另一个子像 素对应位置。 因此, 另一个子像素在显示时就发出了它本身不该发的光, 即 产生了严重的混色现象。 这种严重的混色现象降低了显示器的显示效果。 发明内容
本发明的至少一个实施例可以减轻混色现象, 提高显示效果。
本发明的一些实施例提供了一种有机发光二极管 (OLED ) 阵列基板制 作方法, 包括在制作阵列基板的像素单元中各子像素的有机发光层时按各子 像素的有机发光层材料的前线轨道能级由低到高依序制作。 各子像素的有机 发光层材料的载流子类型相同, 每个所述像素单元包括至少两个子像素。
例如, 所述至少两个子像素中, 至少一个子像素的有机发光层材料为荧 光性材料, 其余的子像素的有机发光层材料为磷光性材料。
例如, 每个所述像素单元包括三个子像素: 第一子像素、 第二子像素和 第三子像素。 第一子像素的有机发光层材料的前线轨道能级小于第二子像素 的有机发光层材料的前线轨道能级, 第二子像素的有机发光层材料的前线轨 道能级小于第三子像素的有机发光层材料的前线轨道能级。
例如, 所述三个子像素的有机发光层材料为 N型材料, 第一子像素的有 机发光层材料的最低未占轨道能级小于第二子像素的有机发光层材料的最低 未占轨道能级, 第二子像素的有机发光层材料的最低未占轨道能级小于第三 子像素的有机发光层材料的最低未占轨道能级。
例如, 所述三个子像素的有机发光层材料为 P型材料, 第一子像素的有 机发光层材料的最高已占轨道能级小于第二子像素的有机发光层材料的最高 已占轨道能级, 第二子像素的有机发光层材料的最高已占轨道能级小于第三 子像素的有机发光层材料的最高已占轨道能级。
例如, 所述第一子像素和第二子像素各自的有机发光层材料为磷光性材 料, 第三子像素的有机发光层材料为荧光性材料。
本发明的一些实施例还提供了一种有机发光二极管( OLED )阵列基板, 包括: 形成在基板上的栅线和数据线, 以及由所述栅线和数据线限定的多个 像素单元。 每个所述像素单元包括至少两个子像素, 所述至少两个子像素按 各自的有机发光层材料的前线轨道能级高低依序排列, 且各自的有机发光层 材料的载流子类型相同。
本发明的一些实施例还提供了一种有机发光二极管(OLED )显示装置, 包括上述任一所述的 OLED阵列基板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为制作 OLED阵列基板的方法中在基板上形成阳极和空穴运输层的 结构示意图;
图 2为在图 1形成的基板结构之上形成前线轨道能级最低的第一子像素 的有机发光层的结构示意图;
图 3为在图 2形成的基板结构之上形成前线轨道能级次低的第二子像素 的有机发光层的结构示意图;
图 4为在图 3形成的基板结构之上形成前线轨道能级最高的第三子像素 的有机发光层的结构示意图;
图 5为用于 OLED阵列基板的像素单元结构示意图。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
本发明至少一个实施例的 OLED阵列基板制作方法中, 在制作阵列基板 的像素单元中各子像素的有机发光层时按各子像素的有机发光层材料的前线 轨道能级由低到高依序制作, 且各子像素的有机发光层材料的载流子类型相 同。 例如, 每个所述像素单元包括至少两个子像素。 阵列基板包括由多像素 单元构成的像素阵列。
下面以一个像素单元包括三个子像素(例如, RGB )为例进行说明。 如图 1所示, 在基板 110上依次形成阳极 120和空穴运输层 130, 然后 制作有机发光层, 并按各子像素的有机发光层材料的前线轨道能级由低到高 依序制作。 该基板 110例如为玻璃基板、 塑料基板等。
如图 2所示, 先制作第一子像素的有机发光层 141; 如图 3所示, 再制 作第二子像素的有机发光层 142; 如图 4所示, 最后制作第三子像素的有机 发光层 143。
第一子像素的有机发光层材料的前线轨道能级小于第二子像素的有机发 光层材料的前线轨道能级, 第二子像素的有机发光层材料的前线轨道能级小 于第三子像素的有机发光层材料的前线轨道能级。
制作完有机发光层 141-143后,在有机发光层上依次形成电子运输层 150 和阴极 160, 最终形成的 OLED阵列基板如图 5所示。
对于 N型材料(如: Alq3、 BPhen、 BCP或 TPBI )的情况, 载流子为电 子, 第一子像素的有机发光层材料的最低未占轨道(LUMO ) 能级小于第二 子像素的有机发光层材料的最低未占轨道能级, 第二子像素的有机发光层材 料的最低未占轨道能级小于第三子像素的有机发光层材料的最低未占轨道能 级。 对于 P型材料(如: NPB、 TDAB、 2-TNATA或 TPD )的情况, 载流子 为空穴, 第一子像素的有机发光层材料的最高已占轨道(HOMO )能级小于 第二子像素的有机发光层材料的最高已占轨道能级, 第二子像素的有机发光 层材料的最高已占轨道能级小于第三子像素的有机发光层材料的最高已占轨 道能级。
根据前线轨道理论, 最低未占轨道( LUMO )和最高已占轨道( HOMO ) 统称前线轨道。
这里以 N型材料为例进行说明。 由于制作顺序是按能级由低到高制作, 若第三子像素的有机发光材料不预期地形成在第二子像素的有机发光层上, 则因 LUMO能级关系,在电场驱动下,载流子复合区依然只会落在低能级的 有机发光材料(第二子像素的有机发光层) 内, 进而只激发第二子像素的有 机发光层发光, 第三子像素的有机发光材料不会发光, 从而混色现象获得改 善。
同理, 若第二子像素的有机发光材料不预期地形成在第一子像素的有机 发光层上,则因 LUMO能级关系,在电场驱动下只激发第一子像素的有机发 光层发光, 第二子像素的有机发光材料不会发光, 从而混色现象获得改善。
可见当高能级的有机发光材料不预期地形成在低能级的有机发光层上 时, 高能级的有机发光材料不发光, 从而减轻了混色现象。
在制作第一子像素时, 其有机发光材料有可能先形成在第二子像素的区 域(此时第二子像素还未形成其有机发光材料) , 同理, 第二子像素的有机 发光材料有可能先形成在第三子像素的区域。 由于在阵列基板上像素单元以 阵列形式排列, 第一子像素的有机发光材料也有可能先形成在第三子像素的 区域。 即低能级的有机发光材料有可能事先形成在高能级的有机发光层所在 区域。
因此, 为了避免在驱动高能级的有机发光层时低能级的有机发光材料发 光, 进一步地, 在本发明的至少一个实施例中, 在至少两个子像素中, 例如 使得至少一个子像素的有机发光层材料为荧光性材料(如: MADN、 DSA-Ph 或 DPVBi ), 其余的子像素的有机发光层材料为磷光性材料。 对于三个子像 素的情况, 例如使得三个子像素中的其中一个的有机发光层材料为荧光性材 料, 其余两个的有机发光层材料为磷光性材料, 或者其中一个的有机发光层 材料为磷光性材料, 其余两个的有机发光层材料为荧光性材料。
例如: 第一子像素和第二子像素各自的有机发光层材料为磷光性材料
( ^口: Btp2Ir(acac)、 Ir(piq)3或 Ir(piq)2(acac、 Ir(ppy)3、 FIrpic)等) , 第三子 像素的有机发光层材料为荧光性材料。 若第二子像素的磷光性有机发光材料 事先形成在第三子像素的区域, 在驱动高能级的第三子像素的有机发光层发 光时, 则因磷光发光材料第一激发态 (T1 ) 大于荧光发光材料第一激发态 ( T1 ) , 磷光激发子不发光(由于荧光材料的 T1较小, 激发子容易从高能 阶往低能阶移动, 故在磷光材料上的激发子跑到了荧光材料上, 于是就不产 生磷光了) , 故混色现象获得改善。
同理,若第一子像素的磷光有机发光材料事先形成在第三子像素的区域, 磷光激发子不发光, 故混色现象获得改善。
由于第一子像素和第二子像素各自的有机发光层均釆用磷光性有机发光 材料制成, 因此, 当第一子像素的磷光有机发光材料事先形成在第二子像素 的区域, 且在驱动高能级的第二子像素的有机发光层发光时, 第一子像素的 磷光会发光, 产生混色现象。
对于 P型材料, 载流子为空穴, 其避免混色的原理和釆用 N型材料时基 本相同, 不同的是空穴运动方向相反。 当低能级的有机发光层材料事先制作 在高能级的有机发光层所在区域时, 由于能级原因, 结合区的载流子复合发 光的地方不会落在低能级的有机发光层上, 即高能级的有机发光层下方的低 能级的有机发光材料不发光。
本发明至少一个实施例的 OLED阵列基板制作方法,对于三个以上子像 素的 OLED阵列基板,虽然无法完全避免产生混色,但大大减轻了混色现象, 提高显示效果。 对于两个子像素的 OLED阵列基板来说, 理论上可以完全避 免混色现象。
上述 OLED阵列基板制作方法中, 在形成各子像素的有机发光层时可釆 用 FFM 蒸镀等现有的方法进行, 只要选择各子像素相应的有机发光层材料 并按本发明中的制作顺序制作即能达到减轻混色现象的效果。
本发明的至少一个实施例还提供了一种 OLED阵列基板, 包括形成在基 板上的栅线和数据线, 以及由所述栅线和数据线限定的多个像素单元, 每个 所述像素单元包括至少两个子像素, 所述至少两个子像素按各自的有机发光 层材料的前线轨道能级高低依序排列, 且各自的有机发光层材料的载流子类 型相同。 该 OLED阵列基板例如由上述方法制作而成。
下面以一个像素单元包括三个子像素( RGB )为例进行说明。
如图 5所示, 该像素单元包括依次形成在基本 110上的阳极 120、 空穴 运输层 130、有机发光层(第一有机发光层 141、 第二有机发光层 142和第三 有机发光层 143 )、 电子运输层 150和阴极 160。 第一有机发光层 141、 第二 有机发光层 142和第三有机发光层 143分别与其它结构形成三个子像素。 本 实施例中, 三个子像素各自的有机发光层的载流子类型相同, 并按有机发光 层材料的前线轨道能级高低依序排列, 如: 第一子像素的有机发光层 141的 材料的前线轨道能级小于第二子像素的有机发光层 142的材料的前线轨道能 级, 第二子像素的有机发光层材料的前线轨道能级小于第三子像素的有机发 光层 143的材料的前线轨道能级。
对于 N型材料的情况, 载流子为电子, 第一子像素的有机发光层材料的 最低未占轨道(LUMO ) 能级小于第二子像素的有机发光层材料的最低未占 轨道能级, 第二子像素的有机发光层材料的最低未占轨道能级小于第三子像 素的有机发光层材料的最低未占轨道能级。
对于 P型材料的情况, 载流子为空穴, 第一子像素的有机发光层材料的 最高已占轨道(HOMO )能级小于第二子像素的有机发光层材料的最高已占 轨道能级, 第二子像素的有机发光层材料的最高已占轨道能级小于第三子像 素的有机发光层材料的最高已占轨道能级。
由于该阵列基板在制作时, 根据有机发光层材料的前线轨道能级由低到 高依序制作, 因此当高能级的有机发光材料不预期地形成在低能级的有机发 光层上时, 高能级的有机发光材料不发光, 从而减轻了混色现象。
进一步地, 至少两个子像素中, 至少一个子像素的有机发光层材料为荧 光性材料, 其余的子像素的有机发光层材料为磷光性材料。 本实施例中, 所 述第一子像素和第二子像素各自的有机发光材料为磷光性材料, 第三子像素 的有机发光层材料为荧光性材料。
由于有机发光层材料分为荧光性和磷光性两种材料, 在 OLED阵列基板 包括三种子像素的情况下, 若第一子像素的磷光有机发光材料事先形成在第 三子像素的区域, 磷光激发子不发光, 故混色现象获得改善; 对于两个子像 素的 OLED阵列基板来说, 理论上可以完全避免混色现象。
总之, 由于釆用了上述 OLED阵列基板的制作方法, 该 OLED阵列基板 大大减轻了混色现象, 提高显示效果。
本发明的至少一个实施例还提供了一种 OLED显示装置, 包括上述的 OLED阵列基板。 该 OLED显示装置可以是: 手机、 平板电脑、 电视机、 显 示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。
本申请要求于 2013年 10月 18日递交的中国专利申请第 201310492730.3 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种有机发光二极管 (OLED ) 阵列基板制作方法, 包括: 在制作阵列基板的像素单元中各子像素的有机发光层时, 按各子像素的 有机发光层材料的前线轨道能级由低到高依序制作,
其中, 各子像素的有机发光层材料的载流子类型相同, 每个所述像素单 元包括至少两个子像素。
2、 如权利要求 1所述的 OLED阵列基板制作方法, 其中, 所述至少两 个子像素中, 至少一个子像素的有机发光层材料为荧光性材料, 其余的子像 素的有机发光层材料为磷光性材料。
3、 如权利要求 1或 2所述的 OLED阵列基板制作方法, 其中, 每个所 述像素单元包括三个子像素: 第一子像素、 第二子像素和第三子像素, 第一子像素的有机发光层材料的前线轨道能级小于第二子像素的有机发 光层材料的前线轨道能级, 第二子像素的有机发光层材料的前线轨道能级小 于第三子像素的有机发光层材料的前线轨道能级。
4、 如权利要求 3所述的 OLED阵列基板制作方法, 其中, 所述三个子 像素的有机发光层材料为 N型材料,
第一子像素的有机发光层材料的最低未占轨道能级小于第二子像素的有 机发光层材料的最低未占轨道能级, 第二子像素的有机发光层材料的最低未 占轨道能级小于第三子像素的有机发光层材料的最低未占轨道能级。
5、 如权利要求 3所述的 OLED阵列基板制作方法, 其中, 所述三个子 像素的有机发光层材料为 P型材料,
第一子像素的有机发光层材料的最高已占轨道能级小于第二子像素的有 机发光层材料的最高已占轨道能级, 第二子像素的有机发光层材料的最高已 占轨道能级小于第三子像素的有机发光层材料的最高已占轨道能级。
6、 如权利要求 3所述的 OLED阵列基板制作方法, 其中, 所述第一子 像素和第二子像素各自的有机发光层材料为磷光性材料, 第三子像素的有机 发光层材料为荧光性材料。
7、 一种有机发光二极管(OLED )阵列基板, 包括形成在基板上的栅线 和数据线, 以及由所述栅线和数据线限定的多个像素单元, 其中, 每个所述像素单元包括至少两个子像素, 所述至少两个子像素按 各自的有机发光层材料的前线轨道能级高低依序排列, 且各自的有机发光层 材料的载流子类型相同。
8、 如权利要求 7所述的 OLED阵列基板, 其中, 所述至少两个子像素 中, 至少一个子像素的有机发光层材料为荧光性材料, 其余的子像素的有机 发光层材料为磷光性材料。
9、 如权利要求 7或 8所述的 OLED阵列基板, 其中, 每个所述像素单 元包括三个子像素: 第一子像素、 第二子像素和第三子像素,
第一子像素的有机发光层材料的前线轨道能级小于第二子像素的有机发 光层材料的前线轨道能级, 第二子像素的有机发光层材料的前线轨道能级小 于第三子像素的有机发光层材料的前线轨道能级。
10、 如权利要求 9所述的 OLED阵列基板, 其中, 所述三个子像素的有 机发光层材料为 N型材料,
第一子像素的有机发光层材料的最低未占轨道能级小于第二子像素的有 机发光层材料的最低未占轨道能级, 第二子像素的有机发光层材料的最低未 占轨道能级小于第三子像素的有机发光层材料的最低未占轨道能级。
11、 如权利要求 9所述的 OLED阵列基板, 其中, 所述三个子像素的有 机发光层材料为 P型材料,
第一子像素的有机发光层材料的最高已占轨道能级小于第二子像素的有 机发光层材料的最高已占轨道能级, 第二子像素的有机发光层材料的最高已 占轨道能级小于第三子像素的有机发光层材料的最高已占轨道能级。
12、 如权利要求 9所述的 OLED阵列基板, 其中, 所述第一子像素和第 二子像素各自的有机发光层材料为磷光性材料, 第三子像素的有机发光层材 料为荧光性材料。
13、 一种有机发光二极管(OLED )显示装置, 包括如权利要求 7~12中 任一所述的 OLED阵列基板。
PCT/CN2014/077301 2013-10-18 2014-05-12 Oled阵列基板及其制作方法、显示装置 WO2015055001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310492730.3A CN103500751B (zh) 2013-10-18 2013-10-18 Oled阵列基板及其制作方法、显示装置
CN201310492730.3 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015055001A1 true WO2015055001A1 (zh) 2015-04-23

Family

ID=49865940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077301 WO2015055001A1 (zh) 2013-10-18 2014-05-12 Oled阵列基板及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN103500751B (zh)
WO (1) WO2015055001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779264A (zh) * 2014-01-10 2015-07-15 上海和辉光电有限公司 混色型掩膜开口缺陷的有机发光二极管显示屏修补方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137239A1 (en) * 2001-11-09 2003-07-24 Konica Corporation Organic electroluminescence element and display
CN1630442A (zh) * 2003-12-16 2005-06-22 精工爱普生株式会社 有机电致发光装置及其制造方法、电子设备
CN1879237A (zh) * 2003-11-10 2006-12-13 E.I.内穆尔杜邦公司 具有包含客体材料的区域的有机层的形成方法及结合了该层的有机电子器件
JP2010165793A (ja) * 2009-01-14 2010-07-29 Toshiba Mobile Display Co Ltd 有機el表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786292B1 (ko) * 2005-07-15 2007-12-18 삼성에스디아이 주식회사 유기 전계 발광 소자
KR101245220B1 (ko) * 2009-11-06 2013-03-19 엘지디스플레이 주식회사 유기발광다이오드 표시장치의 제조방법
TWI466351B (zh) * 2010-02-05 2014-12-21 Sony Corp 有機電激發光顯示器及製造彼之方法
US9105847B2 (en) * 2010-06-24 2015-08-11 Joled Inc. Organic EL display and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137239A1 (en) * 2001-11-09 2003-07-24 Konica Corporation Organic electroluminescence element and display
CN1879237A (zh) * 2003-11-10 2006-12-13 E.I.内穆尔杜邦公司 具有包含客体材料的区域的有机层的形成方法及结合了该层的有机电子器件
CN1630442A (zh) * 2003-12-16 2005-06-22 精工爱普生株式会社 有机电致发光装置及其制造方法、电子设备
JP2010165793A (ja) * 2009-01-14 2010-07-29 Toshiba Mobile Display Co Ltd 有機el表示装置

Also Published As

Publication number Publication date
CN103500751A (zh) 2014-01-08
CN103500751B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
EP2372805B1 (en) Organic light emitting diode device
TWI527211B (zh) 有機發光顯示裝置及其製造方法
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
US9065068B2 (en) Organic light emitting display device
US9076978B2 (en) Organic light emitting diode device
WO2022042037A1 (zh) 有机电致发光器件、显示面板及显示装置
KR101429537B1 (ko) 유기발광소자
WO2016015395A1 (zh) 有机发光二极管阵列基板及显示装置
CN105185917B (zh) 一种有机电致发光显示器件及显示装置
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
CN111092163B (zh) 有机发光二极管显示装置
WO2018152881A1 (zh) Oled显示面板及其制备方法、显示装置
WO2016155182A1 (zh) 一种电致发光显示器件及显示装置
US10355053B2 (en) Organic light-emitting diode, display panel and display device
KR20100073417A (ko) 유기전계발광소자
WO2017000635A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
WO2017000634A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
KR20100072644A (ko) 유기전계발광소자
KR101777124B1 (ko) 백색 유기 발광 소자
KR20160084282A (ko) 탠덤형 유기발광소자
US11139444B2 (en) Organic electroluminescent devices containing a near-infrared down-conversion layer
KR20130029956A (ko) 유기 발광 표시 장치
WO2015055001A1 (zh) Oled阵列基板及其制作方法、显示装置
KR101759294B1 (ko) 탠덤형 유기발광소자
KR20070101516A (ko) 백색 유기 전계 발광 소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853651

Country of ref document: EP

Kind code of ref document: A1